51
|
Tran CJ, Campbell TL, Johnson RH, Xie LY, Hultman CM, van den Oord EJCG, Aberg KA. Cell-type specific methylation changes in the newborn child associated to obstetric pain relief. PLoS One 2024; 19:e0308644. [PMID: 39298419 DOI: 10.1371/journal.pone.0308644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/28/2024] [Indexed: 09/21/2024] Open
Abstract
Although it is widely known that various pharmaceuticals affect the methylome, the knowledge of the effects from anesthesia is limited, and nearly nonexistent regarding the effects of obstetric anesthesia on the newborn child. Using sequencing based-methylation data and a reference-based statistical deconvolution approach we performed methylome-wide association studies (MWAS) of neonatal whole blood, and for each cell-type specifically, to detect methylation variations that are associated with the pain relief administered to the mother during delivery. Significant findings were replicated in a different dataset and followed-up with gene ontology analysis to pinpoint biological functions of potential relevance to these neonatal methylation alterations. The MWAS analyses detected methylome-wide significant (q<0.1) alterations in the newborn for laughing gas in granulocytes (two CpGs, p<5.50x10-9, q = 0.067), and for pudendal block in monocytes (five CpGs across three loci, p<1.51 x10-8, q = 0.073). Suggestively significant findings (p<1.00x10-6) were detected for both treatments for bulk and all cell-types, and replication analyses showed consistent significant enrichment (odds ratios ranging 3.47-39.02; p<4.00×10-4) for each treatment, suggesting our results are robust. In contrast, we did not observe any overlap across treatments, suggesting that the treatments are associated with different alterations of the neonatal blood methylome. Gene ontology analyses of the replicating suggestively significant results indicated functions related to, for example, cell differentiation, intracellular membrane-bound organelles and calcium transport. In conclusion, for the first time, we investigated and detected effect of obstetric pain-relief on the blood methylome in the newborn child. The observed differences suggest that anesthetic treatment, such as laughing gas or pudendal block, may alter the neonatal methylome in a cell-type specific manner. Some of the observed alterations are part of gene ontology terms that previously have been suggested in relation to anesthetic treatment, supporting its potential role also in obstetric anesthesia.
Collapse
Affiliation(s)
- Charles J Tran
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Thomas L Campbell
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Ralen H Johnson
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Lin Y Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
52
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
53
|
Shang J, Yan J, Lou H, Shou R, Zhan Y, Lu X, Fan X. Genome-wide DNA methylation sequencing reveals the involvement of ferroptosis in hepatotoxicity induced by dietary exposure to food-grade titanium dioxide. Part Fibre Toxicol 2024; 21:37. [PMID: 39294687 PMCID: PMC11409784 DOI: 10.1186/s12989-024-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Following the announcement by the European Food Safety Authority that the food additive titanium dioxide (E 171) is unsafe for human consumption, and the subsequent ban by the European Commission, concerns have intensified over the potential risks E 171 poses to human vital organs. The liver is the main organ for food-grade nanoparticle metabolism. It is increasingly being found that epigenetic changes may play an important role in nanomaterial-induced hepatotoxicity. However, the profound effects of E 171 on the liver, especially at the epigenetic level, remain largely unknown. METHODS Mice were exposed orally to human-relevant doses of two types of E 171 mixed in diet for 28 and/or 84 days. Conventional toxicology and global DNA methylation analyses were performed to assess E 171-induced hepatotoxicity and epigenetic changes. Whole genome bisulfite sequencing and further ferroptosis protein detection were used to reveal E 171-induced changes in liver methylation profiles and toxic mechanisms. RESULTS Exposed to E 171 for 28 and/or 84 days resulted in reduced global DNA methylation and hydroxymethylation in the liver of mice. E 171 exposure for 84 days elicited inflammation and damage in the mouse liver, whereas 28-day exposure did not. Whole-genome DNA methylation sequencing disclosed substantial methylation alterations at the CG and non-CG sites of the liver DNA in mice exposed to E 171 for 84 days. Mechanistic analysis of the DNA methylation alterations indicated that ferroptosis contributed to the liver toxicity induced by E 171. E 171-induced DNA methylation changes triggered NCOA4-mediated ferritinophagy, attenuated the protein levels of GPX4, FTH1, and FTL in the liver, and thereby caused ferroptosis. CONCLUSIONS Long-term oral exposure to E 171 triggers hepatotoxicity and induces methylation changes in both CG and non-CG sites of liver DNA. These epigenetic alterations activate ferroptosis in the liver through NCOA4-mediated ferritinophagy, highlighting the role of DNA methylation and ferroptosis in the potential toxicity caused by E 171 in vivo.
Collapse
Affiliation(s)
- Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- The Joint-Laboratory of Clinical Multi-Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo, 315010, China.
| |
Collapse
|
54
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
55
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
56
|
Ma J, Shi K, Zhang W, Han S, Wu Z, Wang M, Zhang H, Sun J, Wang N, Chang M, Shi X, Tan S, Wang W, Zang S, Sha Z. The survival, gene expression, and DNA methylation of Paralichthys olivaceus impacted by the decay of green tide and bacterial infection in both laboratory and field simulation experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173427. [PMID: 38797400 DOI: 10.1016/j.scitotenv.2024.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The recurring appearance of Ulva prolifera green tides has become a pressing environmental issue, especially for marine transportation, tourism, and aquaculture in the stage of decomposition. An abundance of decaying U. prolifera leads to water acidification, hypoxia and pathogenic microorganism proliferation, threatening marine germplasm resources, particularly benthic organisms with weak escape ability. Epigenetic modification is considered to be one of the molecular mechanisms involved in the plastic adaptive response to environmental changes. However, few studies concerning the specific impact of decaying green tide on benthic animals at the epigenetic level. In this study, decomposing algal effluents of U. prolifera, sediments containing uncorrupted U. prolifera, pathogenic microorganism were considered as impact factors, to reveal the effect of decaying U. prolifera on marine economic benthic species, Paralichthys olivaceus, using both field and laboratory simulation experiments. Field simulation experiment showed higher mortality rates and serious histopathological damage than the laboratory simulation experiment. And both the decaying U. prolifera and the sediment containing U. prolifera were harmful to P. olivaceus. Genome-wide DNA methylation and transcription correlation analyses showed that the response of P. olivaceus to green tide stress and bacterial infection was mainly mediated by immune signaling pathways such as PI3K-Akt signaling pathway. DNA methylation regulates the expression of immune-related genes involved in the PI3K-Akt signaling pathway, which enables P. olivaceus to adapt to the adverse environmental stresses by resisting apoptosis. In summary, this research analyzed the potential role of P. olivaceus in decaying U. prolifera, which is of great significance for understanding the impact of decaying green tide on marine commercial fish and also provides some theoretical guidance for the proliferation and release of fish seedlings.
