51
|
Xin L, Ren M, Lou Y, Yin H, Qin F, Xiong Z. Integrated UHPLC-MS untargeted metabolomics and gut microbe metabolism pathway-targeted metabolomics to reveal the prevention mechanism of Gushudan on kidney-yang-deficiency-syndrome rats. J Pharm Biomed Anal 2024; 242:116062. [PMID: 38387127 DOI: 10.1016/j.jpba.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.
Collapse
Affiliation(s)
- Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, P.R. China.
| |
Collapse
|
52
|
Gan G, Lin S, Luo Y, Zeng Y, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE -/- Mice on a high-fat diet. Int J Oral Sci 2024; 16:39. [PMID: 38740741 PMCID: PMC11091127 DOI: 10.1038/s41368-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shihan Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yu Zeng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
53
|
Shi L, Landberg R. Dietary fibre (and animal products) modulate the association between tryptophan intake, gut microbiota and type 2 diabetes: but how? Gut 2024; 73:884-886. [PMID: 37918888 DOI: 10.1136/gutjnl-2023-330972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rikard Landberg
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
54
|
Burcham ZM, Tweedie JL, Farfán-García AE, Nolan VG, Donohoe D, Gómez-Duarte OG, Johnson JG. Campylobacter infection of young children in Colombia and its impact on the gastrointestinal environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592725. [PMID: 38766229 PMCID: PMC11100603 DOI: 10.1101/2024.05.06.592725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Campylobacter infections are a leading cause of bacterial-derived gastroenteritis worldwide with particularly profound impacts on pediatric patients in low-and-middle income countries. It remains unclear how Campylobacter impacts these hosts, though it is becoming increasingly evident that it is a multifactorial process that depends on the host immune response, the gastrointestinal microbiota, various bacterial factors, and host nutritional status. Since these factors likely vary between adult and pediatric patients in different regions of the world, it is important that studies define these attributes in well characterized clinical cohorts in diverse settings. In this study, we analyzed the fecal microbiota and the metabolomic and micronutrient profiles of asymptomatic and symptomatic pediatric patients in Colombia that were either infected or uninfected with Campylobacter during a case-controlled study on acute diarrheal disease. Here, we report that the microbiome of Campylobacter- infected children only changed in their abundance of Campylobacter spp. despite the inclusion of children with or without diarrhea. In addition to increased Campylobacter, computational models were used to identify fecal metabolites that were associated with Campylobacter infection and found that glucose-6-phosphate and homovanillic acid were the strongest predictors of infection in these pediatric patients, which suggest that colonocyte metabolism are impacted during infection. Despite changes to the fecal metabolome, the concentrations of intestinal minerals and trace elements were not significantly impacted by Campylobacter infection, but were elevated in uninfected children with diarrhea. Importance Gastrointestinal infection with pathogenic Campylobacter species has long been recognized as a significant cause of human morbidity. Recently, it has been observed that pediatric populations in low-and-middle income countries are uniquely impacted by these organisms in that infected children can be persistently colonized, develop enteric dysfunction, and exhibit reduced development and growth. While the association of Campylobacter species with these long-term effects continues to emerge, the impact of infection on the gastrointestinal environment of these children remains uncharacterized. To address this knowledge gap, our group leveraged clinical samples collected during a previous study on gastrointestinal infections in pediatric patients to examine the fecal microbiota, metabolome, and micronutrient profiles of those infected with Campylobacter species, and found that the metabolome was impacted in a way that suggests gastrointestinal cell metabolism is affected during infection, which is some of the first data indicating how gastrointestinal health in these patients may be affected.
Collapse
|
55
|
García-Gavilán JF, Atzeni A, Babio N, Liang L, Belzer C, Vioque J, Corella D, Fitó M, Vidal J, Moreno-Indias I, Torres-Collado L, Coltell O, Toledo E, Clish C, Hernando J, Yun H, Hernández-Cacho A, Jeanfavre S, Dennis C, Gómez-Pérez AM, Martínez MA, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. Effect of 1-year lifestyle intervention with energy-reduced Mediterranean diet and physical activity promotion on the gut metabolome and microbiota: a randomized clinical trial. Am J Clin Nutr 2024; 119:1143-1154. [PMID: 38428742 DOI: 10.1016/j.ajcnut.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The health benefits of the Mediterranean diet (MedDiet) have been linked to the presence of beneficial gut microbes and related metabolites. However, its impact on the fecal metabolome remains poorly understood. OBJECTIVES Our goal was to investigate the weight-loss effects of a 1-y lifestyle intervention based on an energy-reduced MedDiet coupled with physical activity (intervention group), compared with an ad libitum MedDiet (control group), on fecal metabolites, fecal microbiota, and their potential association with cardiovascular disease risk factors. METHODS A total of 400 participants (200 from each study group), aged 55-75 y, and at high cardiovascular disease risk, were included. Dietary and lifestyle information, anthropometric measurements, blood biochemical parameters, and stool samples were collected at baseline and after 1 y of follow-up. Liquid chromatography-tandem mass spectrometry was used to profile endogenous fecal metabolites, and 16S amplicon sequencing was employed to profile the fecal microbiota. RESULTS Compared with the control group, the intervention group exhibited greater weight loss and improvement in various cardiovascular disease risk factors. We identified intervention effects on 4 stool metabolites and subnetworks primarily composed of bile acids, ceramides, and sphingosines, fatty acids, carnitines, nucleotides, and metabolites of purine and the Krebs cycle. Some of these were associated with changes in several cardiovascular disease risk factors. In addition, we observed a reduction in the abundance of the genera Eubacterium hallii group and Dorea, and an increase in alpha diversity in the intervention group after 1 y of follow-up. Changes in the intervention-related microbiota profiles were also associated with alterations in different fecal metabolite subnetworks and some cardiovascular disease risk factors. CONCLUSIONS An intervention based on an energy-reduced MedDiet and physical activity promotion, compared with an ad libitum MedDiet, was associated with improvements in cardiometabolic risk factors, potentially through modulation of the fecal microbiota and metabolome. This trial was registered at https://www.isrctn.com/ as ISRCTN89898870 (https://doi.org/10.1186/ISRCTN89898870).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Alessandro Atzeni
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Nancy Babio
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Computer Languages and Systems, Jaume I University, Castellón, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Clary Clish
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Javier Hernando
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Adrián Hernández-Cacho
- Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sarah Jeanfavre
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Courtney Dennis
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Ana M Gómez-Pérez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Maria Angeles Martínez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco J Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
56
|
Yang W, Hua R, Cao Y, He X. A metabolomic perspective on the mechanisms by which environmental pollutants and lifestyle lead to male infertility. Andrology 2024; 12:719-739. [PMID: 37815095 DOI: 10.1111/andr.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 10/11/2023]
Abstract
The incidence of male infertility (MI) is rising annually. According to epidemiological studies, environmental pollution (e.g., organic, inorganic, and air pollutants), occupational exposure (e.g., high temperature, organic solvents, and pesticides), and poor lifestyle (e.g., diet, sleep, smoking, alcohol consumption, and exercise) are important non-genetic causative factors of MI. Due to multiple and complex causative factors, the dose-effect relationship, and the uncertainty of pathogenicity, the pathogenesis of MI is far from fully clarified. Recent data show that the pathogenesis of MI can be monitored by the metabolites in serum, seminal plasma, urine, testicular tissue, sperm, and other biological samples. It is considered that these metabolites are closely related to MI phenotypes and can directly reflect the individual pathological and physiological conditions. Therefore, qualitative and quantitative analysis of the metabolome, the related metabolic pathways, and the identification of biomarkers will help to explore the MI-related metabolic problems and provide valuable insights into its pathogenic mechanisms. Here, we summarized new findings in MI metabolomics biomarkers research and their abnormal metabolic pathways triggered by the presented non-genetic risk factors, providing a metabolic landscape of semen and seminal plasma in general MI patients. Then, we compared the similarities and differences in semen and seminal plasma biomarkers between MI patients exposed to environmental and poor lifestyle factors and MI patients in general, and summarized some common biomarkers. We provide a better understanding of the biological underpinnings of MI pathogenesis, which might offer novel diagnostic, prognostic, and precise treatment approaches to MI.
Collapse
Affiliation(s)
- Wen Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| |
Collapse
|
57
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
58
|
Luo Z, Du Z, Huang Y, Zhou T, Wu D, Yao X, Shen L, Yu S, Yong K, Wang B, Cao S. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia. mSystems 2024; 9:e0002324. [PMID: 38501812 PMCID: PMC11019918 DOI: 10.1128/msystems.00023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as β-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenlong Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
59
|
Wang JT, Hu W, Xue Z, Cai X, Zhang SY, Li FQ, Lin LS, Chen H, Miao Z, Xi Y, Guo T, Zheng JS, Chen YM, Lin HL. Mapping multi-omics characteristics related to short-term PM 2.5 trajectory and their impact on type 2 diabetes in middle-aged and elderly adults in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133784. [PMID: 38382338 DOI: 10.1016/j.jhazmat.2024.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.
