51
|
Zheng L, Miao M, Gan Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci Biobehav Rev 2022; 138:104721. [PMID: 35667634 DOI: 10.1016/j.neubiorev.2022.104721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
In the context of current-day online shopping, people select foods based on pictures and using their visual systems. Although there are some reviews of previous neuroimaging studies on appetitive behaviors, the findings on neural activation in response to pictures of high- and low-calorie foods seem inconsistent. This study aims to systematically review, integrate, and meta-analyze neuroimaging evidence of viewing high- and low-calorie foods. There were 25 samples from 24 studies, totalizing 489 normal-weight participants (311 female, 160 male, and 18 of unknown sex). We conducted a systematic review and Activation Likelihood Estimation (ALE) meta-analysis on viewing high-calorie foods (versus non-foods), low-calorie foods (versus non-foods), and high- versus low-calorie foods. In systematic review, several brain regions were shown to be activated when viewing high- or low-calorie foods (versus non-foods) and viewing high- versus low-calorie foods, including the prefrontal cortex, orbitofrontal cortex, amygdala, insula, ventral striatum, hippocampus, superior parietal lobe, and fusiform gyrus. However, the ALE meta-analysis showed that the left orbitofrontal cortex, left amygdala, insula, superior parietal lobe, and fusiform gyrus were activated when viewing high-calorie foods (versus non-foods); the left fusiform gyrus was activated when viewing low-calorie foods (versus non-foods); and no cluster was activated when viewing high- versus low-calorie foods. Our research suggests an appetitive brain network that includes visual perception and attentional processing, sensory input integration, subjective reward value encoding, decision-making, and top-down cognitive control. Future studies should control for the effects of methodological and physiological variables when examining the neural correlates of viewing high- and low-calorie foods.
Collapse
Affiliation(s)
- Lei Zheng
- School of Economics and Management, Fuzhou University, China; School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Miao Miao
- Department of Medical Psychology, School of Health Humanities, Peking University, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
52
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
53
|
Ma H, He C, Li L, Gao P, Lu Z, Hu Y, Wang L, Zhao Y, Cao T, Cui Y, Zheng H, Yang G, Yan Z, Liu D, Zhu Z. TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation. Int J Obes (Lond) 2022; 46:1544-1555. [PMID: 35589963 DOI: 10.1038/s41366-022-01151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Collapse
Affiliation(s)
- Huan Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China. .,Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
54
|
Oliveira VEDM, de Jong TR, Neumann ID. Synthetic Oxytocin and Vasopressin Act Within the Central Amygdala to Exacerbate Aggression in Female Wistar Rats. Front Neurosci 2022; 16:906617. [PMID: 35663559 PMCID: PMC9158429 DOI: 10.3389/fnins.2022.906617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Exacerbated aggression is a high-impact, but poorly understood core symptom of several psychiatric disorders, which can also affect women. Animal models have successfully been employed to unravel the neurobiology of aggression. However, despite increasing evidence for sex-specificity, little is known about aggression in females. Here, we studied the role of the oxytocin (OXT) and arginine vasopressin (AVP) systems within the central amygdala (CeA) on aggressive behavior displayed by virgin female Wistar rats using immunohistochemistry, receptor autoradiography, and neuropharmacology. Our data show that CeA GABAergic neurons are activated after an aggressive encounter in the female intruder test. Additionally, neuronal activity (pERK) negatively correlated with the display of aggression in low-aggressive group-housed females. Binding of OXT receptors, but not AVP-V1a receptors, was increased in the CeA of high-aggressive isolated and trained (IST) females. Finally, local infusion of either synthetic OXT or AVP enhanced aggression in IST females, whereas blockade of either of these receptors did not affect aggressive behavior. Altogether, our data support a moderate role of the CeA in female aggression. Regarding neuropeptide signaling, our findings suggest that synthetic, but not endogenous OXT and AVP modulate aggressive behavior in female Wistar rats.
Collapse
Affiliation(s)
- Vinícius E. de M. Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, Liege, Belgium
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Trynke R. de Jong
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- Medische Biobank Noord-Nederland B.V., Groningen, Netherlands
| | - Inga D. Neumann
- Department of Neurobiology and Animal Physiology, Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Inga D. Neumann,
| |
Collapse
|
55
|
Li JN, Chen K, Sheets PL. Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropin-releasing hormone. J Comp Neurol 2022; 530:2286-2303. [PMID: 35579999 PMCID: PMC9283236 DOI: 10.1002/cne.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The central nucleus of the amygdala (CeA) network consists of a heterogeneous population of inhibitory GABAergic neurons distributed across distinct subregions. While the specific roles for molecularly defined CeA neurons have been extensively studied, our understanding of functional heterogeneity within classes of molecularly distinct CeA neurons remains incomplete. In addition, manipulation of genetically defined CeA neurons has produced inconsistent behavioral results potentially due to broad targeting across CeA subregions. Therefore, elucidating heterogeneity within molecularly defined neurons in subdivisions of the CeA is pivotal for gaining a complete understanding of how CeA circuits function. Here, we used a multifaceted approach involving transgenic reporter mice, brain slice electrophysiology, and neuronal morphology to dissect the heterogeneity of corticotropin‐releasing hormone (CRH) neurons in topographically distinct subregions of the CeA. Our results revealed that intrinsic and morphological properties of CRH‐expressing (CRH+) neurons in the lateral (CeL) and medial (CeM) subdivisions of the CeA were significantly different. We found that CeL‐CRH+ neurons are relatively homogeneous in morphology and firing profile. Conversely, CeM‐CRH+ neurons displayed heterogeneous electrophysiological and morphological phenotypes. Overall, these results show phenotypic differences between CRH+ neurons in CeL and CeM.
Collapse
Affiliation(s)
- Jun-Nan Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Zionsville Community High School, Zionsville, Indiana, USA
| | - Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
56
|
Azevedo EP, Ivan VJ, Friedman JM, Stern SA. Higher-Order Inputs Involved in Appetite Control. Biol Psychiatry 2022; 91:869-878. [PMID: 34593204 PMCID: PMC9704062 DOI: 10.1016/j.biopsych.2021.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023]
Abstract
The understanding of the neural control of appetite sheds light on the pathogenesis of eating disorders such as anorexia nervosa and obesity. Both diseases are a result of maladaptive eating behaviors (overeating or undereating) and are associated with life-threatening health problems. The fine regulation of appetite involves genetic, physiological, and environmental factors, which are detected and integrated in the brain by specific neuronal populations. For centuries, the hypothalamus has been the center of attention in the scientific community as a key regulator of appetite. The hypothalamus receives and sends axonal projections to several other brain regions that are important for the integration of sensory and emotional information. These connections ensure that appropriate behavioral decisions are made depending on the individual's emotional state and environment. Thus, the mechanisms by which higher-order brain regions integrate exteroceptive information to coordinate feeding is of great importance. In this review, we will focus on the functional and anatomical projections connecting the hypothalamus to the limbic system and higher-order brain centers in the cortex. We will also address the mechanisms by which specific neuronal populations located in higher-order centers regulate appetite and how maladaptive eating behaviors might arise from altered connections among cortical and subcortical areas with the hypothalamus.