Collapse
Affiliation(s)
- Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weijun Zhang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muyuan Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haibo Zhang
- National Marine Environmental Monitoring Center, Dalian 116000, China
| | - Jiacheng Sun
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyong Shi
- Marine Hazard Mitigation Center, Ministry of Natural Resources, Beijing 100194, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shaoqing Zang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
57
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
58
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
59
|
Hendricks EL, Linskey N, Smith IR, Liebl FLW. Kismet/CHD7/CHD8 and Amyloid Precursor Protein-like Regulate Synaptic Levels of Rab11 at the Drosophila Neuromuscular Junction. Int J Mol Sci 2024; 25:8429. [PMID: 39125997 PMCID: PMC11313043 DOI: 10.3390/ijms25158429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.
Collapse
Affiliation(s)
| | | | | | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| |
Collapse
|
60
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
61
|
Valenzuela-Muñoz V, Wanamaker S, Núñez-Acuña G, Roberts S, Garcia A, Valdés JA, Valenzuela-Miranda D, Gallardo-Escárate C. Environmental influence on the Atlantic salmon transcriptome and methylome during sea lice infestations. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109692. [PMID: 38876411 DOI: 10.1016/j.fsi.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The fish's immune response is affected by different factors, including a wide range of environmental conditions that can also disrupt or promote changes in the host-pathogen interactions. How environmental conditions modulate the salmon genome during parasitism is poorly understood here. This study aimed to explore the environmental influence on the Salmo salar transcriptome and methylome infected with the sea louse Caligus rogercresseyi. Atlantic salmon were experimentally infected with lice at two temperatures (8 and 16 °C) and salinity conditions (32 and 26PSU). Fish tissues were collected from the infected Atlantic salmon for reduced representation bisulfite sequencing (RRBS) and whole transcriptome sequencing (RNA-seq) analysis. The parasitic load was highly divergent in the evaluated environmental conditions, where the lowest lice abundance was observed in fish infected at 8 °C/26PSU. Notably, transcriptome profile differences were statistically associated with the number of alternative splicing events in fish exposed to low temperature/salinity conditions. Furthermore, the temperature significantly affected the methylation level, where high values of differential methylation regions were observed at 16 °C. Also, the association between expression levels of spliced transcripts and their methylation levels was determined, revealing significant correlations with Ferroptosis and TLR KEEG pathways. This study supports the relevance of the environmental conditions during host-parasite interactions in marine ecosystems. The discovery of alternative splicing transcripts associated with DMRs is also discussed as a novel player in fish biology.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad Sam Sebastián, Concepción, Chile
| | | | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA
| | - Ana Garcia
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile; Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile.
| |
Collapse
|
62
|
Kim B, Song A, Son A, Shin Y. Gut microbiota and epigenetic choreography: Implications for human health: A review. Medicine (Baltimore) 2024; 103:e39051. [PMID: 39029010 PMCID: PMC11398772 DOI: 10.1097/md.0000000000039051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
The interwoven relationship between gut microbiota and the epigenetic landscape constitutes a pivotal axis in understanding human health and disease. Governed by a myriad of dietary, genetic, and environmental influences, the gut microbiota orchestrates a sophisticated metabolic interplay, shaping nutrient utilization, immune responses, and defenses against pathogens. Recent strides in genomics and metabolomics have shed light on the intricate connections between these microbial influencers and the host's physiological dynamics, presenting a dynamic panorama across diverse disease spectra. DNA methylation and histone modifications, as key players in epigenetics, intricately align with the dynamic orchestration of the gut microbiota. This seamless collaboration, notably evident in conditions like inflammatory bowel disease and obesity, has captured the attention of researchers, prompting an exploration of its nuanced choreography. Nevertheless, challenges abound. Analyzing data is intricate due to the multifaceted nature of the gut microbiota and the limitations of current analytical methods. This underscores the need for a multidisciplinary approach, where diverse disciplines converge to pave innovative research pathways. The integration of insights from microbiome and epigenome studies assumes paramount importance in unraveling the complexities of this intricate partnership. Deciphering the synchronized interactions within this collaboration offers a deeper understanding of these delicate interplays, potentially heralding revolutionary strides in treatment modalities and strategies for enhancing public health.
Collapse
Affiliation(s)
- Bailee Kim
- Crescenta Valley High School, La Crescenta, CA
| | - Angel Song
- Harvard-Westlake School, Studio City, CA
| | - Andrew Son
- Bellarmine College Preparatory, San Jose, CA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
63
|
Geiger C, Needhamsen M, Emanuelsson EB, Norrbom J, Steindorf K, Sundberg CJ, Reitzner SM, Lindholm ME. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol 2024; 22:147. [PMID: 38965555 PMCID: PMC11225400 DOI: 10.1186/s12915-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.
Collapse
Affiliation(s)
- Carla Geiger
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical School, Heidelberg University, Heidelberg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Inherited Cardiovascular Disease, School of Medicine, Stanford University, 870 Quarry Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
64
|
Baker S, Biroli P, van Kippersluis H, von Hinke S. Advantageous early-life environments cushion the genetic risk for ischemic heart disease. Proc Natl Acad Sci U S A 2024; 121:e2314056121. [PMID: 38917008 PMCID: PMC11228495 DOI: 10.1073/pnas.2314056121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/18/2024] [Indexed: 06/27/2024] Open
Abstract
In one of the first papers on the impact of early-life conditions on individuals' health in older age, Barker and Osmond [Lancet, 327, 1077-1081 (1986)] show a strong positive relationship between infant mortality rates in the 1920s and ischemic heart disease in the 1970s. We merge historical data on infant mortality rates to 370,000 individual records in the UK Biobank using information on local area and year of birth. We replicate the association between the early-life infant mortality rate and later-life ischemic heart disease in our sample. We then go "beyond Barker," by showing considerable genetic heterogeneity in this association that is robust to within-area as well as within-family analyses. We find no association between the polygenic index and heart disease in areas with the lowest infant mortality rates, but a strong positive relationship in areas characterized by high infant mortality. These findings suggest that advantageous environments can cushion one's genetic disease risk.
