51
|
Zhao Y, Ning YL, Zhou YG. A 2AR and traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:225-265. [PMID: 37741693 DOI: 10.1016/bs.irn.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery and Daping Hospital, Army Medical University, P.R. China; Institute of Brain and Intelligence, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
52
|
Dams-O'Connor K, Awwad HO, Hoffman S, Pugh MJ, Johnson VE, Keene CD, McGavern L, Mukherjee P, Opanashuk L, Umoh N, Sopko G, Zetterberg H. Alzheimer's Disease-Related Dementias Summit 2022: National Research Priorities for the Investigation of Post-Traumatic Brain Injury Alzheimer's Disease and Related Dementias. J Neurotrauma 2023; 40:1512-1523. [PMID: 36927167 PMCID: PMC10494902 DOI: 10.1089/neu.2022.0514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a risk factor for Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD) and otherwise classified post-traumatic neurodegeneration (PTND). Targeted research is needed to elucidate the circumstances and mechanisms through which TBI contributes to the initiation, development, and progression of AD/ADRD pathologies including multiple etiology dementia (MED). The National Institutes of Health hosts triennial ADRD summits to inform a national research agenda, and TBI was included for a second time in 2022. A multidisciplinary expert panel of TBI and dementia researchers was convened to re-evaluate the 2019 research recommendations for understanding TBI as an AD/ADRD risk factor and to assess current progress and research gaps in understanding post-TBI AD/ADRD. Refined and new recommendations were presented during the MED special topic session at the virtual ADRD Summit in March 2022. Final research recommendations incorporating broad stakeholder input are organized into four priority areas as follows: (1) Promote interdisciplinary collaboration and data harmonization to accelerate progress of rigorous, clinically meaningful research; (2) Characterize clinical and biological phenotypes of PTND associated with varied lifetime TBI histories in diverse populations to validate multimodal biomarkers; (3) Establish and enrich infrastructure to support multimodal longitudinal studies of individuals with varied TBI exposure histories and standardized methods including common data elements (CDEs) for ante-mortem and post-mortem clinical and neuropathological characterization; and (4) Support basic and translational research to elucidate mechanistic pathways, development, progression, and clinical manifestations of post-TBI AD/ADRDs. Recommendations conceptualize TBI as a contributor to MED and emphasize the unique opportunity to study AD/ADRD following known exposure, to inform disease mechanisms and treatment targets for shared common AD/ADRD pathways.
Collapse
Affiliation(s)
- Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hibah O. Awwad
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Stuart Hoffman
- Office of Research and Development, U.S. Department of Veterans Affairs, Washington, DC, USA
| | - Mary Jo Pugh
- Department of Medicine, Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- VA Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Linda McGavern
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Pratik Mukherjee
- Department of Veterans Affairs, San Francisco VA Health Care System, San Francisco, CA, U.S.A., University of California, San Francisco, San Francisco, California, USA
| | - Lisa Opanashuk
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nsini Umoh
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - George Sopko
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
53
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
54
|
Abou-El-Hassan H, Rezende RM, Izzy S, Gabriely G, Yahya T, Tatematsu BK, Habashy KJ, Lopes JR, de Oliveira GLV, Maghzi AH, Yin Z, Cox LM, Krishnan R, Butovsky O, Weiner HL. Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males. Nat Commun 2023; 14:4286. [PMID: 37463881 DOI: 10.1038/s41467-023-39857-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-β that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl J Habashy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gislane L V de Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amir-Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Graham NS, Cole JH, Bourke NJ, Schott JM, Sharp DJ. Distinct patterns of neurodegeneration after TBI and in Alzheimer's disease. Alzheimers Dement 2023; 19:3065-3077. [PMID: 36696255 PMCID: PMC10955776 DOI: 10.1002/alz.12934] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a dementia risk factor, with Alzheimer's disease (AD) more common following injury. Patterns of neurodegeneration produced by TBI can be compared to AD and aging using volumetric MRI. METHODS A total of 55 patients after moderate to severe TBI (median age 40), 45 with AD (median age 69), and 61 healthy volunteers underwent magnetic resonance imaging over 2 years. Atrophy patterns were compared. RESULTS AD patients had markedly lower baseline volumes. TBI was associated with increased white matter (WM) atrophy, particularly involving corticospinal tracts and callosum, whereas AD rates were increased across white and gray matter (GM). Subcortical WM loss was shared in AD/TBI, but deep WM atrophy was TBI-specific and cortical atrophy AD-specific. Post-TBI atrophy patterns were distinct from aging, which resembled AD. DISCUSSION Post-traumatic neurodegeneration 1.9-4.0 years (median) following moderate-severe TBI is distinct from aging/AD, predominantly involving central WM. This likely reflects distributions of axonal injury, a neurodegeneration trigger. HIGHLIGHTS We compared patterns of brain atrophy longitudinally after moderate to severe TBI in late-onset AD and healthy aging. Patients after TBI had abnormal brain atrophy involving the corpus callosum and other WM tracts, including corticospinal tracts, in a pattern that was specific and distinct from AD and aging. This pattern is reminiscent of axonal injury following TBI, and atrophy rates were predicted by the extent of axonal injury on diffusion tensor imaging, supporting a relationship between early axonal damage and chronic neurodegeneration.
Collapse
Affiliation(s)
- Neil S.N. Graham
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | - James H. Cole
- Dementia Research CentreUCL Queen Square Institute of NeurologyLondonUK
- Centre for Medical Image ComputingUCLLondonUK
| | - Niall J. Bourke
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
| | | | - David J. Sharp
- Department of Brain SciencesImperial College LondonLondonUK
- UK Dementia Research Institute Centre for Care Research and Technology at Imperial College LondonLondonUK
- Centre for Injury StudiesImperial College LondonLondonUK
| |
Collapse
|
56
|
Sang XZ, Wang CQ, Chen W, Rong H, Hou LJ. An exhaustive analysis of post-traumatic brain injury dementia using bibliometric methodologies. Front Neurol 2023; 14:1165059. [PMID: 37456644 PMCID: PMC10345842 DOI: 10.3389/fneur.2023.1165059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background It is widely accepted that traumatic brain injury (TBI) increases the risk of developing long-term dementia, although some controversies surrounding this topic exist. Annually, approximately 69 million individuals suffer from TBI all around the world. Such a large population of TBI patients could lead to a future surge in the number of dementia patients. Due to the potentially severe consequences of TBI, various research projects on post-TBI dementia have emerged worldwide. Therefore, it is essential to comprehend the current status and development of post-TBI dementia for future research. Objective The purpose of the study was to provide an overview of the field and identify hotspots, research frontiers, and future research trends for post-TBI dementia. Methods Articles related to post-TBI dementia were retrieved from the Web of Science Core Collection for the period between 2007 and 2022, and analyzing them based on factors such as citations, authors, institutions, countries, journals, keywords, and references. Data analysis and visualization were conducted using VOSviewer, CiteSpace, and an online bibliometric platform (https://bibliometric.com). Results From 2007 to 2022, we obtained a total of 727 articles from 3,780 authors and 1,126 institutions across 52 countries, published in 262 journals. These articles received a total of 29,353 citations, citing 25,713 references from 3,921 journals. Over the last 15 years, there has been a significant upward trend in both publications and citations. The most productive country was the United States, the most productive institution was Boston University, and the most productive author was McKee AC. Journal of Neurotrauma has been identified as the periodical with the greatest number of publications. Three clusters were identified through cluster analysis of keywords. A burst in the use of the term "outcome" in 2019 is indicative of a future research hotspot. The timeline view of references showed 14 clusters, of which the first 4 clusters collected the majority of papers. The first 4 clusters were "chronic traumatic encephalopathy," "age of onset," "tauopathy," and "cognitive decline," respectively, suggesting some areas of interest in the field. Conclusion The subject of post-TBI dementia has raised much interest from scientists. Notably, America is at the forefront of research in this area. Further collaborative research between different countries is imperative. Two topical issues in this field are "The association between TBI and dementia-related alterations" and "chronic traumatic encephalopathy (CTE)." Studies on clinical manifestation, therapy, pathology, and pathogenic mechanisms are also popular in the field.