Collapse
Affiliation(s)
- Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York.
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, New York; Howard Hughes Medical Institute, New York, New York
| | - Sarah A Stern
- Integrative Neural Circuits and Behavior Research Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida.
| |
Collapse
|
57
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
58
|
Sanchez MR, Wang Y, Cho TS, Schnapp WI, Schmit MB, Fang C, Cai H. Dissecting a disynaptic central amygdala-parasubthalamic nucleus neural circuit that mediates cholecystokinin-induced eating suppression. Mol Metab 2022; 58:101443. [PMID: 35066159 PMCID: PMC8844644 DOI: 10.1016/j.molmet.2022.101443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Cholecystokinin (CCK) plays a critical role in regulating eating and metabolism. Previous studies have mapped a multi-synapse neural pathway from the vagus nerve to the central nucleus of the amygdala (CEA) that mediates the anorexigenic effect of CCK. However, the neural circuit downstream of the CEA is still unknown due to the complexity of the neurons in the CEA. Here we sought to determine this circuit using a novel approach. METHODS It has been established that a specific population of CEA neurons, marked by protein kinase C-delta (PKC-δ), mediates the anorexigenic effect of CCK by inhibiting other CEA inhibitory neurons. Taking advantage of this circuit, we dissected the neural circuit using a unique approach based on the idea that neurons downstream of the CEA should be disinhibited by CEAPKC-δ+ neurons while being activated by CCK. We also used optogenetic assisted electrophysiology circuit mapping and in vivo chemogenetic manipulation methods to determine the circuit structure and function. RESULTS We found that neurons in the parasubthalamic nucleus (PSTh) are activated by the activation of CEAPKC-δ+ neurons and by the peripheral administration of CCK. We demonstrated that CEAPKC-δ+ neurons inhibit the PSTh-projecting CEA neurons; accordingly, the PSTh neurons can be disynaptically disinhibited or "activated" by CEAPKC-δ+ neurons. Finally, we showed that chemogenetic silencing of the PSTh neurons effectively attenuates the eating suppression induced by CCK. CONCLUSIONS Our results identified a disynaptic CEA-PSTh neural circuit that mediates the anorexigenic effect of CCK and thus provide an important neural mechanism of how CCK suppresses eating.
Collapse
Affiliation(s)
| | - Yong Wang
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, PR China
| | - Tiffany S Cho
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Wesley I Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Matthew B Schmit
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
59
|
Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit. Although eating for pleasure is observed in multiple maladaptive eating behaviours, the current understanding of the neurobiology underlying hedonic eating remains deficient. Intriguingly, the combined orexigenic, anxiolytic and reward-seeking properties of Neuropeptide Y (NPY) ignited great interest and has positioned NPY as one of the core neuromodulators operating hedonic eating behaviours. While extensive literature exists exploring the homeostatic orexigenic and anxiolytic properties of NPY, the rewarding effects of NPY continue to be investigated. As deduced from a series of behavioural and molecular-based studies, NPY appears to motivate the consumption and enhancement of food-rewards. As a possible mechanism, NPY may modulate reward-associated monoaminergic pathways, such as the dopaminergic and serotoninergic neural networks, to modulate hedonic eating behaviours. Furthermore, potential direct and indirect NPYergic neurocircuitries connecting classical homeostatic and hedonic neuropathways may also exist involving the anti-reward centre the lateral habenula. Therefore, this review investigates the participation of NPY in orchestrating hedonic eating behaviours through the modulation of monoaminergic pathways.
Collapse
|
60
|
Neural circuit control of innate behaviors. SCIENCE CHINA. LIFE SCIENCES 2022; 65:466-499. [PMID: 34985643 DOI: 10.1007/s11427-021-2043-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.
Collapse
|
61
|
Zeng N, Cutts EJ, Lopez CB, Kaur S, Duran M, Virkus SA, Hardaway JA. Anatomical and Functional Characterization of Central Amygdala Glucagon-Like Peptide 1 Receptor Expressing Neurons. Front Behav Neurosci 2022; 15:724030. [PMID: 35002645 PMCID: PMC8739476 DOI: 10.3389/fnbeh.2021.724030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glucagon-like peptide 1 receptors (GLP-1Rs) are highly expressed in the brain and are responsible for mediating the acute anorexigenic actions of widely prescribed GLP-1R agonists. Neurobiological efforts to localize the hypophagic effects of GLP-1R agonists in the brain have mainly focused on the hypothalamus and hindbrain. In this study, we performed a deep anatomical and neurophysiological characterization of GLP-1Rs in the central nucleus of the amygdala (CeA). At an mRNA level, we found that Glp1r is diffusely coexpressed in known CeA subpopulations like protein kinase c δ (Prkcd), somatostatin (Sst), or tachykinin2 (Tac2). At a cellular level, we used Glp1r-Cre mice and viral Cre-dependent tracing to map the anatomical positions of GLP-1R cells across the rostral-caudal axis of the CeA and in CeA subdivisions. We found that Glp1rCeA cells are highly enriched in the medial subdivision of the CeA (CeM). Using whole cell patch clamp electrophysiology, we found that Glp1rCeA neurons are characterized by the presence of Ih-like currents and resemble a low threshold bursting neuronal subtype in response to hyperpolarizing and depolarizing current injections. We observed sex differences in the magnitude of Ih-like currents and membrane capacitance. At rest, we observed that nearly half of Glp1rCeA neurons are spontaneously active. We observed that active and inactive neurons display significant differences in excitability even when normalized to an identical holding potential. Our data are the first to deeply characterize the pattern of Glp1r in the CeA and study the neurophysiological characteristics of CeA neurons expressing Glp1r. Future studies leveraging these data will be important to understanding the impact of GLP-1R agonists on feeding and motivation.
