51
|
Gamuyao R, Chang CL. Imaging and proteomics toolkits for studying organelle contact sites. Front Cell Dev Biol 2024; 12:1466915. [PMID: 39381373 PMCID: PMC11458464 DOI: 10.3389/fcell.2024.1466915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Organelle contact sites are regions where two heterologous membranes are juxtaposed by molecular tethering complexes. These contact sites are important in inter-organelle communication and cellular functional integration. However, visualizing these minute foci and identifying contact site proteomes have been challenging. In recent years, fluorescence-based methods have been developed to visualize the dynamic physical interaction of organelles while proximity labeling approaches facilitate the profiling of proteomes at contact sites. In this review, we explain the design principle for these contact site reporters: a dual-organelle interaction mechanism based on how endogenous tethers and/or tethering complexes localize to contact sites. We classify the contact site reporters into three categories: (i) single-protein systems, (ii) two-component systems with activated reporter signal upon organelle proximity, and (iii) reporters for contact site proteomes. We also highlight advanced imaging analysis with high temporal-spatial resolution and the use of machine-learning algorithms for detecting contact sites.
Collapse
Affiliation(s)
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
52
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
53
|
Neubergerová M, Pleskot R. Plant protein-lipid interfaces studied by molecular dynamics simulations. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5237-5250. [PMID: 38761107 DOI: 10.1093/jxb/erae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The delineation of protein-lipid interfaces is essential for understanding the mechanisms of various membrane-associated processes crucial to plant development and growth, including signalling, trafficking, and membrane transport. Due to their highly dynamic nature, the precise characterization of lipid-protein interactions by experimental techniques is challenging. Molecular dynamics simulations provide a powerful computational alternative with a spatial-temporal resolution allowing the atomistic-level description. In this review, we aim to introduce plant scientists to molecular dynamics simulations. We describe different steps of performing molecular dynamics simulations and provide a broad survey of molecular dynamics studies investigating plant protein-lipid interfaces. Our aim is also to illustrate that combining molecular dynamics simulations with artificial intelligence-based protein structure determination opens up unprecedented possibilities for future investigations of dynamic plant protein-lipid interfaces.
Collapse
Affiliation(s)
- Michaela Neubergerová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
54
|
Aram L, de Haan D, Varsano N, Gilchrist JB, Heintze C, Rotkopf R, Rechav K, Elad N, Kröger N, Gal A. Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature. Nat Commun 2024; 15:7888. [PMID: 39251596 PMCID: PMC11385223 DOI: 10.1038/s41467-024-52211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
Collapse
Affiliation(s)
- Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Diede de Haan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - James B Gilchrist
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Christoph Heintze
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ron Rotkopf
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
55
|
Casler JC, Harper CS, White AJ, Anderson HL, Lackner LL. Mitochondria-ER-PM contacts regulate mitochondrial division and PI(4)P distribution. J Cell Biol 2024; 223:e202308144. [PMID: 38781029 PMCID: PMC11116812 DOI: 10.1083/jcb.202308144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.
Collapse
Affiliation(s)
- Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Antoineen J. White
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heidi L. Anderson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
56
|
Li X, Gamuyao R, Wu ML, Cho WJ, King SV, Petersen R, Stabley DR, Lindow C, Climer LK, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Zhou Y, Carisey AF, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. J Cell Biol 2024; 223:e202311126. [PMID: 38949658 PMCID: PMC11215687 DOI: 10.1083/jcb.202311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie K. Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yiwang Zhou
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
57
|
Ding L, Fox AR, Chaumont F. Multifaceted role and regulation of aquaporins for efficient stomatal movements. PLANT, CELL & ENVIRONMENT 2024; 47:3330-3343. [PMID: 38742465 DOI: 10.1111/pce.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stomata are micropores on the leaf epidermis that allow carbon dioxide (CO2) uptake for photosynthesis at the expense of water loss through transpiration. Stomata coordinate the plant gas exchange of carbon and water with the atmosphere through their opening and closing dynamics. In the context of global climate change, it is essential to better understand the mechanism of stomatal movements under different environmental stimuli. Aquaporins (AQPs) are considered important regulators of stomatal movements by contributing to membrane diffusion of water, CO2 and hydrogen peroxide. This review compiles the most recent findings and discusses future directions to update our knowledge of the role of AQPs in stomatal movements. After highlighting the role of subsidiary cells (SCs), which contribute to the high water use efficiency of grass stomata, we explore the expression of AQP genes in guard cells and SCs. We then focus on the cellular regulation of AQP activity at the protein level in stomata. After introducing their post-translational modifications, we detail their trafficking as well as their physical interaction with various partners that regulate AQP subcellular dynamics towards and within specific regions of the cell membranes, such as microdomains and membrane contact sites.
