51
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
52
|
Vallelonga V, Gandolfi F, Ficara F, Della Porta MG, Ghisletti S. Emerging Insights into Molecular Mechanisms of Inflammation in Myelodysplastic Syndromes. Biomedicines 2023; 11:2613. [PMID: 37892987 PMCID: PMC10603842 DOI: 10.3390/biomedicines11102613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation impacts human hematopoiesis across physiologic and pathologic conditions, as signals derived from the bone marrow microenvironment, such as pro-inflammatory cytokines and chemokines, have been shown to alter hematopoietic stem cell (HSCs) homeostasis. Dysregulated inflammation can skew HSC fate-related decisions, leading to aberrant hematopoiesis and potentially contributing to the pathogenesis of hematological disorders such as myelodysplastic syndromes (MDS). Recently, emerging studies have used single-cell sequencing and muti-omic approaches to investigate HSC cellular heterogeneity and gene expression in normal hematopoiesis as well as in myeloid malignancies. This review summarizes recent reports mechanistically dissecting the role of inflammatory signaling and innate immune response activation due to MDS progression. Furthermore, we highlight the growing importance of using multi-omic techniques, such as single-cell profiling and deconvolution methods, to unravel MDSs' heterogeneity. These approaches have provided valuable insights into the patterns of clonal evolution that drive MDS progression and have elucidated the impact of inflammation on the composition of the bone marrow immune microenvironment in MDS.
Collapse
Affiliation(s)
- Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| | - Francesca Ficara
- Milan Unit, CNR-IRGB, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Matteo Giovanni Della Porta
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, 20139 Milan, Italy
| |
Collapse
|
53
|
Athaya T, Ripan RC, Li X, Hu H. Multimodal deep learning approaches for single-cell multi-omics data integration. Brief Bioinform 2023; 24:bbad313. [PMID: 37651607 PMCID: PMC10516349 DOI: 10.1093/bib/bbad313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning. However, despite the proven success of deep learning in integrating multi-omics data and its better performance over classical computational methods, there has been no systematic study of its application to single-cell multi-omics data integration. To fill this gap, we conducted a literature review to explore the use of multimodal deep learning techniques in single-cell multi-omics data integration, taking into account recent studies from multiple perspectives. Specifically, we first summarized different modalities found in single-cell multi-omics data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep learning-based integration methods for single-cell multi-omics data according to data modality, deep learning architecture, fusion strategy, key tasks and downstream analysis. Finally, we provided insights into using these deep learning models to integrate multi-omics data and better understand single-cell biological mechanisms.
Collapse
Affiliation(s)
- Tasbiraha Athaya
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Rony Chowdhury Ripan
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| | - Xiaoman Li
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
54
|
Doty RT, Lausted CG, Munday AD, Yang Z, Yan X, Meng C, Tian Q, Abkowitz JL. The transcriptomic landscape of normal and ineffective erythropoiesis at single-cell resolution. Blood Adv 2023; 7:4848-4868. [PMID: 37352261 PMCID: PMC10469080 DOI: 10.1182/bloodadvances.2023010382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic and always reflect ineffective erythropoiesis yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA or MDS-5q. We defined an unhealthy (vs healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die express high levels of heme-responsive genes, including ribosomal protein and globin genes, whereas surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24% ± 12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of colony forming unit-erythroid, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent data sets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.
Collapse
Affiliation(s)
- Raymond T. Doty
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | - Adam D. Munday
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Zhantao Yang
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Qiang Tian
- Institute for Systems Biology, Seattle, WA
| | - Janis L. Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
55
|
Chen L, Pronk E, van Dijk C, Bian Y, Feyen J, van Tienhoven T, Yildirim M, Pisterzi P, de Jong MM, Bastidas A, Hoogenboezem RM, Wevers C, Bindels EM, Löwenberg B, Cupedo T, Sanders MA, Raaijmakers MH. A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML. Blood Cancer Discov 2023; 4:394-417. [PMID: 37470778 PMCID: PMC10472197 DOI: 10.1158/2643-3230.bcd-23-0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.
Collapse
Affiliation(s)
- Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Yujie Bian
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacqueline Feyen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tim van Tienhoven
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Meltem Yildirim
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Paola Pisterzi
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Madelon M.E. de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alejandro Bastidas
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Chiel Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | |
Collapse
|
56
|
Bigot T, Gabinaud E, Hannouche L, Sbarra V, Andersen E, Bastelica D, Falaise C, Bernot D, Ibrahim-Kosta M, Morange PE, Loosveld M, Saultier P, Payet-Bornet D, Alessi MC, Potier D, Poggi M. Single-cell analysis of megakaryopoiesis in peripheral CD34 + cells: insights into ETV6-related thrombocytopenia. J Thromb Haemost 2023; 21:2528-2544. [PMID: 37085035 DOI: 10.1016/j.jtha.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.
Collapse
Affiliation(s)
- Timothée Bigot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Elisa Gabinaud
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Elisa Andersen
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Denis Bernot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Marie Loosveld
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Paul Saultier
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | - Marie-Christine Alessi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France; AP-HM, CHU Timone, CRPP, Marseille, France
| | | | - Marjorie Poggi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France.
| |
Collapse
|
57
|
Cheong JG, Ravishankar A, Sharma S, Parkhurst CN, Grassmann SA, Wingert CK, Laurent P, Ma S, Paddock L, Miranda IC, Karakaslar EO, Nehar-Belaid D, Thibodeau A, Bale MJ, Kartha VK, Yee JK, Mays MY, Jiang C, Daman AW, Martinez de Paz A, Ahimovic D, Ramos V, Lercher A, Nielsen E, Alvarez-Mulett S, Zheng L, Earl A, Yallowitz A, Robbins L, LaFond E, Weidman KL, Racine-Brzostek S, Yang HS, Price DR, Leyre L, Rendeiro AF, Ravichandran H, Kim J, Borczuk AC, Rice CM, Jones RB, Schenck EJ, Kaner RJ, Chadburn A, Zhao Z, Pascual V, Elemento O, Schwartz RE, Buenrostro JD, Niec RE, Barrat FJ, Lief L, Sun JC, Ucar D, Josefowicz SZ. Epigenetic memory of coronavirus infection in innate immune cells and their progenitors. Cell 2023; 186:3882-3902.e24. [PMID: 37597510 PMCID: PMC10638861 DOI: 10.1016/j.cell.2023.07.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/21/2023]
Abstract
Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.
Collapse
Affiliation(s)
- Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Siddhartha Sharma
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Simon A Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claire K Wingert
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paoline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
| | - Sai Ma
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Lucinda Paddock
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Emin Onur Karakaslar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael J Bale
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vinay K Kartha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Jim K Yee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Minh Y Mays
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chenyang Jiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexia Martinez de Paz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dughan Ahimovic
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victor Ramos
- The Rockefeller University, New York, NY 10065, USA
| | | | - Erik Nielsen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Ling Zheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew Earl
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Alisha Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lexi Robbins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Karissa L Weidman
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sabrina Racine-Brzostek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David R Price
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Louise Leyre
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - André F Rendeiro
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Junbum Kim
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Northwell Health, Greenvale, NY 11548, USA
| | | | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Edward J Schenck
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia Pascual
- Department of Pediatrics, Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jason D Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02142, USA
| | - Rachel E Niec
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; The Rockefeller University, New York, NY 10065, USA
| | - Franck J Barrat
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA; HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Lief
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
58
|
Favaro P, Glass DR, Borges L, Baskar R, Reynolds W, Ho D, Bruce T, Tebaykin D, Scanlon VM, Shestopalov I, Bendall SC. Unravelling human hematopoietic progenitor cell diversity through association with intrinsic regulatory factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555623. [PMID: 37693547 PMCID: PMC10491219 DOI: 10.1101/2023.08.30.555623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is an essential therapy for hematological conditions, but finer definitions of human HSPC subsets with associated function could enable better tuning of grafts and more routine, lower-risk application. To deeply phenotype HSPCs, following a screen of 328 antigens, we quantified 41 surface proteins and functional regulators on millions of CD34+ and CD34- cells, spanning four primary human hematopoietic tissues: bone marrow, mobilized peripheral blood, cord blood, and fetal liver. We propose more granular definitions of HSPC subsets and provide new, detailed differentiation trajectories of erythroid and myeloid lineages. These aspects of our revised human hematopoietic model were validated with corresponding epigenetic analysis and in vitro clonal differentiation assays. Overall, we demonstrate the utility of using molecular regulators as surrogates for cellular identity and functional potential, providing a framework for description, prospective isolation, and cross-tissue comparison of HSPCs in humans.