Collapse
Affiliation(s)
- Xian-Zheng Sang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng-Qing Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong Rong
- Department of Outpatient, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Jun Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
57
|
Shin SS, Mazandi VM, Schneider ALC, Morton S, Starr JP, Weeks MK, Widmann NJ, Jang DH, Kao SH, Ahlijanian MK, Kilbaugh TJ. Exploring the Therapeutic Potential of Phosphorylated Cis-Tau Antibody in a Pig Model of Traumatic Brain Injury. Biomedicines 2023; 11:1807. [PMID: 37509447 PMCID: PMC10376756 DOI: 10.3390/biomedicines11071807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Traumatic brain injury (TBI) results in the generation of tau. As hyperphosphorylated tau (p-tau) is one of the major consequences of TBI, targeting p-tau in TBI may lead to the development of new therapy. Twenty-five pigs underwent a controlled cortical impact. One hour after TBI, pigs were administered either vehicle (n = 13) or PNT001 (n = 12), a monoclonal antibody for the cis conformer of tau phosphorylated at threonine 231. Plasma biomarkers of neural injury were assessed for 14 days. Diffusion tensor imaging was performed at day 1 and 14 after injury, and these were compared to historical control animals (n = 4). The fractional anisotropy data showed significant white matter injury for groups at 1 day after injury in the corona radiata. At 14 days, the vehicle-treated pigs, but not the PNT001-treated animals, exhibited significant white matter injury compared to sham pigs in the ipsilateral corona radiata. The PNT001-treated pigs had significantly lower levels of plasma glial fibrillary acidic protein (GFAP) at day 2 and day 4. These findings demonstrate a subtle reduction in the areas of white matter injury and biomarkers of neurological injury after treatment with PNT001 following TBI. These findings support additional studies for PNT001 as well as the potential use of this agent in clinical trials in the near future.
Collapse
Affiliation(s)
- Samuel S Shin
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa M Mazandi
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea L C Schneider
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Morton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan P Starr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J Widmann
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David H Jang
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shih-Han Kao
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
58
|
Leiva-Salinas C, Singh A, Layfield E, Flors L, Patrie JT. Early Brain Amyloid Accumulation at PET in Military Instructors Exposed to Subconcussive Blast Injuries. Radiology 2023; 307:e221608. [PMID: 37158720 DOI: 10.1148/radiol.221608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background Traumatic brain injury (TBI) is the leading cause of disability in young adults. Recurrent TBI is associated with a range of neurologic sequelae, but the contributing factors behind the development of such chronic encephalopathy are poorly understood. Purpose To quantify early amyloid β deposition in the brain of otherwise healthy adult men exposed to repeated subconcussive blast injury using amyloid PET. Materials and Methods In this prospective study from January 2020 to December 2021, military instructors who were routinely exposed to repeated blast events were evaluated at two different points: baseline (before blast exposure from breacher or grenade) and approximately 5 months after baseline (after blast exposure). Age-matched healthy control participants not exposed to blasts and without a history of brain injury were evaluated at similar two points. Neurocognitive evaluation was performed with standard neuropsychologic testing in both groups. Analysis of PET data consisted of standardized uptake value measurements in six relevant brain regions and a whole-brain voxel-based statistical approach. Results Participants were men (nine control participants [median age, 33 years; IQR, 32-36 years] and nine blast-exposed participants [median age, 33 years; IQR, 30-34 years]; P = .82). In the blast-exposed participants, four brain regions showed significantly increased amyloid deposition after blast exposure: inferomedial frontal lobe (P = .004), precuneus (P = .02), anterior cingulum (P = .002), and superior parietal lobule (P = .003). No amyloid deposition was observed in the control participants. Discriminant analysis on the basis of regional changes of amyloid accumulation correctly classified the nine healthy control participants as healthy control participants (100%), and seven of the nine blast-exposed participants (78%) were correctly classified as blast exposed. Based on the voxel-based analysis, whole-brain parametric maps of early abnormal early amyloid uptake were obtained. Conclusion Early brain amyloid accumulation was identified and quantified at PET in otherwise healthy adult men exposed to repetitive subconcussive traumatic events. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Haller in this issue.
Collapse
Affiliation(s)
- Carlos Leiva-Salinas
- From the Department of Radiology, University of Missouri, One Hospital Dr, Columbia, MO 65212 (C.L.S., A.S.); Department of Surgery, University of California-San Francisco, San Francisco, Calif (E.L.); Department of Radiology, University of Southern California, Los Angeles, Calif (L.F.); and Department of Public Health Sciences, University of Virginia, Charlottesville, Va (J.T.P.)
| | - Amolak Singh
- From the Department of Radiology, University of Missouri, One Hospital Dr, Columbia, MO 65212 (C.L.S., A.S.); Department of Surgery, University of California-San Francisco, San Francisco, Calif (E.L.); Department of Radiology, University of Southern California, Los Angeles, Calif (L.F.); and Department of Public Health Sciences, University of Virginia, Charlottesville, Va (J.T.P.)
| | - Eleanor Layfield
- From the Department of Radiology, University of Missouri, One Hospital Dr, Columbia, MO 65212 (C.L.S., A.S.); Department of Surgery, University of California-San Francisco, San Francisco, Calif (E.L.); Department of Radiology, University of Southern California, Los Angeles, Calif (L.F.); and Department of Public Health Sciences, University of Virginia, Charlottesville, Va (J.T.P.)
| | - Lucia Flors
- From the Department of Radiology, University of Missouri, One Hospital Dr, Columbia, MO 65212 (C.L.S., A.S.); Department of Surgery, University of California-San Francisco, San Francisco, Calif (E.L.); Department of Radiology, University of Southern California, Los Angeles, Calif (L.F.); and Department of Public Health Sciences, University of Virginia, Charlottesville, Va (J.T.P.)
| | - James T Patrie
- From the Department of Radiology, University of Missouri, One Hospital Dr, Columbia, MO 65212 (C.L.S., A.S.); Department of Surgery, University of California-San Francisco, San Francisco, Calif (E.L.); Department of Radiology, University of Southern California, Los Angeles, Calif (L.F.); and Department of Public Health Sciences, University of Virginia, Charlottesville, Va (J.T.P.)
| |
Collapse
|
59
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
60
|
Churchill NW, Graham SJ, Schweizer TA. Perfusion Imaging of Traumatic Brain Injury. Neuroimaging Clin N Am 2023; 33:315-324. [PMID: 36965948 DOI: 10.1016/j.nic.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Physics Department, Toronto Metropolitan University, 60 St George St, Toronto, ON M5S 1A7, Canada.
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, ON M5G 1L7, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Wellness Way, Toronto, ON M4N 3M5, Canada; Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
61
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
62
|
Lee EB, Kennedy-Dietrich C, Geddes JF, Nicoll JAR, Revesz T, Smith DH, Stewart W. The perils of contact sport: pathologies of diffuse brain swelling and chronic traumatic encephalopathy neuropathologic change in a 23-year-old rugby union player. Acta Neuropathol 2023; 145:847-850. [PMID: 37086326 PMCID: PMC10175208 DOI: 10.1007/s00401-023-02576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - James A R Nicoll
- Clinical Neurosciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK.
- Department of Neuropathology, Queen Elizabeth University Hospital, 1345 Govan Rd, Glasgow, G51 4TF, UK.
| |
Collapse
|
63
|
Michalovicz LT, Kelly KA, Craddock TJA, O’Callaghan JP. A Projectile Concussive Impact Model Produces Neuroinflammation in Both Mild and Moderate-Severe Traumatic Brain Injury. Brain Sci 2023; 13:623. [PMID: 37190590 PMCID: PMC10136957 DOI: 10.3390/brainsci13040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability and is experienced by nearly 3 million people annually as a result of falls, vehicular accidents, or from being struck by or against an object. While TBIs can range in severity, the majority of injuries are considered to be mild. However, TBI of any severity has the potential to have long-lasting neurological effects, including headaches, cognitive/memory impairments, mood dysfunction, and fatigue as a result of neural damage and neuroinflammation. Here, we modified a projectile concussive impact (PCI) model of TBI to deliver a closed-head impact with variable severity dependent on the material of the ball-bearing projectile. Adult male Sprague Dawley rats were evaluated for neurobehavioral, neuroinflammatory, and neural damage endpoints both acutely and longer-term (up to 72 h) post-TBI following impact with either an aluminum or stainless-steel projectile. Animals that received TBI using the stainless-steel projectile exhibited outcomes strongly correlated to moderate-severe TBI, such as prolonged unconsciousness, impaired neurobehavior, increased risk for hematoma and death, as well as significant neuronal degeneration and neuroinflammation throughout the cortex, hippocampus, thalamus, and cerebellum. In contrast, rats that received TBI with the aluminum projectile exhibited characteristics more congruous with mild TBI, such as a trend for longer periods of unconsciousness in the absence of neurobehavioral deficits, a lack of neurodegeneration, and mild neuroinflammation. Moreover, alignment of cytokine mRNA expression from the cortex of these rats with a computational model of neuron-glia interaction found that the moderate-severe TBI produced by the stainless-steel projectile strongly associated with the neuroinflammatory state, while the mild TBI existed in a state between normal and inflammatory neuron-glia interactions. Thus, these modified PCI protocols are capable of producing TBIs that model the clinical and experimental manifestations associated with both moderate-severe and mild TBI producing relevant models for the evaluation of the potential underlying roles of neuroinflammation and other chronic pathophysiology in the long-term outcomes associated with TBI.