Collapse
Affiliation(s)
- Samuel Baker
- School of Economics, University of Bristol, BristolBS8 1TU, United Kingdom
| | - Pietro Biroli
- Department of Economic Sciences, University of Bologna, Bologna, Italy
| | - Hans van Kippersluis
- Erasmus School of Economics, Erasmus University Rotterdam, 3062 PARotterdam, The Netherlands
| | - Stephanie von Hinke
- School of Economics, University of Bristol, BristolBS8 1TU, United Kingdom
- Institute for Fiscal Studies, LondonWC1E 7AE, United Kingdom
| |
Collapse
|
65
|
Lindner M, Verhagen I, Mateman AC, van Oers K, Laine VN, Visser ME. Genetic and epigenetic differentiation in response to genomic selection for avian lay date. Evol Appl 2024; 17:e13703. [PMID: 38948539 PMCID: PMC11211926 DOI: 10.1111/eva.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 07/02/2024] Open
Abstract
Anthropogenic climate change has led to globally increasing temperatures at an unprecedented pace and, to persist, wild species have to adapt to their changing world. We, however, often fail to derive reliable predictions of species' adaptive potential. Genomic selection represents a powerful tool to investigate the adaptive potential of a species, but constitutes a 'blind process' with regard to the underlying genomic architecture of the relevant phenotypes. Here, we used great tit (Parus major) females from a genomic selection experiment for avian lay date to zoom into this blind process. We aimed to identify the genetic variants that responded to genomic selection and epigenetic variants that accompanied this response and, this way, might reflect heritable genetic variation at the epigenetic level. We applied whole genome bisulfite sequencing to blood samples of individual great tit females from the third generation of bidirectional genomic selection lines for early and late lay date. Genomic selection resulted in differences at both the genetic and epigenetic level. Genetic variants that showed signatures of selection were located within genes mostly linked to brain development and functioning, including LOC107203824 (SOX3-like). SOX3 is a transcription factor that is required for normal hypothalamo-pituitary axis development and functioning, an essential part of the reproductive axis. As for epigenetic differentiation, the early selection line showed hypomethylation relative to the late selection line. Sites with differential DNA methylation were located in genes important for various biological processes, including gonadal functioning (e.g., MSTN and PIK3CB). Overall, genomic selection for avian lay date provided insights into where within the genome the heritable genetic variation for lay date, on which selection can operate, resides and indicates that some of this variation might be reflected by epigenetic variants.
Collapse
Affiliation(s)
- Melanie Lindner
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Irene Verhagen
- Wageningen University & Research (WUR)WageningenThe Netherlands
| | - A. Christa Mateman
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
| | - Veronika N. Laine
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
66
|
Donovan MG, Eduthan NP, Smith KP, Britton EC, Lyford HR, Araya P, Granrath RE, Waugh KA, Enriquez Estrada B, Rachubinski AL, Sullivan KD, Galbraith MD, Espinosa JM. Variegated overexpression of chromosome 21 genes reveals molecular and immune subtypes of Down syndrome. Nat Commun 2024; 15:5473. [PMID: 38942750 PMCID: PMC11213896 DOI: 10.1038/s41467-024-49781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.
Collapse
Affiliation(s)
- Micah G Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Neetha P Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Eleanor C Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
67
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF Promoter Hypomethylation Is Associated With Mucosal Inflammation in IBD and Anti-TNF Response. GASTRO HEP ADVANCES 2024; 3:888-898. [PMID: 39286616 PMCID: PMC11402298 DOI: 10.1016/j.gastha.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the tumor necrosis factor (TNF) promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and nonresponders. Methods We obtained mucosal biopsies from 200 participants (133 IBDs and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 nonresponders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated intestinal epithelial cells from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF nonresponders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed 2 missense variants in DNA methyltransferase 1, 1 of which had reduced function in vivo. Conclusion Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lindsay Marjoram
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina
| |
Collapse
|
68
|
Davidson BD, Zambon AA, Guadagnin AR, Hoppmann A, Larsen GA, Sherlock DN, Luchini D, Apelo SIA, Laporta J. Rumen-protected methionine supplementation during the transition period under artificially induced heat stress: impacts on cow-calf performance. J Dairy Sci 2024:S0022-0302(24)00898-1. [PMID: 38851569 DOI: 10.3168/jds.2024-24739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Dairy cows experiencing heat stress (HS) during the pre-calving portion of the transition period give birth to smaller calves and produce less milk and milk protein. Supplementation of rumen-protected methionine (RPM) has been shown to modulate protein, energy, and placenta metabolism, making it a potential candidate to ameliorate HS effects. We investigated the effects of supplementing RPM to transition cows under HS induced by electric heat blanket (EHB) on cow-calf performance. Six weeks before expected calving, 53 Holstein cows were housed in a tie-stall barn and fed a control diet (CON, 2.2% Met of MP) or a CON diet supplemented with Smartamine®M (MET, 2.6% Met of MP, Adisseo Inc., France). Four weeks pre-calving, all MET and half CON cows were fitted with an EHB. The other half of the CON cows were considered thermoneutral (TN), resulting in 3 treatments: CONTN (n = 19), CONHS (n = 17), and METHS (n = 17). Respiratory rate (RR), skin temperature (ST), and rectal temperature (RT) were measured thrice weekly and core body temperatures recorded bi-weekly. Post-calving body weights (BW) and BCS were recorded weekly, and DMI was calculated and averaged weekly. Milk yield was recorded daily and milk components were analyzed every third DIM. Biweekly AA and weekly nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), insulin, and glucose were measured from plasma. Calf birth weight and 24 h growth, thermoregulation, and hematology profile were measured and apparent efficiency of absorption (AEA) of immunoglobulins was calculated. Data were analyzed using the MIXED procedure of SAS with 2 preplanned orthogonal contrasts: CONTN vs. the average of CONHS and METHS (C1) and CONHS vs. METHS (C2). Relative to TN, EHB cows had increased RT during the post-calving weeks and increased RR and ST during the entire transition period. Body weight, BCS, DMI, and milk yield were not impacted by the EHB or RPM. However, protein % and SNF were lower in CONHS, relative to METHS cows. At calving, METHS dams had higher glucose concentrations, relative to CONHS, and during the post-calving weeks, the EHB cows had lower NEFA concentrations than TN cows. Calf birthweight and AEA were reduced by HS, while RR was increased by HS. Calf withers height tended to be shorter and RT were lower in CONHS, compared with MTHS heifers. Overall, RPM supplementation to transition cows reverts the negative impact of HS on blood glucose concentration at calving and milk protein % in the dams and increases wither height while decreasing RT in the calf.
