51
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
52
|
Hong Y, Song G, Feng X, Niu J, Wang L, Yang C, Luo X, Zhou S, Ma W. The Probiotic Kluyveromyces lactis JSA 18 Alleviates Obesity and Hyperlipidemia in High-Fat Diet C57BL/6J Mice. Foods 2024; 13:1124. [PMID: 38611428 PMCID: PMC11011337 DOI: 10.3390/foods13071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity poses a significant threat to various health conditions such as heart diseases, diabetes, high blood pressure, and heart attack, with the gut microbiota playing a crucial role in maintaining the body's energy balance. We identified a novel probiotic fungal strain, Kluyveromyces lactis JSA 18 (K. lactis), which was isolated from yak milk and was found to possess anti-obesity properties. Additionally, Lactobacillus plantarum CGMCC 8198 (LP8198) from our previous study was also included to evaluate its anti-obesity properties. The findings indicated that K. lactis caused a notable reduction in weight gain, liver and fat indexes, and hyperlipidemia in mice fed a high-fat diet (HFD). Administering K. lactis and LP8198 to mice on a high-fat diet resulted in a reduction of serum triglyceride levels. Furthermore, the supplements reduced ALT and AST activity, and inhibited the production of inflammatory cytokines such as TNF-α and IL-1β. In addition, lipid metabolism was enhanced by the downregulation of ACC1, PPAR-γ, SREBP-1, and Fasn. Moreover, this study found that K. lactis and LP8198 have little effect on gut bacteria. Additionally, K. lactis partially influenced intestinal fungi, while LP8198 had a minor influence on gut mycobiota. The main goal of this research was to show how effective K. lactis can be as a probiotic in combating obesity.
Collapse
Affiliation(s)
- Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Guodong Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xiaoqian Feng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Jialei Niu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Caini Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.H.); (G.S.); (X.F.); (J.N.); (L.W.); (C.Y.); (X.L.); (W.M.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
53
|
Fu Q, Ma X, Li S, Shi M, Song T, Cui J. New insights into the interactions between the gut microbiota and the inflammatory response to ulcerative colitis in a mouse model of dextran sodium sulfate and possible mechanisms of action for treatment with PE&AFWE. Animal Model Exp Med 2024; 7:83-97. [PMID: 38664929 PMCID: PMC11079155 DOI: 10.1002/ame2.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation. Intestinal innate immunity, including innate immune cells, defends against pathogens and excessive entry of gut microbiota, while preserving immune tolerance to resident intestinal microbiota, and may be characterized by its capacity to produce a rapid and nonspecific reaction. The association between microbiota dysbiosis and the pathogenesis of IBD is complex and dynamic. When the intestinal ecosystem is in dysbiosis, the reduced abundance and diversity of intestinal gut microbiota make the host more vulnerable to the attack of exogenous and endogenous pathogenic gut microbiota. The aim of our study was to comprehensively assess the relationship between microbial populations within UC, the signaling pathways of pathogenic gut microbe therein and the inflammatory response, as well as to understand the effects of using PE&AFWE (poppy extract [Papaver nudicaule L.] and Artemisia frigida Willd. extract) on UC modulation. METHODS A UC mouse model was established by inducing SPF-grade C57BL/6 mice using dextrose sodium sulfate (DSS). Based on metagenomic sequencing to characterize the gut microbiome, the relationship between gut microbiota dysbiosis and gut microbiota was further studied using random forest and Bayesian network analysis methods, as well as histopathological analysis. RESULTS (1) We found that the 5 gut microbiota with the highest relative abundance of inflammatory bowel disease UC model gut microbiota were consistent with the top 5 ranked natural bacteria. There were three types of abundance changes in the model groups: increases (Chlamydiae/Proteobacteria and Deferribacteres), decreases (Firmicutes), and no significant changes (Bacteroidetes). The UC model group was significantly different from the control group, with 1308 differentially expressed species with abundance changes greater than or equal to 2-fold. (2) The proportion of the fecal flora in the UC group decreased by 37.5% in the Firmicutes and increased by 14.29% in the proportion of Proteobacteria compared to the control group before treatment. (3) The significantly enriched and increased signaling pathways screened were the 'arachidonic acid metabolic pathway' and the 'phagosomal pathway', which both showed a decreasing trend after drug administration. (4) Based on the causal relationship between different OTUs and the UC model/PE&AFWE administration, screening for directly relevant OTU networks, the UC group was found to directly affect OTU69, followed by a cascade of effects on OTU12, OTU121, OTU93, and OTU7, which may be the pathway of action that initiated the pathological changes in normal mice. (5) We identified a causal relationship between common differentially expressed OTUs and PE&AFWE and UC in the pre- and post-PE&AFWE-treated groups. Thereby, we learned that PE&AFWE can directly affect OTU90, after which it inhibits UC, inhibiting the activity of arachidonic acid metabolic pathway by affecting OTU118, which in turn inhibits the colonization of gut microbiota by OTU93 and OTU7. (6) Histopathological observation and scoring (HS) of the colon showed that there was a significant difference between the model group and the control group (p < 0.001), and that there was a significant recovery in both the sulfasalazine (SASP)and the PE&AFWE groups after the administration of the drug (p < 0.0001). CONCLUSION We demonstrated causal effects and inflammatory metabolic pathways in gut microbiota dysbiosis and IBD, with five opportunistic pathogens directly contributing to IBD. PE&AFWE reduced the abundance of proteobacteria in the gut microbiota, and histopathology showed significant improvement.
Collapse
Affiliation(s)
- Qianhui Fu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Xiaoqin Ma
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Shuchun Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Mengni Shi
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Tianyuan Song
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| | - Jian Cui
- Key Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyMinzu University of ChinaBeijingChina
| |
Collapse
|
54
|
Radka CD, Frank MW, Simmons TS, Johnson CN, Rosch JW, Rock CO. Staphylococcus aureus oleate hydratase produces ligands that activate host PPARα. Front Cell Infect Microbiol 2024; 14:1352810. [PMID: 38601738 PMCID: PMC11004285 DOI: 10.3389/fcimb.2024.1352810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by β-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tyler S. Simmons
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Cydney N. Johnson
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jason W. Rosch
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
55
|
Muñoz-Alvarez KY, Gutiérrez-Aguilar R, Frigolet ME. Metabolic effects of milk fatty acids: A literature review. NUTR BULL 2024; 49:19-39. [PMID: 38226553 DOI: 10.1111/nbu.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Milk and dairy products are known to have a significant role in human development and tissue maintenance due to their high nutritional value. With the higher incidence of obesity and metabolic diseases, nutrition and public health authorities have recommended the intake of fat-free or low-fat dairy due to the saturated fatty acid content of whole-fat products and their effect on serum cholesterol levels. However, recent studies have questioned the association between milk fat consumption and cardiometabolic risk. This literature review aims to compile the scientific evidence of the metabolic effects of milk fatty acids in clinical and basic research studies, as well as their relationship with metabolic disorders and gut microbiota composition. Research shows that various milk fatty acids exert effects on metabolic alterations (obesity, type 2 diabetes and cardiovascular diseases) by modifying glucose homeostasis, inflammation and lipid profile-related factors. Additionally, recent studies have associated the consumption of milk fatty acids with the production of metabolites and the promotion of healthy gut microbiota. From mainly observational studies, evidence suggests that milk and dairy fatty acids are not directly linked to cardiometabolic risk, but further controlled research is necessary to clarify such findings and to assess whether dietary recommendations to choose low-fat dairy foods are necessary for the population for the prevention of obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Karla Y Muñoz-Alvarez
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - María E Frigolet
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
| |
Collapse
|
56
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
57
|
Sato S, Chinda D, Iino C, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. A Cohort Study of the Influence of the 12-Component Modified Japanese Diet Index on Oral and Gut Microbiota in the Japanese General Population. Nutrients 2024; 16:524. [PMID: 38398848 PMCID: PMC10893011 DOI: 10.3390/nu16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The Japanese diet is a healthy dietary pattern, and the oral or gut microbiota have been identified as the main factors underlying the beneficial effects of the Japanese diet. However, epidemiological studies on Japanese dietary patterns calculated from daily eating habits in the general population yielded inconsistent findings. This study aimed to determine the association between the 12-component modified Japanese Diet Index (mJDI12) and the oral and gut microbiota in the general population of a rural area in Japan. After propensity-score matching, 396 participants (198 each in the low and high mJDI12 groups) were picked out. One year after the follow up survey, we reclassified the subjects and compared the low and high mJDI12 groups again. Participants with a high mJDI12 had a higher relative abundance of butyric acid-producing bacteria in their gut microbiota. Moreover, the significantly higher dietary fiber intake in the high mJDI12 group suggested that the high intake of dietary fiber contributed to an increase in butyric acid-producing bacteria in the gut. In contrast, in individuals with a high mJDI12, only Allpprevotella was decreased in the oral microbiota. Thus, the Japanese dietary pattern can have beneficial effects by improving the oral and gut microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Hospital, Hirosaki 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Tatsuya Mikami
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| |
Collapse
|
58
|
Linehan K, Patangia DV, Ross RP, Stanton C. Production, Composition and Nutritional Properties of Organic Milk: A Critical Review. Foods 2024; 13:550. [PMID: 38397527 PMCID: PMC10887702 DOI: 10.3390/foods13040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is one of the most valuable products in the food industry with most milk production throughout the world being carried out using conventional management, which includes intensive and traditional systems. The intensive use of fertilizers, antibiotics, pesticides and concerns regarding animal health and the environment have given increasing importance to organic dairy and dairy products in the last two decades. This review aims to compare the production, nutritional, and compositional properties of milk produced by conventional and organic dairy management systems. We also shed light on the health benefits of milk and the worldwide scenario of the organic dairy production system. Most reports suggest milk has beneficial health effects with very few, if any, adverse effects reported. Organic milk is reported to confer additional benefits due to its lower omega-6-omega-3 ratio, which is due to the difference in feeding practices, with organic cows predominantly pasture fed. Despite the testified animal, host, and environmental benefits, organic milk production is difficult in several regions due to the cost-intensive process and geographical conditions. Finally, we offer perspectives for a better future and highlight knowledge gaps in the organic dairy management system.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Dhrati V. Patangia
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Reynolds Paul Ross
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland; (K.L.); (D.V.P.)