Collapse
Affiliation(s)
- Ningxiang Zeng
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elam J Cutts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian B Lopez
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simran Kaur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
62
|
Bartonjo JJ, Lundy RF. Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem. Chem Senses 2022; 47:6581704. [PMID: 35522083 PMCID: PMC9074687 DOI: 10.1093/chemse/bjac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatostatin neurons in the central nucleus of the amygdala (CeA/Sst) can be parsed into subpopulations that project either to the nucleus of the solitary tract (NST) or parabrachial nucleus (PBN). We have shown recently that inhibition of CeA/Sst-to-NST neurons increased the ingestion of a normally aversive taste stimulus, quinine HCl (QHCl). Because the CeA innervates other forebrain areas such as the lateral hypothalamus (LH) that also sends axonal projections to the NST, the effects on QHCl intake could be, in part, the result of CeA modulation of LH-to-NST neurons. To address these issues, the present study investigated whether CeA/Sst-to-NST neurons are distinct from CeA/Sst-to-LH neurons. For comparison purposes, additional experiments assessed divergent innervation of the LH by CeA/Sst-to-PBN neurons. In Sst-cre mice, two different retrograde transported flox viruses were injected into the NST and the ipsilateral LH or PBN and ipsilateral LH. The results showed that 90% or more of retrograde-labeled CeA/Sst neurons project either to the LH, NST, or PBN. Separate populations of CeA/Sst neurons projecting to these different regions suggest a highly heterogeneous population in terms of synaptic target and likely function.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
63
|
Soya S. [Neurons in central nucleus of the amygdala modulates social distance and behavior]. Nihon Yakurigaku Zasshi 2022; 157:440-442. [PMID: 36328557 DOI: 10.1254/fpj.22077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Central nucleus of the amygdala (CeA) has been known as an output region of emotional processing, such as fear emotion. However, recent development of technology allows us to dissect CeA neurons to find the additional role of CeA in feeding behavior, anxiety behavior and pain regulation. On the other hand, neuropeptide B/W receptor 1 expressing neurons (NPBWR1 neurons) have been known to localize in the CeA, but their physiological role is still unclear. In this review, I will introduce the recent findings about the variety of neurons in the CeA and explain the role of NPBWR1 neurons in the regulation of social behavior.
Collapse
|
64
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
65
|
Yu H, Xiang X, Chen Z, Wang X, Dai J, Wang X, Huang P, Zhao ZD, Shen WL, Li H. Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice. Nat Commun 2021; 12:6523. [PMID: 34764279 PMCID: PMC8586038 DOI: 10.1038/s41467-021-26852-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Sequential encoding of motor programs is essential for behavior generation. However, whether it is critical for instinctive behavior is still largely unknown. Mouse hunting behavior typically contains a sequential motor program, including the prey search, chase, attack, and consumption. Here, we reveal that the neuronal activity in the lateral periaqueductal gray (LPAG) follows a sequential pattern and is time-locked to different hunting actions. Optrode recordings and photoinhibition demonstrate that LPAGVgat neurons are required for the prey detection, chase and attack, while LPAGVglut2 neurons are selectively required for the attack. Ablation of inputs that could trigger hunting, including the central amygdala, the lateral hypothalamus, and the zona incerta, interrupts the activity sequence pattern and substantially impairs hunting actions. Therefore, our findings reveal that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors. Hunting behavior typically contains a sequential motor program, including search, chase, attack, and consumption. Here, the authors show that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors.
Collapse
Affiliation(s)
- Hong Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,College of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zongming Chen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China
| | - Xu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiaqi Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng-Dong Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wei L Shen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China.
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China. .,The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
66
|
Targeting the T-type calcium channel Cav3.2 in GABAergic arcuate nucleus neurons to treat obesity. Mol Metab 2021; 54:101391. [PMID: 34767997 PMCID: PMC8640109 DOI: 10.1016/j.molmet.2021.101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Cav3.2, a T-type low voltage-activated calcium channel widely expressed throughout the central nervous system, plays a vital role in neuronal excitability and various physiological functions. However, the effects of Cav3.2 on energy homeostasis remain unclear. Here, we examined the role of Cav3.2 expressed by hypothalamic GABAergic neurons in the regulation of food intake and body weight in mice and explored the underlying mechanisms. METHODS Male congenital Cana1h (the gene coding for Cav3.2) global knockout (Cav3.2KO) mice and their wild type (WT) littermates were first used for metabolic phenotyping studies. By using the CRISPR-Cas9 technique, Cav3.2 was selectively deleted from GABAergic neurons in the arcuate nucleus of the hypothalamus (ARH) by specifically overexpressing Cas9 protein and Cav3.2-targeting sgRNAs in ARH Vgat (VgatARH) neurons. These male mutants (Cav3.2KO-VgatARH) were used to determine whether Cav3.2 expressed by VgatARH neurons is required for the proper regulation of energy balance. Subsequently, we used an electrophysiological patch-clamp recording in ex vivo brain slices to explore the impact of Cav3.2KO on the cellular excitability of VgatARH neurons. RESULTS Male Cav3.2KO mice had significantly lower food intake than their WT littermate controls when fed with either a normal chow diet (NCD) or a high-fat diet (HFD). This hypophagia phenotype was associated with increased energy expenditure and decreased fat mass, lean mass, and total body weight. Selective deletion of Cav3.2 in VgatARH neurons resulted in similar feeding inhibition and lean phenotype without changing energy expenditure. These data provides an intrinsic mechanism to support the previous finding on ARH non-AgRP GABA neurons in regulating diet-induced obesity. Lastly, we found that naringenin extract, a predominant flavanone found in various fruits and herbs and known to act on Cav3.2, decreased the firing activity of VgatARH neurons and reduced food intake and body weight. These naringenin-induced inhibitions were fully blocked in Cav3.2KO-VgatARH mice. CONCLUSION Our results identified Cav3.2 expressed by VgatARH neurons as an essential intrinsic modulator for food intake and energy homeostasis, which is a potential therapeutic target in the treatment of obesity.
Collapse
|
67
|
Kakall ZM, Gopalasingam G, Herzog H, Zhang L. Dynamic regional alterations in mouse brain neuronal activity following short-term changes in energy balance. Obesity (Silver Spring) 2021; 29:1650-1663. [PMID: 34402189 DOI: 10.1002/oby.23253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Knowledge of the functional contribution to energy homeostatic control by different brain areas is limited. This study employed a systematic approach to identify brain regions specifically influenced by a positive energy balance. METHODS The c-fos expression was mapped throughout the mouse brain after varying durations (24 hours to up to 14 days) of high-fat diet (HFD) exposure or after reversal from a 7-day HFD to a chow diet. In parallel, the metabolic and behavioral impacts of these treatments were examined. RESULTS A HFD elicited rapid and pronounced compensatory responses which were, however, insufficient to overcome the impact of the positive energy balance. Rapid and dynamic responses of c-fos expression throughout the brain were seen over the course of HFD exposure, with some regions showing linear-like responses and some regions exhibiting biphasic responses. The switch from HFD to chow resulted in metabolic compensations mitigating the effects of the negative energy balance and a heightened preference for sweet taste. Interestingly, this diet switch led to a significant c-fos activation in the lateral hypothalamus, an area unresponsive to HFD intervention. CONCLUSIONS Plasticity exists in the extended brain networks facilitating rapid adaptations dependent on energy availability. Knowledge of these critical control points may provide novel antiobesity treatment targets.