Collapse
Affiliation(s)
- B D Davidson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A A Zambon
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A Hoppmann
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - G A Larsen
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - D N Sherlock
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - D Luchini
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - S I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA.
| |
Collapse
|
69
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
70
|
Tarkhov AE, Lindstrom-Vautrin T, Zhang S, Ying K, Moqri M, Zhang B, Tyshkovskiy A, Levy O, Gladyshev VN. Nature of epigenetic aging from a single-cell perspective. NATURE AGING 2024; 4:854-870. [PMID: 38724733 DOI: 10.1038/s43587-024-00616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Age-related changes in DNA methylation (DNAm) form the basis of the most robust predictors of age-epigenetic clocks-but a clear mechanistic understanding of exactly which aspects of aging are quantified by these clocks is lacking. Here, to clarify the nature of epigenetic aging, we juxtapose the dynamics of tissue and single-cell DNAm in mice. We compare these changes during early development with those observed during adult aging in mice, and corroborate our analyses with a single-cell RNA sequencing analysis within the same multiomics dataset. We show that epigenetic aging involves co-regulated changes as well as a major stochastic component, and this is consistent with transcriptional patterns. We further support the finding of stochastic epigenetic aging by direct tissue and single-cell DNAm analyses and modeling of aging DNAm trajectories with a stochastic process akin to radiocarbon decay. Finally, we describe a single-cell algorithm for the identification of co-regulated and stochastic CpG clusters showing consistent transcriptomic coordination patterns. Together, our analyses increase our understanding of the basis of epigenetic clocks and highlight potential opportunities for targeting aging and evaluating longevity interventions.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Retro Biosciences Inc., Redwood City, CA, USA.
| | - Thomas Lindstrom-Vautrin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Orr Levy
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
71
|
Danieli MG, Casciaro M, Paladini A, Bartolucci M, Sordoni M, Shoenfeld Y, Gangemi S. Exposome: Epigenetics and autoimmune diseases. Autoimmun Rev 2024; 23:103584. [PMID: 39097180 DOI: 10.1016/j.autrev.2024.103584] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Systemic autoimmune diseases are complex conditions characterized by an immune system dysregulation and an aberrant activation against self-antigens, leading to tissue and organ damage. Even though genetic predisposition plays a role, it cannot fully explain the onset of these diseases, highlighting the significant impact of non-heritable influences such as environment, hormones and infections. The exposome represents all those factors, ranging from chemical pollutants and dietary components to psychological stressors and infectious agents. Epigenetics, which studies changes in gene expression without altering the DNA sequence, is a crucial link between exposome and the development of autoimmune diseases. Key epigenetic mechanisms include DNA methylation, histone modifications, and non-coding RNAs. These epigenetic modifications could provide a potential piece of the puzzle in understanding systemic autoimmune diseases and their connection with the exposome. In this work we have collected the most important and recent evidence in epigenetic changes linked to systemic autoimmune diseases (systemic lupus erythematosus, idiopathic inflammatory myopathies, ANCA-associated vasculitis, and rheumatoid arthritis), emphasizing the roles these changes may play in disease pathogenesis, their potential as diagnostic biomarkers and their prospective in the development of targeted therapies.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti, AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Alberto Paladini
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Bartolucci
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Martina Sordoni
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; Reichman University, Herzelia 46101, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
72
|
Kumar C, Roy JK. Decoding the epigenetic mechanism of mammalian sex determination. Exp Cell Res 2024; 439:114011. [PMID: 38531506 DOI: 10.1016/j.yexcr.2024.114011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Sex determination embodies a dynamic and intricate developmental process wielding significant influence over the destiny of bipotential gonads, steering them towards male or female gonads. Gonadal differentiation and the postnatal manifestation of the gonadal phenotype involve a sophisticated interplay of transcription factors such as SOX9 and FOXL2. Central to this interplay are chromatin modifiers regulating the mutual antagonism during this interplay. In this review, the key findings and knowledge gaps in DNA methylation, histone modification, and non-coding RNA-mediated control throughout mammalian gonadal development are covered. Furthermore, it explores the role of the developing brain in playing a pivotal role in the initiation of gonadogenesis and the subsequent involvement of gonadal hormone/hormone receptor in fine-tuning sexual differentiation. Based on promising facts, the role of the developing brain through the hypothalamic pituitary gonadal axis is explained and suggested as a novel hypothesis. The article also discusses the potential impact of ecological factors on the human epigenome in relation to sex determination and trans-generational epigenetics in uncovering novel genes and mechanisms involved in sex determination and gonadal differentiation. We have subtly emphasized the disruptions in epigenetic regulations contributing to sexual disorders, which further allows us to raise certain questions, decipher approaches for handling these questions and setting up the direction of future research.
Collapse
Affiliation(s)
- Cash Kumar
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
73
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
74
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
75
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
76
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
77
|
Chen K, He Y, Wang W, Yuan X, Carbone DP, Yang F. Development of new techniques and clinical applications of liquid biopsy in lung cancer management. Sci Bull (Beijing) 2024; 69:1556-1568. [PMID: 38641511 DOI: 10.1016/j.scib.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 04/21/2024]
Abstract
Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Xiaoqiu Yuan
- Peking University Health Science Center, Beijing 100191, China
| | - David P Carbone
- Thoracic Oncology Center, Ohio State University, Columbus 43026, USA.
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China.
| |
Collapse
|
78
|
Salazar M, Joly S, Anglada-Escudé G, Ribas L. Epigenetic and physiological alterations in zebrafish subjected to hypergravity. PLoS One 2024; 19:e0300310. [PMID: 38776274 PMCID: PMC11111069 DOI: 10.1371/journal.pone.0300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.