- APC Microbiome Ireland, University College Cork, T12 Y120 Cork, Ireland;
- VistaMilk Research Centre, Teagasc Moorepark, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
59
|
Pan R, Guo M, Chen Y, Lin G, Tian P, Wang L, Zhao J, Chen W, Wang G. Dynamics of the Gut Microbiota and Faecal and Serum Metabolomes during Pregnancy-A Longitudinal Study. Nutrients 2024; 16:483. [PMID: 38398806 PMCID: PMC10892471 DOI: 10.3390/nu16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Normal pregnancy involves numerous physiological changes, including changes in hormone levels, immune responses, and metabolism. Although several studies have shown that the gut microbiota may have an important role in the progression of pregnancy, these findings have been inconsistent, and the relationship between the gut microbiota and metabolites that change dynamically during and after pregnancy remains to be clarified. In this longitudinal study, we comprehensively profiled the temporal dynamics of the gut microbiota, Bifidobacterium communities, and serum and faecal metabolomes of 31 women during their pregnancies and postpartum periods. The microbial composition changed as gestation progressed, with the pregnancy and postpartum periods exhibiting distinct bacterial community characteristics, including significant alterations in the genera of the Lachnospiraceae or Ruminococcaceae families, especially the Lachnospiraceae FCS020 group and Ruminococcaceae UCG-003. Metabolic dynamics, characterised by changes in nutrients important for fetal growth (e.g., docosatrienoic acid), anti-inflammatory metabolites (e.g., trans-3-indoleacrylic acid), and steroid hormones (e.g., progesterone), were observed in both serum and faecal samples during pregnancy. Moreover, a complex correlation was identified between the pregnancy-related microbiota and metabolites, with Ruminococcus1 and Ruminococcaceae UCG-013 making important contributions to changes in faecal and serum metabolites, respectively. Overall, a highly coordinated microbiota-metabolite regulatory network may underlie the pregnancy process. These findings provide a foundation for enhancing our understanding of the molecular processes occurring during the progression of pregnancy, thereby contributing to nutrition and health management during this period.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (R.P.); (M.G.); (Y.C.); (G.L.); (P.T.); (J.Z.); (W.C.); (G.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
60
|
Ren Y, Shi X, Mu J, Liu S, Qian X, Pei W, Ni S, Zhang Z, Li L, Zhang Z. Chronic exposure to parabens promotes non-alcoholic fatty liver disease in association with the changes of the gut microbiota and lipid metabolism. Food Funct 2024; 15:1562-1574. [PMID: 38236135 DOI: 10.1039/d3fo04347a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a serious public health issue due to changing dietary patterns and composition. However, the relationship between NAFLD occurrence and food additives, such as preservatives, remains unknown. This study aimed to evaluate the toxicity of parabens, namely methylparaben (MeP) and ethylparaben (EtP), in relation to NAFLD occurrence in mice under different dietary conditions. Exposure to MeP and EtP exacerbated high-fat diet (HFD)-induced obesity, glucose intolerance, higher serum lipid concentrations, and fat accumulation by upregulating genes involved in lipid metabolism. Untargeted metabolomics revealed that arachidonic acid (AA) metabolism was the top enriched pathway upon MeP and EtP exposure in the presence of HFD. 11,12-Epoxyeicosatrienoic acid (11,12-EET) was the most abundant AA metabolite and was significantly reduced upon exposure to MeP or EtP. Moreover, an integrative analysis of differential fecal taxa at the genus level and serum AA metabolites revealed significant associations. In addition, MeP and EtP enhanced lipid accumulation in AML12 cells and HepG2 cells cultured with oleic acid. 11,12-EET supplementation could significantly alleviate lipid accumulation by suppressing the expression of lipid metabolism-related genes and proteins. The present study suggests that chronic exposure to MeP and EtP promoted NAFLD via gut microbiota-dependent AA metabolism. These results highlight the need for reducing oral exposure to synthetic preservatives to improve metabolic disturbance under HFD conditions.
Collapse
Affiliation(s)
- Yilin Ren
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Xinyi Shi
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Jing Mu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Shenyin Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Xin Qian
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Shanhong Ni
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Zhengduo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| |
Collapse
|
61
|
Liu C, Xu Q, Dong S, Ding H, Li B, Zhang D, Liang Y, Li L, Liu Q, Cheng Y, Wu J, Zhu J, Zhong M, Cao Y, Zhang G. New mechanistic insights of anti-obesity by sleeve gastrectomy-altered gut microbiota and lipid metabolism. Front Endocrinol (Lausanne) 2024; 15:1338147. [PMID: 38375198 PMCID: PMC10875461 DOI: 10.3389/fendo.2024.1338147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Background The obesity epidemic has been on the rise due to changes in living standards and lifestyles. To combat this issue, sleeve gastrectomy (SG) has emerged as a prominent bariatric surgery technique, offering substantial weight reduction. Nevertheless, the mechanisms that underlie SG-related bodyweight loss are not fully understood. Methods In this study, we conducted a collection of preoperative and 3-month postoperative serum and fecal samples from patients who underwent laparoscopic SG at the First Affiliated Hospital of Shandong First Medical University (Jinan, China). Here, we took an unbiased approach of multi-omics to investigate the role of SG-altered gut microbiota in anti-obesity of these patients. Non-target metabolome sequencing was performed using the fecal and serum samples. Results Our data show that SG markedly increased microbiota diversity and Rikenellaceae, Alistipes, Parabacteroides, Bactreoidales, and Enterobacteraies robustly increased. These compositional changes were positively correlated with lipid metabolites, including sphingolipids, glycerophospholipids, and unsaturated fatty acids. Increases of Rikenellaceae, Alistipes, and Parabacteroide were reversely correlated with body mass index (BMI). Conclusion In conclusion, our findings provide evidence that SG induces significant alterations in the abundances of Rikenellaceae, Alistipes, Parabacteroides, and Bacteroidales, as well as changes in lipid metabolism-related metabolites. Importantly, these changes were found to be closely linked to the alleviation of obesity. On the basis of these findings, we have identified a number of microbiotas that could be potential targets for treatment of obesity.