Collapse
Affiliation(s)
- Zohra Mohtat Kakall
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Faulty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
68
|
Electronic Nicotine Vapor Exposure Produces Differential Changes in Central Amygdala Neuronal Activity, Thermoregulation and Locomotor Behavior in Male Mice. eNeuro 2021; 8:ENEURO.0189-21.2021. [PMID: 34321216 PMCID: PMC8362686 DOI: 10.1523/eneuro.0189-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Nicotine is an addictive substance historically consumed through smoking and more recently through the use of electronic vapor devices. The increasing prevalence and popularity of vaping prompts the need for preclinical rodent models of nicotine vapor exposure and an improved understanding of the impact of vaping on specific brain regions, bodily functions, and behaviors. We used a rodent model of electronic nicotine vapor exposure to examine the cellular and behavioral consequences of acute and repeated vapor exposure. Adult male C57BL/6J mice were exposed to a single 3-h session (acute exposure) or five daily sessions (repeated exposure) of intermittent vapes of 120 mg/ml nicotine in propylene glycol:vegetable glycerol (PG/VG) or PG/VG control. Acute and repeated nicotine vapor exposure did not alter body weight, and both exposure paradigms produced pharmacologically significant serum nicotine and cotinine levels in the 120 mg/ml nicotine group compared with PG/VG controls. Acute exposure to electronic nicotine vapor increased central amygdala (CeA) activity in individual neuronal firing and in expression of the molecular activity marker, cFos. The changes in neuronal activity following acute exposure were not observed following repeated exposure. Acute and repeated nicotine vapor exposure decreased core body temperature, however acute exposure decreased locomotion while repeated exposure increased locomotion. Collectively, these studies provide validation of a mouse model of nicotine vapor exposure and important evidence for how exposure to electronic nicotine vapor produces differential effects on CeA neuronal activity and on specific body functions and behaviors like thermoregulation and locomotion.
Collapse
|
69
|
Kerem L, Lawson EA. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int J Mol Sci 2021; 22:7737. [PMID: 34299356 PMCID: PMC8306733 DOI: 10.3390/ijms22147737] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic peptide oxytocin and its receptor are involved in a range of physiological processes, including parturition, lactation, cell growth, wound healing, and social behavior. More recently, increasing evidence has established the effects of oxytocin on food intake, energy expenditure, and peripheral metabolism. In this review, we provide a comprehensive description of the central oxytocinergic system in which oxytocin acts to shape eating behavior and metabolism. Next, we discuss the peripheral beneficial effects oxytocin exerts on key metabolic organs, including suppression of visceral adipose tissue inflammation, skeletal muscle regeneration, and bone tissue mineralization. A brief summary of oxytocin actions learned from animal models is presented, showing that weight loss induced by chronic oxytocin treatment is related not only to its anorexigenic effects, but also to the resulting increase in energy expenditure and lipolysis. Following an in-depth discussion on the technical challenges related to endogenous oxytocin measurements in humans, we synthesize data related to the association between endogenous oxytocin levels, weight status, metabolic syndrome, and bone health. We then review clinical trials showing that in humans, acute oxytocin administration reduces food intake, attenuates fMRI activation of food motivation brain areas, and increases activation of self-control brain regions. Further strengthening the role of oxytocin in appetite regulation, we review conditions of hypothalamic insult and certain genetic pathologies associated with oxytocin depletion that present with hyperphagia, extreme weight gain, and poor metabolic profile. Intranasal oxytocin is currently being evaluated in human clinical trials to learn whether oxytocin-based therapeutics can be used to treat obesity and its associated sequela. At the end of this review, we address the fundamental challenges that remain in translating this line of research to clinical care.
Collapse
Affiliation(s)
- Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
70
|
Stern SA, Azevedo EP, Pomeranz LE, Doerig KR, Ivan VJ, Friedman JM. Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metab 2021; 33:1418-1432.e6. [PMID: 33761312 PMCID: PMC8628615 DOI: 10.1016/j.cmet.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.
Collapse
Affiliation(s)
- Sarah A Stern
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine R Doerig
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
71
|
van Galen KA, Ter Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev 2021; 22:e13210. [PMID: 33559362 PMCID: PMC8243944 DOI: 10.1111/obr.13210] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
The role of serotonin in food intake has been studied for decades. Food intake is mainly regulated by two brain circuitries: (i) the homeostatic circuitry, which matches energy intake to energy expenditure, and (ii) the hedonic circuitry, which is involved in rewarding and motivational aspects of energy consumption. In the homeostatic circuitry, serotonergic signaling contributes to the integration of metabolic signals that convey the body's energy status and facilitates the ability to suppress food intake when homeostatic needs have been met. In the hedonic circuitry, serotonergic signaling may reduce reward-related, motivational food consumption. In contrast, peripherally acting serotonin promotes energy absorption and storage. Disturbed serotonergic signaling is associated with obesity, emphasizing the importance to understand the role of serotonergic signaling in food intake. However, unraveling the serotonin-mediated regulation of food intake is complex, as the effects of serotonergic signaling in different brain regions depend on the regional expression of serotonin receptor subtypes and downstream effects via connections to other brain regions. We therefore provide an overview of the effects of serotonergic signaling in brain regions of the homeostatic and hedonic regulatory systems on food intake. Furthermore, we discuss the disturbances in serotonergic signaling in obesity and its potential therapeutic implications.
Collapse
Affiliation(s)
- Katy A van Galen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Reconsolidation of a post-ingestive nutrient memory requires mTOR in the central amygdala. Mol Psychiatry 2021; 26:2820-2836. [PMID: 32873898 DOI: 10.1038/s41380-020-00874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023]
Abstract
The central control of feeding behavior and metabolic homeostasis has been proposed to involve a form of post-ingestive nutrient learning independent of the gustatory value of food. However, after such learning, it is unknown which brain regions or circuits are activated to retrieve the stored memory and whether this memory undergoes reconsolidation that depends on protein synthesis after its reactivation through retrieval. In the present study, using a conditioned-flavor-preference paradigm by associating flavors with intra-gastric infusion of glucose to minimize the evaluation of the taste of food, we show that retrieval of the post-ingestive nutrient-conditioned flavor memory stimulates multiple brain regions in mice, including the central nucleus of the amygdala (CeA). Moreover, memory retrieval activated the mammalian target of rapamycin complex 1 (mTORC1) in the CeA, while site-specific or systemic inhibition of mTORC1 immediately after retrieval prevented the subsequent expression of the post-ingestive nutrient-associated flavor memory, leading to a long-lasting suppression of reinstatement. Taken together, our findings suggest that the reconsolidation process of a post-ingestive nutrient memory modulates food preferences.