Collapse
Affiliation(s)
- Lindsay T. Michalovicz
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| |
Collapse
|
64
|
PerezGrovas-Saltijeral A, Rajkumar AP, Knight HM. Differential expression of m 5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer's disease and traumatic brain injury. Mol Neurobiol 2023; 60:2223-2235. [PMID: 36646969 PMCID: PMC9984329 DOI: 10.1007/s12035-022-03195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.
Collapse
Affiliation(s)
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, School of Medicine, University of Nottingham, Nottingham, UK.,Mental Health Services for Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
65
|
Ueda P, Pasternak B, Lim CE, Neovius M, Kader M, Forssblad M, Ludvigsson JF, Svanström H. Neurodegenerative disease among male elite football (soccer) players in Sweden: a cohort study. Lancet Public Health 2023; 8:e256-e265. [PMID: 36934741 DOI: 10.1016/s2468-2667(23)00027-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Football (soccer) players might be at increased risk of neurodegenerative disease, which has led to questions regarding the safety of the sport and recent measures introduced by football associations to reduce heading of the ball. We aimed to assess the risk of neurodegenerative disease among male football players in the Swedish top division Allsvenskan, compared with matched controls. METHODS In this cohort study, we identified all male football players (amateurs and professionals) who had played at least one game in Allsvenskan from Aug 1, 1924 to Dec 31, 2019 and excluded players whose personal identity number could not be retrieved or be identified in the Total Population Register, and those who were not born in Sweden and who had immigrated to the country after age 15 years. Football players were matched with up to ten controls from the general population according to sex, age, and region of residence. We used nationwide registers to compare the risk of neurodegenerative disease (diagnoses recorded in death certificates, during hospital admissions and outpatient visits, or use of prescription drugs for dementia) among football players versus controls. We also assessed each type of neurodegenerative disease (Alzheimer's disease and other dementias, motor neuron disease, and Parkinson's disease) separately, and compared the risk of neurodegenerative disease among outfield players versus goalkeepers. FINDINGS Of 7386 football players who had played at least one game in the top Swedish division between Aug 1, 1924, and Dec 31, 2019, 182 players were excluded for an unretrievable personal identity number, and 417 were excluded due to their number not being identified in the Total Population Register. After a further exclusion of 780 players and 11 627 controls who were born outside of Sweden and who had immigrated to the country after age 15 years, 6007 football players (510 goalkeepers) were included in the study population along with 56 168 matched controls. During follow-up to Dec 31, 2020, 537 (8·9%) of 6007 football players and 3485 (6·2%) of 56 168 controls were diagnosed with neurodegenerative disease. The risk of neurodegenerative disease was higher among football players than controls (hazard ratio [HR] 1·46 [95% CI 1·33-1·60]). Alzheimer's disease and other dementias were more common among football players than controls (HR 1·62 [95% CI 1·47-1·78]), significant group differences were not observed for motor neuron disease (HR 1·27 [0·73-2·22]), and Parkinson's disease was less common among football players (HR 0·68 [0·52-0·89]). The risk of neurodegenerative disease was higher for outfield players than controls (HR 1·50 [95% CI 1·36-1·65]) but not for goalkeepers versus controls (HR 1·07 [0·78-1·47]), and outfield players had a higher risk of neurodegenerative disease than did goalkeepers (HR 1·43 [1·03-1·99]). All-cause mortality was slightly lower among football players than controls (HR 0·95 [95% CI 0·91-0·99]). INTERPRETATION In this cohort study, male football players who had played in the Swedish top division had a significantly increased risk of neurodegenerative disease compared with population controls. The risk increase was observed for Alzheimer's disease and other dementias but not for other types of neurodegenerative disease, and among outfield players, but not among goalkeepers. Our study expands on the data that can be used to assess and manage risks in the sport. FUNDING Karolinska Institutet, The Swedish Research Council for Sport Science, Folksam Research Foundation, Hedberg Foundation, Neurofonden, and Åhlen Foundation.
Collapse
Affiliation(s)
- Peter Ueda
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Björn Pasternak
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Carl-Emil Lim
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Neovius
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Manzur Kader
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Forssblad
- Department of Molecular Medicine and Surgery, Stockholm Sports Trauma Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Henrik Svanström
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
66
|
Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:1061-1075. [PMID: 35852739 DOI: 10.1007/s10571-022-01254-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
History of traumatic brain injury (TBI) represents a significant risk factor for development of dementia and neurodegenerative disorders in later life. While histopathological sequelae and neurological diagnostics of TBI are well defined, the molecular events linking the post-TBI signaling and neurodegenerative cascades remain unknown. It is not only due to the brain's inaccessibility to direct molecular analysis but also due to the lack of well-defined and highly informative peripheral biomarkers. MicroRNAs (miRNAs) in blood are promising candidates to address this gap. Using integrative bioinformatics pipeline including miRNA:target identification, pathway enrichment, and protein-protein interactions analysis we identified set of genes, interacting proteins, and pathways that are connected to previously reported peripheral miRNAs, deregulated following severe traumatic brain injury (sTBI) in humans. This meta-analysis revealed a spectrum of genes closely related to critical biological processes, such as neuroregeneration including axon guidance and neurite outgrowth, neurotransmission, inflammation, proliferation, apoptosis, cell adhesion, and response to DNA damage. More importantly, we have identified molecular pathways associated with neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, based on purely peripheral markers. The pathway signature after acute sTBI is similar to the one observed in chronic neurodegenerative conditions, which implicates a link between the post-sTBI signaling and neurodegeneration. Identified key hub interacting proteins represent a group of novel candidates for potential therapeutic targets or biomarkers.
Collapse
|
67
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
68
|
In-Depth Bicycle Collision Reconstruction: From a Crash Helmet to Brain Injury Evaluation. Bioengineering (Basel) 2023; 10:bioengineering10030317. [PMID: 36978708 PMCID: PMC10045787 DOI: 10.3390/bioengineering10030317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a prevalent injury among cyclists experiencing head collisions. In legal cases, reliable brain injury evaluation can be difficult and controversial as mild injuries cannot be diagnosed with conventional brain imaging methods. In such cases, accident reconstruction may be used to predict the risk of TBI. However, lack of collision details can render accident reconstruction nearly impossible. Here, we introduce a reconstruction method to evaluate the brain injury in a bicycle–vehicle collision using the crash helmet alone. Following a thorough inspection of the cyclist’s helmet, we identified a severe impact, a moderate impact and several scrapes, which helped us to determine the impact conditions. We used our helmet test rig and intact helmets identical to the cyclist’s helmet to replicate the damage seen on the cyclist’s helmet involved in the real-world collision. We performed both linear and oblique impacts, measured the translational and rotational kinematics of the head and predicted the strain and the strain rate across the brain using a computational head model. Our results proved the hypothesis that the cyclist sustained a severe impact followed by a moderate impact on the road surface. The estimated head accelerations and velocity (167 g, 40.7 rad/s and 13.2 krad/s2) and the brain strain and strain rate (0.541 and 415/s) confirmed that the severe impact was large enough to produce mild to moderate TBI. The method introduced in this study can guide future accident reconstructions, allowing for the evaluation of TBI using the crash helmet only.