Collapse
Affiliation(s)
- Patricia Favaro
- Department of Pathology, Stanford University
- These authors contributed equally
| | - David R. Glass
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Present address: Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- These authors contributed equally
| | - Luciene Borges
- Department of Pathology, Stanford University
- Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
- These authors contributed equally
| | - Reema Baskar
- Department of Pathology, Stanford University
- Present address: Genome Institute of Singapore
| | | | - Daniel Ho
- Department of Pathology, Stanford University
| | | | | | - Vanessa M. Scanlon
- Department of Laboratory Medicine, Yale School of Medicine
- Present address: Center for Regenerative Medicine and Skeletal Biology, University of Connecticut Health
| | | | - Sean C. Bendall
- Department of Pathology, Stanford University
- Immunology Graduate Program, Stanford University
- Lead author
| |
Collapse
|
59
|
Wu Z, Gao S, Gao Q, Patel BA, Groarke EM, Feng X, Manley AL, Li H, Ospina Cardona D, Kajigaya S, Alemu L, Quinones Raffo D, Ombrello AK, Ferrada MA, Grayson PC, Calvo KR, Kastner DL, Beck DB, Young NS. Early activation of inflammatory pathways in UBA1-mutated hematopoietic stem and progenitor cells in VEXAS. Cell Rep Med 2023; 4:101160. [PMID: 37586319 PMCID: PMC10439277 DOI: 10.1016/j.xcrm.2023.101160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/18/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe autoinflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1) gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activation of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is prominent in UBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are increased cytotoxicity and IFN-γ signaling in T cells. In VEXAS syndrome, both aberrant inflammation and myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.
Collapse
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shouguo Gao
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingyan Gao
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ash Lee Manley
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haoran Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniela Ospina Cardona
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcela A Ferrada
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
60
|
Kana O, Nault R, Filipovic D, Marri D, Zacharewski T, Bhattacharya S. Generative modeling of single-cell gene expression for dose-dependent chemical perturbations. PATTERNS (NEW YORK, N.Y.) 2023; 4:100817. [PMID: 37602218 PMCID: PMC10436058 DOI: 10.1016/j.patter.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Single-cell sequencing reveals the heterogeneity of cellular response to chemical perturbations. However, testing all relevant combinations of cell types, chemicals, and doses is a daunting task. A deep generative learning formalism called variational autoencoders (VAEs) has been effective in predicting single-cell gene expression perturbations for single doses. Here, we introduce single-cell variational inference of dose-response (scVIDR), a VAE-based model that predicts both single-dose and multiple-dose cellular responses better than existing models. We show that scVIDR can predict dose-dependent gene expression across mouse hepatocytes, human blood cells, and cancer cell lines. We biologically interpret the latent space of scVIDR using a regression model and use scVIDR to order individual cells based on their sensitivity to chemical perturbation by assigning each cell a "pseudo-dose" value. We envision that scVIDR can help reduce the need for repeated animal testing across tissues, chemicals, and doses.
Collapse
Affiliation(s)
- Omar Kana
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rance Nault
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology Michigan State University, Michigan State University, East Lansing, MI 48824, USA
| | - David Filipovic
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Marri
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tim Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology Michigan State University, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
61
|
Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood 2023; 142:519-532. [PMID: 37339578 PMCID: PMC10447622 DOI: 10.1182/blood.2022017934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 06/22/2023] Open
Abstract
Developmental hematopoiesis consists of multiple, partially overlapping hematopoietic waves that generate the differentiated blood cells required for embryonic development while establishing a pool of undifferentiated hematopoietic stem cells (HSCs) for postnatal life. This multilayered design in which active hematopoiesis migrates through diverse extra and intraembryonic tissues has made it difficult to define a roadmap for generating HSCs vs non-self-renewing progenitors, especially in humans. Recent single-cell studies have helped in identifying the rare human HSCs at stages when functional assays are unsuitable for distinguishing them from progenitors. This approach has made it possible to track the origin of human HSCs to the unique type of arterial endothelium in the aorta-gonad-mesonephros region and document novel benchmarks for HSC migration and maturation in the conceptus. These studies have delivered new insights into the intricate process of HSC generation and provided tools to inform the in vitro efforts to replicate the physiological developmental journey from pluripotent stem cells via distinct mesodermal and endothelial intermediates to HSCs.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Hanna K. A. Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
62
|
Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023; 123:1-17. [PMID: 37172755 PMCID: PMC10330572 DOI: 10.1016/j.exphem.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.
Collapse
Affiliation(s)
- Natascha Schippel
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.
| |
Collapse
|
63
|
Söderlund S, Boey D, van Midden W, Kjellander M, Ax K, Qian H, Dahlin JS, Ungerstedt J. Proteomic and transcriptomic screening demonstrates increased mast cell-derived CCL23 in systemic mastocytosis. J Allergy Clin Immunol 2023; 152:205-213. [PMID: 36813186 DOI: 10.1016/j.jaci.2023.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a heterogeneous group of mast cell-driven diseases diagnosed by bone marrow sampling. However, there are a limited number of available blood disease biomarkers. OBJECTIVE Our aim was to identify mast cell-derived proteins that could potentially serve as blood biomarkers for indolent and advanced forms of SM. METHODS We performed a plasma proteomics screening coupled with single-cell transcriptomic analysis in SM patients and healthy subjects. RESULTS Plasma proteomics screening identified 19 proteins upregulated in indolent disease compared to healthy, and 16 proteins in advanced disease compared to indolent. Among these, 5 proteins, CCL19, CCL23, CXCL13, IL-10, and IL-12Rβ1, were higher in indolent relative to healthy and in advanced disease compared to indolent. Single-cell RNA sequencing demonstrated that CCL23, IL-10, and IL-6 were selectively produced by mast cells. Notably, plasma CCL23 levels correlated positively with known markers of SM disease severity, namely tryptase levels, percentage bone marrow mast cell infiltration, and IL-6. CONCLUSION CCL23 is produced predominantly by mast cells in SM, and CCL23 plasma levels are associated with disease severity, correlating positively with established markers of disease burden, thus suggesting that CCL23 is a specific SM biomarker. In addition, the combination of CCL19, CCL23, CXCL13, IL-10, and IL-12Rβ1 may be useful for defining disease stage.