Collapse
Affiliation(s)
- Jia-Ting Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Shi-Yu Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan-Qin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Shan Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanzu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Liang Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
60
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
61
|
Kumar S, Pattanaik AK, Jadhav SE, Jangir BL. Lactobacillus johnsonii CPN23 vis-à-vis Lactobacillus acidophilus NCDC15 Improves Gut Health, Intestinal Morphometry, and Histology in Weaned Wistar Rats. Probiotics Antimicrob Proteins 2024; 16:474-489. [PMID: 36976517 DOI: 10.1007/s12602-023-10063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The present investigation was carried out with the aim to establish the comparative efficacy of a canine-sourced probiotic meant for canine feeding and a conventional dairy-sourced probiotic. For this purpose, canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophilus NCDC15 were evaluated for potential probiotics health benefits in the rat model. Forty-eight weaned Wistar rats enrolled in this experiment of 8 weeks were fed a basal diet and divided into three dietary treatments. Rats of group I enrolled as control (CON) were given MRS placebo at 1 mL/head/day, while rats of group II (LAJ) and III (LAC) were administered with overnight MRS broth grown-culture of L. johnsonii CPN23 and L. acidophilus NCDC15, respectively, at 1 mL/head/day (108 cfu/mL). The average daily gain and net gain in body weight were significantly higher (p < 0.05) in LAJ and LAC than in CON. Fecal and digesta biochemical attributes altered (p < 0.05) positively in response to both probiotics. Total fecal and pooled digesta SCFAs were higher (p < 0.05) in both LAJ and LAC than in CON. The microbial population in cecal and colonic digesta responded (p < 0.05) positively to both probiotics. The diameter of intestinal segments was higher (p < 005) in LAJ as compared to CON. The number and height of villi in jejunum tended to be higher in LAJ as compared to CON. The humoral immune response to sheep erythrocytes as well as chicken egg-white lysozyme was higher in LAJ as compared to CON. Overall, the results of the study have demonstrated the effectiveness of the canine-sourced L. johnsonii CPN23 as a potential probiotic, with a comparatively better response than the dairy-sourced L. acidophilus NCDC15. It could thus be recommended for use in feeding dogs to help augment their health.
Collapse
Affiliation(s)
- Sachin Kumar
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132 001, India
| | - Ashok Kumar Pattanaik
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India.
| | - Sunil Ekanath Jadhav
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Babu Lal Jangir
- Clinical and Pet Nutrition Laboratory, Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125 004, India
| |
Collapse
|
62
|
De Paepe E, Plekhova V, Vangeenderhuysen P, Baeck N, Bullens D, Claeys T, De Graeve M, Kamoen K, Notebaert A, Van de Wiele T, Van Den Broeck W, Vanlede K, Van Winckel M, Vereecke L, Elliott C, Cox E, Vanhaecke L. Integrated gut metabolome and microbiome fingerprinting reveals that dysbiosis precedes allergic inflammation in IgE-mediated pediatric cow's milk allergy. Allergy 2024; 79:949-963. [PMID: 38193259 DOI: 10.1111/all.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which β-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies. METHODS We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group). After sensitization, mice were challenged orally, their clinical signs monitored, antibody (IgE and IgG1) and cytokine levels (IL-4 and IFN-γ) measured, and fecal samples subjected to metabolomics. The results of the murine models were further extrapolated to fecal microbiome-metabolome data from our population of IgE-CMA (n = 22) and healthy (n = 23) children (Trial: NCT04249973), on which polar metabolomics, lipidomics and 16S rRNA metasequencing were performed. In vitro gastrointestinal digestions and multi-omics corroborated the microbial origin of proposed metabolic changes. RESULTS During mice sensitization, we observed multiple microbially derived metabolic alterations, most importantly bile acid, energy and tryptophan metabolites, that preceded allergic inflammation. We confirmed microbial dysbiosis, and its associated effect on metabolic alterations in our patient cohort, through in vitro digestions and multi-omics, which was accompanied by metabolic signatures of low-grade inflammation. CONCLUSION Our results indicate that gut dysbiosis precedes allergic inflammation and nurtures a chronic low-grade inflammation in children on elimination diets, opening important new opportunities for future prevention and treatment strategies.
Collapse
Affiliation(s)
- Ellen De Paepe
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Vera Plekhova
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Pablo Vangeenderhuysen
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Nele Baeck
- Department of Pediatrics, Pediatric Gastroenterology, AZ Jan Palfijn Ghent, Ghent, Belgium
| | - Dominique Bullens
- Department of Microbiology, Immunology and Transplantation, Allergy and Immunology Research Group, KU Leuven, Leuven, Belgium
- Clinical Division of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Tania Claeys
- Department of Pediatrics, Pediatric Gastroenterology and Nutrition & General Pediatric Medicine, AZ Sint-Jan Bruges, Bruges, Belgium
| | - Marilyn De Graeve
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
| | - Kristien Kamoen
- Department of Pediatrics, Maria Middelares Ghent, Ghent, Belgium
| | - Anneleen Notebaert
- Department of Pediatrics, Sint-Vincentius Hospital Deinze, Deinze, Belgium
| | - Tom Van de Wiele
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, 9000, Belgium
| | - Wim Van Den Broeck
- Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Ghent University, Merelbeke, Belgium
| | - Koen Vanlede
- Department of General Pediatrics, VITAZ, Sint-Niklaas, Belgium
| | - Myriam Van Winckel
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Lars Vereecke
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent, Belgium
| | - Chris Elliott
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Eric Cox
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Immunology, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Laboratory of Integrative Metabolomics (LIMET), Ghent University, Merelbeke, Belgium
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
63
|
Bhosle A, Bae S, Zhang Y, Chun E, Avila-Pacheco J, Geistlinger L, Pishchany G, Glickman JN, Michaud M, Waldron L, Clish CB, Xavier RJ, Vlamakis H, Franzosa EA, Garrett WS, Huttenhower C. Integrated annotation prioritizes metabolites with bioactivity in inflammatory bowel disease. Mol Syst Biol 2024; 20:338-361. [PMID: 38467837 PMCID: PMC10987656 DOI: 10.1038/s44320-024-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Ludwig Geistlinger
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Gleb Pishchany
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wendy S Garrett
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
64
|
Wang Y, He X, Xue M, Yu H, He Q, Jin J. Integrated 16S rRNA sequencing and metabolomic analysis reveals the potential protective mechanism of Germacrone on diabetic nephropathy in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:414-426. [PMID: 38429975 PMCID: PMC10984863 DOI: 10.3724/abbs.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 03/03/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Germacrone (Ger) possesses anti-inflammatory, antioxidant and anti-DN properties. However, it is unclear whether the improvement in kidney damage caused by Ger in DN mice is related to abnormal compositions and metabolites of the gut microbiota. This study generates a mouse model of DN to explore the potent therapeutic ability and mechanism of Ger in renal function by 16S rRNA sequencing and untargeted fecal metabolomics. Although there is no significant change in microbiota diversity, the structure of the gut microbiota in the DN group is quite different. Serratia_marcescens and Lactobacillus_iners are elevated in the model group but significantly decreased after Ger intervention ( P<0.05). Under the treatment of Ger, no significant differences in the diversity and richness of the gut microbiota are observed. An imbalance in the intestinal flora leads to the dysregulation of metabolites, and non-targeted metabolomics data indicate high expression of stearic acid in the DN group, and oleic acid could serve as a potential marker of the therapeutic role of Ger in the DN model. Overall, Ger improves kidney injury in diabetic mice, in part potentially by reducing the abundance of Serratia_marcescens and Lactobacillus_iners, as well as regulating the associated increase in metabolites such as oleic acid, lithocholic acid and the decrease in stearic acid. Our research expands the understanding of the relationship between the gut microbiota and metabolites in Ger-treated DN. This contributes to the usage of natural products as a therapeutic approach for the treatment of DN via microbiota regulation.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Xinxin He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Mengjiao Xue
- School of Clinical MedicineHangzhou Medical CollegeHangzhou311399China
| | - Huan Yu
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiang He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Juan Jin
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| |
Collapse
|
65
|
Muller E, Shiryan I, Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun 2024; 15:2621. [PMID: 38521774 PMCID: PMC10960825 DOI: 10.1038/s41467-024-46888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing "MintTea", an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies "disease-associated multi-omic modules", comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including Peptostreptococcus and Gemella species and fecal amino acids, in line with these species' metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.