Collapse
|
73
|
Abstract
The neural regulation of feeding behaviour, as an essential factor for survival, is an important research area today. Feeding behaviour and other lifestyle habits play a major role in optimising health and obesity control. Feeding behaviour is physiologically controlled through processes associated with energy and nutrient needs. Different brain nuclei are involved in the neural regulation of feeding behaviours. Therefore, understanding the function of these brain nuclei helps develop feeding control methods. Among important brain nuclei, there is scant literature on the central amygdala (CeA) nucleus and feeding behaviour. The CeA is one of the critical brain regions that play a significant role in various physiological and behavioural responses, such as emotional states, reward processing, energy balance and feeding behaviour. It contains γ-aminobutyric acid neurons. Also, it is the major output region of the amygdaloidal complex. Moreover, the CeA is also involved in multiple molecular and biochemical factors and has extensive connections with other brain nuclei and their neurotransmitters, highlighting its role in feeding behaviour. This review aims to highlight the significance of the CeA nucleus on food consumption by its interaction with the performance of reward, digestive and emotional systems.
Collapse
|
74
|
Zych AD, Gogolla N. Expressions of emotions across species. Curr Opin Neurobiol 2021; 68:57-66. [PMID: 33548631 PMCID: PMC8259711 DOI: 10.1016/j.conb.2021.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
What are emotions and how should we study them? These questions give rise to ongoing controversy amongst scientists in the fields of neuroscience, psychology and philosophy, and have resulted in different views on emotions [1-6]. In this review, we define emotions as functional states that bear essential roles in promoting survival and thus have emerged through evolution. Emotions trigger behavioral, somatic, hormonal, and neurochemical reactions, referred to as expressions of emotion. We discuss recent studies on emotion expression across species and highlight emerging common principles. We argue that detailed and multidimensional analyses of emotion expressions are key to develop biology-based definitions of emotions and to reveal their neuronal underpinnings.
Collapse
Affiliation(s)
- Anna D Zych
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany; International Max-Planck Research School for Translational Psychiatry, Munich, Germany
| | - Nadine Gogolla
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
75
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
76
|
Smith DM, Torregrossa MM. Valence encoding in the amygdala influences motivated behavior. Behav Brain Res 2021; 411:113370. [PMID: 34051230 DOI: 10.1016/j.bbr.2021.113370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023]
Abstract
The amygdala is critical for emotional processing and motivated behavior. Its role in these functions is due to its processing of the valence of environmental stimuli. The amygdala receives direct sensory input from sensory thalamus and cortical regions to integrate sensory information from the environment with aversive and/or appetitive outcomes. As many reviews have discussed the amygdala's role in threat processing and fear conditioning, this review will focus on how the amygdala encodes positive valence and the mechanisms that allow it to distinguish between stimuli of positive and negative valence. These findings are also extended to consider how valence encoding populations in the amygdala contribute to local and long-range circuits including those that integrate environmental cues and positive valence. Understanding the complexity of valence encoding in the amygdala is crucial as these mechanisms are implicated in a variety of disease states including anxiety disorders and substance use disorders.
Collapse
Affiliation(s)
- Dana M Smith
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
77
|
Samineni VK, Grajales-Reyes JG, Grajales-Reyes GE, Tycksen E, Copits BA, Pedersen C, Ankudey ES, Sackey JN, Sewell SB, Bruchas MR, Gereau RW. Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala. eLife 2021; 10:e68130. [PMID: 34032210 PMCID: PMC8172243 DOI: 10.7554/elife.68130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023] Open
Abstract
Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here, we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice.
Collapse
Affiliation(s)
- Vijay K Samineni
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Jose G Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
- Medical Scientist Training Program, Washington University School of MedicineSt. LouisUnited States
- Neuroscience Program, Washington University School of MedicineSt. LouisUnited States
| | - Gary E Grajales-Reyes
- Department of Pathology & Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Eric Tycksen
- Genome Technology Access Center, Washington University School of MedicineSeattleUnited States
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Christian Pedersen
- Department of Biomedical Engineering, University of WashingtonSeattleUnited States
| | - Edem S Ankudey
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Julian N Sackey
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Sienna B Sewell
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael R Bruchas
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
- Departments of Anesthesiology and Pharmacology, University of WashingtonSeattleUnited States
- Departmentsof Neuroscience and Biomedical Engineering, Washington University School of MedicineSt.LouisUnited States
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, University of WashingtonSeattleUnited States
- Departmentsof Neuroscience and Biomedical Engineering, Washington University School of MedicineSt.LouisUnited States
| |
Collapse
|
78
|
Warlow SM, Berridge KC. Incentive motivation: 'wanting' roles of central amygdala circuitry. Behav Brain Res 2021; 411:113376. [PMID: 34023307 DOI: 10.1016/j.bbr.2021.113376] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
The central nucleus of amygdala (CeA) mediates positively-valenced reward motivation as well as negatively-valenced fear. Optogenetic or neurochemical stimulation of CeA circuitry can generate intense incentive motivation to pursue and consume a paired natural food, sex, or addictive drug reward, and even create maladaptive 'wanting what hurts' such as attraction to a shock rod. Evidence indicates CeA stimulations selectively amplify incentive motivation ('wanting') but not hedonic impact ('liking') of the same reward. Further, valence flips can occur for CeA contributions to motivational salience. That is, CeA stimulation can promote either incentive motivation or fearful motivation, even in the same individual, depending on situation. These findings may carry implications for understanding CeA roles in neuropsychiatric disorders involving aberrant motivational salience, ranging from addiction to paranoia and anxiety disorders.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
79
|
Bartonjo JJ, Lundy RF. Distinct Populations of Amygdala Somatostatin-Expressing Neurons Project to the Nucleus of the Solitary Tract and Parabrachial Nucleus. Chem Senses 2021; 45:687-698. [PMID: 32940663 DOI: 10.1093/chemse/bjaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rostral forebrain structures, such as the central nucleus of the amygdala (CeA), send projections to the nucleus of the solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence might originate from a shared or distinct population of neurons marked by expression of somatostatin (Sst). In Sst-reporter mice, the retrograde tracers' cholera toxin subunit B AlexaFluor-488 and -647 conjugates were injected into the taste-responsive regions of the NST and the ipsilateral PBN. In Sst-cre mice, the cre-dependent retrograde tracers' enhanced yellow fluorescent protein Herpes Simplex Virus (HSV) and mCherry fluorescent protein HSV were injected into the NST and the ipsilateral PBN. The results showed that ~40% of CeA-to-PBN neurons expressed Sst compared with ~ 23% of CeA-to-NST neurons. For both the CeA Sst-positive and -negative populations, the vast majority projected to the NST or PBN but not both nuclei. Thus, a subset of CeA-to-NST and CeA-to-PBN neurons are marked by Sst expression and are largely distinct from one another. Separate populations of CeA/Sst neurons projecting to the NST and PBN suggest that differential modulation of taste processing might, in part, rely on differences in local brainstem/forebrain synaptic connections.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