Collapse
|
69
|
Katzenberger RJ, Ganetzky B, Wassarman DA. Lissencephaly-1 mutations enhance traumatic brain injury outcomes in Drosophila. Genetics 2023; 223:iyad008. [PMID: 36683334 PMCID: PMC9991514 DOI: 10.1093/genetics/iyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role that genetic variation plays in determining TBI outcomes. Following injury at 20-27 days old, DGRP lines varied considerably in mortality within 24 h ("early mortality"). Additionally, the disparity in early mortality resulting from injury at 20-27 vs 0-7 days old differed among DGRP lines. These data support a polygenic basis for differences in TBI outcomes, where some gene variants elicit their effects by acting on aging-related processes. Our genome-wide association study of DGRP lines identified associations between single nucleotide polymorphisms in Lissencephaly-1 (Lis-1) and Patronin and early mortality following injury at 20-27 days old. Lis-1 regulates dynein, a microtubule motor required for retrograde transport of many cargoes, and Patronin protects microtubule minus ends against depolymerization. While Patronin mutants did not affect early mortality, Lis-1 compound heterozygotes (Lis-1x/Lis-1y) had increased early mortality following injury at 20-27 or 0-7 days old compared with Lis-1 heterozygotes (Lis-1x/+), and flies that survived 24 h after injury had increased neurodegeneration but an unaltered lifespan, indicating that Lis-1 affects TBI outcomes independently of effects on aging. These data suggest that Lis-1 activity is required in the brain to ameliorate TBI outcomes through effects on axonal transport, microtubule stability, and other microtubule proteins, such as tau, implicated in chronic traumatic encephalopathy, a TBI-associated neurodegenerative disease in humans.
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
70
|
Park JH, Bae YJ, Kim JS, Jung WS, Choi JW, Roh TH, You N, Kim SH, Han M. Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury. Neuroradiology 2023; 65:551-557. [PMID: 36274107 DOI: 10.1007/s00234-022-03073-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Glymphatic system dysfunction has been reported in animal models of traumatic brain injury (TBI). This study aimed to evaluate the activity of the human glymphatic system using the non-invasive Diffusion Tensor Image-Analysis aLong the Perivascular Space (DTI-ALPS) method in patients with TBI. METHODS A total of 89 patients with TBI (June 2018 to May 2020) were retrospectively enrolled, and 34 healthy volunteers were included who had no previous medical or neurological disease. Magnetic resonance imaging (MRI) with DTI was performed, and the ALPS index was calculated to evaluate the glymphatic system's activity. Wilcoxon rank-sum test was used to compare the ALPS index between patients with TBI and healthy controls. ANOVA was done to compare the ALPS index among controls and patients with mild/moderate-to-severe TBI. Multivariate logistic regression analyses were used to identify independent clinical and radiological factors associated with the ALPS index. The correlation between Glasgow Coma Scale (GCS) score and the ALPS index was also assessed. RESULTS The ALPS index was significantly lower in patients with TBI than in healthy controls (median, 1.317 vs. 1.456, P < 0.0001). There were significant differences in the ALPS index between healthy controls and patients with mild/moderate-to-severe TBI (ANOVA, P < 0.001). The presence of subarachnoid hemorrhage (P = 0.004) and diffuse axonal injury (P = 0.001) was correlated with a lower ALPS index in the multivariate analysis. There was a weak positive correlation between the ALPS index and GCS scores (r = 0.242, P = 0.023). CONCLUSIONS The DTI-ALPS method is useful for evaluating glymphatic system impairment and quantifying its activity in patients with TBI.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Su Kim
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Woo Sang Jung
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Radiology, Graduate School of Kangwon National University, Chuncheon, South Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Namkyu You
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Miran Han
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea. .,Department of Radiology, Graduate School of Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
71
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
72
|
Self-perception of cognitive functions in patients with neurological impairments as measured against a translated Cognitive Change Index. Int J Rehabil Res 2023; 46:86-91. [PMID: 36727983 DOI: 10.1097/mrr.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The primary purpose of the study was to compare the results of neuropsychological assessments with results obtained using a translated Cognitive Change Index (CCI) on patients with diagnosed brain pathology. Our study included 54 patients diagnosed with neurologic pathology (stroke, TBI, or brain tumor) at the University Rehabilitation Institute Soca (average age = 51 years, SD = 15 years). The results of neuropsychological evaluations and anamnestic data were also obtained for the clinical subsample. Confirmatory factor analysis of the translated CCI performed on responses of 151 normative elderly participants supported a one-factor structure of the questionnaire. Cronbach's α was 0.77 in the clinical sample. A significant correlation was found between lower scores for attention and visual abilities using objective measurement tools and a person's self-assessment of impairment in their own cognitive functions (score on CCI). Individuals can perceive that their attention and visual abilities are impaired when those abilities also score low in diagnostic tests.
Collapse
|
73
|
Li S, Liu Z, Zhang J, Li L. Links between telomere dysfunction and hallmarks of aging. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503617. [PMID: 37188431 DOI: 10.1016/j.mrgentox.2023.503617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Aging is characterized by the gradual loss of physiological integrity, leading to impaired function and increased risk of death. This deterioration is the main risk factor for the great majority of chronic diseases, which account for most of the morbidity, death and medical expenses. The hallmarks of aging comprise diverse molecular mechanisms and cell systems, which are interrelated and coordinated to drive the aging process. This review focuses on telomere to analyze the interrelationships between telomere dysfunction and other aging hallmarks and their relative contributions to the initiation and progression of age-related diseases (such as neurodegeneration, cardiovascular disease, and cancer), which will contribute to determine drug targets, improve human health in the aging process with minimal side effects and provide information for the prevention and treatment of age-related diseases.
Collapse
|
74
|
Lennon MJ, Brooker H, Creese B, Thayanandan T, Rigney G, Aarsland D, Hampshire A, Ballard C, Corbett A, Raymont V. Lifetime Traumatic Brain Injury and Cognitive Domain Deficits in Late Life: The PROTECT-TBI Cohort Study. J Neurotrauma 2023. [PMID: 36716779 DOI: 10.1089/neu.2022.0360] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) causes cognitive impairment but it remains contested regarding which cognitive domains are most affected. Further, moderate-severe TBI is known to be deleterious, but studies of mild TBI (mTBI) show a greater mix of negative and positive findings. This study examines the longer-term cognitive effects of TBI severity and number of mTBIs in later life. We examined a subset (n = 15,764) of the PROTECT study, a cohort assessing risk factors for cognitive decline (ages between 50 and 90 years). Participants completed cognitive assessments annually for 4 years. Cognitive tests were grouped using a principal components analysis (PCA) into working memory, episodic memory, attention, processing speed, and executive function. Lifetime TBI severity and number were retrospectively recalled by participants using the Brain Injury Screening Questionnaire (BISQ). Linear mixed models (LMMs) examined the effect of severity of head injury (non-TBI head strike, mTBI, and moderate-severe TBI) and number of mTBI at baseline and over time. mTBI was considered as a continuous and categorical variable (groups: 0 mTBI, 1 mTBI, 2 mTBIs, 3 mTBIs, and 4+ mTBIs). Of the participants 5725 (36.3%) reported at least one mTBI and 510 (3.2%) at least one moderate-severe TBI, whereas 3711 (23.5%) had suffered at worst a non-TBI head strike and 5818 (32.9%) reported no head injuries. The participants had suffered their last reported head injury an average (standard deviation, SD) of 29.6 (20.0) years prior to the study. Regarding outcomes, there was no worsening in longitudinal cognitive trajectories over the study duration but at baseline there were significant cognitive deficits associated with TBI. At baseline, compared with those without head injury, individuals reporting at least one moderate-severe TBI had significantly poorer attention (B = -0.163, p < 0.001), executive scores (B = -0.151, p = 0.004), and processing speed (B = -0.075, p = 0.033). Those who had suffered at least a single mTBI also demonstrated significantly poorer attention scores at baseline compared with the no head injury group (B = -0.052, p = 0.001). Compared with those with no mTBI, those in the 3 mTBI group manifested poorer baseline executive function (B = -0.149, p = 0.025) and attention scores (B = -0.085, p = 0.015). At baseline, those who had suffered four or more mTBIs demonstrated poorer attention (B = -0.135, p < 0.001), processing speed (B = -0.072, p = 0.009), and working memory (B = -0.052, p = 0.036), compared with those reporting no mTBI. TBI is associated with fixed, dose, and severity-dependent cognitive deficits. The most sensitive cognitive domains are attention and executive function, with approximately double the effect compared with processing speed and working memory. Post-TBI cognitive rehabilitation should be targeted appropriately to domain-specific effects. Significant long-term cognitive deficits were associated with three or more lifetime mTBIs, a critical consideration when counseling individuals post-TBI about continuing high-risk activities.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Helen Brooker
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Tony Thayanandan
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Dag Aarsland
- Department of Old Age Psychiatry, IoPPN, Kings College London, London, United Kingdom.,Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
75
|
Understanding the Molecular Progression of Chronic Traumatic Encephalopathy in Traumatic Brain Injury, Aging and Neurodegenerative Disease. Int J Mol Sci 2023; 24:ijms24031847. [PMID: 36768171 PMCID: PMC9915198 DOI: 10.3390/ijms24031847] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability among children and adults in America. In addition, the acute morbidity caused by TBI is implicated in the development of devastating neuropsychiatric and neurodegenerative sequela. TBI is associated with the development of a neurodegenerative condition termed 'Punch Drunk syndrome' or 'dementia pugilistica', and the more recently renamed 'chronic traumatic encephalopathy'. Chronic traumatic encephalopathy (CTE) is a slowly progressive neurodegenerative condition caused by a single or repetitive blow to the head. CTE was first described in boxers and was later found to be associated with other contact sports and military combat. It is defined by a constellation of symptoms consisting of mood disorders, cognitive impairment, and memory loss with or without sensorimotor changes. It is also a Tauopathy characterized by the deposition of hyperphosphorylated Tau protein in the form of neurofibrillary tangles, astrocytoma tangles, and abnormal neurites found in clusters around small vessels, typically at the sulcal depths. Oxidative stress, neuroinflammation, and glutaminergic toxicity caused due to the insult play a role in developing this pathology. Additionally, the changes in the brain due to aging also plays an important role in the development of this condition. In this review, we discuss the molecular mechanisms behind the development of CTE, as well as genetic and environmental influences on its pathophysiology.