Collapse
Affiliation(s)
- Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Shiryan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
66
|
Yang Y, Chen J, Gao H, Cui M, Zhu M, Xiang X, Wang Q. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China. Front Cell Infect Microbiol 2024; 14:1374544. [PMID: 38585649 PMCID: PMC10995345 DOI: 10.3389/fcimb.2024.1374544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Children have regional dynamics in the gut microbiota development trajectory. Hitherto, the features and influencing factors of the gut microbiota and fecal and plasma metabolites in children from Northwest China remain unclear. Methods Shotgun metagenomic sequencing and untargeted metabolomics were performed on 100 healthy volunteers aged 2-12 years. Results Age, body mass index (BMI), regular physical exercise (RPE), and delivery mode (DM) significantly affect gut microbiota and metabolites. Lactobacillus, Butyricimonas, Prevotella, Alistipes, and predicted pathway propanoate production were significantly increased with age while Bifidobacterium breve, B. animalis, B. pseudocatenulatum, Streptococcus infantis, and carbohydrate degradation were decreased. Fecal metabolome revealed that the metabolism of caffeine, amino acids, and lipid significantly increased with age while galactose metabolism decreased. Noticeably, BMI was positively associated with pathogens including Erysipelatoclostridium ramosum, Parabacteroides distasonis, Ruminococcus gnavus, and amino acid metabolism but negatively associated with beneficial Akkermansia muciniphila, Alistipes finegoldii, Eubacterium ramulus, and caffeine metabolism. RPE has increased probiotic Faecalibacterium prausnitzii and Anaerostipes hadrus, acetate and lactate production, and major nutrient metabolism in gut and plasma, but decreased pathobiont Bilophila wadsworthia, taurine degradation, and pentose phosphate pathway. Interestingly, DM affects the gut microbiota and metabolites throughout the whole childhood. Bifidobacterium animalis, Lactobacillus mucosae, L. ruminis, primary bile acid, and neomycin biosynthesis were enriched in eutocia, while anti-inflammatory Anaerofustis stercorihominis, Agathobaculum butyriciproducens, Collinsella intestinalis, and pathogenic Streptococcus salivarius, Catabacter hongkongensis, and amino acid metabolism were enriched in Cesarean section children. Discussion Our results provided theoretical and data foundation for the gut microbiota and metabolites in preadolescent children's growth and development in Northwest China.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Huiyu Gao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minglu Cui
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mingyu Zhu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuesong Xiang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
67
|
Tao S, Fan J, Li J, Wu Z, Yao Y, Wang Z, Wu Y, Liu X, Xiao Y, Wei H. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res 2024:S2090-1232(24)00111-5. [PMID: 38508446 DOI: 10.1016/j.jare.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
68
|
Holzhausen EA, Peppard PE, Sethi AK, Safdar N, Malecki KC, Schultz AA, Deblois CL, Hagen EW. Associations of gut microbiome richness and diversity with objective and subjective sleep measures in a population sample. Sleep 2024; 47:zsad300. [PMID: 37988614 PMCID: PMC10926107 DOI: 10.1093/sleep/zsad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
STUDY OBJECTIVES Alterations in gut microbiota composition have been associated with several conditions, and there is emerging evidence that sleep quantity and quality are associated with the composition of the gut microbiome. Therefore, this study aimed to assess the associations between several measures of sleep and the gut microbiome in a large, population-based sample. METHODS Data were collected from participants in the Survey of the Health of Wisconsin from 2016 to 2017 (N = 720). Alpha diversity was estimated using Chao1 richness, Shannon's diversity, and Inverse Simpson's diversity. Beta diversity was estimated using Bray-Curtis dissimilarity. Models for each of the alpha-diversity outcomes were calculated using linear mixed effects models. Permutational multivariate analysis of variance tests were performed to test whether gut microbiome composition differed by sleep measures. Negative binomial models were used to assess whether sleep measures were associated with individual taxa relative abundance. RESULTS Participants were a mean (SD) age of 55 (16) years and 58% were female. The sample was 83% non-Hispanic white, 10.6% non-Hispanic black, and 3.5% Hispanic. Greater actigraphy-measured night-to-night sleep duration variability, wake-after-sleep onset, lower sleep efficiency, and worse self-reported sleep quality were associated with lower microbiome richness and diversity. Sleep variables were associated with beta-diversity, including actigraphy-measured night-to-night sleep duration variability, sleep latency and efficiency, and self-reported sleep quality, sleep apnea, and napping. Relative abundance of several taxa was associated with night-to-night sleep duration variability, average sleep latency and sleep efficiency, and sleep quality. CONCLUSIONS This study suggests that sleep may be associated with the composition of the gut microbiome. These results contribute to the body of evidence that modifiable health habits can influence the human gut microbiome.
Collapse
Affiliation(s)
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Ajay K Sethi
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine and the William S. Middleton Memorial Veterans Hospital, University of Wisconsin, Madison, WI, USA
| | - Kristen C Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Erika W Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
69
|
Chhun A, Moriano-Gutierrez S, Zoppi F, Cabirol A, Engel P, Schaerli Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol 2024; 22:e3002523. [PMID: 38442124 PMCID: PMC10914260 DOI: 10.1371/journal.pbio.3002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.
Collapse
Affiliation(s)
- Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florian Zoppi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
70
|
Carrillo Heredero AM, Sabbioni A, Asti V, Ablondi M, Summer A, Bertini S. Fecal microbiota characterization of an Italian local horse breed. Front Vet Sci 2024; 11:1236476. [PMID: 38425839 PMCID: PMC10902133 DOI: 10.3389/fvets.2024.1236476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The Bardigiano horse is a traditional native Italian breed with a rich history and peculiar characteristics. Local breeds are proven to have unique genetic traits developed over generations to adapt to defined geographical regions and/or conditions. The specific microbial communities that coexist within these animals are unraveled by studying their microbiota, which permits a further step in the characterization of local heritage. This work aimed to characterize Bardigiano horse fecal microbiota composition. The data obtained were then compared with published data of a mix of athlete breeds to evaluate potential differences among local and specialized breeds. The study involved 11 Bardigiano mares between 3 and 4 years of age, from which stool was sampled for the study. Samples were processed for 16S rRNA sequencing. Data obtained were analyzed and plotted using R, RStudio, and FastTree software. The samples analyzed were similar to what literature has reported on horses of other breeds and attitudes at higher taxonomic levels (from phylum to genera). While at lower taxonomic levels, the difference was more marked highlighting specific families found in the Bardigiano breed only. Weight, province of origin, and breeding sites significantly affected microbiota composition (p-value ≤0.02, p-value ≤0.04, and p-value ≤0.05, respectively). The comparison with athlete breed showed a significant difference confirming that animal and environmental factors are crucial in determining fecal microbiota composition (p-value <0.001). Understanding the microbiota composition in local breeds like the Bardigiano horse is crucial for preserving biodiversity, managing animal health, and promoting sustainable farming practices.
Collapse
Affiliation(s)
| | | | - Vittoria Asti
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
71
|
Chen M, Miao G, Huo Z, Peng H, Wen X, Anton S, Zhang D, Hu G, Brock R, Brantley PJ, Zhao J. Longitudinal Profiling of Fasting Plasma Metabolome in Response to Weight-Loss Interventions in Patients with Morbid Obesity. Metabolites 2024; 14:116. [PMID: 38393008 PMCID: PMC10890440 DOI: 10.3390/metabo14020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
It is well recognized that patients with severe obesity exhibit remarkable heterogeneity in response to different types of weight-loss interventions. Those who undergo Roux-en-Y gastric bypass (RYGB) usually exhibit more favorable glycemic outcomes than those who receive adjustable gastric banding (BAND) or intensive medical intervention (IMI). The molecular mechanisms behind these observations, however, remain largely unknown. To identify the plasma metabolites associated with differential glycemic outcomes induced by weight-loss intervention, we studied 75 patients with severe obesity (25 each in RYGB, BAND, or IMI). Using untargeted metabolomics, we repeatedly measured 364 metabolites in plasma samples at baseline and 1-year after intervention. Linear regression was used to examine whether baseline metabolites or changes in metabolites are associated with differential glycemic outcomes in response to different types of weight-loss intervention, adjusting for sex, baseline age, and BMI as well as weight loss. Network analyses were performed to identify differential metabolic pathways involved in the observed associations. After correction for multiple testing (q < 0.05), 33 (RYGB vs. IMI) and 28 (RYGB vs. BAND) baseline metabolites were associated with changes in fasting plasma glucose (FPG) or glycated hemoglobin (HbA1c). Longitudinal changes in 38 (RYGB vs. IMI) and 38 metabolites (RYGB vs. BAND) were significantly associated with changes in FPG or HbA1c. The identified metabolites are enriched in pathways involved in the biosynthesis of aminoacyl-tRNA and branched-chain amino acids. Weight-loss intervention evokes extensive changes in plasma metabolites, and the altered metabolome may underlie the differential glycemic outcomes in response to different types of weight-loss intervention, independent of weight loss itself.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Hao Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Wen
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| | - Stephen Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32603, USA
| | - Dachuan Zhang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Ricky Brock
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Phillip J Brantley
- Behavioral Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
72
|
Matsuzaki J, Kurokawa S, Iwamoto C, Miyaho K, Takamiya A, Ishii C, Hirayama A, Sanada K, Fukuda S, Mimura M, Kishimoto T, Saito Y. Intestinal metabolites predict treatment resistance of patients with depression and anxiety. Gut Pathog 2024; 16:8. [PMID: 38336806 PMCID: PMC10854080 DOI: 10.1186/s13099-024-00601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The impact of the gut microbiota on neuropsychiatric disorders has gained much attention in recent years; however, comprehensive data on the relationship between the gut microbiome and its metabolites and resistance to treatment for depression and anxiety is lacking. Here, we investigated intestinal metabolites in patients with depression and anxiety disorders, and their possible roles in treatment resistance. RESULTS We analyzed fecal metabolites and microbiomes in 34 participants with depression and anxiety disorders. Fecal samples were obtained three times for each participant during the treatment. Propensity score matching led us to analyze data from nine treatment responders and nine non-responders, and the results were validated in the residual sample sets. Using elastic net regression analysis, we identified several metabolites, including N-ε-acetyllysine; baseline levels of the former were low in responders (AUC = 0.86; 95% confidence interval, 0.69-1). In addition, fecal levels of N-ε-acetyllysine were negatively associated with the abundance of Odoribacter. N-ε-acetyllysine levels increased as symptoms improved with treatment. CONCLUSION Fecal N-ε-acetyllysine levels before treatment may be a predictive biomarker of treatment-refractory depression and anxiety. Odoribacter may play a role in the homeostasis of intestinal L-lysine levels. More attention should be paid to the importance of L-lysine metabolism in those with depression and anxiety.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Shunya Kurokawa
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiaki Iwamoto
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Katsuma Miyaho
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kenji Sanada
- Department of Psychiatry, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Azabudai Hills Mori JP Tower 7F, 1-3-1 Azabudai, Minato-ku, Tokyo, 106-0041, Japan.