80
|
Ahmed RM, Tse NY, Chen Y, Henning E, Hodges JR, Kiernan MC, Irish M, Farooqi IS, Piguet O. Neural correlates of fat preference in frontotemporal dementia: translating insights from the obesity literature. Ann Clin Transl Neurol 2021; 8:1318-1329. [PMID: 33973740 PMCID: PMC8164857 DOI: 10.1002/acn3.51369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Alterations in eating behaviour are one of the diagnostic features of behavioural variant frontotemporal dementia (bvFTD). It is hypothesised that underlying brain network disturbances and atrophy to key structures may affect macronutrient preference in bvFTD. We aimed to establish whether a preference for dietary fat exists in bvFTD, its association with cognitive symptoms and the underlying neural mechanisms driving these changes. METHODS Using a test meal paradigm, adapted from the obesity literature, with variable fat content (low 20%, medium 40% and high 60%), preference for fat in 20 bvFTD was compared to 16 Alzheimer's disease (AD) and 13 control participants. MRI brain scans were analysed to determine the neural correlates of fat preference. RESULTS Behavioural variant FTD patients preferred the high-fat meal compared to both AD (U = 61.5; p = 0.001) and controls (U = 41.5; p = 0.001), with 85% of bvFTD participants consistently rating the high-fat content meal as their preferred option. This increased preference for the high-fat meal was associated with total behavioural change (Cambridge Behavioural Inventory: rs = 0.462; p = 0.001), as well as overall functional decline (Frontotemporal Dementia Rating Scale: rs = -0.420; p = 0.03). A preference for high-fat content in bvFTD was associated with atrophy in an extended brain network including frontopolar, anterior cingulate, insular cortices, putamen and amygdala extending into lateral temporal, posteromedial parietal and occipital cortices. CONCLUSIONS Increased preference for fat content is associated with many of the canonical features of bvFTD. These findings offer new insights into markers of disease progression and pathogenesis, providing potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nga Yan Tse
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yu Chen
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia.,ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Sydney Medical School and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Muireann Irish
- ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia.,School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olivier Piguet
- ARC Centre of Excellence of Cognition and its Disorders, Sydney, NSW, Australia.,School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
81
|
Kong MS, Zweifel LS. Central amygdala circuits in valence and salience processing. Behav Brain Res 2021; 410:113355. [PMID: 33989728 DOI: 10.1016/j.bbr.2021.113355] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022]
Abstract
Behavioral responses to environmental stimuli are dictated by the affective valence of the stimulus, good (positive valence) or bad (negative valence). These stimuli can innately elicit an affective response that promotes approach or avoidance behavior. In addition to innately valenced stimuli, valence can also be assigned to initially neutral stimuli through associative learning. A stimulus of a given valence can vary in salience depending on the strength of the stimulus, the underlying state of the animal, and the context of the stimulus presentation. Salience endows the stimulus with the ability to direct attention and elicit preparatory responses to mount an incentive-based motivated behavior. The central nucleus of the amygdala (CeA) has emerged as an early integration point for valence and salience detection to engage preparatory autonomic responses and behavioral posturing in response to both aversive and appetitive stimuli. There are numerous cell types in the CeA that are involved in valence and salience processing through a variety of connections, and we will review the recent progress that has been made in identifying these circuit elements and their roles in these processes.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, United States
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, United States; Department of Pharmacology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
82
|
Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021; 15:671096. [PMID: 33986649 PMCID: PMC8110711 DOI: 10.3389/fnbeh.2021.671096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is a complex area that is uniquely embedded across the core feeding, reward, arousal, and stress circuits. The PVT role in the control of feeding behavior is discussed here within a framework of adaptive behavioral guidance based on the body’s energy state and competing drives. The survival of an organism depends on bodily energy resources and promotion of feeding over other behaviors is adaptive except when in danger or sated. The PVT is structurally set up to respond to homeostatic and hedonic needs to feed, and to integrate those signals with physiological and environmental stress, as well as anticipatory needs and other cognitive inputs. It can regulate both food foraging (seeking) and consumption and may balance their expression. The PVT is proposed to accomplish these functions through a network of connections with the brainstem, hypothalamic, striatal, and cortical areas. The connectivity of the PVT further indicates that it could broadcast the information about energy use/gain and behavioral choice to impact cognitive processes—learning, memory, and decision-making—through connections with the medial and lateral prefrontal cortical areas, the hippocampal formation, and the amygdala. The PVT is structurally complex and recent evidence for specific PVT pathways in different aspects of feeding behavior will be discussed.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
83
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
84
|
Lopes G, Monteiro P. New Open-Source Tools: Using Bonsai for Behavioral Tracking and Closed-Loop Experiments. Front Behav Neurosci 2021; 15:647640. [PMID: 33867952 PMCID: PMC8044343 DOI: 10.3389/fnbeh.2021.647640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
The ability to dynamically control a behavioral task based on real-time animal behavior is an important feature for experimental neuroscientists. However, designing automated boxes for behavioral studies requires a coordinated combination of mechanical, electronic, and software design skills which can challenge even the best engineers, and for that reason used to be out of reach for the majority of experimental neurobiology and behavioral pharmacology researchers. Due to parallel advances in open-source hardware and software developed for neuroscience researchers, by neuroscience researchers, the landscape has now changed significantly. Here, we discuss powerful approaches to the study of behavior using examples and tutorials in the Bonsai visual programming language, towards designing simple neuroscience experiments that can help researchers immediately get started. This language makes it easy for researchers, even without programming experience, to combine the operation of several open-source devices in parallel and design their own integrated custom solutions, enabling unique and flexible approaches to the study of behavior, including video tracking of behavior and closed-loop electrophysiology.