Collapse
|
76
|
Huang B, Tang T, Chen SH, Li H, Sun ZJ, Zhang ZL, Zhang M, Cui R. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat Commun 2023; 14:197. [PMID: 36639379 PMCID: PMC9839749 DOI: 10.1038/s41467-023-35868-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The blood-brain barrier breakdown, as a prominent feature after traumatic brain injury, always triggers a cascade of biochemical events like inflammatory response and free radical-mediated oxidative damage, leading to neurological dysfunction. The dynamic monitoring the status of blood-brain barrier will provide potent guidance for adopting appropriate clinical intervention. Here, we engineer a near-infrared-IIb Ag2Te quantum dot-based Mn single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown of mice after traumatic brain injury. The dynamic change of blood-brain barrier, including the transient cerebral hypoperfusion and cerebrovascular damage, could be resolved with high spatiotemporal resolution (150 ms and ~ 9.6 µm). Notably, the isolated single Mn atoms on the surface of Ag2Te exhibited excellent catalytic activity for scavenging reactive oxygen species to alleviate neuroinflammation in brains. The timely injection of Mn single-atom catalyst guided by imaging significantly promoted the reconstruction of blood-brain barrier and recovery of neurological function after traumatic brain injury.
Collapse
Affiliation(s)
- Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| | - Zhi-Lin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
77
|
Nanotopography and Microconfinement Impact on Primary Hippocampal Astrocyte Morphology, Cytoskeleton and Spontaneous Calcium Wave Signalling. Cells 2023; 12:cells12020293. [PMID: 36672231 PMCID: PMC9856934 DOI: 10.3390/cells12020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Astrocytes' organisation affects the functioning and the fine morphology of the brain, both in physiological and pathological contexts. Although many aspects of their role have been characterised, their complex functions remain, to a certain extent, unclear with respect to their contribution to brain cell communication. Here, we studied the effects of nanotopography and microconfinement on primary hippocampal rat astrocytes. For this purpose, we fabricated nanostructured zirconia surfaces as homogenous substrates and as micrometric patterns, the latter produced by a combination of an additive nanofabrication and micropatterning technique. These engineered substrates reproduce both nanotopographical features and microscale geometries that astrocytes encounter in their natural environment, such as basement membrane topography, as well as blood vessels and axonal fibre topology. The impact of restrictive adhesion manifests in the modulation of several cellular properties of single cells (morphological and actin cytoskeletal changes) and the network organisation and functioning. Calcium wave signalling was observed only in astrocytes grown in confined geometries, with an activity enhancement in cells forming elongated agglomerates with dimensions typical of blood vessels or axon fibres. Our results suggest that calcium oscillation and wave propagation are closely related to astrocytic morphology and actin cytoskeleton organisation.
Collapse
|
78
|
Psychiatric disorders in post-traumatic brain injury patients: A scoping review. Heliyon 2023; 9:e12905. [PMID: 36704272 PMCID: PMC9871203 DOI: 10.1016/j.heliyon.2023.e12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Background Traumatic Brain Injury (TBI) is an important antecedent in the evaluation of patients with psychiatric disorders. The association between TBI and the subsequent appearance of psychiatric disorders has been documented, however, the findings found in the literature are diverse and controversial. Objective To identify the most prevalent psychiatric disorders after head trauma. Design An exploratory review (SCOPING) was carried out using the PRISMA extension protocol. Articles published between the years 2010-2022 were used to identify and describe the most prevalent psychiatric disorders after a TBI. Psychiatric disorders were classified according to clinical characteristics in neurotic syndromes, psychotic syndromes, cognitive disorders, among others. Results A total of 32 articles were included. In the framework of neurotic syndromes, depression is the most prevalent psychiatric alteration after a TBI, becoming a sequel that shows a higher incidence in the first year after the traumatic event. The findings found in relation to post-traumatic stress disorder are controversial, showing great variability regarding the degree of severity of the injury. The prevalence of psychotic syndromes is relatively low because it is difficult to determine if the psychosis is a direct consequence of a TBI. In the cognitive sphere, it was found that people with TBI presented alterations in cognitive functions. Conclusions The findings found in the review respond to the hypothesis initially raised, which assumes that head trauma is an important etiological factor in the appearance of psychiatric disorders.
Collapse
|
79
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
80
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
81
|
Abstract
Imaging of mild traumatic brain injury (TBI) using conventional techniques such as CT or MRI often results in no specific imaging correlation that would explain cognitive and clinical symptoms. Molecular imaging of mild TBI suggests that secondary events after injury can be detected using PET. However, no single specific pattern emerges that can aid in diagnosing the injury or determining the prognosis of the long-term behavioral profiles, indicating the heterogeneous and diffuse nature of TBI. Chronic traumatic encephalopathy, a primary tauopathy, has been shown to be strongly associated with repetitive TBI. In vivo data on the available tau PET tracers, however, have produced mixed results and overall low retention profiles in athletes with a history of repetitive mild TBI. Here, we emphasize that the lack of a mechanistic understanding of chronic TBI has posed a challenge when interpreting the results of molecular imaging biomarkers. We advocate for better target identification, improved analysis techniques such as machine learning or artificial intelligence, and novel tracer development.
Collapse
Affiliation(s)
- Gérard N. Bischof
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany;,Institute for Neuroscience and Medicine II–Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany; and
| | - Donna J. Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
82
|
Dhote VV, Samundre P, Upaganlawar AB, Ganeshpurkar A. Gene Therapy for Chronic Traumatic Brain Injury: Challenges in Resolving Long-term Consequences of Brain Damage. Curr Gene Ther 2023; 23:3-19. [PMID: 34814817 DOI: 10.2174/1566523221666211123101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Aman B Upaganlawar
- SNJB's Shree Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, 423101, India
| | - Aditya Ganeshpurkar
- Department of Pharmacy, Shri Ram Institute of Technology, Jabalpur, MP, India
| |
Collapse
|
83
|
Fan H, Duan H, Hao P, Gao Y, Zhao W, Hao F, Li X, Yang Z. Cellular regeneration treatments for traumatic brain injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
84
|
Yarns BC, Holiday KA, Carlson DM, Cosgrove CK, Melrose RJ. Pathophysiology of Alzheimer's Disease. Psychiatr Clin North Am 2022; 45:663-676. [PMID: 36396271 DOI: 10.1016/j.psc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia worldwide. While neuritic plaques consisting of aggregated amyloid-beta proteins and neurofibrillary tangles of accumulated tau proteins represent the pathophysiologic hallmarks of AD, numerous processes likely interact with risk and protective factors and one's culture to produce the cognitive loss, neuropsychiatric symptoms, and functional impairments that characterize AD dementia. Recent biomarker and neuroimaging research has revealed how the pathophysiology of AD may lead to symptoms, and as the pathophysiology of AD gains clarity, more potential treatments are emerging that aim to modify the disease and relieve its burden.