Collapse
Affiliation(s)
- Stina Söderlund
- Section of Hematology, Uppsala University Hospital, Uppsala, Sweden; Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Daryl Boey
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Wouter van Midden
- Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matilda Kjellander
- Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kajsa Ax
- Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Joakim S Dahlin
- Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine (HERM), NEO, Department for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; ME Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
64
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-Transplant Administration of G-CSF Impedes Engraftment of Gene Edited Human Hematopoietic Stem Cells by Exacerbating the p53-Mediated DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547089. [PMID: 37425704 PMCID: PMC10327043 DOI: 10.1101/2023.06.29.547089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.
Collapse
|
65
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and Integration of Bursty Transcriptional Dynamics for Complex Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544828. [PMID: 37398022 PMCID: PMC10312759 DOI: 10.1101/2023.06.13.544828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-seq data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed a novel approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our novel use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
| | | | - Samantha J Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, IL
- Pritzker School of Molecular Engineering, University of Chicago, IL
- Department of Medicine, University of Chicago, IL
- Committee on Immunology, University of Chicago, IL
| |
Collapse
|
66
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
67
|
Crawford LB. Hematopoietic stem cells and betaherpesvirus latency. Front Cell Infect Microbiol 2023; 13:1189805. [PMID: 37346032 PMCID: PMC10279960 DOI: 10.3389/fcimb.2023.1189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
68
|
Kim Y, Greenleaf WJ, Bendall SC. Systems biology approaches to unravel lymphocyte subsets and function. Curr Opin Immunol 2023; 82:102323. [PMID: 37028221 PMCID: PMC10330158 DOI: 10.1016/j.coi.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Single-cell technologies have revealed the extensive heterogeneity and complexity of the immune system. Systems biology approaches in immunology have taken advantage of the high-parameter, high-throughput data and analyzed immune cell types in a 'bottom-up' data-driven method. This approach has discovered previously unrecognized cell types and functions. Especially for human immunology, in which experimental manipulations are challenging, systems approach has become a successful means to investigate physiologically relevant contexts. This review focuses on the recent findings in lymphocyte biology, from their development, differentiation into subsets, and heterogeneity in their functions, enabled by these systems approaches. Furthermore, we review examples of the application of findings from systems approach studies and discuss how now to leave the rich dataset in the curse of high dimensionality.
Collapse
Affiliation(s)
- YeEun Kim
- Immunology Graduate Program, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
69
|
Crees ZD, Rettig MP, DiPersio JF. Innovations in hematopoietic stem-cell mobilization: a review of the novel CXCR4 inhibitor motixafortide. Ther Adv Hematol 2023; 14:20406207231174304. [PMID: 37250913 PMCID: PMC10214082 DOI: 10.1177/20406207231174304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Hematopoietic stem-cell transplantation (HCT) and stem-cell-based gene therapies rely on the ability to collect sufficient CD34+ hematopoietic stem and progenitor cells (HSPCs), typically via peripheral blood mobilization. Commonly used HSPC mobilization regimens include single-agent granulocyte colony-stimulating factor (G-CSF), plerixafor, chemotherapy, or a combination of these agents. These regimens, however, frequently require multiple days of injections and leukapheresis procedures to collect adequate HSPCs for HCT (minimum = >2 × 106 CD34+ cells/kg; optimal = 5-6 × 106 CD34+ cells/kg). In addition, these regimens frequently yield suboptimal CD34+ HSPC numbers for HSPC-based gene-edited therapies, given the significantly higher HSPC number needed for successful gene-editing and manufacturing. Meanwhile, G-CSF is associated with common adverse events such as bone pain as well as an increased risk of rare but potentially life-threatening splenic rupture. Moreover, G-CSF is unsafe in patients with sickle-cell disease, a key patient population that may benefit from autologous HSPC-based gene-edited therapies, where it has been associated with unacceptable rates of serious vaso-occlusive and thrombotic events. Motixafortide is a novel CXCR4 inhibitor with extended in vivo activity (>48 h) that has been shown in preclinical and clinical trials to rapidly mobilize robust numbers of HSPCs in preparation for HCT, while preferentially mobilizing increased numbers of more primitive HSPCs by immunophenotyping and single-cell RNA expression profiling. In this review, we present a history of stem-cell mobilization and update of recent innovations in novel mobilization strategies with a specific focus on the development of motixafortide, a long-acting CXCR4 inhibitor, as a novel HSPC mobilizing agent.
Collapse
Affiliation(s)
- Zachary D. Crees
- Division of Oncology, School of Medicine,
Washington University in St. Louis, 660 S. Euclid Avenue, Campus Box 8007,
St. Louis, MO 63131, USA
| | - Michael P. Rettig
- Division of Oncology, School of Medicine,
Washington University in St. Louis, St. Louis, MO, USA
| | - John F. DiPersio
- Division of Oncology, School of Medicine,
Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
70
|
Miyake K, Ito J, Nakabayashi J, Shichino S, Ishiwata K, Karasuyama H. Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils. Nat Commun 2023; 14:2694. [PMID: 37202383 DOI: 10.1038/s41467-023-38356-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Basophils are the rarest granulocytes and are recognized as critical cells for type 2 immune responses. However, their differentiation pathway remains to be fully elucidated. Here, we assess the ontogenetic trajectory of basophils by single-cell RNA sequence analysis. Combined with flow cytometric and functional analyses, we identify c-Kit-CLEC12Ahi pre-basophils located downstream of pre-basophil and mast cell progenitors (pre-BMPs) and upstream of CLEC12Alo mature basophils. The transcriptomic analysis predicts that the pre-basophil population includes previously-defined basophil progenitor (BaP)-like cells in terms of gene expression profile. Pre-basophils are highly proliferative and respond better to non-IgE stimuli but less to antigen plus IgE stimulation than do mature basophils. Although pre-basophils usually remain in the bone marrow, they emerge in helminth-infected tissues, probably through IL-3-mediated inhibition of their retention in the bone marrow. Thus, the present study identifies pre-basophils that bridge the gap between pre-BMPs and mature basophils during basophil ontogeny.
Collapse
Grants
- 20K16277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K007115 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19H01025 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02845 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21gm6210025 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Junya Ito
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Nakabayashi
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
71
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
72
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
73
|
Urbanus J, Cosgrove J, Beltman JB, Elhanati Y, Moral RA, Conrad C, van Heijst JW, Tubeuf E, Velds A, Kok L, Merle C, Magnusson JP, Guyonnet L, Frisén J, Fre S, Walczak AM, Mora T, Jacobs H, Schumacher TN, Perié L. DRAG in situ barcoding reveals an increased number of HSPCs contributing to myelopoiesis with age. Nat Commun 2023; 14:2184. [PMID: 37069150 PMCID: PMC10110593 DOI: 10.1038/s41467-023-37167-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Ageing is associated with changes in the cellular composition of the immune system. During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune cells are thought to decline in their regenerative capacity. However, HSPC function has been mostly assessed using transplantation assays, and it remains unclear how HSPCs age in the native bone marrow niche. To address this issue, we present an in situ single cell lineage tracing technology to quantify the clonal composition and cell production of single cells in their native niche. Our results demonstrate that a pool of HSPCs with unequal output maintains myelopoiesis through overlapping waves of cell production throughout adult life. During ageing, the increased frequency of myeloid cells is explained by greater numbers of HSPCs contributing to myelopoiesis rather than the increased myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remains constant over time despite accumulating significant transcriptomic changes throughout adulthood. Together, these results show that, unlike emergency myelopoiesis post-transplantation, aged HSPCs in their native microenvironment do not functionally decline in their regenerative capacity.