Collapse
Affiliation(s)
- Chuxuan Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shuohui Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Huanxin Ding
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Dexu Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yongjuan Liang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qiaoran Liu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
62
|
Liu C, Du MX, Xie LS, Wang WZ, Chen BS, Yun CY, Sun XW, Luo X, Jiang Y, Wang K, Jiang MZ, Qiao SS, Sun M, Cui BJ, Huang HJ, Qu SP, Li CK, Wu D, Wang LS, Jiang C, Liu HW, Liu SJ. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat Microbiol 2024; 9:434-450. [PMID: 38233647 DOI: 10.1038/s41564-023-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
A strong correlation between gut microbes and host health has been observed in numerous gut metagenomic cohort studies. However, the underlying mechanisms governing host-microbe interactions in the gut remain largely unknown. Here we report that the gut commensal Christensenella minuta modulates host metabolism by generating a previously undescribed class of secondary bile acids with 3-O-acylation substitution that inhibit the intestinal farnesoid X receptor. Administration of C. minuta alleviated features of metabolic disease in high fat diet-induced obese mice associated with a significant increase in these acylated bile acids, which we refer to as 3-O-acyl-cholic acids. Specific knockout of intestinal farnesoid X receptor in mice counteracted the beneficial effects observed in their wild-type counterparts. Finally, we showed that 3-O-acyl-CAs were prevalent in healthy humans but significantly depleted in patients with type 2 diabetes. Our findings indicate a role for C. minuta and acylated bile acids in metabolic diseases.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Meng-Xuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Li-Sheng Xie
- College of Life Science, Hebei University, Baoding, P. R. China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bao-Song Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Chu-Yu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Yu Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China
| | - Min-Zhi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Shan-Shan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Min Sun
- The Second Hospital of Shandong University, Jinan, P. R. China
| | - Bao-Juan Cui
- The Second Hospital of Shandong University, Jinan, P. R. China
| | - Hao-Jie Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | | | | | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Lu-Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, P. R. China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, P. R. China.
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
63
|
Zhou X, Su M, Lu J, Li D, Niu X, Wang Y. CD36: The Bridge between Lipids and Tumors. Molecules 2024; 29:531. [PMID: 38276607 PMCID: PMC10819246 DOI: 10.3390/molecules29020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
It has been found that the development of some cancers can be attributed to obesity, which is associated with the excessive intake of lipids. Cancer cells undergo metabolic reprogramming, shifting from utilizing glucose to fatty acids (FAs) for energy. CD36, a lipid transporter, is highly expressed in certain kinds of cancer cells. High expressions of CD36 in tumor cells triggers FA uptake and lipid accumulation, promoting rapid tumor growth and initiating metastasis. Meanwhile, immune cells in the tumor microenvironment overexpress CD36 and undergo metabolic reprogramming. CD36-mediated FA uptake leads to lipid accumulation and has immunosuppressive effects. This paper reviews the types of FAs associated with cancer, high expressions of CD36 that promote cancer development and progression, effects of CD36 on different immune cells in the tumor microenvironment, and the current status of CD36 as a therapeutic target for the treatment of tumors with high CD36 expression.
Collapse
Affiliation(s)
| | - Manman Su
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| | | | | | | | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130012, China; (X.Z.); (J.L.); (D.L.); (X.N.)
| |
Collapse
|
64
|
Ohue-Kitano R, Banno Y, Masujima Y, Kimura I. Gut microbial metabolites reveal diet-dependent metabolic changes induced by nicotine administration. Sci Rep 2024; 14:1056. [PMID: 38212379 PMCID: PMC10784489 DOI: 10.1038/s41598-024-51528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
The gut microbiota has emerged as an important factor that potentially influences various physiological functions and pathophysiological processes such as obesity and type 2 diabetes mellitus. Accumulating evidence from human and animal studies suggests that gut microbial metabolites play a critical role as integral molecules in host-microbe interactions. Notably, several dietary environment-dependent fatty acid metabolites have been recognized as potent modulators of host metabolic homeostasis. More recently, nicotine, the primary active molecule in tobacco, has been shown to potentially affect host metabolism through alterations in the gut microbiota and its metabolites. However, the mechanisms underlying the interplay between host nutritional status, diet-derived microbial metabolites, and metabolic homeostasis during nicotine exposure remain unclear. Our findings revealed that nicotine administration had potential effects on weight regulation and metabolic phenotype, independent of reduced caloric intake. Moreover, nicotine-induced body weight suppression is associated with specific changes in gut microbial composition, including Lactobacillus spp., and KetoB, a nicotine-sensitive gut microbiota metabolite, which could be linked to changes in host body weight, suggesting its potential role in modulating host metabolism. Our findings highlight the remarkable impact of the interplay between nutritional control and the gut environment on host metabolism during smoking and smoking cessation.
Collapse
Affiliation(s)
- Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yukika Banno
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
65
|
Zhang L, Liu Z, Zhang W, Wang J, Kang H, Jing J, Han L, Gao A. Gut microbiota-palmitoleic acid-interleukin-5 axis orchestrates benzene-induced hematopoietic toxicity. Gut Microbes 2024; 16:2323227. [PMID: 38436067 PMCID: PMC10913712 DOI: 10.1080/19490976.2024.2323227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Due to the annual increase in its production and consumption in occupational environments, the adverse blood outcomes caused by benzene are of concern. However, the mechanism of benzene-induced hematopoietic damage remains elusive. Here, we report that benzene exposure causes hematopoietic damage in a dose-dependent manner and is associated with disturbances in gut microbiota-long chain fatty acids (LCFAs)-inflammation axis. C57BL/6J mice exposed to benzene for 45 days were found to have a significant reduction in whole blood cells and the suppression of hematopoiesis, an increase in Bacteroides acidifaciens and a decrease in Lactobacillus murinus. Recipient mice transplanted with fecal microbiota from benzene-exposed mice showed potential for hematopoietic disruption, LCFAs, and interleukin-5 (IL-5) elevation. Abnormally elevated plasma LCFAs, especially palmitoleic acid (POA) exacerbated benzene-induced immune-inflammation and hematopoietic damage via carnitine palmitoyltransferase 2 (CPT2)-mediated disorder of fatty acid oxidation. Notably, oral administration of probiotics protects the mice against benzene-induced hematopoietic toxicity. In summary, our data reveal that the gut microbiota-POA-IL-5 axis is engaged in benzene-induced hematopoietic damage. Probiotics might be a promising candidate to prevent hematopoietic abnormalities from benzene exposure.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Binzhou Medical University, Yantai, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
66
|
Yong GJM, Porsche CE, Sitarik AR, Fujimura KE, McCauley K, Nguyen DT, Levin AM, Woodcroft KJ, Ownby DR, Rundle AG, Johnson CC, Cassidy-Bushrow A, Lynch SV. Precocious infant fecal microbiome promotes enterocyte barrier dysfuction, altered neuroendocrine signaling and associates with increased childhood obesity risk. Gut Microbes 2024; 16:2290661. [PMID: 38117587 PMCID: PMC10761186 DOI: 10.1080/19490976.2023.2290661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Early life gut microbiome composition has been correlated with childhood obesity, though microbial functional contributions to disease origins remain unclear. Here, using an infant birth cohort (n = 349) we identify a distinct fecal microbiota composition in 1-month-old infants with the lowest rate of exclusive breastfeeding, that relates with higher relative risk for obesity and overweight phenotypes at two years. Higher-risk infant fecal microbiomes exhibited accelerated taxonomic and functional maturation and broad-ranging metabolic reprogramming, including reduced concentrations of neuro-endocrine signals. In vitro, exposure of enterocytes to fecal extracts from higher-risk infants led to upregulation of genes associated with obesity and with expansion of nutrient sensing enteroendocrine progenitor cells. Fecal extracts from higher-risk infants also promoted enterocyte barrier dysfunction. These data implicate dysregulation of infant microbiome functional development, and more specifically promotion of enteroendocrine signaling and epithelial barrier impairment in the early-life developmental origins of childhood obesity.