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
73
|
Zheng S, Qin W, Chen T, Ouyang R, Wang X, Li Q, Zhao Y, Liu X, Wang D, Zhou L, Xu G. Strategy for Comprehensive Detection and Annotation of Gut Microbiota-Related Metabolites Based on Liquid Chromatography-High-Resolution Mass Spectrometry. Anal Chem 2024; 96:2206-2216. [PMID: 38253323 DOI: 10.1021/acs.analchem.3c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Gut microbiota, widely populating the mammalian gastrointestinal tract, plays an important role in regulating diverse pathophysiological processes by producing bioactive molecules. Extensive detection of these molecules contributes to probing microbiota function but is limited by insufficient identification of existing analytical methods. In this study, a systematic strategy was proposed to detect and annotate gut microbiota-related metabolites on a large scale. A pentafluorophenyl (PFP) column-based liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was first developed for high-coverage analysis of gut microbiota-related metabolites, which was verified to be stable and robust with a wide linearity range, high sensitivity, satisfactory recovery, and repeatability. Then, an informative database integrating 968 knowledge-based microbiota-related metabolites and 282 sample-sourced ones defined by germ-free (GF)/antibiotic-treated (ABX) models was constructed and subsequently used for targeted extraction and annotation in biological samples. Using pooled feces, plasma, and urine of mice for demonstration application, 672 microbiota-related metabolites were annotated, including 21% neglected by routine nontargeted peak detection. This strategy serves as a useful tool for the comprehensive capture of the intestinal flora metabolome, contributing to our deeper understanding of microbe-host interactions.
Collapse
Affiliation(s)
- Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ying Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
74
|
Wang CF, Li L. Unraveling the potential of segment scan mass spectral acquisition for chemical isotope labeling LC-MS-based metabolome analysis: Performance assessment across different types of biological samples. Anal Chim Acta 2024; 1288:342137. [PMID: 38220274 DOI: 10.1016/j.aca.2023.342137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with high metabolomic coverage and quantification accuracy. In CIL LC-MS, the overall metabolite detection efficiency using Orbitrap MS can be further improved by employing a segment scan method where the full m/z range is divided into multiple segments for spectral acquisition with a significant increase in the in-spectrum dynamic range. Considering the metabolic complexity in different types of biological samples (e.g., feces, urine, serum/plasma, cell/tissue extracts, saliva, etc.), we report the development and evaluation of the segment scan method for metabolome analysis of different sample types. RESULTS It was found that sample complexity significantly influenced the performance of the segment scan method. In metabolically complex samples such as feces and urine, the method yielded a substantial increase (up to 94 %) in detected peak pairs or metabolites, compared to conventional full scan. Conversely, less complex samples like saliva exhibited more modest gains (approximately 25 %). Based on the observations, a 120-m/z segment scan method was determined as a routine approach for CIL LC-Orbitrap-MS-based metabolomics with good compatibility with different types of biological samples. For this method, a further investigation on relative quantification accuracy was done. The peak area ratios of 12C-/13-labeled metabolites were slightly reduced with 72%-84 % of peak pairs falling within the ±25 % range of the anticipated peak ratio of 1.0 among different samples, as opposed to 81%-90 % in the full scan, which was attributed to the inclusion of more low-abundance peak pairs within the narrow MS segments. However, the overall peak ratio measurement precision was not significantly affected by the segment scan. SIGNIFICANCE AND NOVELTY The segment scan method was found to be useful for CIL LC-Orbitrap-MS-based metabolome analysis of different types of samples with significant improvement in metabolite detectability (25-94 % increase), compared to the conventional full scan method.
Collapse
Affiliation(s)
- Chu-Fan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
75
|
Song C, Zhou Y, Dong R, Li X, Dong D, Song X. Gut microbiota dynamics interacting with gastrointestinal evacuation of Apostichopus japonicus: novel insights into promising strategies for environmental improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9831-9843. [PMID: 38198086 DOI: 10.1007/s11356-023-31559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
As an important input of environmental micropollutants into aquaculture environment, feed is now considered to be a critical factor in shaping gastrointestinal evacuation characteristics of animals. We analyzed the gastrointestinal evacuation characteristics and gut bacteria of Apostichopus japonicus within 30 h after feeding in recirculating aquaculture system (RAS) and explored the evacuation mechanism interacting by bacteria. The Gauss model was the most precise gastrointestinal evacuation curve, and 80% of gastrointestinal evacuation time was 27.81 h after feeding. Linear discriminant analysis effect size analysis revealed that gut microbial abundance associated significantly with time (P < 0.05), and 42 biomarkers that could predict gastrointestinal evacuation were totally detected, such as Lutibacter and Vibrio. Biomarkers at 25 h after feeding were related to harmful bacteria. A dynamic response between gastrointestinal content ratio and gut microbial abundance was detected. Taken together, we could discharge sewage about 25 h after feeding and carry out the next round of feeding activities.
Collapse
Affiliation(s)
- Chenyu Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Yijing Zhou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Ruiguang Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Xian Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Dengpan Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
76
|
Lu Y, Gao X, Mohammed SAD, Wang T, Fu J, Wang Y, Nan Y, Lu F, Liu S. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117182. [PMID: 37714224 DOI: 10.1016/j.jep.2023.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a rapidly progressing neurological disorder. Currently, Medication for PD has numerous limitations. Baichanting Compound (BCT) is a Chinese herbal prescription, a Combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, that was developed to treat PD and holds a national patent (ZL, 201110260536.3). AIM OF THE STUDY To clarify the therapeutic effect of BCT on PD and explore its possible mechanism based on metabolomics and metagenomics. MATERIALS AND METHODS C57BL/6 mice were used as a control group, and α-syn transgenic C57BL/6 mice were randomly assigned to the PD (without treatment) or BCT (with BCT treatment) group. UPLC-MS was performed to detect dopamine levels in brain tissue, while ELISA was used to determine inflammatory factors such as IL-1β, IL-6, TNF-α, IFN-γ and NO, and oxidative stress indicators such as malondialdehyde, superoxide dismutase and glutathione peroxidase enzyme activity. Fecal metabolomics was used to detect fecal metabolic profiles, screen differential metabolic markers, and predict metabolic pathways by KEGG enrichment analysis. Metagenomics was used to determine the intestinal microbial composition, and KO enrichment analysis was performed to predict the potential function of different gut microbiota. Finally, Spearman correlation analysis was used to find the possible relationships among intestinal flora, metabolic markers, inflammatory factors, oxidative stress and dopamine levels. RESULTS BCT increased the superoxide dismutase activity of α-Syn transgenic C57BL/6 mice (P < 0.01), decreased the levels of TNF-α, IFN-γ, IL-1β, IL-6, NO and malondialdehyde (P < 0.01, 0.05), and increased the release of dopamine (P < 0.01). Metabolomics results show that BCT could regulate Acetatifactor, Marvinbryantia, Faecalitalea, Anaeromassilibacillus, Anaerobium, Pseudobutyrivibrio and Lachnotalea and Acetatifactor_muris, Marvinbryantia_formatexigens, Lachnotalea_sp_AF33_28, Faecalitalea_sp_Marseille_P3755 and Anaerobium_acetethylicum, Gemmiger_sp_An120 abundance to restore intestinal flora function, and reverse fecal metabolism trend, restoring the content of α-D-glucose, cytidine, L-glutamate, L-glutamine, N-acetyl-L-glutamate, raffinose and uracil. In addition, it regulates arginine biosynthesis, D-glutamine and D-glutamate, pyrimidine, galactose and alanine, aspartate and glutamate metabolic pathways. CONCLUSION BCT may regulate the composition of the gut microbiota to reverse fecal metabolism in PD mice to protect the substantia nigra and striatum from oxidative stress and inflammatory factors and ultimately play an anti-PD role.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xin Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shadi A D Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; School of Pharmacy, Lebanese International University, Sana'a, 18644, Yemen
| | - Tianyu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Yang Nan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
77
|
Mu R, Li S, Zhang Y, Li Y, Zhu Y, Zhao F, Si H, Li Z. Microbiota and Metabolite Profiles in the Feces of Juvenile Sika Deer ( Cervus nippon) from Birth to Weaning. Animals (Basel) 2024; 14:432. [PMID: 38338075 PMCID: PMC10854736 DOI: 10.3390/ani14030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The gut microbiota establishment in young ruminants has a profound impact on their adult production performance. However, the critical phase for the succession of the gut microbial composition and metabolic profiles of juvenile sika deer still needs to be further investigated. Here, we analyzed the fecal microbiota and metabolites of juvenile sika deer during the birth (D1), transition (D42), and rumination (D70) periods based on 16S rRNA sequencing and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). The results showed that the fecal bacteria and metabolites composition were significantly different in D1 compared to D42 and D70, and the number of OTUs and the Shannon index were significantly higher in D70 than in D1 (p < 0.05). The relative abundances of Lactobacillus, Lactococcus, and Lachnoclostridium showed a significant increase in D1 compared to D42 and D70, whereas the relative abundances of Ruminococcaceae UCG-005, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Christensenellaceae R-7, and Eubacterium coprostanoligenes group were significantly decreased in D1 compared to D42 and D70 (p < 0.05). The amounts of serine, phenylalanine, aspartic acid, ornithine, citrulline, creatine, isoleucine, galactose, and ribose in the feces were significantly higher in D1 compared to D42 and D70. In contrast, the concentrations of cortexolone, resveratrol, piceatannol, fumaric acid, alpha-ketoglutarate, glycerol, uracil-5-carboxylic acid, and maleic acid were significantly decreased in D1. The enrichment analysis showed that amino acid metabolism and carbohydrate metabolism were significantly changed in D1 compared to D42 and D70. The glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism; citrate cycle; and pyruvate metabolism were significantly enriched across the three periods (p < 0.05). In conclusion, our results suggested that the birth-transition period is a critical phase for the gut bacterial community and metabolic function shift in juvenile sika deer.