Collapse
Affiliation(s)
- Lei Ding
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ana Romina Fox
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
58
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
59
|
Gurlo T, Liu R, Wang Z, Hoang J, Ryazantsev S, Daval M, Butler AE, Yang X, Blencowe M, Butler PC. Dysregulation of cholesterol homeostasis is an early signal of β-cell proteotoxicity characteristic of type 2 diabetes. Physiol Genomics 2024; 56:621-633. [PMID: 38949617 DOI: 10.1152/physiolgenomics.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024] Open
Abstract
Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic β-cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in β-cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed and cosecreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in β-cells in T2D and in β-cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and prediabetic 9- to 10-wk-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here, we investigated islets from hIAPP transgenic mice at an earlier age (6 wk) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-β-cell cholesterol and lipid deposits and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in β-cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.NEW & NOTEWORTHY β-Cell failure in type 2 diabetes (T2D) is characterized by β-cell misfolded protein stress due to the formation of toxic oligomers of islet amyloid polypeptide (IAPP). Most transcriptional changes in islets in T2D are pro-survival adaptations consistent with the slow progression of β-cell loss. In the present study, investigation of the islet transcriptional signatures in a mouse model of T2D expressing human IAPP revealed decreased cholesterol synthesis and trafficking as a plausible early mediator of IAPP toxicity.
Collapse
Affiliation(s)
- Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Ruoshui Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
| | - Zhongying Wang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Jonathan Hoang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Sergey Ryazantsev
- Electron Imaging Center, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Marie Daval
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| |
Collapse
|
60
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
61
|
Schlarmann P, Sakuragi K, Ikeda A, Yang Y, Sasaki S, Hanaoka K, Araki M, Shibata T, Kanai M, Funato K. The tricalbin family of membrane contact site tethers is involved in the transcriptional responses of Saccharomyces cerevisiae to glucose. J Biol Chem 2024; 300:107665. [PMID: 39128724 PMCID: PMC11408865 DOI: 10.1016/j.jbc.2024.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cellular organelles maintain areas of close apposition with other organelles at which the cytosolic gap in between them is reduced to a minimum. These membrane contact sites (MCS) are vital for organelle communication and are formed by molecular tethers that physically connect opposing membranes. Although many regulatory pathways are known to converge at MCS, a link between MCS and transcriptional regulation-the primary mechanism through which cells adapt their metabolism to environmental cues-remains largely elusive. In this study, we performed RNA-sequencing on Saccharomyces cerevisiae cells lacking tricalbin proteins (Tcb1, Tcb2, and Tcb3), a family of tethering proteins that connect the endoplasmic reticulum with the plasma membrane and Golgi, to investigate if gene expression is altered when MCS are disrupted. Our results indicate that in the tcb1Δ2Δ3Δ strain, pathways responsive to a high-glucose environment, including glycolysis, fermentation, amino acid synthesis, and low-affinity glucose uptake, are upregulated. Conversely, pathways crucial during glucose depletion, such as the tricarboxylic acid cycle, respiration, high-affinity glucose uptake, and amino acid uptake are downregulated. In addition, we demonstrate that the altered gene expression of tcb1Δ2Δ3Δ in glucose metabolism correlates with increased growth, glucose consumption, CO2 production, and ethanol generation. In conclusion, our findings reveal that tricalbin protein deletion induces a shift in gene expression patterns mimicking cellular responses to a high-glucose environment. This suggests that MCS play a role in sensing and signaling pathways that modulate gene transcription in response to glucose availability.
Collapse
Affiliation(s)
- Philipp Schlarmann
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keiko Sakuragi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yujia Yang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Saku Sasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuki Hanaoka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoko Shibata
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
62
|
Kurikawa Y, Koyama-Honda I, Tamura N, Koike S, Mizushima N. Organelle landscape analysis using a multiparametric particle-based method. PLoS Biol 2024; 22:e3002777. [PMID: 39288101 PMCID: PMC11407678 DOI: 10.1371/journal.pbio.3002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Organelles have unique structures and molecular compositions for their functions and have been classified accordingly. However, many organelles are heterogeneous and in the process of maturation and differentiation. Because traditional methods have a limited number of parameters and spatial resolution, they struggle to capture the heterogeneous landscapes of organelles. Here, we present a method for multiparametric particle-based analysis of organelles. After disrupting cells, fluorescence microscopy images of organelle particles labeled with 6 to 8 different organelle markers were obtained, and their multidimensional data were represented in two-dimensional uniform manifold approximation and projection (UMAP) spaces. This method enabled visualization of landscapes of 7 major organelles as well as the transitional states of endocytic organelles directed to the recycling and degradation pathways. Furthermore, endoplasmic reticulum-mitochondria contact sites were detected in these maps. Our proposed method successfully detects a wide array of organelles simultaneously, enabling the analysis of heterogeneous organelle landscapes.