Collapse
Affiliation(s)
- Marcela Salazar
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Silvia Joly
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Guillem Anglada-Escudé
- Department of Astrophysics, Institut de Ciències de l’Espai—Consejo Superior de Investigaciones Científicas (ICE-CSIC), UAB Campus at Cerdanyola del Vallès, Barcelona, Spain
- Institut d’Estudis Espacials de Catalunya–IEEC/CERCA, Gran Capità, 2–4, Edifici Nexus, Despatx 201, Barcelona, Spain
| | - Laia Ribas
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
79
|
Salama OE, Hizon N, Del Vecchio M, Kolsun K, Fonseca MA, Lin DTS, Urtatiz O, MacIsaac JL, Kobor MS, Sellers EAC, Dolinsky VW, Dart AB, Jones MJ, Wicklow BA. DNA methylation signatures of youth-onset type 2 diabetes and exposure to maternal diabetes. Clin Epigenetics 2024; 16:65. [PMID: 38741114 DOI: 10.1186/s13148-024-01675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.
Collapse
Affiliation(s)
- Ola E Salama
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Melissa Del Vecchio
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Kurt Kolsun
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mario A Fonseca
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - David T S Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A C Sellers
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Allison B Dart
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| | - Brandy A Wicklow
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
80
|
Campbell KA, Colacino JA, Dou J, Dolinoy DC, Park SK, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental and Immune Cell DNA Methylation Reference Panel for Bulk Tissue Cell Composition Estimation in Epidemiological Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.588886. [PMID: 38766167 PMCID: PMC11100803 DOI: 10.1101/2024.05.06.588886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type. To test deconvolution performance, we evaluated RMSE in predicting principal component one of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n=368,435 sites) from 12 cell types: cytotrophoblasts (n=18), endothelial cells (n=19), Hofbauer cells (n=26), stromal cells (n=21), syncytiotrophoblasts (n=4), six lymphocyte types (n=36), and nucleated red blood cells (n=11). Median cell composition was consistent with placental biology: 60.4% syncytiotrophoblast, 17.1% stromal, 8.8% endothelial, 4.5% cytotrophoblast, 3.9% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (15.4% variance explained, IQR=21.61) with cell composition estimates (RMSE:10.51 vs. 11.43, p-value<0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve casual inference.
Collapse
Affiliation(s)
- Kyle A. Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Kyun Park
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly M. Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
81
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
82
|
Slowly M, Domingo-Relloso A, Santella RM, Haack K, Fallin DM, Terry MB, Rhoades DA, Herreros-Martinez M, Garcia-Esquinas E, Cole SA, Tellez-Plaza M, Navas-Acien A, Wu HC. Blood DNA methylation and liver cancer in American Indians: evidence from the Strong Heart Study. Cancer Causes Control 2024; 35:661-669. [PMID: 38010586 PMCID: PMC10960679 DOI: 10.1007/s10552-023-01822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Liver cancer incidence among American Indians/Alaska Natives has risen over the past 20 years. Peripheral blood DNA methylation may be associated with liver cancer and could be used as a biomarker for cancer risk. We evaluated the association of blood DNA methylation with risk of liver cancer. METHODS We conducted a prospective cohort study in 2324 American Indians, between age 45 and 75 years, from Arizona, Oklahoma, North Dakota and South Dakota who participated in the Strong Heart Study between 1989 and 1991. Liver cancer deaths (n = 21) were ascertained using death certificates obtained through 2017. The mean follow-up duration (SD) for non-cases was 25.1 (5.6) years and for cases, 11.0 (8.8) years. DNA methylation was assessed from blood samples collected at baseline using MethylationEPIC BeadChip 850 K arrays. We used Cox regression models adjusted for age, sex, center, body mass index, low-density lipoprotein cholesterol, smoking, alcohol consumption, and immune cell proportions to examine the associations. RESULTS We identified 9 CpG sites associated with liver cancer. cg16057201 annotated to MRFAP1) was hypermethylated among cases vs. non-cases (hazard ratio (HR) for one standard deviation increase in methylation was 1.25 (95% CI 1.14, 1.37). The other eight CpGs were hypomethylated and the corresponding HRs (95% CI) ranged from 0.58 (0.44, 0.75) for cg04967787 (annotated to PPRC1) to 0.77 (0.67, 0.88) for cg08550308. We also assessed 7 differentially methylated CpG sites associated with liver cancer in previous studies. The adjusted HR for cg15079934 (annotated to LPS1) was 1.93 (95% CI 1.10, 3.39). CONCLUSIONS Blood DNA methylation may be associated with liver cancer mortality and may be altered during the development of liver cancer.
Collapse
Affiliation(s)
- Monique Slowly
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Regina M Santella
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Daniele M Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Terry
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Dorothy A Rhoades
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | | | - Esther Garcia-Esquinas
- Universidad Autónoma de Madrid, Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
83
|
Wang F, Ye L, Jiang X, Zhang R, Chen S, Chen L, Yu H, Zeng X, Li D, Xing X, Xiao Y, Chen W. Specific CpG sites methylation is associated with hematotoxicity in low-dose benzene-exposed workers. ENVIRONMENT INTERNATIONAL 2024; 186:108645. [PMID: 38615541 DOI: 10.1016/j.envint.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.