Collapse
Affiliation(s)
| | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| |
Collapse
|
85
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
86
|
Yang B, Sanches-Padilla J, Kondapalli J, Morison SL, Delpire E, Awatramani R, Surmeier DJ. Locus coeruleus anchors a trisynaptic circuit controlling fear-induced suppression of feeding. Neuron 2021; 109:823-838.e6. [PMID: 33476548 PMCID: PMC9272546 DOI: 10.1016/j.neuron.2020.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding. LC neurons also suppressed inhibitory input to PBN neurons by inducing heterosynaptic, endocannabinoid-dependent, long-term depression of CeA synapses. Blocking or knocking down endocannabinoid receptors in CeA neurons prevented fear-induced depression of CeA synaptic transmission and fear-induced suppression of feeding. Altogether, these studies demonstrate that LC neurons play a pivotal role in modulating the circuitry that underlies fear-induced suppression of feeding, pointing to new ways of alleviating stress-induced eating disorders.
Collapse
Affiliation(s)
- Ben Yang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Javier Sanches-Padilla
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sage L Morison
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
87
|
Gómez-Martínez DG, Ramos M, del Valle-Padilla JL, Rosales JH, Robles F, Ramos F. A bioinspired model of short-term satiety of hunger influenced by food properties in virtual creatures. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021; 125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in understanding the behavioral and brain mechanisms for motivational systems, much less is known about competition between motivational states or motivational conflict (e.g., approach - avoidance conflict). Despite being produced under diverse conditions, behavior during motivational competition has two signatures: bistability and metastability. These signatures reveal the operation of positive feedback mechanisms in behavioral selection. Different neuronal architectures can instantiate this selection to achieve bistability and metastability in behavior, but each relies on circuit-level inhibition to achieve rapid and stable selection between competing tendencies. Paraventricular thalamus (PVT) is identified as critical to this circuit level inhibition, resolving motivational competition via its extensive projections to local inhibitory networks in the ventral striatum and extended amygdala, enabling adaptive responding under motivational conflict.
Collapse
|
89
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
90
|
Luskin AT, Bhatti DL, Mulvey B, Pedersen CE, Girven KS, Oden-Brunson H, Kimbell K, Blackburn T, Sawyer A, Gereau RW, Dougherty JD, Bruchas MR. Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding. SCIENCE ADVANCES 2021; 7:eabd3666. [PMID: 33637526 PMCID: PMC7909877 DOI: 10.1126/sciadv.abd3666] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 05/08/2023]
Abstract
An animal's evolutionary success depends on the ability to seek and consume foods while avoiding environmental threats. However, how evolutionarily conserved threat detection circuits modulate feeding is unknown. In mammals, feeding and threat assessment are strongly influenced by the parabrachial nucleus (PBN), a structure that responds to threats and inhibits feeding. Here, we report that the PBN receives dense inputs from two discrete neuronal populations in the bed nucleus of the stria terminalis (BNST), an extended amygdala structure that encodes affective information. Using a series of complementary approaches, we identify opposing BNST-PBN circuits that modulate neuropeptide-expressing PBN neurons to control feeding and affective states. These previously unrecognized neural circuits thus serve as potential nodes of neural circuitry critical for the integration of threat information with the intrinsic drive to feed.
Collapse
Affiliation(s)
- Andrew T Luskin
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Dionnet L Bhatti
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian E Pedersen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hannah Oden-Brunson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kate Kimbell
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Blackburn
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Abbie Sawyer
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
91
|
Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021; 348:109015. [PMID: 33259847 PMCID: PMC8745022 DOI: 10.1016/j.jneumeth.2020.109015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Imaging neuronal activity in awake, behaving animals has become a groundbreaking method in neuroscience that has rapidly enhanced our understanding of how the brain works. In vivo microendoscopic imaging has enabled researchers to see inside the brains of experimental animals and thus has emerged as a technology fit to answer many experimental questions. By combining microendoscopy with cutting edge targeting strategies and sophisticated analysis tools, neuronal activity patterns that underlie changes in behavior and physiology can be identified. However, new users may find it challenging to understand the techniques and to leverage this technology to best suit their needs. Here we present a background and overview of the necessary components for performing in vivo optical calcium imaging and offer some detailed guidance for current recommended approaches.
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Justin N Siemian
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Sarah Sarsfield
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA
| | - Yeka Aponte
- Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
92
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
93
|
The Insula Cortex Contacts Distinct Output Streams of the Central Amygdala. J Neurosci 2020; 40:8870-8882. [PMID: 33051345 DOI: 10.1523/jneurosci.0567-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
The emergence of genetic tools has provided new means of mapping functionality in central amygdala (CeA) neuron populations based on their molecular profiles, response properties, and importantly, connectivity patterns. While abundant evidence indicates that neuronal signals arrive in the CeA eliciting both aversive and appetitive behaviors, our understanding of the anatomy of the underlying long-range CeA network remains fragmentary. In this study, we combine viral tracings, electrophysiological, and optogenetic approaches to establish in male mice, a wiring chart between the insula cortex (IC), a major sensory input region of the lateral and capsular part of the CeA (CeL/C), and four principal output streams of this nucleus. We found that retrogradely labeled output neurons occupy discrete and likely strategic locations in the CeL/C, and that they are disproportionally controlled by the IC. We identified a direct line of connection between the IC and the lateral hypothalamus (LH), which engages numerous LH-projecting CeL/C cells whose activity can be strongly upregulated on firing of IC neurons. In comparison, CeL/C neurons projecting to the bed nucleus of the stria terminalis (BNST) are also frequently contacted by incoming IC axons, but the strength of this connection is weak. Our results provide a link between long-range inputs and outputs of the CeA and pave the way to a better understanding of how internal, external, and experience dependent information may impinge on action selection by the CeA.SIGNIFICANCE STATEMENT Our current knowledge of the circuit organization within the central amygdala (CeA), a critical regulator of emotional states, includes independent information about its long-range efferents and afferents. We do not know how incoming sensory information is appraised and routed through the CeA to the different output channels. We address this issue by using three different techniques to investigate how a sensory region, the insula cortex (IC), connects with the motor, physiological and autonomic output centers of the CeA. We uncover a strong connection between the IC and the lateral hypothalamus (LH) with a monosynaptic relay in the CeA and shed new light on the previously described functions of IC and CeA through direct projections to the LH.