Collapse
Affiliation(s)
- Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norito Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichi Koike
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
63
|
Hofstadter WA, Cook KC, Tsopurashvili E, Gebauer R, Pražák V, Machala EA, Park JW, Grünewald K, Quemin ERJ, Cristea IM. Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics. Nat Commun 2024; 15:7352. [PMID: 39187492 PMCID: PMC11347691 DOI: 10.1038/s41467-024-51680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.
Collapse
Affiliation(s)
| | - Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Robert Gebauer
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Vojtěch Pražák
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emily A Machala
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kay Grünewald
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Virology, Institute for Integrative Biology of the Cell, CNRS UMR9198, Gif-sur-Yvette, France
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
64
|
Wong AM, Budin I. Organelle-Targeted Laurdans Measure Heterogeneity in Subcellular Membranes and Their Responses to Saturated Lipid Stress. ACS Chem Biol 2024; 19:1773-1785. [PMID: 39069657 PMCID: PMC11670155 DOI: 10.1021/acschembio.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
65
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
66
|
Cabukusta B, Borst Pauwels S, Akkermans JJLL, Blomberg N, Mulder AA, Koning RI, Giera M, Neefjes J. The ORP9-ORP11 dimer promotes sphingomyelin synthesis. eLife 2024; 12:RP91345. [PMID: 39106189 PMCID: PMC11302984 DOI: 10.7554/elife.91345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.
Collapse
Affiliation(s)
- Birol Cabukusta
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical CenterLeidenNetherlands
| | - Shalom Borst Pauwels
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical CenterLeidenNetherlands
| | - Jimmy JLL Akkermans
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical CenterLeidenNetherlands
| | - Niek Blomberg
- Centre for Proteomics and Metabolomics, Leiden University Medical CenterLeidenNetherlands
| | - Aat A Mulder
- Electron Microscopy Facility, Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Roman I Koning
- Electron Microscopy Facility, Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Martin Giera
- Centre for Proteomics and Metabolomics, Leiden University Medical CenterLeidenNetherlands
| | - Jacques Neefjes
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical CenterLeidenNetherlands
| |
Collapse
|
67
|
Nabi IR, Cardoen B, Khater IM, Gao G, Wong TH, Hamarneh G. AI analysis of super-resolution microscopy: Biological discovery in the absence of ground truth. J Cell Biol 2024; 223:e202311073. [PMID: 38865088 PMCID: PMC11169916 DOI: 10.1083/jcb.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous potential for the discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the nanoscale architecture of subcellular macromolecules and organelles.
Collapse
Affiliation(s)
- Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Ismail M. Khater
- School of Computing Science, Simon Fraser University, Burnaby, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering and Technology, Birzeit University, Birzeit, Palestine
| | - Guang Gao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Timothy H. Wong
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
68
|
Elmalam N, Ben Nedava L, Zaritsky A. In silico labeling in cell biology: Potential and limitations. Curr Opin Cell Biol 2024; 89:102378. [PMID: 38838549 DOI: 10.1016/j.ceb.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
In silico labeling is the computational cross-modality image translation where the output modality is a subcellular marker that is not specifically encoded in the input image, for example, in silico localization of organelles from transmitted light images. In principle, in silico labeling has the potential to facilitate rapid live imaging of multiple organelles with reduced photobleaching and phototoxicity, a technology enabling a major leap toward understanding the cell as an integrated complex system. However, five years have passed since feasibility was attained, without any demonstration of using in silico labeling to uncover new biological insight. In here, we discuss the current state of in silico labeling, the limitations preventing it from becoming a practical tool, and how we can overcome these limitations to reach its full potential.
Collapse
Affiliation(s)
- Nitsan Elmalam
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lion Ben Nedava
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
69
|
Zimmermann JA, Lucht K, Stecher M, Badhan C, Glaser KM, Epple MW, Koch LR, Deboutte W, Manke T, Ebnet K, Brinkmann F, Fehler O, Vogl T, Schuster EM, Bremser A, Buescher JM, Rambold AS. Functional multi-organelle units control inflammatory lipid metabolism of macrophages. Nat Cell Biol 2024; 26:1261-1273. [PMID: 38969763 PMCID: PMC11321999 DOI: 10.1038/s41556-024-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.