Collapse
Affiliation(s)
- Feier Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China; Boji Drug Evaluation Center, Boji Medical Technology Co., Ltd, Guangzhou, China
| | - Xinhang Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongyao Yu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
84
|
Benincasa G, Napoli C, DeMeo DL. Transgenerational Epigenetic Inheritance of Cardiovascular Diseases: A Network Medicine Perspective. Matern Child Health J 2024; 28:617-630. [PMID: 38409452 DOI: 10.1007/s10995-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION The ability to identify early epigenetic signatures underlying the inheritance of cardiovascular risk, including trans- and intergenerational effects, may help to stratify people before cardiac symptoms occur. METHODS Prospective and retrospective cohorts and case-control studies focusing on DNA methylation and maternal/paternal effects were searched in Pubmed from 1997 to 2023 by using the following keywords: DNA methylation, genomic imprinting, and network analysis in combination with transgenerational/intergenerational effects. RESULTS Maternal and paternal exposures to traditional cardiovascular risk factors during critical temporal windows, including the preconceptional period or early pregnancy, may perturb the plasticity of the epigenome (mainly DNA methylation) of the developing fetus especially at imprinted loci, such as the insulin-like growth factor type 2 (IGF2) gene. Thus, the epigenome is akin to a "molecular archive" able to memorize parental environmental insults and predispose an individual to cardiovascular diseases onset in later life. Direct evidence for human transgenerational epigenetic inheritance (at least three generations) of cardiovascular risk is lacking but it is supported by epidemiological studies. Several blood-based association studies showed potential intergenerational epigenetic effects (single-generation studies) which may mediate the transmittance of cardiovascular risk from parents to offspring. DISCUSSION In this narrative review, we discuss some relevant examples of trans- and intergenerational epigenetic associations with cardiovascular risk. In our perspective, we propose three network-oriented approaches which may help to clarify the unsolved issues regarding transgenerational epigenetic inheritance of cardiovascular risk and provide potential early biomarkers for primary prevention.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
85
|
Liu J, Zhong X. Population epigenetics: DNA methylation in the plant omics era. PLANT PHYSIOLOGY 2024; 194:2039-2048. [PMID: 38366882 PMCID: PMC10980424 DOI: 10.1093/plphys/kiae089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
DNA methylation plays an important role in many biological processes. The mechanisms underlying the establishment and maintenance of DNA methylation are well understood thanks to decades of research using DNA methylation mutants, primarily in Arabidopsis (Arabidopsis thaliana) accession Col-0. Recent genome-wide association studies (GWASs) using the methylomes of natural accessions have uncovered a complex and distinct genetic basis of variation in DNA methylation at the population level. Sequencing following bisulfite treatment has served as an excellent method for quantifying DNA methylation. Unlike studies focusing on specific accessions with reference genomes, population-scale methylome research often requires an additional round of sequencing beyond obtaining genome assemblies or genetic variations from whole-genome sequencing data, which can be cost prohibitive. Here, we provide an overview of recently developed bisulfite-free methods for quantifying methylation and cost-effective approaches for the simultaneous detection of genetic and epigenetic information. We also discuss the plasticity of DNA methylation in a specific Arabidopsis accession, the contribution of DNA methylation to plant adaptation, and the genetic determinants of variation in DNA methylation in natural populations. The recently developed technology and knowledge will greatly benefit future studies in population epigenomes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
86
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
87
|
Langford N, Fargeot L, Blanchet S. Spatial covariation between genetic and epigenetic diversity in wild plant and animal populations: a meta-analysis. J Exp Biol 2024; 227:jeb246009. [PMID: 38449323 DOI: 10.1242/jeb.246009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Epigenetic variation may be crucial in understanding the structure of wild populations, thereby aiding in their management and conservation. However, the relationship between epigenetic and genetic variation remains poorly understood, especially in wild populations. To address this, we conducted a meta-analysis of studies that examined the genetic and epigenetic structures of wild plant and animal populations. We aimed to determine whether epigenetic variation is spatially independent of genetic variation in the wild and to highlight the conditions under which epigenetic variation might be informative. We show a significant positive correlation between genetic and epigenetic pairwise differentiation, indicating that in wild populations, epigenetic diversity is closely linked to genetic differentiation. The correlation was weaker for population pairs that were weakly differentiated genetically, suggesting that in such cases, epigenetic marks might be independent of genetic marks. Additionally, we found that global levels of genetic and epigenetic differentiation were similar across plant and animal populations, except when populations were weakly differentiated genetically. In such cases, epigenetic differentiation was either higher or lower than genetic differentiation. Our results suggest that epigenetic information is particularly relevant in populations that have recently diverged genetically or are connected by gene flow. Future studies should consider the genetic structure of populations when inferring the role of epigenetic diversity in local adaptation in wild populations. Furthermore, there is a need to identify the factors that sustain the links between genetic and epigenetic diversity to improve our understanding of the interplay between these two forms of variation in wild populations.
Collapse
Affiliation(s)
- Nadia Langford
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| |
Collapse
|
88
|
Müller GA, Müller TD. Transfer of membrane(s) matter(s)-non-genetic inheritance of (metabolic) phenotypes? Front Mol Biosci 2024; 11:1347397. [PMID: 38516184 PMCID: PMC10955475 DOI: 10.3389/fmolb.2024.1347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Media Studies, Media, Culture and Society, Faculty of Arts and Humanities, University Paderborn, Paderborn, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
| |
Collapse
|
89
|
Advani J, Mehta PA, Hamel AR, Mehrotra S, Kiel C, Strunz T, Corso-Díaz X, Kwicklis M, van Asten F, Ratnapriya R, Chew EY, Hernandez DG, Montezuma SR, Ferrington DA, Weber BHF, Segrè AV, Swaroop A. QTL mapping of human retina DNA methylation identifies 87 gene-epigenome interactions in age-related macular degeneration. Nat Commun 2024; 15:1972. [PMID: 38438351 PMCID: PMC10912779 DOI: 10.1038/s41467-024-46063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation provides a crucial epigenetic mark linking genetic variations to environmental influence. We have analyzed array-based DNA methylation profiles of 160 human retinas with co-measured RNA-seq and >8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 methylation quantitative trait loci and 12,505 expression quantitative trait loci) and 13,747 DNA methylation loci affecting gene expression, with over one-third specific to the retina. Methylation and expression quantitative trait loci show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration. Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of macular degeneration pathology by genotype-environment interaction in retina.
Collapse
Affiliation(s)
- Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Puja A Mehta
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R Hamel
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Kwicklis
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freekje van Asten
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Doheny Eye Institute, Pasadena, CA, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ayellet V Segrè
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
90
|
Sepers B, Verhoeven KJF, van Oers K. Early developmental carry-over effects on exploratory behaviour and DNA methylation in wild great tits ( Parus major). Evol Appl 2024; 17:e13664. [PMID: 38487391 PMCID: PMC10937296 DOI: 10.1111/eva.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/17/2024] Open
Abstract
Adverse, postnatal conditions experienced during development are known to induce lingering effects on morphology, behaviour, reproduction and survival. Despite the importance of early developmental stress for shaping the adult phenotype, it is largely unknown which molecular mechanisms allow for the induction and maintenance of such phenotypic effects once the early environmental conditions are released. Here we aimed to investigate whether lasting early developmental phenotypic changes are associated with post-developmental DNA methylation changes. We used a cross-foster and brood size experiment in great tit (Parus major) nestlings, which induced post-fledging effects on biometric measures and exploratory behaviour, a validated personality trait. We investigated whether these post-fledging effects are associated with DNA methylation levels of CpG sites in erythrocyte DNA. Individuals raised in enlarged broods caught up on their developmental delay after reaching independence and became more explorative as days since fledging passed, while the exploratory scores of individuals that were raised in reduced broods remained stable. Although we previously found that brood enlargement hardly affected the pre-fledging methylation levels, we found 420 CpG sites that were differentially methylated between fledged individuals that were raised in small versus large sized broods. A considerable number of the affected CpG sites were located in or near genes involved in metabolism, growth, behaviour and cognition. Since the biological functions of these genes line up with the observed post-fledging phenotypic effects of brood size, our results suggest that DNA methylation provides organisms the opportunity to modulate their condition once the environmental conditions allow it. In conclusion, this study shows that nutritional stress imposed by enlarged brood size during early development associates with variation in DNA methylation later in life. We propose that treatment-associated DNA methylation differences may arise in relation to pre- or post-fledging phenotypic changes, rather than that they are directly induced by the environment during early development.