Collapse
Affiliation(s)
- Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Joost B Beltman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland
| | - Cecile Conrad
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Jeroen W van Heijst
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilie Tubeuf
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Arno Velds
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lianne Kok
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Jens P Magnusson
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Léa Guyonnet
- Cytometry Platform, Institut Curie, 75005, Paris, France
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| |
Collapse
|
74
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
75
|
Crees ZD, Rettig MP, Jayasinghe RG, Stockerl-Goldstein K, Larson SM, Arpad I, Milone GA, Martino M, Stiff P, Sborov D, Pereira D, Micallef I, Moreno-Jiménez G, Mikala G, Coronel MLP, Holtick U, Hiemenz J, Qazilbash MH, Hardy N, Latif T, García-Cadenas I, Vainstein-Haras A, Sorani E, Gliko-Kabir I, Goldstein I, Ickowicz D, Shemesh-Darvish L, Kadosh S, Gao F, Schroeder MA, Vij R, DiPersio JF. Motixafortide and G-CSF to mobilize hematopoietic stem cells for autologous transplantation in multiple myeloma: a randomized phase 3 trial. Nat Med 2023; 29:869-879. [PMID: 37069359 PMCID: PMC10115633 DOI: 10.1038/s41591-023-02273-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 04/19/2023]
Abstract
Autologous hematopoietic stem cell transplantation (ASCT) improves survival in multiple myeloma (MM). However, many individuals are unable to collect optimal CD34+ hematopoietic stem and progenitor cell (HSPC) numbers with granulocyte colony-stimulating factor (G-CSF) mobilization. Motixafortide is a novel cyclic-peptide CXCR4 inhibitor with extended in vivo activity. The GENESIS trial was a prospective, phase 3, double-blind, placebo-controlled, multicenter study with the objective of assessing the superiority of motixafortide + G-CSF over placebo + G-CSF to mobilize HSPCs for ASCT in MM. The primary endpoint was the proportion of patients collecting ≥6 × 106 CD34+ cells kg-1 within two apheresis procedures; the secondary endpoint was to achieve this goal in one apheresis. A total of 122 adult patients with MM undergoing ASCT were enrolled at 18 sites across five countries and randomized (2:1) to motixafortide + G-CSF or placebo + G-CSF for HSPC mobilization. Motixafortide + G-CSF enabled 92.5% to successfully meet the primary endpoint versus 26.2% with placebo + G-CSF (odds ratio (OR) 53.3, 95% confidence interval (CI) 14.12-201.33, P < 0.0001). Motixafortide + G-CSF also enabled 88.8% to meet the secondary endpoint versus 9.5% with placebo + G-CSF (OR 118.0, 95% CI 25.36-549.35, P < 0.0001). Motixafortide + G-CSF was safe and well tolerated, with the most common treatment-emergent adverse events observed being transient, grade 1/2 injection site reactions (pain, 50%; erythema, 27.5%; pruritis, 21.3%). In conclusion, motixafortide + G-CSF mobilized significantly greater CD34+ HSPC numbers within two apheresis procedures versus placebo + G-CSF while preferentially mobilizing increased numbers of immunophenotypically and transcriptionally primitive HSPCs. Trial Registration: ClinicalTrials.gov , NCT03246529.
Collapse
Affiliation(s)
- Zachary D Crees
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Michael P Rettig
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Reyka G Jayasinghe
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Sarah M Larson
- Division of Hematology-Oncology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Illes Arpad
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Giulio A Milone
- Unità di Trapianto Emopoietico, Azienda Ospedaliero Universitaria 'Policlinico-San Marco', Catania, Italy
| | - Massimo Martino
- Unit of Stem Cell Transplantation and Cellular Therapies, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | | | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Denise Pereira
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | | | | | - Gabor Mikala
- Center Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | | | - Udo Holtick
- Department I of Internal Medicine, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - John Hiemenz
- Division of Hematology-Oncology, University of Florida, Gainesville, FL, USA
| | - Muzaffar H Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Hardy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tahir Latif
- Division of Hematology-Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Irene García-Cadenas
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | - Feng Gao
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mark A Schroeder
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ravi Vij
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John F DiPersio
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
76
|
Shevyrev D, Tereshchenko V, Berezina TN, Rybtsov S. Hematopoietic Stem Cells and the Immune System in Development and Aging. Int J Mol Sci 2023; 24:ijms24065862. [PMID: 36982935 PMCID: PMC10056303 DOI: 10.3390/ijms24065862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Hematopoietic stem cells (HSCs) support haematopoiesis throughout life and give rise to the whole variety of cells of the immune system. Developing in the early embryo, passing through the precursor stage, and maturing into the first HSCs, they undergo a fairly large number of divisions while maintaining a high regenerative potential due to high repair activity. This potential is greatly reduced in adult HSCs. They go into a state of dormancy and anaerobic metabolism to maintain their stemness throughout life. However, with age, changes occur in the pool of HSCs that negatively affect haematopoiesis and the effectiveness of immunity. Niche aging and accumulation of mutations with age reduces the ability of HSCs to self-renew and changes their differentiation potential. This is accompanied by a decrease in clonal diversity and a disturbance of lymphopoiesis (decrease in the formation of naive T- and B-cells) and the predominance of myeloid haematopoiesis. Aging also affects mature cells, regardless of HSC, therefore, phagocytic activity and the intensity of the oxidative burst decrease, and the efficiency of processing and presentation of antigens by myeloid cells is impaired. Aging cells of innate and adaptive immunity produce factors that form a chronic inflammatory background. All these processes have a serious negative impact on the protective properties of the immune system, increasing inflammation, the risk of developing autoimmune, oncological, and cardiovascular diseases with age. Understanding the mechanisms of reducing the regenerative potential in a comparative analysis of embryonic and aging HSCs, the features of inflammatory aging will allow us to get closer to deciphering the programs for the development, aging, regeneration and rejuvenation of HSCs and the immune system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Valeriy Tereshchenko
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
| | - Tatiana N Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, Sirius, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
77
|
Huo Y, Wu L, Pang A, Li Q, Hong F, Zhu C, Yang Z, Dai W, Zheng Y, Meng Q, Sun J, Ma S, Hu L, Zhu P, Dong F, Gao X, Jiang E, Hao S, Cheng T. Single-cell dissection of human hematopoietic reconstitution after allogeneic hematopoietic stem cell transplantation. Sci Immunol 2023; 8:eabn6429. [PMID: 36930730 DOI: 10.1126/sciimmunol.abn6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Hematopoietic stem cell transplantation is an effective regenerative therapy for many malignant, inherited, or autoimmune diseases. However, our understanding of reconstituted hematopoiesis in transplant patients remains limited. Here, we uncover the reconstitution dynamics of human allogeneic hematopoietic stem and progenitor cells (HSPCs) at single-cell resolution after transplantation. Transplanted HSPCs underwent rapid and measurable changes during the first 30 days after transplantation, characterized by a strong proliferative response on the first day. Transcriptomic analysis of HSPCs enabled us to observe that immunoregulatory neutrophil progenitors expressing high levels of the S100A gene family were enriched in granulocyte colony-stimulating factor-mobilized peripheral blood stem cells. Transplant recipients who developed acute graft-versus-host disease (aGVHD) infused fewer S100Ahigh immunoregulatory neutrophil progenitors, immunophenotyped as Lin-CD34+CD66b+CD177+, than those who did not develop aGVHD. Therefore, our study provides insights into the regenerative process of transplanted HSPCs in human patients and identifies a potential criterion for identifying patients at high risk for developing aGVHD early after transplant.