Collapse
Affiliation(s)
- Julia A Zimmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Kerstin Lucht
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Manuel Stecher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chahat Badhan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena R Koch
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ward Deboutte
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Bioinformatics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Frauke Brinkmann
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Munster, Munster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Munster, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, Munster, Germany
| | - Ev-Marie Schuster
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Joerg M Buescher
- Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany.
| |
Collapse
|
70
|
Pilic J, Kleele T. An organelle tango controls lipid metabolism. Nat Cell Biol 2024; 26:1227-1228. [PMID: 38969760 DOI: 10.1038/s41556-024-01441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Affiliation(s)
- Johannes Pilic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Tatjana Kleele
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
71
|
Benchimol M, de Souza W. Endocytosis in anaerobic parasitic protists. Mem Inst Oswaldo Cruz 2024; 119:e240058. [PMID: 39082582 PMCID: PMC11285859 DOI: 10.1590/0074-02760240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell's survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade da Grande Rio, Duque de Caxias, RJ, Brasil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica
Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de
Janeiro, RJ, Brasil
| |
Collapse
|
72
|
Renna L, Stefano G, Puggioni MP, Kim SJ, Lavell A, Froehlich JE, Burkart G, Mancuso S, Benning C, Brandizzi F. ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites. Nat Commun 2024; 15:6008. [PMID: 39019917 PMCID: PMC11255254 DOI: 10.1038/s41467-024-50425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs. Specifically, through in vivo and in vitro association assays, we found that VAP27 proteins interact with the outer envelope membrane (OEM) of chloroplasts, where they bind to ORP2A. Through lipidomic analyses, we established that VAP27 proteins and ORP2A directly interact with the chloroplast OEM monogalactosyldiacylglycerol (MGDG), and we demonstrated that the loss of the VAP27-ORP2A complex is accompanied by subtle changes in the acyl composition of MGDG and PG. We also found that ORP2A interacts with phytosterols and established that the loss of the VAP27-ORP2A complex alters sterol levels in chloroplasts. We propose that, by interacting directly with OEM lipids, the VAP27-ORP2A complex defines plant-unique MCSs that bridge ER and chloroplasts and are involved in chloroplast lipid homeostasis.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, University of Florence, Florence, Italy
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biology, University of Florence, Florence, Italy
| | - Maria Paola Puggioni
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Sang-Jin Kim
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Anastasiya Lavell
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - John E Froehlich
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Graham Burkart
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, Florence, Italy
- Fondazione per il Futuro delle Città, Florence, Italy
| | - Christoph Benning
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Biochemistry and Molecular Biology Department, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
73
|
Sun Y, Chen S, Hou Y, Kang SH, Lin JM. Organelle Proximity Analysis for Enhanced Quantification of Mitochondria-Endoplasmic Reticulum Interactions in Single Cells via Super-Resolution Microscopy. Anal Chem 2024; 96:11557-11565. [PMID: 38959297 DOI: 10.1021/acs.analchem.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Mitochondria (MT) and the endoplasmic reticulum (ER) maintain lipid and calcium homeostasis through membrane contacts, particularly MT-ER contacts (MERCs), spanning distances from 10 to 50 nm. However, the variation of different distance ranges and the metabolic factors influencing this variation remain poorly understood. This study employed microfluidic chip-based super-resolution microscopy in conjunction with a Moore-Neighbor tracing-incorporated organelle proximity analysis algorithm. This approach enabled precise three-dimensional localization of single-fluorescence protein molecules within narrow and irregular membrane proximities. It achieved lateral localization precision of less than 20 nm, resulting in a minimum MERC distance of approximately 8 nm in spatial and mean distances across multiple threshold ranges. Additionally, we demonstrated that the MERC distance variation was correlated with MT size rather than ER width. The proportion of each distance range varied significantly after the stimuli. Free cholesterol showed a negative correlation with various distances, while distances of 10-30 nm were associated with glucose, glutamine, and pyruvic acid. Furthermore, the 30-40 nm range was influenced by citric acid. These results underscore the role of advanced subcellular organelle analysis in elucidating the single-molecule behavior and organelle morphology in single-cell studies.