Collapse
Affiliation(s)
- Ruina Mu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Songze Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunxi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuhang Zhu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fei Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Huazhe Si
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhipeng Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
78
|
Bertin L, Zanconato M, Crepaldi M, Marasco G, Cremon C, Barbara G, Barberio B, Zingone F, Savarino EV. The Role of the FODMAP Diet in IBS. Nutrients 2024; 16:370. [PMID: 38337655 PMCID: PMC10857121 DOI: 10.3390/nu16030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The low FODMAP (fermentable oligosaccharide, disaccharide, monosaccharide, and polyol) diet is a beneficial therapeutic approach for patients with irritable bowel syndrome (IBS). However, how the low FODMAP diet works is still not completely understood. These mechanisms encompass not only traditionally known factors such as luminal distension induced by gas and water but also recent evidence on the role of FOMAPs in the modulation of visceral hypersensitivity, increases in intestinal permeability, the induction of microbiota changes, and the production of short-chain fatty acids (SCFAs), as well as metabolomics and alterations in motility. Although most of the supporting evidence is of low quality, recent trials have confirmed its effectiveness, even though the majority of the evidence pertains only to the restriction phase and its effectiveness in relieving abdominal bloating and pain. This review examines potential pathophysiological mechanisms and provides an overview of the existing evidence on the effectiveness of the low FODMAP diet across various IBS subtypes. Key considerations for its use include the challenges and disadvantages associated with its practical implementation, including the need for professional guidance, variations in individual responses, concerns related to microbiota, nutritional deficiencies, the development of constipation, the necessity of excluding an eating disorder before commencing the diet, and the scarcity of long-term data. Despite its recognized efficacy in symptom management, acknowledging these limitations becomes imperative for a nuanced comprehension of the role of a low FODMAP diet in managing IBS. By investigating its potential mechanisms and evidence across IBS subtypes and addressing emerging modulations alongside limitations, this review aims to serve as a valuable resource for healthcare practitioners, researchers, and patients navigating the intricate landscape of IBS.
Collapse
Affiliation(s)
- Luisa Bertin
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Miriana Zanconato
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Martina Crepaldi
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Brigida Barberio
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| |
Collapse
|
79
|
Wang Y, Xie Y, Mahara G, Xiong Y, Xiong Y, Zheng Q, Chen J, Zhang W, Zhou H, Li Q. Intestinal microbiota and metabolome perturbations in ischemic and idiopathic dilated cardiomyopathy. J Transl Med 2024; 22:89. [PMID: 38254195 PMCID: PMC10804607 DOI: 10.1186/s12967-023-04605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Various clinical similarities are present in ischemic (ICM) and idiopathic dilated cardiomyopathy (IDCM), leading to ambiguity on some occasions. Previous studies have reported that intestinal microbiota appeared dysbiosis in ICM, whether implicating in the IDCM remains unclear. The aim of this study was to assess the alterations in intestinal microbiota and fecal metabolites in ICM and IDCM. METHODS ICM (n = 20), IDCM (n = 22), and healthy controls (HC, n = 20) were enrolled in this study. Stool samples were collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS Both ICM and IDCM exhibited reduced alpha diversity and altered microbial community structure compared to HC. At the genus level, nine taxa including Blautia, [Ruminococcus]_torques_group, Christensenellaceae_R-7_group, UCG-002, Corynebacterium, Oceanobacillus, Gracilibacillus, Klebsiella and Citrobacter was specific to ICM, whereas one taxa Alistipes uniquely altered in IDCM. Likewise, these changes were accompanied by significant metabolic differences. Further differential analysis displayed that 18 and 14 specific metabolites uniquely changed in ICM and IDCM, respectively. The heatmap was generated to display the association between genera and metabolites. Receiver operating characteristic curve (ROC) analysis confirmed the predictive value of the distinct microbial-metabolite features in disease status. The results showed that microbial (area under curve, AUC = 0.95) and metabolic signatures (AUC = 0.84) were effective in discriminating ICM from HC. Based on the specific microbial and metabolic features, the patients with IDCM could be separated from HC with an AUC of 0.80 and 0.87, respectively. Furthermore, the gut microbial genus (AUC = 0.88) and metabolite model (AUC = 0.89) were comparable in predicting IDCM from ICM. Especially, the combination of fecal microbial-metabolic features improved the ability to differentiate IDCM from ICM with an AUC of 0.96. CONCLUSION Our findings highlighted the alterations of gut microbiota and metabolites in different types of cardiomyopathies, providing insights into the pathophysiological mechanisms of myocardial diseases. Moreover, multi-omics analysis of fecal samples holds promise as a non-invasive tool for distinguishing disease status.
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yandan Xie
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Gehendra Mahara
- Clinical Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qifang Zheng
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jianqin Chen
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
80
|
Zubiri-Gaitán A, Martínez-Álvaro M, Blasco A, Hernández P. Cecal metabolomics of 2 divergently selected rabbit lines revealed microbial mechanisms correlated to intramuscular fat deposition. J Anim Sci 2024; 102:skae339. [PMID: 39497598 PMCID: PMC11638726 DOI: 10.1093/jas/skae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The gastrointestinal microbiota plays a key role in the host physiology and health through a complex host-microbiota co-metabolism. Metabolites produced by microbial metabolism can travel through the bloodstream to reach distal organs and affect their function, ultimately influencing the development of relevant production traits such as meat quality. Meat quality is a complex trait made up of a number of characteristics and intramuscular fat content (IMF) is considered to be one of the most important parameters. In this study, 52 rabbits from 2 lines divergently selected for IMF (high-IMF (H) and low-IMF (L) lines) were used to perform an untargeted metabolomic analysis of their cecal content, with the aim to obtain information on genetically determined microbial metabolism related to IMF. A large, correlated response to selection was found in their cecal metabolome composition. Partial least squares discriminant analysis was used to identify the pathways differentiating the lines, which showed a classification accuracy of 99%. On the other hand, 2 linear partial least squares analyses were performed, one for each line, to extract evidence on the specific pathways associated with IMF deposition within each line, which showed predictive abilities (estimated using the Q2) of approximately 60%. The most relevant pathways differentiating the lines were those related to amino acids (aromatic, branched-chain, and gamma-glutamyl), secondary bile acids, and purines. The higher content of secondary bile acids in the L-line was related to greater lipid absorption, while the differences found in purines suggested different fermentation activities, which could be related to greater nitrogen utilization and energy efficiency in the L-line. The linear analyses showed that lipid metabolism had a greater relative importance for IMF deposition in the L-line, whereas a more complex microbial metabolism was associated with the H-line. The lysophospholipids and gamma-glutamyl amino acids were associated with IMF in both lines; the nucleotide and secondary bile acid metabolisms were mostly associated in the H-line; and the long-chain and branched-chain fatty acids were mostly associated in the L-line. A metabolic signature consisting of 2 secondary bile acids and 2 protein metabolites was found with 88% classification accuracy, pointing to the interaction between lipid absorption and protein metabolism as a relevant driver of the microbiome activity influencing IMF.