Collapse
Affiliation(s)
- Germaine J. M. Yong
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Asian Microbiome Library Pte Ltd, Singapore and Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
| | - Cara E. Porsche
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Kei E. Fujimura
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Genetic Disease Laboratory, California Department of Public Health, San Francisco, CA, USA
| | - Kathryn McCauley
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Dat T. Nguyen
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Dennis R. Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Andrew G. Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christine C. Johnson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | | | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
67
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
68
|
Wang X, Chen H, Yang B, Zhao J, Zhang H, Chen W. Construction and efficacy evaluation of chitosan-based nanoparticles for colon-targeted release of linoleic acid in rat pups. Int J Biol Macromol 2023; 253:127522. [PMID: 37858652 DOI: 10.1016/j.ijbiomac.2023.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Long chain fatty acids in the colon play important roles in infant development. This study aimed to establish a colon-targeted long chain fatty acid release system in rat pups, with linoleic acid (LA) as the target model. LA-loaded chitosan nanoparticles (LA-CS NPs) synthesized via ionic crosslinkage showed spherical surface morphology and favorable encapsulation efficiency (84.96 %). In vivo distribution studies of LA-CS NPs demonstrated a significant increase in LA concentration in the colonic content after a 12-hour administration period. Additionally, oral administration of the delivery system (CS NPs: 18 μg/g/d, LA-CS NPs: 24 μg/g/d) exhibited no detrimental effects on the health of rat pups. In conclusion, this study presents a promising strategy for the targeted delivery of fatty acid to the colon in rat pups.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
69
|
Chen X, Gu J, Huang Y. High dietary intake of unsaturated fatty acids is associated with improved insulin resistance - a cross-sectional study based on the NHANES database. Lipids Health Dis 2023; 22:216. [PMID: 38053162 DOI: 10.1186/s12944-023-01982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND A moderate intake of unsaturated fatty acids (UFA) is associated positively with improved insulin resistance. The aim of this study was to investigate the relationship between the dietary intake of unsaturated fatty acids/total fats (UFA/TF) and insulin resistance. METHODS 15,560 participants were selected from the National Health and Nutrition Examination Survey (NHANES) database enrolled between March 2017 and 2020, and excluded those under 20 years of age, pregnant, or with missing data for key research items. Finally, 7,630 participants were included in the study. R software was used for data analysis that included: (1) general descriptive statistics; (2) comparison of differences in baseline information of three UFA/TF groups, namely low, medium, and high ratios; (3) calculation of the correlation between the UFA/TF ratio and markers of insulin resistance: triglyceride-glucose index (TyG) and homeostatic model assessment for insulin resistance (HOMA-IR); (4) stratification of the study subjects into two groups, with or without insulin resistance, using a cut-off value of HOMA-IR ≥ 2, followed by logistic regression analysis to examine the relationship between UFA/TF and insulin resistance status in the two groups; and (5) further stratification of the subjects according to age, gender, body mass index (BMI), race, total energy intake, total protein, total carbohydrate, total sugars, total dietary fiber, total fat, alcohol consumption, diabetes, hypercholesterolemia to analyze the impact of UFA/TF on insulin resistance status in different subgroups. RESULTS (1) A high UFA/TF level was associated with a low TyG index and HOMA-IR [β (vs. TyG index) = -0.559, 95% CI: (-0.821~-0.297), P < 0.001; β (vs. HOMA-IR) = -0.742, 95% CI: (-1.083~-0.402), P < 0.001]. This negative relationship became more pronounced when UFA/TF exceeded 57.9% (i.e., the higher group). (2) Logistic regression analysis showed that a higher UFA/TF level was associated with a lower risk of developing insulin resistance [Q3 vs. Q1: 0.838 (95%CI: 0.709 ~ 0.991); P for trend = 0.038]. After adjusting for covariates such as gender, age, and BMI, this protective effect remained significant (P value < 0.05). (3) Analysis also showed that increased UFA/TF intake reduced the risk of developing insulin resistance (OR = 0.266, 95% CI: (0.075 ~ 0.946), P = 0.041). Subgroup analysis showed that although elevated UFA/TF intake showed no statistically significant difference in its effect in most subgroups, the large study population in this study provides valuable insights on potential changes. Increased UFA/TF intake may confer relatively greater benefits within specific subgroups, particularly among the elderly [Q3 age group, OR = 0.114, 95%CI: (0.012 ~ 1.078), P = 0.058], females [OR = 0.234, 95%CI: (0.041 ~ 1.333), P = 0.102], those with a BMI ≤ 25 kg/m²[OR = 0.191, 95%CI: (0.016 ~ 2.344), P = 0.196], and individuals without hypercholesterolemia [OR = 0.207, 95%CI: (0.042 ~ 1.013), P = 0.0519]. The impact of high UFA/TF levels within subgroups based on the presence or absence of coronary heart disease and stroke displayed contrasting trends. In those without coronary heart disease, there was a significant protective effect against insulin resistance [OR = 0.254, 95% CI: (0.07 ~ 0.929), P = 0.0384], while in the stroke subgroup, a significantly protective effect against insulin resistance was observed [OR = 0.002, 95%CI: (0 ~ 0.695), P = 0.0376]. CONCLUSION A high dietary intake of UFA relative to total fat consumption could be a protective factor against the risk of developing insulin resistance.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of General Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Gu
- Department of General Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanyan Huang
- Department of General Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
70
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
71
|
Alasmar RM, Varadharajan K, Shanmugakonar M, Al-Naemi HA. Early-Life Sugar Consumption Affects the Microbiome in Juvenile Mice. Mol Nutr Food Res 2023; 67:e2200322. [PMID: 36156389 DOI: 10.1002/mnfr.202200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/31/2022] [Indexed: 11/06/2022]
Abstract
SCOPE The composition of the gut microbiota is influenced by the dietary nutrient. Sugar has been linked with many metabolic health disorders such as heart disease, metabolic syndrome, and immune disorders. Long-term consumption of sugar influences the landscape of gut microbiota by altering the gut microbial population called dysbiosis. This study aims to evaluate the impact of long-term consumption of high sugar diet (HSD) on the diversity of gut microbiota. METHODS AND RESULTS CD1 mice are given high concentration of sugar for 15 weeks followed by a recovery period of 10 weeks. Real-time polymerase chain reaction and 16S rRNA next-generation sequencing methods employ to identify microbiome diversity. The results show that Firmicutes and Bacteroidetes are the predominant phyla in control, cecum, and fecal samples. Firmicutes population are gradually increased in treated samples even after the recovery period, whereas Bacteroidetes abundance slightly reduces throughout the study. CONCLUSION The present study shows that the impact of long period of high sugar diet consumption alters the diversity of normal gut flora which can be restored after 10 weeks of sugar withdrawal. This indicates that the intervention of healthy and nutritious diet influences gut microbes and this can be beneficial in reducing the implication of early life metabolic disorders such as obesity.
Collapse
Affiliation(s)
| | | | | | - Hamda A Al-Naemi
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
72
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
73
|
Islam MM, Islam MM, Rahman MA, Ripon MAR, Hossain MS. Gut microbiota in obesity and related complications: Unveiling the complex interplay. Life Sci 2023; 334:122211. [PMID: 38084672 DOI: 10.1016/j.lfs.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In recent years, the obesity epidemic has escalated into a serious public health catastrophe that is only getting worse. However, research into the pathophysiological pathways behind the obesity development and the illnesses that it is associated with is ongoing. In the last decades, it is now clear that the gut microbiota plays a significant role in the genesis and progression of obesity and obesity-related illnesses, particularly changes in its metabolites and composition as obesity progresses. Here, we provide a summary of the processes by which variations in gut metabolite levels and the composition of gut microbiota affect obesity and associated disorders. The bacteria residing in the gut release several chemicals that influence the appetite control, metabolism, and other systems. Since it can either encourage or restrict the deposition of fat in several different ways, the gut microbiota's role in obesity is debatable. Additionally, we go over potential therapeutic approaches that could be utilized to alter gut microbiota composition and focus on the important metabolic pathways associated with obesity and metabolic disorders linked to obesity.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
74
|
Zhao Y, Zheng Y, Xie K, Hou Y, Liu Q, Jiang Y, Zhang Y, Man C. Combating Obesity: Harnessing the Synergy of Postbiotics and Prebiotics for Enhanced Lipid Excretion and Microbiota Regulation. Nutrients 2023; 15:4971. [PMID: 38068829 PMCID: PMC10707991 DOI: 10.3390/nu15234971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.