Collapse
Affiliation(s)
- Yucheng Sun
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shiyu Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
74
|
Man Y, Zhang Y, Chen L, Zhou J, Bu Y, Zhang X, Li X, Li Y, Jing Y, Lin J. The VAMP-associated protein VAP27-1 plays a crucial role in plant resistance to ER stress by modulating ER-PM contact architecture in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100929. [PMID: 38678366 PMCID: PMC11287176 DOI: 10.1016/j.xplc.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/30/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The endoplasmic reticulum (ER) and the plasma membrane (PM) form ER-PM contact sites (EPCSs) that allow the ER and PM to exchange materials and information. Stress-induced disruption of protein folding triggers ER stress, and the cell initiates the unfolded protein response (UPR) to resist the stress. However, whether EPCSs play a role in ER stress in plants remains unclear. VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP)-ASSOCIATED PROTEIN 27-1 (VAP27-1) functions in EPCS tethering and is encoded by a family of 10 genes (VAP27-1-10) in Arabidopsis thaliana. Here, we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4 (vap27-1/3/4) triple mutant lacking three of the key VAP27 family members in Arabidopsis. The vap27-1/3/4 mutant exhibits defects in ER-PM connectivity and EPCS architecture, as well as excessive UPR signaling. We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress. Moreover, the spatiotemporal dynamics of VAP27-1 at the PM increase ER-PM connectivity and enhance Arabidopsis resistance to ER stress. In addition, we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling. Taken together, these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants, providing additional clues for improving plant broad-spectrum resistance to different stresses.
Collapse
Affiliation(s)
- Yi Man
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Linghui Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yufen Bu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yanping Jing
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
75
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
76
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Upregulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. J Biol Chem 2024; 300:107403. [PMID: 38782205 PMCID: PMC11254723 DOI: 10.1016/j.jbc.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Although there are functional impairments in both cases, the signaling consequences of primary mitochondrial dysfunction and lysosomal defects are dissimilar. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects to identify the global cellular consequences associated with mitochondrial or lysosomal dysfunction. We used these data to determine the pathways affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. We observed a transcriptional upregulation of this pathway in cellular and murine models of lysosomal defects, while it is transcriptionally downregulated in cellular and murine models of mitochondrial defects. We identified a role for the posttranscriptional regulation of transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, we found that retention of Ca2+ in lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo, using a model of mitochondria-associated disease in Caenorhabditis elegans that normalization of lysosomal Ca2+ levels results in partial rescue of the developmental delay induced by the respiratory chain deficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Leonardo Pereyra
- Department of Cellular Biochemistry, University Medical Center, Goettingen, Germany
| | - Justin Dale
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - King Faisal Yambire
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York, USA
| | - Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Ira Milosevic
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Multidisciplinary Institute for Ageing, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
77
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Membrane Curvature Promotes ER-PM Contact Formation via Junctophilin-EHD Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601287. [PMID: 38979311 PMCID: PMC11230412 DOI: 10.1101/2024.06.29.601287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, while the ubiquitously expressed extended synaptotagmin 2 does not show a preference for PM curvature. At the mechanistic level, we find that the low complexity region (LCR) and the MORN motifs of junctophilins can independently bind to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins, Eps15-homology domain containing proteins (EHDs), that interact with the MORN_LCR motifs and facilitate junctophilins' preferential tethering to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a novel mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Luis A. Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Melissa L. Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Present address: Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute of Biological Information Processing—Bioelectronics, IBI-3, Forschungszentrum, Juelich 52428, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| |
Collapse
|
78
|
Neto MV, De Rossi G, Berkowitz BA, Seabra MC, Luthert PJ, Futter CE, Burgoyne T. Daily Light Onset and Plasma Membrane Tethers Regulate Mitochondria Redistribution within the Retinal Pigment Epithelium. Cells 2024; 13:1100. [PMID: 38994953 PMCID: PMC11240580 DOI: 10.3390/cells13131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.
Collapse
Affiliation(s)
- Matilde V. Neto
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Miguel C. Seabra
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E. Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
79
|
Shimasaki K, Okemoto-Nakamura Y, Saito K, Fukasawa M, Katoh K, Hanada K. A high-resolution phase-contrast microscopy system for label-free imaging in living cells. Cell Struct Funct 2024; 49:21-29. [PMID: 38797697 PMCID: PMC11496782 DOI: 10.1247/csf.24018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.