Collapse
Affiliation(s)
- Yingying Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Linjie Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Fang Hong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Zining Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Weiqian Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qianqian Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
78
|
Villegas-Ruíz V, Medina-Vera I, Arellano-Perdomo P, Castillo-Villanueva A, Galván-Diaz CA, Paredes-Aguilera R, Rivera-Luna R, Juárez-Méndez S. Low Expression of BRCA1 as a Potential Relapse Predictor in B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:e167-e173. [PMID: 36730467 DOI: 10.1097/mph.0000000000002595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 02/04/2023]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood hematological malignancy worldwide. Treatment outcomes have improved dramatically in recent years; despite this, relapse is still a problem, and the potential molecular explanation for this remains an important field of study. We performed microarray and single-cell RNA-Seq data mining, and we selected significant data with a P -value<0.05. We validated BRCA1 gene expression by means of quantitative (reverse transcription-polymerase chain reaction.) We performed statistical analysis and considered a P -value<0.05 significant. We identified the overexpression of breast cancer 1, early onset (BRCA1; P -value=2.52 -134 ), by means of microarray analysis. Moreover, the normal distribution of BRCA1 expression in healthy bone marrow. In addition, we confirmed the increases in BRCA1 expression using real-time (reverse transcription-polymerase chain reaction and determined that it was significantly reduced in patients with relapse ( P -values=0.026). Finally, we identified that the expression of the BRCA1 gene could predict early relapse ( P -values=0.01). We determined that low expression of BRCA1 was associated with B-cell acute lymphoblastic leukemia relapse and could be a potential molecular prognostic marker.
Collapse
|
79
|
Li C, Virgilio MC, Collins KL, Welch JD. Multi-omic single-cell velocity models epigenome-transcriptome interactions and improves cell fate prediction. Nat Biotechnol 2023; 41:387-398. [PMID: 36229609 PMCID: PMC10246490 DOI: 10.1038/s41587-022-01476-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/16/2022] [Indexed: 12/13/2022]
Abstract
Multi-omic single-cell datasets, in which multiple molecular modalities are profiled within the same cell, offer an opportunity to understand the temporal relationship between epigenome and transcriptome. To realize this potential, we developed MultiVelo, a differential equation model of gene expression that extends the RNA velocity framework to incorporate epigenomic data. MultiVelo uses a probabilistic latent variable model to estimate the switch time and rate parameters of chromatin accessibility and gene expression and improves the accuracy of cell fate prediction compared to velocity estimates from RNA only. Application to multi-omic single-cell datasets from brain, skin and blood cells reveals two distinct classes of genes distinguished by whether chromatin closes before or after transcription ceases. We also find four types of cell states: two states in which epigenome and transcriptome are coupled and two distinct decoupled states. Finally, we identify time lags between transcription factor expression and binding site accessibility and between disease-associated SNP accessibility and expression of the linked genes. MultiVelo is available on PyPI, Bioconda and GitHub ( https://github.com/welch-lab/MultiVelo ).
Collapse
Affiliation(s)
- Chen Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Maria C Virgilio
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
80
|
Yang LX, Zhang CT, Yang MY, Zhang XH, Liu HC, Luo CH, Jiang Y, Wang ZM, Yang ZY, Shi ZP, Yang YC, Wei RQ, Zhou L, Mi J, Zhou AW, Yao ZR, Xia L, Yan JS, Lu Y. C1Q labels a highly aggressive macrophage-like leukemia population indicating extramedullary infiltration and relapse. Blood 2023; 141:766-786. [PMID: 36322939 PMCID: PMC10651790 DOI: 10.1182/blood.2022017046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor β1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.
Collapse
Affiliation(s)
- Li-Xue Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Tao Zhang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong-Chen Liu
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chen-Hui Luo
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jiang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhang-Man Wang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhong-Yin Yang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao-Peng Shi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Ci Yang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ruo-Qu Wei
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Mi
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Wu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Rong Yao
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Basic Medical Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Song Yan
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
81
|
Clauss B, Lu M. A quantitative evaluation of topological motifs and their coupling in gene circuit state distributions. iScience 2023; 26:106029. [PMID: 36824273 PMCID: PMC9941213 DOI: 10.1016/j.isci.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the major challenges in biology is to understand how gene interactions collaborate to determine overall functions of biological systems. Here, we present a new computational framework that enables systematic, high-throughput, and quantitative evaluation of how small transcriptional regulatory circuit motifs, and their coupling, contribute to functions of a dynamical biological system. We illustrate how this approach can be applied to identify four-node gene circuits, circuit motifs, and motif coupling responsible for various gene expression state distributions, including those derived from single-cell RNA sequencing data. We also identify seven major classes of four-node circuits from clustering analysis of state distributions. The method is applied to establish phenomenological models of gene circuits driving human neuron differentiation, revealing important biologically relevant regulatory interactions. Our study will shed light on a better understanding of gene regulatory mechanisms in creating and maintaining cellular states.
Collapse
Affiliation(s)
- Benjamin Clauss
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA,Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA,Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA,Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA,Corresponding author
| |
Collapse
|
82
|
Ouyang JF, Chothani S, Rackham OJL. Deep learning models will shape the future of stem cell research. Stem Cell Reports 2023; 18:6-12. [PMID: 36630908 PMCID: PMC9860061 DOI: 10.1016/j.stemcr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2023] Open
Abstract
Our ability to understand and control stem cell biology is being augmented by developments on two fronts, our ability to collect more data describing cell state and our capability to comprehend these data using deep learning models. Here we consider the impact deep learning will have in the future of stem cell research. We explore the importance of generating data suitable for these methods, the requirement for close collaboration between experimental and computational researchers, and the challenges we face to do this fairly and effectively. Achieving this will ensure that the resulting deep learning models are biologically meaningful and computationally tractable.
Collapse
Affiliation(s)
- John F Ouyang
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - Sonia Chothani
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore
| | - Owen J L Rackham
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Singapore, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK; The Alan Turing Institute, The British Library, London, UK.
| |
Collapse
|
83
|
Dong G, Xu X, Li Y, Ouyang W, Zhao W, Gu Y, Li J, Liu T, Zeng X, Zou H, Wang S, Chen Y, Liu S, Sun H, Liu C. Stemness-related genes revealed by single-cell profiling of naïve and stimulated human CD34 + cells from CB and mPB. Clin Transl Med 2023; 13:e1175. [PMID: 36683248 PMCID: PMC9868212 DOI: 10.1002/ctm2.1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) from different sources show varied repopulating capacity, and HSCs lose their stemness after long-time ex vivo culture. A deep understanding of these phenomena may provide helpful insights for HSCs. METHODS Here, we applied single-cell RNA-seq (scRNA-seq) to analyse the naïve and stimulated human CD34+ cells from cord blood (CB) and mobilised peripheral blood (mPB). RESULTS We collected over 16 000 high-quality single-cell data to construct a comprehensive inference map and characterised the HSCs under a quiescent state on the hierarchy top. Then, we compared HSCs in CB with those in mPB and HSCs of naïve samples to those of cultured samples, and identified stemness-related genes (SRGs) associated with cell source (CS-SRGs) and culture time (CT-SRGs), respectively. Interestingly, CS-SRGs and CT-SRGs share genes enriched in the signalling pathways such as mRNA catabolic process, translational initiation, ribonucleoprotein complex biogenesis and cotranslational protein targeting to membrane, suggesting dynamic protein translation and processing may be a common requirement for stemness maintenance. Meanwhile, CT-SRGs are enriched in pathways involved in glucocorticoid and corticosteroid response that affect HSCs homing and engraftment. In contrast, CS-SRGs specifically contain genes related to purine and ATP metabolic process, which is crucial for HSC homeostasis in the stress settings. Particularly, when CT-SRGs are used as reference genes for the construction of the development trajectory of CD34+ cells, lymphoid and myeloid lineages are clearly separated after HSCs/MPPs. Finally, we presented an application through a small-scale drug screening using Connectivity Map (CMap) against CT-SRGs. A small molecule, cucurbitacin I, was found to efficiently expand HSCs ex vivo while maintaining its stemness. CONCLUSIONS Our findings provide new perspectives for understanding HSCs, and the strategy to identify candidate molecules through SRGs may be applicable to study other stem cells.