Collapse
Affiliation(s)
- Yueming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Kui Xie
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yanmei Hou
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Qingjing Liu
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| |
Collapse
|
75
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
76
|
Kim S, Lee S, Kim TY, Lee SH, Seo SU, Kweon MN. Newly isolated Lactobacillus paracasei strain modulates lung immunity and improves the capacity to cope with influenza virus infection. MICROBIOME 2023; 11:260. [PMID: 37996951 PMCID: PMC10666316 DOI: 10.1186/s40168-023-01687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The modulation of immune responses by probiotics is crucial for local and systemic immunity. Recent studies have suggested a correlation between gut microbiota and lung immunity, known as the gut-lung axis. However, the evidence and mechanisms underlying this axis remain elusive. RESULTS In this study, we screened various Lactobacillus (L.) strains for their ability to augment type I interferon (IFN-I) signaling using an IFN-α/β reporter cell line. We identified L. paracasei (MI29) from the feces of healthy volunteers, which showed enhanced IFN-I signaling in vitro. Oral administration of the MI29 strain to wild-type B6 mice for 2 weeks resulted in increased expression of IFN-stimulated genes and pro-inflammatory cytokines in the lungs. We found that MI29-treated mice had significantly increased numbers of CD11c+PDCA-1+ plasmacytoid dendritic cells and Ly6Chi monocytes in the lungs compared with control groups. Pre-treatment with MI29 for 2 weeks resulted in less weight loss and lower viral loads in the lung after a sub-lethal dose of influenza virus infection. Interestingly, IFNAR1-/- mice did not show enhanced viral resistance in response to oral MI29 administration. Furthermore, metabolic profiles of MI29-treated mice revealed changes in fatty acid metabolism, with MI29-derived fatty acids contributing to host defense in a Gpr40/120-dependent manner. CONCLUSIONS These findings suggest that the newly isolated MI29 strain can activate host defense immunity and prevent infections caused by the influenza virus through the gut-lung axis. Video Abstract.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
77
|
Zhang T, Liu W, Lu H, Cheng T, Wang L, Wang G, Zhang H, Chen W. Lactic acid bacteria in relieving constipation: mechanism, clinical application, challenge, and opportunity. Crit Rev Food Sci Nutr 2023; 65:551-574. [PMID: 37971876 DOI: 10.1080/10408398.2023.2278155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Constipation is a prevalent gastrointestinal symptom that can considerably affect a patients' quality of life. Although several drugs have been used to treat constipation, they are associated with high costs, side effects, and low universality. Therefore, alternative intervention strategies are urgently needed. Traditional lactic acid bacteria (LAB), such as Bifidobacterium and Lactobacillus, play a vital role in regulating intestinal microecology and have demonstrated favorable effects in constipation; however, a comprehensive review of their constipation relief mechanisms is limited. This review summarizes the pathogenesis of constipation and the relationship between intestinal motility and gut microbiota, elucidates the possible mechanism by which LAB alleviates of constipation through a systematic summary of animal and clinical research, and highlights the challenges and applications of LAB in the treatment of constipation. Our review can improve our understanding of constipation, and advance targeted microecological therapeutic agents, such as LAB.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huimin Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ting Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
78
|
Kasahara N, Imi Y, Amano R, Shinohara M, Okada K, Hosokawa Y, Imamori M, Tomimoto C, Kunisawa J, Kishino S, Ogawa J, Ogawa W, Hosooka T. A gut microbial metabolite of linoleic acid ameliorates liver fibrosis by inhibiting TGF-β signaling in hepatic stellate cells. Sci Rep 2023; 13:18983. [PMID: 37923895 PMCID: PMC10624680 DOI: 10.1038/s41598-023-46404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-β-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.
Collapse
Affiliation(s)
- Nanaho Kasahara
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yukiko Imi
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Reina Amano
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medicine Sciences, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kumiko Okada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusei Hosokawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Imamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | | | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan.
| |
Collapse
|
79
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
80
|
Wang Z, Cui S, Zhang T, Wang W, Li J, Chen YQ, Zhu SL. Akkermansia muciniphila supplementation improves glucose tolerance in intestinal Ffar4 knockout mice during the daily light to dark transition. mSystems 2023; 8:e0057323. [PMID: 37787527 PMCID: PMC10654094 DOI: 10.1128/msystems.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.
Collapse
Affiliation(s)
- Zhe Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - TingTing Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Y. Q. Chen
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sheng long Zhu
- Jiangnan University Medical Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
81
|
Chu Z, Hu Z, Luo Y, Zhou Y, Yang F, Luo F. Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 65:243-264. [PMID: 37870876 DOI: 10.1080/10408398.2023.2272269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An imbalance between energy consumption and energy expenditure causes obesity. It is characterized by increased adipose accumulation and accompanied by chronic low-grade inflammation. Many studies have suggested that the gut microbiota of the host mediates the relationship between high-fat diet consumption and the development of obesity. Diet and nutrition of the body are heavily influenced by gut microbiota. The alterations in the microbiota in the gut may have effects on the homeostasis of the host's energy levels, systemic inflammation, lipid metabolism, and insulin sensitivity. The liver is an important organ for fat metabolism and gut-liver axis play important role in the fat metabolism. Gut-liver axis is a bidirectional relationship between the gut and its microbiota and the liver. As essential plant components, lignans have been shown to have different biological functions. Accumulating evidences have suggested that lignans may have lipid-lowering properties. Lignans can regulate the level of the gut microbiota and their metabolites in the host, thereby affecting signaling pathways related to fat synthesis and metabolism. These signaling pathways can make a difference in inhibiting fat accumulation, accelerating energy metabolism, affecting appetite, and inhibiting chronic inflammation. It will provide the groundwork for future studies on the lipid-lowering impact of lignans and the creation of functional meals based on those findings.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P.R. China
| |
Collapse
|
82
|
Qin Y, Fan R, Liu Y, Qiu S, Wang L. Exploring the potential mechanism of Rubus corchorifolius L. fruit polyphenol-rich extract in mitigating non-alcoholic fatty liver disease by integration of metabolomics and transcriptomics profiling. Food Funct 2023; 14:9295-9308. [PMID: 37779461 DOI: 10.1039/d3fo02653a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), as the commonest chronic liver disease, is accompanied by liver oxidative stress and inflammatory responses. Herein, the extract obtained from Rubus corchorifolius fruits was purified and characterized for its polyphenol composition. The liver protective effect of the purified R. corchorifolius fruit extract (RCE) on mice with high-fat-diet (HFD)-induced NAFLD were investigated, and the potential mechanisms were explored through the integration of transcriptomics and metabolomics. Results showed that the polyphenolic compounds in RCE mainly included (-)-epigallocatechin, procyanidin B2, keracyanin, vanillin, dihydromyricetin, and ellagic acid. In addition, RCE intervention ameliorated liver and mitochondrial damage, which was evidenced by decreased indices of oxidative stress, liver function markers, and lipid profile levels. The liver metabonomics research revealed that RCE intervention affected the metabolic pathways of metabolites, including linoleic acid metabolism, galactose metabolism, alanine, aspartate and glutamate metabolism, retinol metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, riboflavin metabolism, starch and sucrose metabolism, and arachidonic acid metabolism. Additionally, liver transcriptomics research indicated that pathways like fatty acid degradation, circadian rhythm, valine, leucine and isoleucine degradation, primary bile acid biosynthesis, cytokine-cytokine receptor interaction, adipocytokine signaling pathway, glutathione metabolism, lipid and atherosclerosis were significantly enriched. The transcriptomics and metabolomics analysis demonstrated that RCE intervention had significant modulatory effects on the metabolic pathways associated with glycolipid metabolism. Moreover, RT-PCR results verified that RCE intervention regulated liver mRNA levels associated with the inflammatory response. Therefore, our findings suggest that the intake of RCE might be an effective strategy to alleviate liver damage.