Collapse
Affiliation(s)
- Kentaro Shimasaki
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-shi, Ibaragi 305-8566, Japan
- AIRC, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Kentaro Hanada
- Center for Quality Management Systems, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
80
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
81
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
82
|
Ajiki M, Yoshikawa M, Miyazaki T, Kawasaki A, Aoki K, Nakatsu F, Tsukiji S. ORP9-PH domain-based fluorescent reporters for visualizing phosphatidylinositol 4-phosphate dynamics in living cells. RSC Chem Biol 2024; 5:544-555. [PMID: 38846081 PMCID: PMC11151866 DOI: 10.1039/d3cb00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
Fluorescent reporters that visualize phosphatidylinositol 4-phosphate (PI4P) in living cells are indispensable to elucidate the roles of this fundamental lipid in cell physiology. However, currently available PI4P reporters have limitations, such as Golgi-biased localization and low detection sensitivity. Here, we present a series of fluorescent PI4P reporters based on the pleckstrin homology (PH) domain of oxysterol-binding protein-related protein 9 (ORP9). We show that the green fluorescent protein AcGFP1-tagged ORP9-PH domain can be used as a fluorescent PI4P reporter to detect cellular PI4P across its wide distribution at multiple cellular locations, including the plasma membrane (PM), Golgi, endosomes, and lysosomes with high specificity and contrast. We also developed blue, red, and near-infrared fluorescent PI4P reporters suitable for multicolor fluorescence imaging experiments. Finally, we demonstrate the utility of the ORP9-PH domain-based reporter to visualize dynamic changes in the PI4P distribution and level in living cells upon synthetic ER-PM membrane contact manipulation and GPCR stimulation. This work offers a new set of genetically encoded fluorescent PI4P reporters that are practically useful for the study of PI4P biology.
Collapse
Affiliation(s)
- Moeka Ajiki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomoki Miyazaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies) 5-1 Higashiyama, Myodaiji-cho Okazaki Aichi 444-8787 Japan
| | - Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University 1-757 Asahimachi, Chuo-ku Niigata 951-8510 Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
83
|
Shpigler A, Kolet N, Golan S, Weisbart E, Zaritsky A. Anomaly detection for high-content image-based phenotypic cell profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.595856. [PMID: 38895267 PMCID: PMC11185510 DOI: 10.1101/2024.06.01.595856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.
Collapse
Affiliation(s)
- Alon Shpigler
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Naor Kolet
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shahar Golan
- Department of Computer Science, Jerusalem College of Technology, 91160 Jerusalem, Israel
| | - Erin Weisbart
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge (MA), USA
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
84
|
Campanella M, Kannan B. Mitochondrial sites of contact with the nucleus. J Cell Biol 2024; 223:e202305010. [PMID: 38669038 PMCID: PMC11046832 DOI: 10.1083/jcb.202305010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
Membrane contact sites (MCS) between mitochondria and the nucleus have been recently described. Termed nucleus associated mitochondria (NAM), they prime the expression of genes required for cellular resistance to stressors, thus offering a tethering mechanism for homeostatic communication. Here, we discuss the composition of NAM and their physiological and pathological significance.
Collapse
Affiliation(s)
- Michelangelo Campanella
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Institute Gustave Roussy, Villejuif, France
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Brindha Kannan
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
85
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
86
|
Weesner JA, Annunziata I, van de Vlekkert D, Robinson CG, Campos Y, Mishra A, Fremuth LE, Gomero E, Hu H, d'Azzo A. Altered GM1 catabolism affects NMDAR-mediated Ca 2+ signaling at ER-PM junctions and increases synaptic spine formation in a GM1-gangliosidosis model. Cell Rep 2024; 43:114117. [PMID: 38630590 PMCID: PMC11244331 DOI: 10.1016/j.celrep.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to β-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason A Weesner
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ida Annunziata
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; St. Jude Children's Research Hospital, Compliance Office, Memphis, TN 38105, USA
| | | | - Camenzind G Robinson
- St. Jude Children's Research Hospital, Cellular Imaging Shared Resource, Memphis, TN 38105, USA
| | - Yvan Campos
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- St. Jude Children's Research Hospital, Center for Proteomics and Metabolomics, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Elida Gomero
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Huimin Hu
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- St. Jude Children's Research Hospital, Department of Genetics, Memphis, TN 38105, USA; University of Tennessee Health Science Center, Department of Anatomy and Physiology, Memphis, TN 38163, USA.
| |
Collapse
|
87
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
88
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
89
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
90
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
91
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
92
|
Sherman DJ, Liu L, Mamrosh JL, Xie J, Ferbas J, Lomenick B, Ladinsky MS, Verma R, Rulifson IC, Deshaies RJ. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318619121. [PMID: 38657050 PMCID: PMC11067037 DOI: 10.1073/pnas.2318619121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.