Collapse
Affiliation(s)
- Brandon C Yarns
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA.
| | - Kelsey A Holiday
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA
| | - David M Carlson
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| | - Coleman K Cosgrove
- Department of Psychiatry, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| |
Collapse
|
85
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
86
|
Juan SMA, Daglas M, Adlard PA. Altered amyloid precursor protein, tau-regulatory proteins, neuronal numbers and behaviour, but no tau pathology, synaptic and inflammatory changes or memory deficits, at 1 month following repetitive mild traumatic brain injury. Eur J Neurosci 2022; 56:5342-5367. [PMID: 35768153 DOI: 10.1111/ejn.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury, commonly experienced following sports injuries, results in various secondary injury processes and is increasingly recognised as a risk factor for the development of neurodegenerative conditions such as chronic traumatic encephalopathy, which is characterised by tau pathology. We aimed to characterise the underlying pathological mechanisms that might contribute to the onset of neurodegeneration and behavioural changes in the less-explored subacute (1-month) period following single or repetitive controlled cortical impact injury (five impacts, 48 h apart) in 12-week-old male and female C57Bl6 mice. We conducted motor and cognitive testing, extensively characterised the status of tau and its regulatory proteins via western blot and quantified neuronal populations using stereology. We report that r-mTBI resulted in neurobehavioural deficits, gait impairments and anxiety-like behaviour at 1 month post-injury, effects not seen following a single injury. R-mTBI caused a significant increase in amyloid precursor protein, an increased trend towards tau phosphorylation and significant changes in kinase/phosphatase proteins that may promote a downstream increase in tau phosphorylation, but no changes in synaptic or neuroinflammatory markers. Lastly, we report neuronal loss in various brain regions following both single and repeat injuries. We demonstrate herein that repeated impacts are required to promote the initiation of a cascade of biochemical events that are consistent with the onset of neurodegeneration subacutely post-injury. Identifying the timeframe in which these changes occur and the pathological mechanisms involved will be crucial for the development of future therapeutics to prevent the onset or mitigate the progression of neurodegeneration following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
87
|
Agoston DV, McCullough J, Aniceto R, Lin IH, Kamnaksh A, Eklund M, Graves WM, Dunbar C, Engall J, Schneider EB, Leonessa F, Duckworth JL. Blood-Based Biomarkers of Repetitive, Subconcussive Blast Overpressure Exposure in the Training Environment: A Pilot Study. Neurotrauma Rep 2022; 3:479-490. [PMID: 36337080 PMCID: PMC9634979 DOI: 10.1089/neur.2022.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Because of their unknown long-term effects, repeated mild traumatic brain injuries (TBIs), including the low, subconcussive ones, represent a specific challenge to healthcare systems. It has been hypothesized that they can have a cumulative effect, and they may cause molecular changes that can lead to chronic degenerative processes. Military personnel are especially vulnerable to consequences of subconcussive TBIs because their training involves repeated exposures to mild explosive blasts. In this pilot study, we collected blood samples at baseline, 6 h, 24 h, 72 h, 2 weeks, and 3 months after heavy weapons training from students and instructors who were exposed to repeated subconcussive blasts. Samples were analyzed using the reverse and forward phase protein microarray platforms. We detected elevated serum levels of glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 (UCH-L1), nicotinic alpha 7 subunit (CHRNA7), occludin (OCLN), claudin-5 (CLDN5), matrix metalloprotease 9 (MMP9), and intereukin-6 (IL-6). Importantly, serum levels of most of the tested protein biomarkers were the highest at 3 months after exposures. We also detected elevated autoantibody titers of proteins related to vascular and neuroglia-specific proteins at 3 months after exposures as compared to baseline levels. These findings suggest that repeated exposures to subconcussive blasts can induce molecular changes indicating not only neuron and glia damage, but also vascular changes and inflammation that are detectable for at least 3 months after exposures whereas elevated titers of autoantibodies against vascular and neuroglia-specific proteins can indicate an autoimmune process.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA.,Address correspondence to: Denes V. Agoston, MD, PhD, Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Building B, Room 2036, Bethesda, MD 20814, USA.
| | - Jesse McCullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Wallace M. Graves
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Cyrus Dunbar
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - James Engall
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Eric B. Schneider
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fabio Leonessa
- Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Josh L. Duckworth
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
88
|
Ferguson S, McCartan R, Browning M, Hahn-Townsend C, Gratkowski A, Morin A, Abdullah L, Ait-Ghezala G, Ojo J, Sullivan K, Mullan M, Crawford F, Mouzon B. Impact of gulf war toxic exposures after mild traumatic brain injury. Acta Neuropathol Commun 2022; 10:147. [PMID: 36258255 PMCID: PMC9580120 DOI: 10.1186/s40478-022-01449-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.
Collapse
Affiliation(s)
- Scott Ferguson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Robyn McCartan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | | | | | - Alexander Morin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | | | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimberly Sullivan
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St. T4W, Boston, MA, 02118, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Benoit Mouzon
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
89
|
Zhu J, Deng Y, Yu T, Liu X, Li D, Zhu D. Optimal combinations of fluorescent vessel labeling and tissue clearing methods for three-dimensional visualization of vasculature. NEUROPHOTONICS 2022; 9:045008. [PMID: 36466188 PMCID: PMC9709454 DOI: 10.1117/1.nph.9.4.045008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Visualization of intact vasculatures is crucial to understanding the pathogeneses of different neurological and vascular diseases. Although various fluorescent vessel labeling methods have been used in combination with tissue clearing for three-dimensional (3D) visualization of different vascular networks, little has been done to quantify the labeling effect of each vessel labeling routine, as well as their applicability alongside various clearing protocols, making it difficult to select an optimal combination for finely constructing different vasculatures. Therefore, it is necessary to systematically assess the overall performance of these common vessel labeling methods combined with different tissue-clearing protocols. AIM A comprehensive evaluation of the labeling quality of various vessel labeling routines in different organs, as well as their applicability alongside various clearing protocols, were performed to find the optimal combinations for 3D reconstruction of vascular networks with high quality. APPROACH Four commonly-used vessel labeling techniques and six typical tissue optical clearing approaches were selected as candidates for the systematic evaluation. RESULTS The vessel labeling efficiency, vessel labeling patterns, and compatibility of each vessel labeling method with different tissue-clearing protocols were quantitatively evaluated and compared. Based on the comprehensive evaluation results, the optimal combinations were selected for 3D reconstructions of vascular networks in several organs, including mouse brain, liver, and kidney. CONCLUSIONS This study provides valuable insight on selecting the proper pipelines for 3D visualization of vascular networks, which may facilitate understanding of the underlying mechanisms of various neurovascular diseases.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| |
Collapse
|
90
|
Quintin S, Sorrentino ZA, Mehkri Y, Sriram S, Weisman S, Davidson CG, Lloyd GM, Sung E, Figg JW, Lucke-Wold B. Proteinopathies and Neurotrauma: Update on Degenerative Cascades. JSM NEUROSURGERY AND SPINE 2022; 9:1106. [PMID: 36466377 PMCID: PMC9717712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurotrauma, especially repetitive neurotrauma, is associated with the development of progressive neurodegeneration leading to chronic traumatic encephalopathy (CTE). Exposure to neurotrauma regularly occurs during sports and military service, often not requiring medical care. However, exposure to severe and/or repeated sub-clinical neurotrauma has been shown cause physical and psychological disability, leading to reduce life expectancy. Misfolding of proteins, or proteinopathy, is a pathological hallmark of CTE, in which chronic injury leads to local and diffuse protein aggregates. These aggregates are an overlapping feature of many neurodegenerative diseases such as CTE, Alzheimer's Disease, Parkinsons disease. Neurotrauma is also a significant risk factor for the development of these diseases, however the mechanism's underlying this association are not well understood. While phosphorylated tau aggregates are the primary feature of CTE, amyloid-beta, Transactive response DNA-binding protein 43 (TDP-43), and alpha-synuclein (αSyn) are also well documented. Aberrant misfolding of these proteins has been shown to disrupt brain homeostasis leading to neurodegeneration in a disease dependent manor. In CTE, the interaction between proteinopathies and their associated neurodegeneration is a current area of study. Here we provide an update on current literature surrounding the prevalence, characteristics, and pathogenesis of proteinopathies in CTE.