Collapse
|
94
|
Cecchini MP, Tamburin S, Zanini A, Boschi F, Demartini B, Goeta D, Dallocchio C, Marotta A, Fiorio M, Tinazzi M. Hedonicity in functional motor disorders: a chemosensory study assessing taste. J Neural Transm (Vienna) 2020; 127:1399-1407. [PMID: 32856158 PMCID: PMC7497316 DOI: 10.1007/s00702-020-02244-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/13/2020] [Indexed: 11/27/2022]
Abstract
The aim of this study was to explore hedonicity to basic tastes in patients with functional motor disorders (FMDs) that are often associated with impairment in emotional processing. We recruited 20 FMD patients and 24 healthy subjects, matched for age and sex. Subjects were asked to rate the hedonic sensation (i.e., pleasant, neutral, and unpleasant) on a - 10 to +10 scale to the four basic tastes (sweet, sour, salty, and bitter) at different concentrations, and neutral stimuli (i.e., no taste stimulation) by means of the Taste Strips Test. Anxiety, depression, and alexithymia were assessed. FMD patients rated the highest concentration of sweet taste (6.7 ± 2.6) as significantly more pleasant than controls (4.7 ± 2.5, p = 0.03), and the neutral stimuli significantly more unpleasant (patients: - 0.7 ± 0.4, controls: 0.1 ± 0.4, p = 0.013). Hedonic ratings were not correlated to anxiety, depression, or alexithymia scores. Hedonic response to taste is altered in FMD patients. This preliminary finding might result from abnormal interaction between sensory processing and emotional valence.
Collapse
Affiliation(s)
- Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, Verona University Hospital, University of Verona, Piazzale Scuro 10, 37134, Verona, Italy
| | - Alice Zanini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada le Grazie 8, 37134, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Diana Goeta
- Psychiatry Unit II, A.O. San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Carlo Dallocchio
- Neurology Unit, Department of Medical Area, ASST Pavia, Pavia, Italy
| | - Angela Marotta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mirta Fiorio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, Verona University Hospital, University of Verona, Piazzale Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
95
|
Abstract
Brain-wide circuits that coordinate affective and social behaviours intersect in the amygdala. Consequently, amygdala lesions cause a heterogeneous array of social and non-social deficits. Social behaviours are not localized to subdivisions of the amygdala even though the inputs and outputs that carry social signals are anatomically restricted to distinct subnuclear regions. This observation may be explained by the multidimensional response properties of the component neurons. Indeed, the multitudes of circuits that converge in the amygdala enlist the same subset of neurons into different ensembles that combine social and non-social elements into high-dimensional representations. These representations may enable flexible, context-dependent social decisions. As such, multidimensional processing may operate in parallel with subcircuits of genetically identical neurons that serve specialized and functionally dissociable functions. When combined, the activity of specialized circuits may grant specificity to social behaviours, whereas multidimensional processing facilitates the flexibility and nuance needed for complex social behaviour.
Collapse
|
96
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
97
|
Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, Li XM. Whole-Brain Map of Long-Range Monosynaptic Inputs to Different Cell Types in the Amygdala of the Mouse. Neurosci Bull 2020; 36:1381-1394. [PMID: 32691225 PMCID: PMC7674542 DOI: 10.1007/s12264-020-00545-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The amygdala, which is involved in various behaviors and emotions, is reported to connect with the whole brain. However, the long-range inputs of distinct cell types have not yet been defined. Here, we used a retrograde trans-synaptic rabies virus to generate a whole-brain map of inputs to the main cell types in the mouse amygdala. We identified 37 individual regions that projected to neurons expressing vesicular glutamate transporter 2, 78 regions to parvalbumin-expressing neurons, 104 regions to neurons expressing protein kinase C-δ, and 89 regions to somatostatin-expressing neurons. The amygdala received massive projections from the isocortex and striatum. Several nuclei, such as the caudate-putamen and the CA1 field of the hippocampus, exhibited input preferences to different cell types in the amygdala. Notably, we identified several novel input areas, including the substantia innominata and zona incerta. These findings provide anatomical evidence to help understand the precise connections and diverse functions of the amygdala.
Collapse
Affiliation(s)
- Jia-Yu Fu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bin Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
98
|
Fu O, Iwai Y, Kondoh K, Misaka T, Minokoshi Y, Nakajima KI. SatB2-Expressing Neurons in the Parabrachial Nucleus Encode Sweet Taste. Cell Rep 2020; 27:1650-1656.e4. [PMID: 31067452 DOI: 10.1016/j.celrep.2019.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
The gustatory system plays an important role in sensing appetitive and aversive tastes for evaluating food quality. In mice, taste signals are relayed by multiple brain regions, including the parabrachial nucleus (PBN) of the pons, before reaching the gustatory cortex via the gustatory thalamus. Recent studies show that taste information at the periphery is encoded in a labeled-line manner, such that each taste modality has its own receptors and neuronal pathway. In contrast, the molecular identity of gustatory neurons in the CNS remains unknown. Here, we show that SatB2-expressing neurons in the PBN play a pivotal role in sweet taste transduction. With cell ablation, in vivo calcium imaging, and optogenetics, we reveal that SatB2PBN neurons encode positive valance and selectively transmit sweet taste signals to the gustatory thalamus.
Collapse
Affiliation(s)
- Ou Fu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Yuu Iwai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Ken-Ichiro Nakajima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
99
|
A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior. Proc Natl Acad Sci U S A 2020; 117:15967-15976. [PMID: 32571909 DOI: 10.1073/pnas.2004914117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.
Collapse
|
100
|
Lecca S, Namboodiri VM, Restivo L, Gervasi N, Pillolla G, Stuber GD, Mameli M. Heterogeneous Habenular Neuronal Ensembles during Selection of Defensive Behaviors. Cell Rep 2020; 31:107752. [PMID: 32521277 PMCID: PMC7296347 DOI: 10.1016/j.celrep.2020.107752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023] Open
Abstract
Optimal selection of threat-driven defensive behaviors is paramount to an animal's survival. The lateral habenula (LHb) is a key neuronal hub coordinating behavioral responses to aversive stimuli. Yet, how individual LHb neurons represent defensive behaviors in response to threats remains unknown. Here, we show that in mice, a visual threat promotes distinct defensive behaviors, namely runaway (escape) and action-locking (immobile-like). Fiber photometry of bulk LHb neuronal activity in behaving animals reveals an increase and a decrease in calcium signal time-locked with runaway and action-locking, respectively. Imaging single-cell calcium dynamics across distinct threat-driven behaviors identify independently active LHb neuronal clusters. These clusters participate during specific time epochs of defensive behaviors. Decoding analysis of this neuronal activity reveals that some LHb clusters either predict the upcoming selection of the defensive action or represent the selected action. Thus, heterogeneous neuronal clusters in LHb predict or reflect the selection of distinct threat-driven defensive behaviors.
Collapse
Affiliation(s)
- Salvatore Lecca
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland.
| | - Vijay M.K. Namboodiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Leonardo Restivo
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; INSERM, UMR-S 839, 75005 Paris, France.
| |
Collapse
|