Collapse
Affiliation(s)
- Yin Qin
- College of Life Sciences/Institute of Agro-bioengineering, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang 550025, Guizhou Province, P. R. China.
- College of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
| | - Yingxin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, P. R. China
| | - Shuyi Qiu
- College of Life Sciences/Institute of Agro-bioengineering, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Guizhou University, Guiyang 550025, Guizhou Province, P. R. China.
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, P. R. China.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
83
|
Wittwer AE, Lee SG, Ranadheera CS. Potential associations between organic dairy products, gut microbiome, and gut health: A review. Food Res Int 2023; 172:113195. [PMID: 37689944 DOI: 10.1016/j.foodres.2023.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Organic products have received longstanding, widespread attention for their nutritional and ecological benefits, as they are said to have certain positive health attributes and contain fewer harmful compounds than conventional (or non-organic) products. We reviewed the recent literature to examine potential associations between nutrient composition, gut microbiota, and gut health effects in recent comparative studies of organic and conventional dairy products. Trends of increased ratios of omega-3 to omega-6 polyunsaturated fatty acids and unsaturated to saturated fat, increased fat-soluble vitamin content, and decreased levels of certain pernicious contaminants in organic milk were observed across the studies reviewed. Studies of the metabolism of these nutrients in both in vitro and in vivo settings, and their or their metabolites' interaction with the intestinal epithelium show that nutrients enriched in organic dairy products may support host nutrient uptake and mediate gut inflammation. Research on the effects of single food products or classes of food products on gut health is rare. The extent of these benefits is highly likely to be mediated by both the magnitude of the difference in nutrient types and quantities, and by dietary intake levels of dairy products. Intervention studies directly examining the different effects of organic and conventional dairy products on gut health in humans are needed to further elucidate this relationship.
Collapse
Affiliation(s)
- Anna Elizabeth Wittwer
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Simon Gardner Lee
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
84
|
Wang D, Deng Y, Zhao L, Wang K, Wu D, Hu Z, Liu X. GABA and fermented litchi juice enriched with GABA promote the beneficial effects in ameliorating obesity by regulating the gut microbiota in HFD-induced mice. Food Funct 2023; 14:8170-8185. [PMID: 37466048 DOI: 10.1039/d2fo04038g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gamma-aminobutyric acid (GABA) dietary intervention is considered to have therapeutic potential against obesity. Microbial enrichment is an effective strategy to naturally and safely enhance GABA production in food. As litchi is "the king of GABA" in fruits, the retention or enrichment of its content during processing has been a key issue in the litchi industry. This study aimed to investigate the potential of GABA and fermented litchi juice enriched with GABA (FLJ) to protect against obesity in a high-fat diet (HFD) mouse model. Supplementation of GABA and FLJ displayed an anti-obesogenic effect by attenuating body weight gain, fat accumulation, and oxidative damage, and improving the serum lipid profile and hepatic function. Sequencing (16S rRNA) of fecal samples indicated that GABA and FLJ intervention displayed different regulatory effects on HFD-induced gut microbiota dysbiosis at different taxonomic levels. The microbial diversity, the relative abundance of Firmicutes and Bacteroidetes as well as the F/B ratio of GABA and FLJ groups were reversed compared to those of the HFD-induced mice. Our finding broadens the potential mechanisms by which GABA regulates gut flora in the amelioration of obesity and provides guidance for developing FLJ as a functional food to prevent obesity.
Collapse
Affiliation(s)
- Dongwei Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yani Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dongmei Wu
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
85
|
Alves-Santos AM, Silva MMA, Lima MS, Souza EL, Naves MMV. Baru (Dipteryx alata Vog.) agro-industrial by-products promote the growth and metabolism of probiotic strains. J Appl Microbiol 2023; 134:lxad206. [PMID: 37675996 DOI: 10.1093/jambio/lxad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
AIMS To evaluate the phytochemical composition and effects of the baru peel and pulp (BPP) and the partially defatted baru nut (DBN) on the growth and metabolism of probiotics. METHODS AND RESULTS The proximate composition, including dietary fibers, and polyphenol profile were determined in the BPP and DBN, and the prebiotic activity was evaluated on the growth and metabolism of the Lactobacillus and Bifidobacterium strains. BPP and DBN have a high content of insoluble fibers and phenolic compounds, mainly flavonoids and phenolic acids. Moreover, DBN stands out for its high content of proteins and lipids. BPP and DBN stimulated the growth and metabolism of Bifidobacterium animalis subsp. lactis BB-12, Lactobacillus acidophilus LA-05, and Lacticaseibacillus casei L-26. CONCLUSIONS Baru by-products have potential prebiotic properties to be confirmed in preclinical and clinical studies, and to be explored as an ingredient in new health-promoting foods. IMPACT STATEMENT Agro-industrial baru wastes, the peel plus pulp and the partially defatted nut, are sources of health-promoting compounds and stimulate the growth and metabolism of probiotics, indicating prebiotic properties.
Collapse
Affiliation(s)
- Aline M Alves-Santos
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080 Goiânia, Brazil
| | - Monik Mariele A Silva
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080 Goiânia, Brazil
| | - Marcos S Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, 56314-522 Petrolina, Brazil
| | - Evandro L Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, 58051-900 João Pessoa, Brazil
| | - Maria Margareth V Naves
- Laboratory of Experimental Nutrition, School of Nutrition, Federal University of Goiás (UFG), 74605-080 Goiânia, Brazil
| |
Collapse
|
86
|
Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, Puig J, Moschetta A, Montagner A, Gourdy P, Heymes C, Guillou H, Tremaroli V, Fernández-Real JM, Forslund SK, Burcelin R, Caesar R. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun 2023; 14:5329. [PMID: 37658064 PMCID: PMC10474162 DOI: 10.1038/s41467-023-41074-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Till Birkner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisa Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Ulrike Loeber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Jamie D Kraft
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Marian Martí-Navas
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Josep Puig
- Department of Radiology, Biomedical Research Institute Imaging Research Unit, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital of Girona, Avinguda de França, s/n, 17007, Girona, Catalonia, Spain
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- Medicina e Chirurgia d'Accettazione E d'Urgenza, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
- Medicina Sub-Intensiva, Presidio Maxi-Emergenze Fiera del Levante, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70124, Bari, Italy
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
- Endocrinology-Diabetology-Nutrition Department, Toulouse University Hospital, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP- PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Remy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1297, Université Paul Sabatier, Université de Toulouse, F-31432, Toulouse, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| |
Collapse
|
87
|
Uehira Y, Ueno H, Miyamoto J, Kimura I, Ishizawa Y, Iijima H, Muroga S, Fujita T, Sakai S, Samukawa Y, Tanaka Y, Murayama S, Sakoda H, Nakazato M. Impact of the lipase inhibitor orlistat on the human gut microbiota. Obes Res Clin Pract 2023; 17:411-420. [PMID: 37679239 DOI: 10.1016/j.orcp.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Orlistat, an anti-obesity agent, inhibits the metabolism and absorption of dietary fat by inactivating pancreatic lipase in the gut. The effect of orlistat on the gut microbiota of Japanese individuals with obesity is unknown. This study aimed to explore the effects of orlistat on the gut microbiota and fatty acid metabolism of Japanese individuals with obesity. Fourteen subjects with visceral fat obesity (waist circumference ≥85 cm) took orlistat orally at a dose of 60 mg, 3 times a day for 8 weeks. Body weight; waist circumference; visceral fat area; levels of short-chain fatty acids, gut microbiota, fatty acid metabolites in the feces, and gastrointestinal hormones; and adverse events were evaluated. Body weight, waist circumference, and blood leptin concentrations were significantly lower after orlistat treatment (mean ± standard deviation, 77.8 ± 9.1 kg; 91.9 ± 8.7 cm; and 4546 ± 3211 pg/mL, respectively) compared with before treatment (79.4 ± 9.0 kg; 94.4 ± 8.0 cm; and 5881 ± 3526 pg/mL, respectively). Significant increases in fecal levels of fatty acid metabolites (10-hydroxy-cis-12-octadecenoic acid, 10-oxo-cis-12-octadecenoic acid, and 10-oxo-trans-11-octadecenoic acid) were detected. Meanwhile, no significant changes were found in abdominal computed tomography parameters, blood marker levels, or short-chain fatty acid levels in the feces. Gut microbiota analysis revealed that some study subjects had decreased abundance of Firmicutes, increased abundance of Bacteroidetes, and increased α-diversity indices (Chao1 and ACE) after 8 weeks of treatment. The levels of Lactobacillus genus and Lactobacillus gasseri were significantly higher after 8 weeks of treatment. None of the subjects discontinued treatment or experienced severe adverse events. This study suggested that orlistat might alter gut microbiota composition and affect the body through fatty acid metabolites produced by the modified gut bacteria.