Collapse
Affiliation(s)
- Bernice Sepers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
| |
Collapse
|
91
|
Whaibeh E, Mrad-Nakhlé M, Aouad N, Annesi-Maesano I, Abbas N, Chaiban C, Abi Hanna J, Abi Tayeh G. The Environmental Exposures in Lebanese Infants (EELI) birth cohort: an investigation into the Developmental Origins of Health and Diseases (DOHaD). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1675-1686. [PMID: 37429297 DOI: 10.1080/09603123.2023.2234834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The EELI Study is a longitudinal birth cohort launched in 2021 in Lebanon to examine the long-term impact of environmental exposures on the health of prospective Lebanese mothers and infants and disease outcomes. This article delineates the adopted study design and protocols, current progress, and contextual considerations for the planning and launching of a birth cohort in a resource-limited setting. A sample of n = 135 pregnant women expecting to give birth at the Hôtel-Dieu de France University Hospital has been recruited since the study launch. Over 500 variables have been recorded for each participant, and over 1000 biological specimens have been processed and stored in a biobank for further analysis. The EELI study establishes methodological and logistic basis to explore the concept of the exposome and its implementation and to establish a toolkit of the SOPs and questionnaires that can be employed by the other countries in the Eastern Mediterranean region.
Collapse
Affiliation(s)
- Emile Whaibeh
- Doctoral School of Health and Sciences (EDSS), Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Myriam Mrad-Nakhlé
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Norma Aouad
- Obstetrics and Reproduction, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Nivine Abbas
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Clara Chaiban
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Jowy Abi Hanna
- Public Health Department, Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Georges Abi Tayeh
- Doctoral School of Health and Sciences (EDSS), Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
- Obstetrics and Reproduction, Hôtel-Dieu de France University Hospital, Beirut, Lebanon
| |
Collapse
|
92
|
Yeung-Luk BH, Wally A, Swaby C, Jauregui S, Lee E, Zhang R, Chen D, Luk SH, Upadya N, Tieng E, Wilmsen K, Sherman E, Sudhakar D, Luk M, Shrivastav AK, Cao S, Ghosh B, Christenson SA, Huang YJ, Ortega VE, Biswal S, Tang WY, Sidhaye VK. Epigenetic Reprogramming Drives Epithelial Disruption in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:165-177. [PMID: 37976469 PMCID: PMC10914773 DOI: 10.1165/rcmb.2023-0147oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Collapse
Affiliation(s)
| | - Ara Wally
- Department of Environmental Health and Engineering and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sofia Jauregui
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Esther Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean H Luk
- Department of Environmental Health and Engineering and
| | - Nisha Upadya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ethan Tieng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kai Wilmsen
- Department of Environmental Health and Engineering and
| | - Ethan Sherman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dheeksha Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Luk
- Department of Environmental Health and Engineering and
| | - Abhishek Kumar Shrivastav
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shuo Cao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | | | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Yvonne J Huang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Victor E Ortega
- Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona
| | - Shyam Biswal
- Department of Environmental Health and Engineering and
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering and
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering and
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
93
|
Sands M, Zhang X, Gal A, Laws M, Spinella M, Erdogan ZM, Irudayaraj J. Comparative hepatotoxicity of novel lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, ie. HQ-115) and legacy Perfluorooctanoic acid (PFOA) in male mice: Insights into epigenetic mechanisms and pathway-specific responses. ENVIRONMENT INTERNATIONAL 2024; 185:108556. [PMID: 38461777 DOI: 10.1016/j.envint.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA). Using a murine model, six-week-old male CD1 mice were exposed to 10 and 20 mg/kg/day of each chemical for 14 days as 14-day exposure and 1 and 5 mg/kg/day for 30 days as 30-day exposure. Results indicate that PFOA exposure induced significant hepatotoxicity, characterized by liver enlargement, and elevated serum biomarkers. In contrast, LiTFSI exposure showed lower hepatotoxicity, accompanied by mild liver injuries. Despite higher bioaccumulation of PFOA in serum, LiTFSI exhibited a similar range of liver concentrations compared to PFOA. Reduced Representative Bisulfite Sequencing (RRBS) analysis revealed distinct DNA methylation patterns between 14-day and 30-day exposure for the two compounds. Both LiTFSI and PFOA implicated liver inflammatory pathways and lipid metabolism. Transcriptional results showed that differentially methylated regions in both exposures are enriched with cancer/disease-related motifs. Furthermore, Peroxisome proliferator-activated receptor alpha (PPARα), a regulator of lipid metabolism, was upregulated in both exposures, with downstream genes indicating potential oxidative damages. Overall, LiTFSI exhibits distinct hepatotoxicity profiles, emphasizing the need for comprehensive assessment of emerging PFAS compounds.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep-Madak Erdogan
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
94
|
Hasan MM, Sekiya R, Zhang X, Yassouf MY, Li TS. Comparison of hypoxia- and hyperoxia-induced alteration of epigene expression pattern in lungs of Pleurodeles waltl and Mus musculus. PLoS One 2024; 19:e0299661. [PMID: 38416753 PMCID: PMC10901355 DOI: 10.1371/journal.pone.0299661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
95
|
Rallis D, Papathanasiou AE, Christou H. Maternal Obesity Modulates Cord Blood Concentrations of Proprotein Convertase Subtilisin/Kexin-type 9 Levels. J Endocr Soc 2024; 8:bvae031. [PMID: 38440108 PMCID: PMC10910593 DOI: 10.1210/jendso/bvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 03/06/2024] Open
Abstract
Context In utero exposure to maternal obesity or diabetes is considered a pro-inflammatory state. Objective To evaluate whether cord blood proprotein convertase subtilisin/kexin-type 9 (PCSK9), which is regulated by inflammation and metabolic derangements, is elevated in neonates born to overweight, obese, or diabetic mothers. Methods A retrospective study in full-term neonates born between 2010 and 2023, at Brigham and Women's Hospital. There were 116 neonates included in our study, of which 74 (64%) were born to overweight/obese mothers and 42 (36%) were born to nonoverweight/nonobese mothers. Results Neonates born to overweight/obese mothers had significantly higher cord blood concentrations of PCSK9 compared with neonates born to nonoverweight/nonobese group (323 [253-442] ng/mL compared with 270 [244-382] ng/mL, P = .041). We found no significant difference in cord blood concentrations of PCSK9 between neonates of diabetic mothers compared with neonates of nondiabetic mothers. In multivariate linear regression analysis, higher cord plasma PCSK9 concentration was significantly associated with maternal overweight/obesity status (b = 50.12; 95% CI, 4.02-96.22; P = .033), after adjusting for gestational age, birth weight, male sex, and intrauterine growth restriction. Conclusion Neonates born to mothers with overweight/obesity have higher cord blood PCSK9 concentrations compared with the nonoverweight/nonobese group, and higher cord blood PCSK9 concentrations were significantly associated with maternal overweight/obesity status, after adjusting for perinatal factors. Larger longitudinal studies are needed to examine the role of PCSK9 in the development of metabolic syndrome in high-risk neonates born to overweight, obese, or diabetic mothers.