Collapse
Affiliation(s)
- Guoyi Dong
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Xiaojing Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Yue Li
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Wenjie Ouyang
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Weihua Zhao
- Shenzhen Second People's HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Ying Gu
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Jie Li
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Tianbin Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Xinru Zeng
- China National GeneBankBGI‐ShenzhenShenzhen518120China
| | - Huilin Zou
- China National GeneBankBGI‐ShenzhenShenzhen518120China
| | - Shuguang Wang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yue Chen
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| | - Sixi Liu
- Department of Hematology and OncologyShenzhen Children's HospitalShenzhenChina
| | - Hai‐Xi Sun
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐BeijingBeijing102601China
| | - Chao Liu
- China National GeneBankBGI‐ShenzhenShenzhen518120China
- BGI‐ShenzhenShenzhen518083China
| |
Collapse
|
84
|
Integrated single-cell transcriptome analysis of CD34 + enriched leukemic stem cells revealed intra- and inter-patient transcriptional heterogeneity in pediatric acute myeloid leukemia. Ann Hematol 2023; 102:73-87. [PMID: 36527458 DOI: 10.1007/s00277-022-05021-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
To gain insights into the idiosyncrasies of CD34 + enriched leukemic stem cells, we investigated the nature and extent of transcriptional heterogeneity by single-cell sequencing in pediatric AML. Whole transcriptome analysis of 28,029 AML single cells was performed using the nanowell cartridge-based barcoding technology. Integrated transcriptional analysis identified unique leukemic stem cell clusters of each patient and intra-patient heterogeneity was revealed by multiple LSC-enriched clusters differing in their cell cycle processes and BCL2 expression. All LSC-enriched clusters exhibited gene expression profile of dormancy and self-renewal. Upregulation of genes involved in non-coding RNA processing and ribonucleoprotein assembly were observed in LSC-enriched clusters relative to HSC. The genes involved in regulation of apoptotic processes, response to cytokine stimulus, and negative regulation of transcription were upregulated in LSC-enriched clusters as compared to the blasts. Validation of top altered genes in LSC-enriched clusters confirmed upregulation of TCF7L2, JUP, ARHGAP25, LPAR6, and PRDX1 genes, and serine/threonine kinases (STK24, STK26). Upregulation of LPAR6 showed trend towards MRD positive status (Odds ratio = 0.126; 95% CI = 0.0144-1.10; p = 0.067) and increased expression of STK26 significantly correlated with higher RFS (HR = 0.231; 95% CI = 0.0506-1.052; p = 0.04). Our findings addressed the inter- and intra-patient diversity within AML LSC and potential signaling and chemoresistance-associated targets that warrant investigation in larger cohort that may guide precision medicine in the near future.
Collapse
|
85
|
Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M, Sakk V, Mularoni L, Mallm JP, Plass M, Zheng Y, Geiger H, Florian MC. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. NPJ Regen Med 2022; 7:78. [PMID: 36581635 PMCID: PMC9800381 DOI: 10.1038/s41536-022-00275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.
Collapse
Affiliation(s)
- Sara Montserrat-Vazquez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Noelle J. Ali
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Francesca Matteini
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Lozano
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Tu Zhaowei
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Eva Mejia-Ramirez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gina Marka
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karin Soller
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Loris Mularoni
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Mireya Plass
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain ,grid.417656.7Gene Regulation of Cell Identity Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Yi Zheng
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hartmut Geiger
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M. Carolina Florian
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
86
|
Single cell multi-omic reference atlases of non-human primate immune tissues reveals CD102 as a biomarker for long-lived plasma cells. Commun Biol 2022; 5:1399. [PMID: 36543997 PMCID: PMC9770566 DOI: 10.1038/s42003-022-04216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
In response to infection or immunization, antibodies are produced that provide protection against re-exposure with the same pathogen. These antibodies can persist at high titers for decades and are maintained by bone marrow-resident long-lived plasma cells (LLPC). However, the durability of antibody responses to immunization varies amongst vaccines. It is unknown what factors contribute to the differential longevity of serum antibody responses and whether heterogeneity in LLPC contributes to this phenomenon. While LLPC differentiation has been studied extensively in mice, little is known about this population in humans or non-human primates (NHP). Here, we use multi-omic single-cell profiling to identify and characterize the LLPC compartment in NHP. We identify LLPC biomarkers including the marker CD102 and show that CD102 in combination with CD31 identifies LLPC in NHP bone marrow. Additionally, we find that CD102 is expressed by LLPC in mouse and humans. These results further our understanding of the LLPC compartment in NHP, identify biomarkers of LLPC, and provide tissue-specific single cell references for future studies.
Collapse
|
87
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
88
|
Wang L, Nie R, Zhang J, Cai J. scCapsNet-mask: an updated version of scCapsNet with extended applicability in functional analysis related to scRNA-seq data. BMC Bioinformatics 2022; 23:539. [PMID: 36510124 PMCID: PMC9743530 DOI: 10.1186/s12859-022-05098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the rapid accumulation of scRNA-seq data, more and more automatic cell type identification methods have been developed, especially those based on deep learning. Although these methods have reached relatively high prediction accuracy, many issues still exist. One is the interpretability. The second is how to deal with the non-standard test samples that are not encountered in the training process. RESULTS Here we introduce scCapsNet-mask, an updated version of scCapsNet. The scCapsNet-mask provides a reasonable solution to the issues of interpretability and non-standard test samples. Firstly, the scCapsNet-mask utilizes a mask to ease the task of model interpretation in the original scCapsNet. The results show that scCapsNet-mask could constrain the coupling coefficients, and make a one-to-one correspondence between the primary capsules and type capsules. Secondly, the scCapsNet-mask can process non-standard samples more reasonably. In one example, the scCapsNet-mask was trained on the committed cells, and then tested on less differentiated cells as the non-standard samples. It could not only estimate the lineage bias of less differentiated cells, but also distinguish the development stages more accurately than traditional machine learning models. Therefore, the pseudo-temporal order of cells for each lineage could be established. Following these pseudo-temporal order, lineage specific genes exhibit a gradual increase expression pattern and stem cell associated genes exhibit a gradual decrease expression pattern. In another example, the scCapsNet-mask was trained on scRNA-seq data, and then used to assign cell type in spatial transcriptomics that may contain non-standard sample of doublets. The results show that the scCapsNet-mask not only restored the spatial map but also identified several non-standard samples of doublet. CONCLUSIONS The scCapsNet-mask offers a suitable solution to the challenge of interpretability and non-standard test samples. By adding a mask, it has the advantages of automatic processing and easy interpretation compared with the original scCapsNet. In addition, the scCapsNet-mask could more accurately reflect the composition of non-standard test samples than traditional machine learning methods. Therefore, it can extend its applicability in functional analysis, such as fate bias prediction in less differentiated cells and cell type assignment in spatial transcriptomics.