Collapse
Affiliation(s)
- Yudai Uehira
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hiroaki Ueno
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Ishizawa
- DNA Chip Research Inc., Minato-ku, Tokyo 105-0022, Japan
| | - Hiroshi Iijima
- DNA Chip Research Inc., Minato-ku, Tokyo 105-0022, Japan
| | - Shota Muroga
- Taisho Pharmaceutical Co., Ltd., Toshima-ku, Tokyo 170-8633, Japan
| | - Toru Fujita
- Taisho Pharmaceutical Co., Ltd., Toshima-ku, Tokyo 170-8633, Japan
| | - Soichi Sakai
- Taisho Pharmaceutical Co., Ltd., Toshima-ku, Tokyo 170-8633, Japan
| | | | - Yuri Tanaka
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Shinya Murayama
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology, and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Department of Inter-organ Communication Research Project, Frontier Science Research Center, University of Miyazaki, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
88
|
Ohtani N, Kamiya T, Kawada N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol Commun 2023; 7:e0241. [PMID: 37639702 PMCID: PMC10462074 DOI: 10.1097/hc9.0000000000000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this connection is called the "gut-liver axis," which exerts various influences on liver physiology and pathology. The gut microbiota has been recognized to trigger innate immunity and modulate the liver immune microenvironment. Gut microbiota influences the physiological processes in the host, such as metabolism, by acting on various signaling receptors and transcription factors through their metabolites and related molecules. The gut microbiota has also been increasingly recognized to modulate the efficacy of immune checkpoint inhibitors. In this review, we discuss recent updates on gut microbiota-associated mechanisms in the pathogenesis of chronic liver diseases such as NAFLD and NASH, as well as liver cancer, in light of the gut-liver axis. We particularly focus on gut microbial metabolites and components that are associated with these liver diseases. We also discuss the role of gut microbiota in modulating the response to immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
89
|
Guan L, Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv Biol (Weinh) 2023; 7:e2300100. [PMID: 37142556 DOI: 10.1002/adbi.202300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Diet is a pivotal determinant in shaping the structure and function of resident microorganisms in the gut through different food components, nutritive proportion, and calories. The effects of diet on host metabolism and physiology can be mediated through the gut microbiota. Gut microbiota-derived metabolites have been shown to regulate glucose and lipid metabolism, energy consumption, and the immune system. On the other hand, emerging evidence indicates that baseline gut microbiota could predict the efficacy of diet intervention, highlighting gut microbiota can be harnessed as a biomarker in personalized nutrition. In this review, the alterations of gut microbiota in different dietary components and dietary patterns, and the potential mechanisms in the diet-microbiota crosstalk are summarized to understand the interactions of diet and gut microbiota on the impact of metabolic homeostasis.
Collapse
Affiliation(s)
- Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
90
|
Attaye I, Lassen PB, Adriouch S, Steinbach E, Patiño-Navarrete R, Davids M, Alili R, Jacques F, Benzeguir S, Belda E, Nemet I, Anderson JT, Alexandre-Heymann L, Greyling A, Larger E, Hazen SL, van Oppenraaij SL, Tremaroli V, Beck K, Bergh PO, Bäckhed F, ten Brincke SP, Herrema H, Groen AK, Pinto-Sietsma SJ, Clément K, Nieuwdorp M. Protein supplementation changes gut microbial diversity and derived metabolites in subjects with type 2 diabetes. iScience 2023; 26:107471. [PMID: 37599833 PMCID: PMC10432813 DOI: 10.1016/j.isci.2023.107471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Emilie Steinbach
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Rafael Patiño-Navarrete
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Rohia Alili
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Flavien Jacques
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Sara Benzeguir
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - James T. Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Arno Greyling
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Etienne Larger
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH, USA
| | - Sophie L. van Oppenraaij
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Katharina Beck
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Suzan P.M. ten Brincke
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
91
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
92
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
93
|
Lee CT, Tribble GD. Roles of specialized pro-resolving mediators and omega-3 polyunsaturated fatty acids in periodontal inflammation and impact on oral microbiota. FRONTIERS IN ORAL HEALTH 2023; 4:1217088. [PMID: 37559676 PMCID: PMC10409488 DOI: 10.3389/froh.2023.1217088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease induced by dysbiotic dental biofilms. Management of periodontitis is primarily anti-bacterial via mechanical removal of bacterial biofilm. The successful resolution requires wound healing and tissue regeneration, which are not always achieved with these traditional methods. The discovery of specialized pro-resolving mediators (SPMs), a class of lipid mediators that induce the resolution of inflammation and promote local tissue homeostasis, creates another option for the treatment of periodontitis and other diseases of chronic inflammation. In this mini-review, we discuss the host-modulatory effects of SPMs on periodontal tissues and changes in the taxonomic composition of the gut and oral microbiome in the presence of SPMs and SPM precursor lipids. Further research into the relationship between host SPM production and microbiome-SPM modification has the potential to unveil new diagnostic markers of inflammation and wound healing. Expanding this field may drive the discovery of microbial-derived bioactive therapeutics to modulate immune responses.
Collapse
Affiliation(s)
- Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gena D. Tribble
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
94
|
Sebag SC, Qian Q, Upara C, Ding Q, Cao H, Hong L, Yang L. A Medium Chain Fatty Acid, 6-hydroxyhexanoic acid (6-HHA), Protects Against Obesity and Insulin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549684. [PMID: 37502899 PMCID: PMC10370144 DOI: 10.1101/2023.07.19.549684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity, a worldwide health problem, increases the risk for developing metabolic diseases such as insulin resistance and diabetes. It is well recognized that obesity-associated chronic inflammation plays a key role in the pathogenesis of systemic metabolic dysfunction. Previously, we revealed an anti-inflammatory role for spent culture supernatants isolated from the oral commensal bacterial species Streptococcus gordonii (Sg-SCS). Here, we identified that 6-hydroxyhexanoic acid (6-HHA), a medium chain fatty acid (MCFA), is the one of the key components of Sg-SCS . We found that treatment of 6-HHA in mice fed a high-fat diet (HFD) significantly reduced HFD-mediated weight gain which was largely attributed to a decrease in fat mass. Systemically, 6-HHA improves obesity-associated glucose intolerance and insulin resistance. Furthermore, administration of 6-HHA suppressed obesity-associated systemic inflammation and dyslipidemia. At the cellular level, treatment of 6-HHA ameliorated aberrant inflammatory and metabolic transcriptomic signatures in white adipose tissue of mice with diet-induced obesity (HFD). Mechanistically, we found that 6-HHA suppressed adipocyte-proinflammatory cytokine production and lipolysis, the latter through Gαi-mediated signaling. This work provides direct evidence for the anti-obesity effects of a novel MCFA, which could be a new therapeutic treatment for combating obesity. KEY POINTS Hydroxyhexanoic medium chain fatty acids (MCFAs) are dietary and bacterial-derived energy sources, however, the outcomes of using MCFAs in treating metabolic disorders are diverse and complex. The MCFA 6-hydroxyhexanoic acid (6-HHA) is a metabolite secreted by the oral bacterial commensal species Streptococcus gordonii; here we investigated its role in modulating high-fat diet (HFD)-induced metabolic dysfunction. In a murine model of obesity, we found 6-HHA-mediated improvement of diet-mediated adiposity, insulin resistance and inflammation were in part due to actions on white adipose tissue (WAT).6-HHA suppressed proinflammatory cytokine production and lipolysis through Gi-mediated signaling in differentiated white adipocytes.