Collapse
Affiliation(s)
- Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| |
Collapse
|
81
|
Sun C, Lan F, Zhou Q, Guo X, Jin J, Wen C, Guo Y, Hou Z, Zheng J, Wu G, Li G, Yan Y, Li J, Ma Q, Yang N. Mechanisms of hepatic steatosis in chickens: integrated analysis of the host genome, molecular phenomics and gut microbiome. Gigascience 2024; 13:giae023. [PMID: 38837944 PMCID: PMC11152177 DOI: 10.1093/gigascience/giae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid β-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.
Collapse
Affiliation(s)
- Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Xiaoli Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Yanxin Guo
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Zhuocheng Hou
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer,
Beijing 101206, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding, Department of Animal
Genetics and Breeding, College of Animal Science and Technology, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
82
|
Jiao B, Ouyang Z, Liu Q, Xu T, Wan M, Ma G, Zhou L, Guo J, Wang J, Tang B, Zhao Z, Shen L. Integrated analysis of gut metabolome, microbiome, and brain function reveal the role of gut-brain axis in longevity. Gut Microbes 2024; 16:2331434. [PMID: 38548676 PMCID: PMC10984123 DOI: 10.1080/19490976.2024.2331434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
The role of microbiota-gut-brain axis in modulating longevity remains undetermined. Here, we performed a multiomics analysis of gut metagenomics, gut metabolomics, and brain functional near-infrared spectroscopy (fNIRS) in a cohort of 164 participants, including 83 nonagenarians (NAs) and 81 non-nonagenarians (NNAs) matched with their spouses and offspring. We found that 438 metabolites were significantly different between the two groups; among them, neuroactive compounds and anti-inflammatory substances were enriched in NAs. In addition, increased levels of neuroactive metabolites in NAs were significantly associated with NA-enriched species that had three corresponding biosynthetic potentials: Enterocloster asparagiformis, Hungatella hathewayi and Oxalobacter formigenes. Further analysis showed that the altered gut microbes and metabolites were linked to the enhanced brain connectivity in NAs, including the left dorsolateral prefrontal cortex (DLPFC)-left premotor cortex (PMC), left DLPFC-right primary motor area (M1), and right inferior frontal gyrus (IFG)-right M1. Finally, we found that neuroactive metabolites, altered microbe and enhanced brain connectivity contributed to the cognitive preservation in NAs. Our findings provide a comprehensive understanding of the microbiota-gut-brain axis in a long-lived population and insights into the establishment of a microbiome and metabolite homeostasis that can benefit human longevity and cognition by enhancing functional brain connectivity.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qianqian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangrong Ma
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Zhao
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Centre of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
83
|
Huang Y, Yang H, Li J, Wang F, Liu W, Liu Y, Wang R, Duan L, Wu J, Gao Z, Cao J, Bian F, Zhang J, Zhao F, Yang S, Cao S, Yang A, Wang X, Geng M, Hao A, Li J, Cao J, Li C, Zhang Z, Zhang N, Huang Y, Zhang Y, Qian K, Zhou F. Diagnosis of Esophageal Squamous Cell Carcinoma by High-Performance Serum Metabolic Fingerprints: A Retrospective Study. SMALL METHODS 2024; 8:e2301046. [PMID: 37803160 DOI: 10.1002/smtd.202301046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly prevalent and aggressive malignancy, and timely diagnosis of ESCC contributes to an increased cancer survival rate. However, current detection methods for ESCC mainly rely on endoscopic examination, limited by a relatively low participation rate. Herein, ferric-particle-enhanced laser desorption/ionization mass spectrometry (FPELDI MS) is utilized to record the serum metabolic fingerprints (SMFs) from a retrospective cohort (523 non-ESCC participants and 462 ESCC patients) to build diagnostic models toward ESCC. The PFELDI MS achieved high speed (≈30 s per sample), desirable reproducibility (coefficients of variation < 15%), and high throughput (985 samples with ≈124 200 data points for each spectrum). Desirable diagnostic performance with area-under-the-curves (AUCs) of 0.925-0.966 is obtained through machine learning of SMFs. Further, a metabolic biomarker panel is constructed, exhibiting superior diagnostic sensitivity (72.2-79.4%, p < 0.05) as compared with clinical protein biomarker tests (4.3-22.9%). Notably, the biomarker panel afforded an AUC of 0.844 (95% confidence interval [CI]: 0.806-0.880) toward early ESCC diagnosis. This work highlighted the potential of metabolic analysis for accurate screening and early detection of ESCC and offered insights into the metabolic characterization of diseases including but not limited to ESCC.
Collapse
Affiliation(s)
- Yida Huang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Haijun Yang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Junkuo Li
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Fuqiang Wang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yiwen Liu
- The First Affiliated Hospital, Henan Key Laboratory of Cancer Epigenetics, Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Ruimin Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lijuan Duan
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhaowei Gao
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Jing Cao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fang Bian
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Juxiang Zhang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fang Zhao
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shasha Cao
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Aihua Yang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200433, P. R. China
| | - Xueliang Wang
- Shanghai Center for Clinical Laboratory, Shanghai Academy of Experimental Medicine, Shanghai, 200126, P. R. China
| | - Mingfei Geng
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Anlin Hao
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Jian Li
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Jianwei Cao
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Chaowei Li
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Zheyuan Zhang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Ning Zhang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Yanlin Huang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Yaowen Zhang
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fuyou Zhou
- Anyang Tumor Hospital, Anyang Tumor Hospital affiliated to Henan University of Science and Technology, Henan Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455001, P. R. China
| |
Collapse
|
84
|
Sangermani M, Desiati I, Jørgensen SM, Li JV, Andreassen T, Bathen TF, Giskeødegård GF. Stability in fecal metabolites amid a diverse gut microbiome composition: a one-month longitudinal study of variability in healthy individuals. Gut Microbes 2024; 16:2427878. [PMID: 39533520 PMCID: PMC11562901 DOI: 10.1080/19490976.2024.2427878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of microbial-host interactions exists in the gut, making the gut microbiome a complex ecosystem to untangle. The microbial composition and the fecal metabolites are important readouts to investigate intricate microbiota-diet-host interplay. However, this ecosystem is dynamic, and it is of interest to understand the degree and timescale of changes occurring in the gut microbiota, during disease as well as in healthy individuals. Cross-sectional study design is often used to investigate the microbiome, but this design provides a static snapshot and cannot provide evidence on the dynamic nature of the gut microbiome. Longitudinal studies are better suited to extrapolate causation in a study or assess changes over time. This study investigates longitudinal change in the gut microbiome and fecal metabolites in 14 healthy individuals with weekly sampling over a period of one-month (four time points), to elucidate the temporal changes occurring in the gut microbiome composition and fecal metabolites. Utilizing 16S rRNA amplicon sequencing for microbiome analysis and NMR spectroscopy for fecal metabolite characterization, we assessed the stability of these two types of measurable parameters in fecal samples during the period of one month. Our results show that the gut microbiome display large variations between healthy individuals, but relatively lower within-individual variations, which makes it possible to uniquely identify individuals. The fecal metabolites showed higher stability over time compared to the microbiome and exhibited consistently smaller variations both within and between individuals. This relative higher stability of the fecal metabolites suggests a balanced, consistent output even amid individual's differences in microbial composition and they can provide a viable complementary readout to better understand the microbiome activity.
Collapse
Affiliation(s)
- Matteo Sangermani
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Indri Desiati
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Central Staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F. Giskeødegård
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
85
|
An R, Wilms E, Gerritsen J, Kim HK, Pérez CS, Besseling-van der Vaart I, Jonkers DM, Rijkers GT, de Vos WM, Masclee AA, Zoetendal EG, Troost FJ, Smidt H. Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic. Gut Microbes 2024; 16:2350173. [PMID: 38738780 PMCID: PMC11093041 DOI: 10.1080/19490976.2024.2350173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.