Collapse
Affiliation(s)
- Lifei Wang
- grid.413073.20000 0004 1758 9341Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China ,grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rui Nie
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Zhang
- grid.20513.350000 0004 1789 9964School of Systems Science, Beijing Normal University, Beijing, 100875 China
| | - Jun Cai
- grid.464209.d0000 0004 0644 6935China National Center for Bioinformation, Beijing, 100101 China ,grid.9227.e0000000119573309Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
89
|
Calzetti F, Finotti G, Cassatella MA. Current knowledge on the early stages of human neutropoiesis. Immunol Rev 2022; 314:111-124. [PMID: 36484356 DOI: 10.1111/imr.13177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymorphonuclear neutrophils are no longer considered as a homogeneous population of terminally differentiated and short-lived cells that belong to the innate immune system only. In fact, data from the past decades have uncovered that neutrophils exhibit large phenotypic heterogeneity and functional versatility that render them more plastic than previously thought. Hence, their precise role as effector cells in inflammation, in immune response and in other pathophysiological processes, including tumors, needs to be better evaluated. In such a complex scenario, common knowledge of the differentiation of neutrophils in bone marrow refers to lineage precursors, starting from the still poorly defined myeloblasts, and proceeding sequentially to promyelocytes, myelocytes, metamyelocytes, band cells, segmented neutrophils, and mature neutrophils, with each progenitor stage being more mature and better characterized. Thanks to the development and utilization of cutting-edge technologies, novel information about neutrophil precursors at stages earlier than the promyelocytes, hence closer to the hematopoietic stem cells, is emerging. Accordingly, this review discusses the main findings related to the very early precursors of human neutrophils and provides our perspectives on human neutropoiesis.
Collapse
Affiliation(s)
- Federica Calzetti
- Department of Medicine, Section of General Pathology University of Verona Verona Italy
| | - Giulia Finotti
- Department of Medicine, Section of General Pathology University of Verona Verona Italy
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology University of Verona Verona Italy
| |
Collapse
|
90
|
Krimpenfort RA, Behr FM, Nieuwland M, de Rink I, Kerkhoven R, von Lindern M, Nethe M. E-Cadherin Expression Distinguishes Mouse from Human Hematopoiesis in the Basophil and Erythroid Lineages. Biomolecules 2022; 12:1706. [PMID: 36421719 PMCID: PMC9688100 DOI: 10.3390/biom12111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/11/2024] Open
Abstract
E-cadherin is a key regulator of epithelial cell-cell adhesion, the loss of which accelerates tumor growth and invasion. E-cadherin is also expressed in hematopoietic cells as well as epithelia. The function of hematopoietic E-cadherin is, however, mostly elusive. In this study, we explored the validity of mouse models to functionally investigate the role of hematopoietic E-cadherin in human hematopoiesis. We generated a hematopoietic-specific E-cadherin knockout mouse model. In mice, hematopoietic E-cadherin is predominantly expressed within the basophil lineage, the expression of which is dispensable for the generation of basophils. However, neither E-cadherin mRNA nor protein were detected in human basophils. In contrast, human hematopoietic E-cadherin marks the erythroid lineage. E-cadherin expression in hematopoiesis thereby revealed striking evolutionary differences between the basophil and erythroid cell lineage in humans and mice. This is remarkable as E-cadherin expression in epithelia is highly conserved among vertebrates including humans and mice. Our study therefore revealed that the mouse does not represent a suitable model to study the function of E-cadherin in human hematopoiesis and an alternative means to study the role of E-cadherin in human erythropoiesis needs to be developed.
Collapse
Affiliation(s)
- Rosa A. Krimpenfort
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Felix M. Behr
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Micha Nethe
- Sanquin Research, Landsteiner Laboratory, Academic Medical Centre, Department of Hematopoiesis, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
91
|
Cheng X, Liang H, Li Q, Wang J, Liu J, Zhang Y, Ru Y, Zhou Y. Raman spectroscopy differ leukemic cells from their healthy counterparts and screen biomarkers in acute leukemia. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121558. [PMID: 35843058 DOI: 10.1016/j.saa.2022.121558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Precision medicine is important in the treatment of acute leukemia (AL). The target therapies of AL provide an opportunity to reduce the mortality of AL. How AL cells differ from their healthy counterparts is the basis for the development of therapies and the outcome of AL patients. Therefore, a label-free and noninvasive single-cell Raman platform was used to characterize cell molecular profiles and found potential biomarkers from three healthy people and twelve AL patients with more than 90% accuracy. We analyzed myeloblasts, abnormal promyelocytes, monoblasts and B-ALL cells respectively, compared with their healthy counterparts, which could be distinguished by their intrinsic phenotypic Raman spectra using orthogonal partial least squares discriminate analysis (OPLS-DA). Most importantly, we selected statistically significant markers of the four leukemia models. Further analysis of leukemic granulocytes, we found that a combination of the 1003, 1341 and 1579 cm-1 Raman peaks could discriminate myeloblasts and abnormal promyelocytes from normal granulocytes. The assignments of 1579 cm-1 gave us a clue to find potential important variables myeloperoxidase related with AL diagnosis. Our study demonstrates the capability of the Raman platform to characterize leukemia cells with non-invasively probing metabolites. The biomarker we identified could be extensible to other blood cells and potentially have a high impact on leukemia therapy.
Collapse
Affiliation(s)
- Xuelian Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qing Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jing Wang
- Nankai University, National Demonstration Center for Experimental Chemistry Education, Tianjin 300071, China
| | - Jing Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yun Zhang
- Department of Clinical Laboratory, The District People's Hospital of Zhangqiu, Jinan 250000, China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
92
|
Zheng F, Zhang W, Yang B, Chen M. Multi-omics profiling identifies C1QA/B + macrophages with multiple immune checkpoints associated with esophageal squamous cell carcinoma (ESCC) liver metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1249. [PMID: 36544679 PMCID: PMC9761157 DOI: 10.21037/atm-22-5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignant tumor lacking effective treatments; 20% of ESCC patients develop liver metastasis with an extremely short survival time of ≈5 months. The tumor microenvironment (TME) plays a crucial role in tumor homeostasis, but the relationship between the ESCC TME and liver metastasis is still unknown. Methods To identify potential cell populations contributing to ESCC liver metastasis, single-cell RNA (scRNA) sequencing data were analyzed to identify the major cell populations within the TME. Each of the major cell populations was re-clustered to define detailed cell subsets. Thereafter, the gene set variation analysis (GSVA) score was calculated for the bulk RNA-seq data based on the gene signatures of each cell subset. The relationship between the GSVA score of each cellular subset and clinical outcome was further analyzed to identify the cellular subset associated with ESCC liver metastasis, which was validated by multiplex immunohistochemistry. Results C1QA/B+ tumor-associated macrophages (TAMs) acted as the central regulator of the ESCC TME, closely associated with several key cell subsets. Several immune checkpoints, including CD40, CD47 and LGALS9, were all positively expressed in C1QA/B+ macrophages, which may exert central regulatory control of immune evasion by ESCC via these immune checkpoints expressions. Conclusions Our results comprehensively revealed the landscape of tumor-infiltrating immune cells associated with ESCC prognosis and metastasis, and suggest a novel strategy for developing immunotherapies for ESCC liver metastasis by targeting C1QA/B+ TAMs.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wei Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Baihua Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Mingqiu Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
93
|
Vanuytsel K, Yeung AK, Dowrey TW, Murphy GJ, Belkina AC. CPHEN-013: Comprehensive phenotyping of hematopoietic stem and progenitor cells in the human fetal liver. Cytometry A 2022; 101:903-908. [PMID: 35253987 DOI: 10.1002/cyto.a.24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 01/27/2023]
Abstract
Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy and can give rise to all the mature blood cell types in our body, while at the same time maintaining a pool of HSCs through self-renewing divisions. This potential is reflected in their functional definition as cells that are capable of long-term multi-lineage engraftment upon transplantation. While all HSCs meet these criteria, subtle differences exist between developmentally different populations of these cells. Here we present a comprehensive overview of traditional and more recently described markers for phenotyping HSCs and their downstream progeny. To address the need to assess the growing number of surface molecules expressed in various HSC-enriched fractions at different developmental stages, we have developed an extensive multi-parameter spectral flow cytometry panel to phenotype hematopoietic stem and multipotent progenitor cells (HSC/MPPs) throughout development. In this study we then employ this panel to comprehensively profile the HSC compartment in the human fetal liver (FL), which is endowed with superior engraftment potential compared to postnatal sources. Spectral cytometry lends an improved resolution of marker expression to our comprehensive approach, allowing to extract combinatorial expression signatures of several relevant HSC/MPP markers to precisely characterize the HSC/MPP fraction in a variety of tissues.