Collapse
Affiliation(s)
| | - Lei Liu
- Amgen Research, South San Francisco, CA94080
| | | | | | | | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Mark S. Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | | | | |
Collapse
|
93
|
Shen Y, Chen QC, Li CY, Han FJ. Independent organelle and organelle-organelle interactions: essential mechanisms for malignant gynecological cancer cell survival. Front Immunol 2024; 15:1393852. [PMID: 38711526 PMCID: PMC11070488 DOI: 10.3389/fimmu.2024.1393852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.
Collapse
Affiliation(s)
- Ying Shen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiao-Chu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Yu Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
94
|
Wong AM, Budin I. Organelle-targeted Laurdans measure heterogeneity in subcellular membranes and their responses to saturated lipid stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589828. [PMID: 38659784 PMCID: PMC11042318 DOI: 10.1101/2024.04.16.589828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cell organelles feature characteristic lipid compositions that lead to differences in membrane properties. In living cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to membrane packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells, so it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out membrane packing of individual cellular organelles. The set of Organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes and Golgi compartments with high specificity, while retaining the spectral resolution needed to detect biological changes in membrane packing. We show that ratiometric imaging with OTL can resolve membrane heterogeneity within organelles, as well as changes in membrane packing resulting from inhibition of lipid trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application to interrogating lipid dysregulation.
Collapse
Affiliation(s)
- Adrian M. Wong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
95
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
96
|
E Drigo RA, Habashy A, Acree C, Kim KY, Deerinck T, Patterson E, Lantier L, McGuinness O, Ellisman M. Mesoscale Metabolic Channeling Revealed by Multimodal Microscopy. RESEARCH SQUARE 2024:rs.3.rs-4096781. [PMID: 38699373 PMCID: PMC11065083 DOI: 10.21203/rs.3.rs-4096781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Metabolic homeostasis within cells and tissues requires engagement of catabolic and anabolic pathways consuming nutrients needed to generate energy to drive these and other subcellular processes. However, the current understanding of cell homeostasis and metabolism, including how cells utilize nutrients, comes largely from tissue and cell models analyzed after fractionation. These bulk strategies do not reveal the spatial characteristics of cell metabolism at the single cell level, and how these aspects relate to the location of cells and organelles within the complexity of the tissue they reside within. Here we pioneer the use of high-resolution electron and stable isotope microscopy (MIMS-EM) to quantitatively map the fate of nutrient-derived 13C atoms at subcellular scale. When combined with machine-learning image segmentation, our approach allows us to establish the cellular and organellar spatial pattern of glucose 13C flux in hepatocytes in situ. We applied network analysis algorithms to chart the landscape of organelle-organelle contact networks and identified subpopulations of mitochondria and lipid droplets that have distinct organelle interactions and 13C enrichment levels. In addition, we revealed a new relationship between the initiation of glycogenesis and proximity of lipid droplets. Our results establish MIMS-EM as a new tool for tracking and quantifying nutrient metabolism at the subcellular scale, and to identify the spatial channeling of nutrient-derived atoms in the context of organelle-organelle interactions in situ.
Collapse
|
97
|
Wu Q, Taki M, Tanaka Y, Kesherwani M, Phung QM, Enoki S, Okada Y, Tama F, Yamaguchi S. Stereochemistry-Dependent Labeling of Organelles with a Near-Infrared-Emissive Phosphorus-Bridged Rhodamine Dye in Live-Cell Imaging. Angew Chem Int Ed Engl 2024; 63:e202400711. [PMID: 38315771 DOI: 10.1002/anie.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The development of near-infrared (NIR) fluorophores that have both excellent chemical stability and photostability, as well as efficient cell permeability, is highly demanded. In this study, we present phospha-rhodamine (POR) dyes which display significantly improved performance for protein labeling. This is achieved by incorporating a 2-carboxy-3-benzothiophenyl group at the 9-position of the xanthene scaffold. The resulting cis and trans isomers were successfully isolated and structurally characterized using X-ray diffraction. The HaloTag ligand conjugates of the two isomers exhibited different staining abilities in live cells. While the cis isomer showed non-specific accumulation on the organelle membranes, the trans isomer selectively labeled the HaloTag-fused proteins, enabling the long-term imaging of cell division and the 5-color imaging of cell organelles. Molecular dynamics simulations of the HaloTag ligand conjugates within the lipid membrane suggested that the cis isomer is more prone to forming oligomers in the membrane. In contrast, the oligomerization of the trans isomer is effectively suppressed by its interaction with the lipid molecules. By taking advantage of the superior labeling performance of the trans isomer and its NIR-emissive properties, multi-color time-lapse super-resolution 3D imaging, namely super-resolution 5D-imaging, of the interconnected network between the endoplasmic reticulum and microtubules was achieved in living cells.