Collapse
Affiliation(s)
- Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Hye Kyong Kim
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Celia Seguí Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
- Infectious Diseases & Immunology, University of Utrecht, Utrecht, The Netherland
| | | | - Daisy M.A.E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger T. Rijkers
- Science Department, University College Roosevelt, Middelburg, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ad A.M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy J. Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
86
|
Teng M, Zhao X, Zhou L, Yan H, Zhao L, Sun J, Li Y, Zhu W, Wu F. An integrated analysis of the fecal metabolome and metagenome reveals the distinct effects of differentially charged nanoplastics on the gut microbiota-associated metabolites in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167287. [PMID: 37748599 DOI: 10.1016/j.scitotenv.2023.167287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Whether nanoplastics with differential charges cause intestinal impairment via distinct mechanisms remains unclear. We investigated the relationship between fecal metabolites and the gut microbiome, and potential biomarkers thereof, in mice following exposure to differentially charged polystyrene nanoplastics (PS-NPs). Metagenomic analysis revealed that exposure to differentially charged PS-NPs resulted in alterations in the abundances of Bilophila_wadsworthia, Helicobacter apodemus, and Helicobacter typhlonius. A total of 237 fecal metabolites were significantly altered in mice that exhibited intestinal impairment, and these included 10 gut microbiota-related fecal metabolites that accurately discriminated impaired intestinal samples from the control. Additionally, the specific gut microbiome-related fecal metabolite-based model approach for the prediction of intestinal impairment in mice had an area under the curve (AUC) of 1.0 in the PS (without charge) group, an AUC of 0.94 in the PS-NH2 (positive charge) group, and an AUC of 0.86 in the PS-COOH (negative charge) group. Thus, the model showed promising evaluable accuracy for the prediction of intestinal impairment induced by nanoplastics in a charge-specific manner. Our study demonstrates that the fecal metabolome of mice with intestinal impairment following exposure to differentially charged nanoplastics is associated with changes in the gut microbiome. The identified biomarkers have potential application for the detection of intestinal impairment after exposure to negative, positive, or noncharged nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, USA
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxia Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
87
|
Chalifour B, Holzhausen EA, Lim JJ, Yeo EN, Shen N, Jones DP, Peterson BS, Goran MI, Liang D, Alderete TL. The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. NPJ METABOLIC HEALTH AND DISEASE 2023; 1:2. [PMID: 38299034 PMCID: PMC10828959 DOI: 10.1038/s44324-023-00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
Infant fecal metabolomics can provide valuable insights into the associations of nutrition, dietary patterns, and health outcomes in early life. Breastmilk is typically classified as the best source of nutrition for nearly all infants. However, exclusive breastfeeding may not always be possible for all infants. This study aimed to characterize associations between levels of mixed breastfeeding and formula feeding, along with solid food consumption and the infant fecal metabolome at 1- and 6-months of age. As a secondary aim, we examined how feeding-associated metabolites may be associated with early life neurodevelopmental outcomes. Fecal samples were collected at 1- and 6-months, and metabolic features were assessed via untargeted liquid chromatography/high-resolution mass spectrometry. Feeding groups were defined at 1-month as 1) exclusively breastfed, 2) breastfed >50% of feedings, or 3) formula fed ≥50% of feedings. Six-month groups were defined as majority breastmilk (>50%) or majority formula fed (≥50%) complemented by solid foods. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant Development at 2 years. Changes in the infant fecal metabolome were associated with feeding patterns at 1- and 6-months. Feeding patterns were associated with the intensities of a total of 57 fecal metabolites at 1-month and 25 metabolites at 6-months, which were either associated with increased breastmilk or increased formula feeding. Most breastmilk-associated metabolites, which are involved in lipid metabolism and cellular processes like cell signaling, were associated with higher neurodevelopmental scores, while formula-associated metabolites were associated with lower neurodevelopmental scores. These findings offer preliminary evidence that feeding patterns are associated with altered infant fecal metabolomes, which may be associated with cognitive development later in life.
Collapse
Affiliation(s)
- Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | | | - Joseph J. Lim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Emily N. Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| | - Natalie Shen
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, GA USA
| | | | | | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
88
|
Liu J, Peng F, Cheng H, Zhang D, Zhang Y, Wang L, Tang F, Wang J, Wan Y, Wu J, Zhou Y, Feng W, Peng C. Chronic cold environment regulates rheumatoid arthritis through modulation of gut microbiota-derived bile acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166837. [PMID: 37689184 DOI: 10.1016/j.scitotenv.2023.166837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
The pathologies of many diseases are influenced by environmental temperature. As early as the classical Roman age, people believed that exposure to cold weather was bad for rheumatoid arthritis (RA). However, there is no direct evidence supporting this notion, and the molecular mechanisms of the effects of chronic cold exposure on RA remain unknown. Here, in a temperature-conditioned environment, we found that chronic cold exposure aggravates collagen-induced arthritis (CIA) by increasing ankle swelling, bone erosion, and cytokine levels in rats. Furthermore, in chronic cold-exposed CIA rats, gut microbiota dysbiosis was identified, including a decrease in the differential relative abundance of the families Lachnospiraceae and Ruminococcaceae. We also found that an antibiotic cocktail suppressed arthritis severity under cold conditions. Notably, the fecal microbiota transplantation (FMT) results showed that transplantation of cold-adapted microbiota partly recapitulated the microbiota signature in the respective donor rats and phenocopied the cold-induced effects on CIA rats. In addition, cold exposure disturbed bile acid profiles, in particular decreasing gut microbiota-derived taurohyodeoxycholic acid (THDCA) levels. The perturbation of bile acids was also associated with activation of the TGR5-cAMP-PKA axis and NLRP3 inflammasome. Oral THDCA supplementation mitigated the arthritis exacerbation induced by chronic cold exposure. Our findings identify an important role of aberrant gut microbiota-derived bile acids in cold exposure-related RA, highlighting potential opportunities to treat cold-related RA by manipulating the gut microbiota and/or supplementing with THDCA.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lixia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinlin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
89
|
Choueiry F, Gold A, Xu R, Zhang S, Zhu J. Secondary-Electrospray Ionization Mass Spectrometry-Based Online Analyses of Mouse Volatilome Uncover Gut Microbiome-Dictated Metabolic Changes in the Host. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2793-2800. [PMID: 38011635 DOI: 10.1021/jasms.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The symbiotic relationship between the gut microbial population is capable of regulating numerous aspects of host physiology, including metabolism. Bacteria can modulate the metabolic processes of the host by feeding on nutritional components within the lumen and releasing bioactive components into circulation. Endogenous volatile organic compound (VOC) synthesis is dependent on the availability of precursors found in mammalian metabolism. Herein, we report that microbial-mediated metabolic influences can alter the host volatilome and the prominent volatile changes can be uncovered by a novel volatile analysis technique named secondary electrospray ionization mass spectrometry. Mice were subjected to an antibiotic cocktail to deplete the microbiome and then inoculated with either single strain bacteria or fecal matter transplantation (FMT) to replete the microbial population in the gut. VOC sampling was achieved by using an advanced secondary electrospray ionization (SESI) source that directly mounted onto a Thermo Q-Exactive high-resolution mass spectrometer (HRMS). A principal component analysis summarizing the volatile profiles of the mice revealed independent clustering of each strain of the FMT-inoculated groups, suggesting unique volatile profiles. The Mummichog algorithm uncovered phenylalanine metabolism as a significantly altered metabolic profile in the volatilome of the microbiome-repleted mice. Our results indicated that the systemic metabolic changes incurred by the host are translated to unique volatile profiles correlated to the diversity of the microbial population colonized within the host. It is thus possible to take advantage of SESI-HRMS-based platforms for noninvasive screening of VOCs to determine the contribution of various microbial colonization within human gut that may impact host health.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiqi Zhang
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
90
|
Lee YR, Lee HB, Oh MJ, Kim Y, Park HY. Thyme Extract Alleviates High-Fat Diet-Induced Obesity and Gut Dysfunction. Nutrients 2023; 15:5007. [PMID: 38068865 PMCID: PMC10708554 DOI: 10.3390/nu15235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Prolonged intake of a high-fat diet (HFD) disturbs the composition of gut microbiota, contributing to the development of metabolic diseases, notably obesity and increased intestinal permeability. Thyme (Thymus vulgaris L.), an aromatic plant, is known for its several therapeutic properties. In this study, we explored the potential of thyme extract (TLE) to mitigate HFD-induced metabolic derangements and improve the gut environment. Eight-week-old C57BL/6 mice were administered 50 or 100 mg/kg TLE for eight weeks. Administration of 100 mg/kg TLE resulted in decreased weight gain and body fat percentage, alongside the regulation of serum biomarkers linked to obesity induced by a HFD. Moreover, TLE enhanced intestinal barrier function by increasing the expression of tight junction proteins and ameliorated colon shortening. TLE also altered the levels of various metabolites. Especially, when compared with a HFD, it was confirmed that 2-hydroxypalmitic acid and 3-indoleacrylic acid returned to normal levels after TLE treatment. Additionally, we investigated the correlation between fecal metabolites and metabolic parameters; deoxycholic acid displayed a positive correlation with most parameters, except for colon length. In contrast, hypoxanthine was negatively correlated with most parameters. These results suggest a promising role for thyme in ameliorating obesity and related gut conditions associated with a HFD.
Collapse
Affiliation(s)
- Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Mi-Jin Oh
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.L.); (H.-B.L.); (M.-J.O.); (Y.K.)