Collapse
Affiliation(s)
- Kim Vanuytsel
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Anthony K Yeung
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Todd W Dowrey
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - George J Murphy
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
94
|
Role of TET dioxygenases in the regulation of both normal and pathological hematopoiesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:294. [PMID: 36203205 PMCID: PMC9540719 DOI: 10.1186/s13046-022-02496-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The family of ten-eleven translocation dioxygenases (TETs) consists of TET1, TET2, and TET3. Although all TETs are expressed in hematopoietic tissues, only TET2 is commonly found to be mutated in age-related clonal hematopoiesis and hematopoietic malignancies. TET2 mutation causes abnormal epigenetic landscape changes and results in multiple stages of lineage commitment/differentiation defects as well as genetic instability in hematopoietic stem/progenitor cells (HSPCs). TET2 mutations are founder mutations (first hits) in approximately 40–50% of cases of TET2-mutant (TET2MT) hematopoietic malignancies and are later hits in the remaining cases. In both situations, TET2MT collaborates with co-occurring mutations to promote malignant transformation. In TET2MT tumor cells, TET1 and TET3 partially compensate for TET2 activity and contribute to the pathogenesis of TET2MT hematopoietic malignancies. Here we summarize the most recent research on TETs in regulating of both normal and pathogenic hematopoiesis. We review the concomitant mutations and aberrant signals in TET2MT malignancies. We also discuss the molecular mechanisms by which concomitant mutations and aberrant signals determine lineage commitment in HSPCs and the identity of hematopoietic malignancies. Finally, we discuss potential strategies to treat TET2MT hematopoietic malignancies, including reverting the methylation state of TET2 target genes and targeting the concomitant mutations and aberrant signals.
Collapse
|
95
|
Nam AS, Dusaj N, Izzo F, Murali R, Myers RM, Mouhieddine TH, Sotelo J, Benbarche S, Waarts M, Gaiti F, Tahri S, Levine R, Abdel-Wahab O, Godley LA, Chaligne R, Ghobrial I, Landau DA. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat Genet 2022; 54:1514-1526. [PMID: 36138229 PMCID: PMC10068894 DOI: 10.1038/s41588-022-01179-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Somatic mutations in cancer genes have been detected in clonal expansions across healthy human tissue, including in clonal hematopoiesis. However, because mutated and wild-type cells are admixed, we have limited ability to link genotypes with phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, capturing genotype, transcriptomes and methylomes in progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations result in myeloid over lymphoid bias, and an expansion of immature myeloid progenitors primed toward megakaryocytic-erythroid fate, with dysregulated expression of lineage and leukemia stem cell markers. Mutated DNMT3A leads to preferential hypomethylation of polycomb repressive complex 2 targets and a specific CpG flanking motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic link between DNMT3A mutations and aberrant transcriptional phenotypes. Thus, single-cell multi-omics paves the road to defining the downstream consequences of mutations that drive clonal mosaicism.
Collapse
Affiliation(s)
- Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville Dusaj
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Rekha Murali
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Salima Benbarche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federico Gaiti
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sabrin Tahri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
96
|
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat Commun 2022; 13:5403. [PMID: 36109585 PMCID: PMC9477881 DOI: 10.1038/s41467-022-33092-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development. Relatively little is known about the first hematopoietic stem and progenitor cells to arrive in the fetal bone marrow. Here they characterize the frequency, function, and molecular identity of fetal BM HSPCs and their bone marrow niche, and show that most BM HSPCs have little hematopoietic function until birth.
Collapse
|
97
|
Weeda V, Mestrum SGC, Leers MPG. Flow Cytometric Identification of Hematopoietic and Leukemic Blast Cells for Tailored Clinical Follow-Up of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231810529. [PMID: 36142442 PMCID: PMC9506284 DOI: 10.3390/ijms231810529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy that is characterized by the accumulation of leukemic blast cells, which originate from hematopoietic stem cells that have undergone leukemic transformation and/or are more mature progenitors that have gained stemness features. Currently, no consensus exists for the flow cytometric identification of normal blast cells and their leukemic counterparts by their antigenic expression profile. Differentiating between the benign cells and the malignant cells is crucial for the further deployment of immunophenotype panels for the clinical follow-up of AML patients. This review provides an overview of immunophenotypic markers that allow the identification of leukemic blast cells in the bone marrow with multiparameter flow cytometry. This technique allows the identification of hematopoietic blast cells at the level of maturing cells by their antigen expression profile. While aberrant antigen expression of a single immunophenotypic marker cell cannot be utilized in order to differentiate leukemic blast cells from normal blast cells, combinations of multiple immunophenotypic markers can enable the distinction of normal and leukemic blast cells. The identification of these markers has provided new perspectives for tailored clinical follow-up, including therapy management, diagnostics, and prognostic purposes. The immunophenotypic marker panels, however, should be developed by carefully considering the variable antigen marker expression profile of individual patients.
Collapse
Affiliation(s)
- Vera Weeda
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| | - Stefan G. C. Mestrum
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, 6200MD Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-6-36176124
| | - Math P. G. Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Centre, 6162BG Sittard-Geleen, The Netherlands
| |
Collapse
|
98
|
Keyvani Chahi A, Belew MS, Xu J, Chen HTT, Rentas S, Voisin V, Krivdova G, Lechman E, Marhon SA, De Carvalho DD, Dick JE, Bader GD, Hope KJ. PLAG1 dampens protein synthesis to promote human hematopoietic stem cell self-renewal. Blood 2022; 140:992-1008. [PMID: 35639948 PMCID: PMC9437713 DOI: 10.1182/blood.2021014698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.
Collapse
Affiliation(s)
- Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Muluken S Belew
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Joshua Xu
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - He Tian Tony Chen
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | - Stefan Rentas
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
| | | | - Gabriela Krivdova
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eric Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
| | - Gary D Bader
- The Donnelly Centre and
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences,McMaster University, Hamilton, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; and
- Department of Medical Biophysics and
| |
Collapse
|
99
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
100
|
Nagaharu K, Kojima Y, Hirose H, Minoura K, Hinohara K, Minami H, Kageyama Y, Sugimoto Y, Masuya M, Nii S, Seki M, Suzuki Y, Tawara I, Shimamura T, Katayama N, Nishikawa H, Ohishi K. A bifurcation concept for B-lymphoid/plasmacytoid dendritic cells with largely fluctuating transcriptome dynamics. Cell Rep 2022; 40:111260. [PMID: 36044861 DOI: 10.1016/j.celrep.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.
Collapse
Affiliation(s)
- Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yasuhiro Kojima
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kodai Minoura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Hirohito Minami
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuki Kageyama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Shigeru Nii
- Shiroko Women's Hospital, Suzuka 510-0235, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan; Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan; Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan.
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu 514-8507, Japan.
| |
Collapse
|