Collapse
Affiliation(s)
- Qian Wu
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
- Current address: State Key Laboratory of Medical Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshiki Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Manish Kesherwani
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Sawako Enoki
- Department of Physics, and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Yasushi Okada
- Department of Physics, and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Center for Computational Science, RIKEN, Kobe, 650-0047, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
98
|
Jorge GL, Kim D, Xu C, Cho SH, Su L, Xu D, Bartley LE, Stacey G, Thelen JJ. Unveiling orphan receptor-like kinases in plants: novel client discovery using high-confidence library predictions in the Kinase-Client (KiC) assay. FRONTIERS IN PLANT SCIENCE 2024; 15:1372361. [PMID: 38633461 PMCID: PMC11021772 DOI: 10.3389/fpls.2024.1372361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Plants are remarkable in their ability to adapt to changing environments, with receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting environmental cues into cellular responses. Despite extensive research on RLKs from the plant kingdom, the function and activity of many kinases, i.e., their substrates or "clients", remain uncharted. To validate a novel client prediction workflow and learn more about an important RLK, this study focuses on P2K1 (DORN1), which acts as a receptor for extracellular ATP (eATP), playing a crucial role in plant stress resistance and immunity. We designed a Kinase-Client (KiC) assay library of 225 synthetic peptides, incorporating previously identified P2K phosphorylated peptides and novel predictions from a deep-learning phosphorylation site prediction model (MUsite) and a trained hidden Markov model (HMM) based tool, HMMER. Screening the library against purified P2K1 cytosolic domain (CD), we identified 46 putative substrates, including 34 novel clients, 27 of which may be novel peptides, not previously identified experimentally. Gene Ontology (GO) analysis among phosphopeptide candidates revealed proteins associated with important biological processes in metabolism, structure development, and response to stress, as well as molecular functions of kinase activity, catalytic activity, and transferase activity. We offer selection criteria for efficient further in vivo experiments to confirm these discoveries. This approach not only expands our knowledge of P2K1's substrates and functions but also highlights effective prediction algorithms for identifying additional potential substrates. Overall, the results support use of the KiC assay as a valuable tool in unraveling the complexities of plant phosphorylation and provide a foundation for predicting the phosphorylation landscape of plant species based on peptide library results.
Collapse
Affiliation(s)
- Gabriel Lemes Jorge
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jay J. Thelen
- Division of Biochemistry, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
99
|
Hu L, Tang D, Qi B, Guo D, Wang Y, Geng J, Zhang X, Song L, Chang P, Chen W, Fu F, Li Y. Mfn2/Hsc70 Complex Mediates the Formation of Mitochondria-Lipid Droplets Membrane Contact and Regulates Myocardial Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307749. [PMID: 38311582 PMCID: PMC11005711 DOI: 10.1002/advs.202307749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Indexed: 02/06/2024]
Abstract
The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for β-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.
Collapse
Affiliation(s)
- Lang Hu
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Daishi Tang
- Digestive System DepartmentShaanxi Provincial Crops Hospital of Chinese People's Armed Police ForceXi'an710032China
| | - Bingchao Qi
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Dong Guo
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Ying Wang
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Jing Geng
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Xiaoliang Zhang
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Liqiang Song
- Department of RespirologyXijing HospitalAirforce Medical UniversityXi'an710032China
| | - Pan Chang
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Medical CollegeXi'an710032China
| | - Wensheng Chen
- Department of Cardiovascular SurgeryXi'an Gaoxin HospitalXi'an710032China
| | - Feng Fu
- Department of Physiology and PathophysiologyAirforce Medical UniversityXi'an710032China
| | - Yan Li
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| |
Collapse
|
100
|
Ovciarikova J, Shikha S, Lacombe A, Courjol F, McCrone R, Hussain W, Maclean A, Lemgruber L, Martins-Duarte ES, Gissot M, Sheiner L. Two ancient membrane pores mediate mitochondrial-nucleus membrane contact sites. J Cell Biol 2024; 223:e202304075. [PMID: 38456969 PMCID: PMC10923651 DOI: 10.1083/jcb.202304075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.
Collapse
Affiliation(s)
- Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Shikha Shikha
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Flavie Courjol
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Rosalind McCrone
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Wasim Hussain
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Andrew Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Erica S. Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, University of Lille, Lille, France
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|