Collapse
|
95
|
Fotschki B, Ognik K, Cholewińska E, Grzelak-Błaszczyk K, Myszczyński K, Krauze M, Juśkiewicz J. Effect of Chromium Nanoparticles and Switching from a High-Fat to a Low-Fat Diet on the Cecal Microenvironment in Obese Rats. Nutrients 2023; 15:3118. [PMID: 37513536 PMCID: PMC10384463 DOI: 10.3390/nu15143118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Previous studies showed that chromium nanoparticles (Cr-NPs) might be used as dietary compounds against some obesity-related disorders; however, there is little information on how these compounds influence the gut microenvironment. The aim of this study was to investigate whether the negative effects of a high-fat diet in the large intestine of rats might be mitigated by switching to a low-fat diet and supplementation with Cr-NPs. Microbiota sequencing analysis revealed that the main action of the Cr-NPs was focused on changing the gut microbiota's activity. Supplementation with nanoparticles decreased the activity of β-glucuronidase and enzymes responsible for the hydrolysis of dietary oligosaccharides and, thus, lowered the concentration of short-chain fatty acids in the cecum. In this group, there was also an elevated level of cecal lithocholic acid. The most favorable effect on the regulation of obesity-related disorders was observed when a high-fat diet was switched to a low-fat diet. This dietary change enhanced the production of short-chain fatty acids, reduced the level of secondary bile acids, and increased the microbial taxonomic richness, microbial differences, and microbial enzymatic activity in the cecum. To conclude, supplementation of a high-fat diet with Cr-NPs primarily had an effect on intestinal microbial activity, but switching to a low-fat diet had a powerful, all-encompassing effect on the gut that improved both microbial activity and composition.
Collapse
Affiliation(s)
- Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Katarzyna Grzelak-Błaszczyk
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
96
|
Zou X, Pan L, Xu M, Wang X, Wang Q, Han Y. Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiol Res 2023; 274:127438. [PMID: 37399653 DOI: 10.1016/j.micres.2023.127438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
A growing body of research suggests that gut microbiota is inextricably linked to host health and disease,so we are committed to finding more probiotic resources that are beneficial to human health. This study evaluated the probiotic properties of Lactobacillus sakei L-7 isolated from home-made sausages. The basic probiotic properties of L. sakei L-7 were evaluated through in vitro tests. The strain showed 89% viability after 7 h of digestion in simulating gastric and intestinal fluid. The hydrophobicity, self-aggregation and co-aggregation of L. sakei L-7 showed it had a strong adhesion ability. C57BL/6 J mice were fed L. sakei L-7 for 4 weeks. 16 S rRNA gene analysis indicated that intake of L. sakei L-7 increased the richness of gut microbiota and abundance of beneficial bacteria Akkermansia, Allobaculum and Parabacteroides. Metabonomics analysis revealed that beneficial metabolite gamma-aminobutyric acid and docosahexaenoic acid increased significantly. While the level of metabolite sphingosine and arachidonic acid significantly decreased. In addition, serum levels of inflammatory cytokines interleukin (IL)- 6 and tumor necrosis factor (TNF)-α were significantly decreased. The results suggested that L. sakei L-7 may promote gut health and reduce the occurrence of inflammatory response, it has the potential to become a probiotic.
Collapse
Affiliation(s)
- Xuan Zou
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Xiaoqing Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, the People's Republic of China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China.
| |
Collapse
|
97
|
Guiducci L, Nicolini G, Forini F. Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites 2023; 13:760. [PMID: 37367916 DOI: 10.3390/metabo13060760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
The cardiovascular and metabolic disorders, collectively known as cardiometabolic disease (CMD), are high morbidity and mortality pathologies associated with lower quality of life and increasing health-care costs. The influence of the gut microbiota (GM) in dictating the interpersonal variability in CMD susceptibility, progression and treatment response is beginning to be deciphered, as is the mutualistic relation established between the GM and diet. In particular, dietary factors emerge as pivotal determinants shaping the architecture and function of resident microorganisms in the human gut. In turn, intestinal microbes influence the absorption, metabolism, and storage of ingested nutrients, with potentially profound effects on host physiology. Herein, we present an updated overview on major effects of dietary components on the GM, highlighting the beneficial and detrimental consequences of diet-microbiota crosstalk in the setting of CMD. We also discuss the promises and challenges of integrating microbiome data in dietary planning aimed at restraining CMD onset and progression with a more personalized nutritional approach.
Collapse
Affiliation(s)
- Letizia Guiducci
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | | | - Francesca Forini
- CNR Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
98
|
Liang B, Shi L, Du D, Li H, Yi N, Xi Y, Cui J, Li P, Kang H, Noda M, Sun X, Liu J, Qin S, Long J. Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting Glucose Patients: A Randomized Controlled Study. Antioxidants (Basel) 2023; 12:1245. [PMID: 37371975 DOI: 10.3390/antiox12061245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has seldom been studied. This randomized controlled study (RCT) aims to investigate the effects of hydrogen-rich water (HRW) on IFG subjects and explore the underlying mechanism involved. METHODS Seventy-three patients with IFG were enrolled in a randomized, double-blind, placebo-controlled clinical study. These patients were assigned to receive either 1000 mL per day of HRW or placebo pure water (no H2 infusion) for a duration of eight weeks. Metabolic parameters and fecal gut microbiota were assessed at baseline (week 0) and at week 8. A combined analysis of metabolomics and intestinal microbiota was conducted to investigate the correlation between the effect of H2 on the metabolisms and the diversity of intestinal flora in the IGF patients. RESULTS Both pure water and HRW demonstrated a significant reduction in fasting blood glucose in IFG patients, with a significant difference between pure water and HRW after eight weeks. Among IFG patients with abnormal pre-experimental fatty liver, 62.5% (10/16) in the HRW group and 31.6% (6/19) in the pure water group achieved remission. Furthermore, 16S RNA analysis revealed HRW-modified gut microbiota dysbiosis in the fecal samples of IGF patients. Through Pearson correlation analysis, the differential gut microbiota obtained by 16S analysis was found to be highly correlated with nine metabolites. CONCLUSION H2 slightly improved metabolic abnormalities and gut microbiota dysbiosis, providing a novel target and theoretical basis for the prevention and treatment of blood glucose regulation in patients with IFG.
Collapse
Affiliation(s)
- Bing Liang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongyue Du
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ning Yi
- Department of Surgical Nursing, School of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yue Xi
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Jianjiao Cui
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Ping Li
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongbin Kang
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Xuejun Sun
- Department of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
99
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
100
|
Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces. Food Chem 2023; 410:135413. [PMID: 36623461 DOI: 10.1016/j.foodchem.2023.135413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The gut microbiota plays an evolutionarily conserved role in host metabolism, which is influenced by diet. Here, we investigated differences in shaping the gut microbiota and regulating metabolism in cow milk-based infant formula, goat milk-based infant formula, and mix milk-based infant formula compared with pasteurized human milk. 16S rRNA results showed that goat milk-based infant formula selectively increased the relative abundance of Blautia, Roseburia, Alistites and Muribaculum in the gut compared to other infant formulas. Metabolomics identification indicated that goat milk-based infant formula mainly emphasized bile acid biosynthesis, arachidonic acid metabolism and steroid biosynthesis metabolic pathways. Metabolites associated with these metabolic pathways were positively associated with increased microorganisms in goat milk-based infant formula, particularly Alistipes. Furthermore, we found a deficiency of Akkermansia abundance in three infant formula-fed compared to pasteurizedhuman milk-fed. This study presents new insights into the improvement and application of goat milk-based infant formulas in terms of intestinal microecology.
Collapse
|