Collapse
Affiliation(s)
| | | | | | - Sai Sriram
- College of Medicine, University of Florida, USA
| | | | | | - Grace M Lloyd
- Department of Neuroscience, University of Florida, USA
| | - Eric Sung
- College of Medicine, University of Florida, USA
| | - John W Figg
- Department of Neurosurgery, University of Florida, USA
| | | |
Collapse
|
91
|
Shireen T, Sachs F, Hua SZ. Physical memory of astrocytes. Brain Res 2022; 1796:148076. [PMID: 36084692 DOI: 10.1016/j.brainres.2022.148076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is a major risk factor for development of neurodegenerative disorders later in life. Short, repetitive, mechanical impacts can lead to pathology that appears days or months later. The cells have a physical "memory" of mechanical events. The origin of this memory is not known. To examine the properties of this memory, we used a microfluidic chip to apply programmed fluid shear pulses to adherent adult rat astrocytes. These caused a transient rise in intracellular Ca2+. In response to repeated stimuli, 6 to 24 hrs apart, the Ca2+ response increased. This effect lasted longer than 24 hrs. The Ca2+ responses were more sensitive to the number of repetitions than to the rest time between stimuli. We found that inhibiting the Ca2+ influx during conditioning stimulus did not eliminate the stress potentiation, suggesting that mechanical deformation during the primary injury is accountable for the later response. The mechanical mechanism that triggers this long term "memory" may act by plastic deformation of the cytoskeleton.
Collapse
Affiliation(s)
- Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA
| | - Susan Z Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
92
|
Morin A, Davis R, Darcey T, Mullan M, Mouzon B, Crawford F. Subacute and chronic proteomic and phosphoproteomic analyses of a mouse model of traumatic brain injury at two timepoints and comparison with chronic traumatic encephalopathy in human samples. Mol Brain 2022; 15:62. [PMID: 35850691 PMCID: PMC9290256 DOI: 10.1186/s13041-022-00945-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) is the most widespread type of brain trauma worldwide. The cumulative injury effect triggers long-lasting pathological and molecular changes that may increase risk of chronic neurodegenerative diseases. R-mTBI is also characterized by changes in the brain proteome, where the majority of molecules altered early post-TBI are different from those altered at more chronic phases. This differentiation may contribute to the heterogeneity of available data on potential therapeutic targets and may present an obstacle in developing effective treatments. Here, we aimed to characterize a proteome profile of r-mTBI in a mouse model at two time points – 3 and 24 weeks post last TBI, as this may be a more relevant therapeutic window for individuals suffering negative consequences of r-mTBI. We identified a great number of proteins and phosphoproteins that remain continuously dysregulated from 3 to 24 weeks. These proteins may serve as effective therapeutic targets for sub-acute and chronic stages of post r-mTBI. We also compared canonical pathway activation associated with either total proteins or phosphoproteins and revealed that they both are upregulated at 24 weeks. However, at 3 weeks post-TBI, only pathways associated with total proteins are upregulated, while pathways driven by phosphoproteins are downregulated. Finally, to assess the translatability of our data, we compared proteomic changes in our mouse model with those reported in autopsied human samples of Chronic Traumatic Encephalopathy (CTE) patients compared to controls. We observed 39 common proteins that were upregulated in both species and 24 common pathways associated with these proteins. These findings support the translational relevance of our mouse model of r-mTBI for successful identification and translation of therapeutic targets.
Collapse
Affiliation(s)
- Alexander Morin
- Roskamp Institute, Sarasota, USA. .,The Open University, Milton Keynes, UK.
| | | | | | - Michael Mullan
- Roskamp Institute, Sarasota, USA.,The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- Roskamp Institute, Sarasota, USA.,The Open University, Milton Keynes, UK.,The James A Haley Veterans' Administration, Tampa, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, USA.,The Open University, Milton Keynes, UK.,The James A Haley Veterans' Administration, Tampa, USA
| |
Collapse
|
93
|
Eyolfson E, Carr T, Fraunberger E, Khan A, Clark I, Mychasiuk R, Lohman AW. Repeated mild traumatic brain injuries in mice cause age- and sex-specific alterations in dendritic spine density. Exp Neurol 2022; 357:114172. [PMID: 35863503 DOI: 10.1016/j.expneurol.2022.114172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Mild traumatic brain injuries (mTBI) plague the human population and their prevalence is increasing annually. More so, repeated mTBIs (RmTBI) are known to manifest and compound neurological deficits in vulnerable populations. Age at injury and sex are two important factors influencing RmTBI pathophysiology, but we continue to know little about the specific effects of RmTBI in youth and females. In this study, we directly quantified the effects of RmTBI on adolescent and adult, male and female mice, with a closed-head lateral impact model. We report age- and sex-specific neurobehavioural deficits in motor function and working memory, microglia responses to injury, and the subsequent changes in dendritic spine density in select brain regions. Specifically, RmTBI caused increased footslips in adult male mice as assessed in a beam walk assay and significantly reduced the time spent with a novel object in adolescent male and female mice. RmTBIs caused a significant reduction in microglia density in male mice in the motor cortex, but not female mice. Finally, RmTBI significantly reduced dendritic spine density in the agranular insular cortex (a region of the prefrontal cortex in mice) and increased dendritic spine density in the adolescent male motor cortex. Together, the data provided in this study sheds new light on the heterogeneity in RmTBI-induced behavioural, glial, and neuronal architecture changes dependent on age and sex.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada.
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada.
| | - Erik Fraunberger
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada.
| | - Asher Khan
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada.
| | - Isabel Clark
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada.
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Alexander W Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
94
|
Chauhan AV, Guralnik J, dosReis S, Sorkin JD, Badjatia N, Albrecht JS. Repetitive Traumatic Brain Injury Among Older Adults. J Head Trauma Rehabil 2022; 37:E242-E248. [PMID: 34320558 PMCID: PMC8789954 DOI: 10.1097/htr.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To determine the incidence of and assess risk factors for repetitive traumatic brain injury (TBI) among older adults in the United States. DESIGN Retrospective cohort study. SETTING Administrative claims data obtained from the Centers for Medicare & Medicaid Services' Chronic Conditions Data Warehouse. PARTICIPANTS Individuals 65 years or older and diagnosed with TBI between July 2008 and September 2012 drawn from a 5% random sample of US Medicare beneficiaries. MAIN MEASURES Repetitive TBI was identified as a second TBI occurring at least 90 days after the first occurrence of TBI following an 18-month TBI-free period. We identified factors associated with repetitive TBI using a log-binomial model. RESULTS A total of 38 064 older Medicare beneficiaries experienced a TBI. Of these, 4562 (12%) beneficiaries sustained at least one subsequent TBI over up to 5 years of follow-up. The unadjusted incidence rate of repetitive TBI was 3022 (95% CI, 2935-3111) per 100 000 person-years. Epilepsy was the strongest predictor of repetitive TBI (relative risk [RR] = 1.44; 95% CI, 1.25-1.56), followed by Alzheimer disease and related dementias (RR = 1.32; 95% CI 1.20-1.45), and depression (RR = 1.30; 95% CI, 1.21-1.38). CONCLUSIONS Injury prevention and fall-reduction interventions could be targeted to identify groups of older adults at an increased risk of repetitive head injury. Future work should focus on injury-reduction initiatives to reduce the risk of repetitive TBI as well as assessment of outcomes related to repetitive TBI.