Collapse
Affiliation(s)
- Dimitrios Rallis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Neonatal Intensive Care Unit, University of Ioannina, Faculty of Medicine, Ioannina 45110, Greece
| | | | - Helen Christou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
96
|
Nwanaji-Enwerem U, McGeary JE, Grigsby-Toussaint DS. Greenspace, stress, and health: how is epigenetics involved? Front Public Health 2024; 12:1333737. [PMID: 38435282 PMCID: PMC10906089 DOI: 10.3389/fpubh.2024.1333737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Most expositions of the association between green space and overall health and well-being focus on psychosocial mechanisms. However, discussions of the biological underpinnings of the exposure to green space and health implications are limited. In this paper, we highlight the role epigenetics plays in the manifestation or suppression of stress, in addition to some of the proposed epigenetic mechanisms through which green space mitigates stress. The Health: Epigenetics, Greenspace and Stress (HEGS) model is introduced to explicate this association, and suggestions for research to build the evidence base in this area are discussed.
Collapse
Affiliation(s)
- Ugoji Nwanaji-Enwerem
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - John E. McGeary
- Providence VA Medical Center, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Diana S. Grigsby-Toussaint
- Department of Behavioral and Social Sciences, Department of Epidemiology, Center for Health Promotion and Health Equity, Brown University School of Public Health, Providence, RI, United States
- Department of Behavioral and Social Sciences, Center for Health Promotion and Health Equity, Brown University School of Public Health, Providence, RI, United States
| |
Collapse
|
97
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
98
|
Levic DS, Niedzwiecki D, Kandakatla A, Karlovich NS, Juneja A, Park J, Stolarchuk C, Adams S, Willer JR, Schaner MR, Lian G, Beasley C, Marjoram L, Flynn AD, Valentine JF, Onken JE, Sheikh SZ, Davis EE, Evason KJ, Garman KS, Bagnat M. TNF promoter hypomethylation is associated with mucosal inflammation in IBD and anti-TNF response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302343. [PMID: 38370739 PMCID: PMC10871362 DOI: 10.1101/2024.02.05.24302343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background and aims Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions influenced heavily by environmental factors. DNA methylation is a form of epigenetic regulation linking environmental stimuli to gene expression changes and inflammation. Here, we investigated how DNA methylation of the TNF promoter differs between inflamed and uninflamed mucosa of IBD patients, including anti-TNF responders and non-responders. Methods We obtained mucosal biopsies from 200 participants (133 IBD and 67 controls) and analyzed TNF promoter methylation using bisulfite sequencing, comparing inflamed with uninflamed segments, in addition to paired inflamed/uninflamed samples from individual patients. We conducted similar analyses on purified intestinal epithelial cells from bowel resections. We also compared TNF methylation levels of inflamed and uninflamed mucosa from a separate cohort of 15 anti-TNF responders and 17 non-responders. Finally, we sequenced DNA methyltransferase genes to identify rare variants in IBD patients and functionally tested them using rescue experiments in a zebrafish genetic model of DNA methylation deficiency. Results TNF promoter methylation levels were decreased in inflamed mucosa of IBD patients and correlated with disease severity. Isolated IECs from inflamed tissue showed proportional decreases in TNF methylation. Anti-TNF non-responders showed lower levels of TNF methylation than responders in uninflamed mucosa. Our sequencing analysis revealed two missense variants in DNMT1, one of which had reduced function in vivo. Conclusions Our study reveals an association of TNF promoter hypomethylation with mucosal inflammation, suggesting that IBD patients may be particularly sensitive to inflammatory environmental insults affecting DNA methylation. Together, our analyses indicate that TNF promoter methylation analysis may aid in the characterization of IBD status and evaluation of anti-TNF therapy response.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Apoorva Kandakatla
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Norah S. Karlovich
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Arjun Juneja
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Jieun Park
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shanté Adams
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ann D. Flynn
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - John F. Valentine
- Division of Gastroenterology, Hepatology and Nutrition, University of Utah Health, Salt Lake City, Utah
| | - Jane E. Onken
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica E. Davis
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Kimberley J. Evason
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, USA
| |
Collapse
|
99
|
Meza-León A, Montoya-Estrada A, Reyes-Muñoz E, Romo-Yáñez J. Diabetes Mellitus and Pregnancy: An Insight into the Effects on the Epigenome. Biomedicines 2024; 12:351. [PMID: 38397953 PMCID: PMC10886464 DOI: 10.3390/biomedicines12020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, diabetes mellitus represents a growing health problem. If it occurs during pregnancy, it can increase the risk of various abnormalities in early and advanced life stages of exposed individuals due to fetal programming occurring in utero. Studies have determined that maternal conditions interfere with the genotypes and phenotypes of offspring. Researchers are now uncovering the mechanisms by which epigenetic alterations caused by diabetes affect the expression of genes and, therefore, the development of various diseases. Among the numerous possible epigenetic changes in this regard, the most studied to date are DNA methylation and hydroxymethylation, as well as histone acetylation and methylation. This review article addresses critical findings in epigenetic studies involving diabetes mellitus, including variations reported in the expression of specific genes and their transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - José Romo-Yáñez
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
100
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|