Collapse
Affiliation(s)
- Aparna Vadlamani Chauhan
- Departments of Epidemiology and Public Health (Drs Chauhan, Guralnik, and Albrecht) and Neurology (Dr Badjatia), University of Maryland School of Medicine, Baltimore; Department of Pharmaceutical Health Services Research, University of Maryland School of Pharmacy, Baltimore (Dr dosReis); Baltimore VA Geriatric Research, Education and Clinical Center (Dr Sorkin); and Department of Medicine, Division of Gerontology and Geriatrics, University of Maryland School of Medicine, Baltimore (Dr Sorkin)
| | | | | | | | | | | |
Collapse
|
95
|
Ackermans NL, Varghese M, Williams TM, Grimaldi N, Selmanovic E, Alipour A, Balchandani P, Reidenberg JS, Hof PR. Evidence of traumatic brain injury in headbutting bovids. Acta Neuropathol 2022; 144:5-26. [PMID: 35579705 PMCID: PMC9217783 DOI: 10.1007/s00401-022-02427-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of neurologic impairment and death that remains poorly understood. Rodent models have yet to produce clinical therapies, and the exploration of larger and more diverse models remains relatively scarce. We investigated the potential for brain injury after headbutting in two combative bovid species by assessing neuromorphology and neuropathology through immunohistochemistry and stereological quantification. Postmortem brains of muskoxen (Ovibos moschatus, n = 3) and bighorn sheep (Ovis canadensis, n = 4) were analyzed by high-resolution MRI and processed histologically for evidence of TBI. Exploratory histological protocols investigated potential abnormalities in neurons, microglia, and astrocytes in the prefrontal and parietal cortex. Phosphorylated tau protein, a TBI biomarker found in the cerebrospinal fluid and in neurodegenerative lesions, was used to detect possible cellular consequences of chronic or acute TBI. MRI revealed no abnormal neuropathological changes; however, high amounts of tau-immunoreactive neuritic thread clusters, neurites, and neurons were concentrated in the superficial layers of the neocortex, preferentially at the bottom of the sulci in the muskoxen and occasionally around blood vessels. Tau-immunoreactive lesions were rare in the bighorn sheep. Additionally, microglia and astrocytes showed no grouping around tau-immunoreactive cells in either species. Our preliminary findings indicate that muskoxen and possibly other headbutting bovids suffer from chronic or acute brain trauma and that the males' thicker skulls may protect them to a certain extent.
Collapse
Affiliation(s)
- Nicole L. Ackermans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Mail Box 1007, New York, NY 10029-6574 USA
- University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Terrie M. Williams
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060 USA
| | - Nicholas Grimaldi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Akbar Alipour
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Priti Balchandani
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joy S. Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Mail Box 1007, New York, NY 10029-6574 USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
96
|
Palermo MT. Scientism, Ethics and Evil: From Mens Rea to Cerebrum Reus. INTERNATIONAL JOURNAL OF OFFENDER THERAPY AND COMPARATIVE CRIMINOLOGY 2022; 66:1036-1048. [PMID: 35702023 DOI: 10.1177/0306624x221104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Can criminology thrive on quantitative studies alone? Can evil be operationalized? Quantitative work may have, for the time being, supplanted common sense, personal experience and resulting in an improbable "Periodic Table of humanity". Has the construction of the psychopathic concept surpassed positivist "constitutional" formulations and translated into effective (re)habilitation of individuals lacking affiliative ethical behaviors? Or has it simply fueled a deterministic neo-Lombrosian truism: moral development has a brain. Has it helped so far? Has letting go of fundamental moral concepts, implicit in organized religion - but pervasive in most cultures irrespective of religious affiliation and devotion - in favor of causal explanations based solely on neuroimaging, personality inventories or structured emotional decoding tasks, made a difference in the life - or in the defense for that matter - of wrongdoers diagnosed as intrinsically evil?
Collapse
|
97
|
Buckland ME, Affleck AJ, Pearce AJ, Suter CM. Chronic Traumatic Encephalopathy as a Preventable Environmental Disease. Front Neurol 2022; 13:880905. [PMID: 35769361 PMCID: PMC9234108 DOI: 10.3389/fneur.2022.880905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
In this Perspective we explore the evolution of our understanding of chronic traumatic encephalopathy (CTE) and its relationship with repetitive head injury. As with many neurodegenerative conditions, there is an imperfect correspondence between neuropathology and clinical phenotype, but unlike other neurodegenerative diseases, CTE has a discrete and easily modifiable risk factor: exposure to repetitive head injury. Consequently, evaluation of the evidence regarding exposure to repetitive head injury and CTE risk should be undertaken using public or occupational health frameworks of medical knowledge. The current debate over the existence of CTE as a disease of concern is fuelled in part by immediate medico-legal considerations, and the involvement of high-profile athletes, with inevitable media interest. Moving beyond this debate has significant potential to address and reduce disease impact in the near future, and provide novel insights into mechanisms underlying abnormal protein accumulation in CTE and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Michael E. Buckland
| | - Andrew J. Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
98
|
Graham NSN. Progress towards predicting neurodegeneration and dementia after traumatic brain injury. Brain 2022; 145:1874-1876. [DOI: 10.1093/brain/awac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neil S. N. Graham
- Imperial College London Department of Brain Sciences, , London, UK
- UK DRI Centre for Care Research and Technology, Imperial College London , London, UK
| |
Collapse
|
99
|
Vinh To X, Soni N, Medeiros R, Alateeq K, Nasrallah FA. Traumatic brain injury alterations in the functional connectome are associated with neuroinflammation but not tau in a P30IL tauopathy mouse model. Brain Res 2022; 1789:147955. [PMID: 35636493 DOI: 10.1016/j.brainres.2022.147955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is often associated with long-term cognitive deficits and altered brain networks which have been linked with accumulation of neurofibrillary tau tangles and neuroinflammation. In this work, we investigated the changes in the brain post-TBI in an Alzheimer's disease pR5 tauopathy model and evaluated the contribution of tauopathy and neuroinflammation to connectivity alterations using resting-state functional Magnetic Resonance Imaging (rs-fMRI). METHOD 26 P301L tau transgenic mice of 8-9 months of age (21-35 g) expressing the human tau isoform carrying the pathogenic P301L mutation were used for the study. Animals were assessed at day 1 and 7 post-injury/craniotomy and were randomly divided into four groups. All animals underwent an MRI scan on a 9.4 T Bruker system where rsfMRI was acquired. Following imaging, brains were stained with pSer (396 + 404), glial fibrillary acidic protein (GFAP), and ionised calcium-binding adaptor molecule-1 (Iba-1). Group-information-guided Independent Component Analysis (GIG-ICA) and region-of-interest (ROI)-based network connectivity approaches were applied. Principal Component Regression was applied to predict connectivity network strength from the corresponding ROIs. RESULTS TBI mice showed decreased functional connectivity in the dentate gyrus, thalamus, and other areas compared to sham animals at day 1 post-injury with the majority of changes resolving at day 7. Principal Component Regression showed only the contralateral CA1 network strength was correlated with the CA1's astrocyte and microglia cell density and the ipsilateral thalamus network strength was correlated with the ipsilateral thalamus' astrocyte and microglia cell density. CONCLUSION We present the first report on the temporal alterations in functional connectivity in a P30IL mouse model following TBI. Connectivity between key regions known to be affected in Alzheimer's disease were short-term and reversible following injury. Connectivity strength in CA1 and thalamus showed significant correlation with astrocyte and microglial cell density but not tau density.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia; The University of California, Irvine, The United States of America.
| |
Collapse
|
100
|
Khalin I, Adarsh N, Schifferer M, Wehn A, Groschup B, Misgeld T, Klymchenko A, Plesnila N. Size-Selective Transfer of Lipid Nanoparticle-Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200302. [PMID: 35384294 DOI: 10.1002/smll.202200302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The current lack of understanding about how nanocarriers cross the blood-brain barrier (BBB) in the healthy and injured brain is hindering the clinical translation of nanoscale brain-targeted drug-delivery systems. Here, the bio-distribution of lipid nano-emulsion droplets (LNDs) of two sizes (30 and 80 nm) in the mouse brain after traumatic brain injury (TBI) is investigated. The highly fluorescent LNDs are prepared by loading them with octadecyl rhodamine B and a bulky hydrophobic counter-ion, tetraphenylborate. Using in vivo two-photon and confocal imaging, the circulation kinetics and bio-distribution of LNDs in the healthy and injured mouse brain are studied. It is found that after TBI, LNDs of both sizes accumulate at vascular occlusions, where specifically 30 nm LNDs extravasate into the brain parenchyma and reach neurons. The vascular occlusions are not associated with bleedings, but instead are surrounded by processes of activated microglia, suggesting a specific opening of the BBB. Finally, correlative light-electron microscopy reveals 30 nm LNDs in endothelial vesicles, while 80 nm particles remain in the vessel lumen, indicating size-selective vesicular transport across the BBB via vascular occlusions. The data suggest that microvascular occlusions serve as "gates" for the transport of nanocarriers across the BBB.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| | - Nagappanpillai Adarsh
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
- Department of Polymer Chemistry, Government College Attingal, Kerala, 695101, India
| | - Martina Schifferer
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Thomas Misgeld
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Institute of Neuronal Cell Biology, School of Medicine, Technical University of Munich, 80802, Munich, Germany
| | - Andrey Klymchenko
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|