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
91
|
Nogal A, Tettamanzi F, Dong Q, Louca P, Visconti A, Christiansen C, Breuninger T, Linseisen J, Grallert H, Wawro N, Asnicar F, Wong K, Baleanu AF, Michelotti GA, Segata N, Falchi M, Peters A, Franks PW, Bagnardi V, Spector TD, Bell JT, Gieger C, Valdes AM, Menni C. A Fecal Metabolite Signature of Impaired Fasting Glucose: Results From Two Independent Population-Based Cohorts. Diabetes 2023; 72:1870-1880. [PMID: 37699401 PMCID: PMC10658071 DOI: 10.2337/db23-0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We searched for fecal metabolites, a readout of gut microbiome function, associated with impaired fasting glucose (IFG) in 142 individuals with IFG and 1,105 healthy individuals from the UK Adult Twin Registry (TwinsUK). We used the Cooperative Health Research in the Region of Augsburg (KORA) cohort (318 IFG individuals, 689 healthy individuals) to replicate our findings. We linearly combined eight IFG-positively associated metabolites (1-methylxantine, nicotinate, glucuronate, uridine, cholesterol, serine, caffeine, and protoporphyrin IX) into an IFG-metabolite score, which was significantly associated with higher odds ratios (ORs) for IFG (TwinsUK: OR 3.9 [95% CI 3.02-5.02], P < 0.0001, KORA: OR 1.3 [95% CI 1.16-1.52], P < 0.0001) and incident type 2 diabetes (T2D; TwinsUK: hazard ratio 4 [95% CI 1.97-8], P = 0.0002). Although these are host-produced metabolites, we found that the gut microbiome is strongly associated with their fecal levels (area under the curve >70%). Abundances of Faecalibacillus intestinalis, Dorea formicigenerans, Ruminococcus torques, and Dorea sp. AF24-7LB were positively associated with IFG, and such associations were partially mediated by 1-methylxanthine and nicotinate (variance accounted for mean 14.4% [SD 5.1], P < 0.05). Our results suggest that the gut microbiome is linked to prediabetes not only via the production of microbial metabolites but also by affecting intestinal absorption/excretion of host-produced metabolites and xenobiotics, which are correlated with the risk of IFG. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes and T2D onset. ARTICLE HIGHLIGHTS Prediabetes is a metabolic condition associated with gut microbiome composition, although mechanisms remain elusive. We investigated whether there is a fecal metabolite signature of impaired fasting glucose (IFG) and the possible underlying mechanisms of action. We identified a fecal metabolite signature of IFG associated with prevalent IFG in two independent cohorts and incident type 2 diabetes in a subanalysis. Although the signature consists of metabolites of nonmicrobial origin, it is strongly correlated with gut microbiome composition. Fecal metabolites enable modeling of another mechanism of gut microbiome effect on prediabetes by affecting intestinal absorption or excretion of host compounds and xenobiotics.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Francesca Tettamanzi
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
- Humanitas Clinical and Research Centre, IRCCS, Rozzano (Milan), Italy
| | - Qiuling Dong
- Institute of Epidemiology, Helmholtz Zentrum München, Research Unit of Molecular Epidemiology, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Panayiotis Louca
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Alessia Visconti
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Colette Christiansen
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
- School of Mathematics and Statistics, The Open University, Milton Keynes, U.K
| | - Taylor Breuninger
- Epidemiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- ZIEL-Institute for Food & Health, Technische Universität München, Freising, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Medical Faculty, Ludwig-Maximilian University Munich, Munich, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, Research Unit of Molecular Epidemiology, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nina Wawro
- Epidemiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Andrei-Florin Baleanu
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | | | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mario Falchi
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK e.V., Partner-Site Munich), Munich, Germany
| | - Paul W. Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Tim D. Spector
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Jordana T. Bell
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, Research Unit of Molecular Epidemiology, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ana M. Valdes
- Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, University of Nottingham, U.K
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, London, U.K
| |
Collapse
|
92
|
Meade S, Liu Chen Kiow J, Massaro C, Kaur G, Squirell E, Bressler B, Lunken G. Gut microbiome-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: a systematic review. Gut Microbes 2023; 15:2287073. [PMID: 38044504 PMCID: PMC10730146 DOI: 10.1080/19490976.2023.2287073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Loss of response to therapy in inflammatory bowel disease (IBD) has led to a surge in research focusing on precision medicine. Three systematic reviews have been published investigating the associations between gut microbiota and disease activity or IBD therapy. We performed a systematic review to investigate the microbiome predictors of response to advanced therapy in IBD. Unlike previous studies, our review focused on predictors of response to therapy; so the included studies assessed microbiome predictors before the proposed time of response or remission. We also provide an update of the available data on mycobiomes and viromes. We highlight key themes in the literature that may serve as future biomarkers of treatment response: the abundance of fecal SCFA-producing bacteria and opportunistic bacteria, metabolic pathways related to butyrate synthesis, and non-butyrate metabolomic predictors, including bile acids (BAs), amino acids, and lipids, as well as mycobiome predictors of response.
Collapse
Affiliation(s)
- Susanna Meade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Jeremy Liu Chen Kiow
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Cristian Massaro
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Gurpreet Kaur
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
| | - Elizabeth Squirell
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Genelle Lunken
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
93
|
Chowdhury R, Bitar PDP, Bell KE, Altier C. Shigella flexneri utilizes intestinal signals to control its virulence. Gut Microbes 2023; 15:2256767. [PMID: 37741806 PMCID: PMC10519361 DOI: 10.1080/19490976.2023.2256767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | - Katherine E. Bell
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
94
|
Song WS, Jo SH, Lee JS, Kwon JE, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim YG. Multiomics analysis reveals the biological effects of live Roseburia intestinalis as a high-butyrate-producing bacterium in human intestinal epithelial cells. Biotechnol J 2023; 18:e2300180. [PMID: 37596881 DOI: 10.1002/biot.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.
Collapse
Affiliation(s)
- Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
95
|
Choueiry F, Xu R, Meyrath K, Zhu J. Database-assisted, globally optimized targeted secondary electrospray ionization high resolution mass spectrometry (dGOT-SESI-HRMS) and spectral stitching enhanced volatilomics analysis of bacterial metabolites. Analyst 2023; 148:5673-5683. [PMID: 37819163 PMCID: PMC10841745 DOI: 10.1039/d3an01487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) is an innovative analytical technique for the rapid and non-invasive analysis of volatile organic compounds (VOCs). However, compound annotation and ion suppression in the SESI source has hindered feature detection, stability and reproducibility of SESI-HRMS in untargeted volatilomics. To address this, we have developed and optimized a novel pseudo-targeted approach, database-assisted globally optimized targeted (dGOT)-SESI-HRMS using the microbial-VOC (mVOC) database, and spectral stitching methods to enhance metabolite detection in headspace of anaerobic bacterial cultures. Headspace volatiles from representative bacteria strains were assessed using full scan with data dependent acquisition (DDA), conventional globally optimized targeted (GOT) method, and spectral stitching supported dGOT experiments based on a MS peaks list derived from mVOC. Our results indicate that spectral stitching supported dGOT-SESI-HRMS can proportionally fragment peaks with respect to different analysis windows, with a total of 109 VOCs fragmented from 306 targeted compounds. Of the collected spectra, 88 features were confirmed as culture derived volatiles with respect to media blanks. Annotation was also achieved with a total of 25 unique volatiles referenced to standard databases allowing for biological interpretation. Principal component analysis (PCA) summarizing the headspace volatile demonstrated improved separation of clusters when data was acquired using the dGOT method. Collectively, our dGOT-SESI-HRMS method afforded robust capability of capturing unique VOC profiles from different bacterial strains and culture conditions when compared to conventional GOT and DDA modes, suggesting the newly developed approach can serve as a more reliable analytical method for the sensitive monitoring of gut microbial metabolism.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, USA.
- James Comprehensive Cancer Center, The Ohio State University, 400 W 12th Ave, Columbus, OH 43210, USA
| | - Rui Xu
- Department of Human Sciences, The Ohio State University, USA.
| | - Kelly Meyrath
- Department of Human Sciences, The Ohio State University, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, USA.
- James Comprehensive Cancer Center, The Ohio State University, 400 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
96
|
Song JG, Mun D, Lee B, Song M, Oh S, Kim JM, Yang J, Kim Y, Kim HW. Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model. Food Sci Anim Resour 2023; 43:1044-1054. [PMID: 37969325 PMCID: PMC10636227 DOI: 10.5851/kosfa.2023.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023] Open
Abstract
Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.
Collapse
Affiliation(s)
- Jae Gwang Song
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Bomi Lee
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Jun-Mo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | | | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong
University, Seoul 05006, Korea
| |
Collapse
|
97
|
Zhang Z, Lu W, Liu P, Li M, Ge X, Yu B, Wu Z, Liu G, Ding N, Cui B, Chen X. Microbial modifications with Lycium barbarum L. oligosaccharides decrease hepatic fibrosis and mitochondrial abnormalities in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155068. [PMID: 37690228 DOI: 10.1016/j.phymed.2023.155068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lycium barbarum L. is a typical Chinese herbal and edible plant and are now consumed globally. Low molecular weight L. barbarum L. oligosaccharides (LBO) exhibit better antioxidant activity and gastrointestinal digestibility in vitro than high molecular weight polysaccharides. However, the LBO on the treatment of liver disease is not studied. PURPOSE Modification of the gut microbial ecosystem by LBO is a promising treatment for liver fibrosis. STUDY DESIGN AND METHODS Herein, LBO were prepared and characterized. CCl4-treated mice were orally gavaged with LBO and the effects on hepatic fibrosis and mitochondrial abnormalities were evaluated according to relevant indicators (gut microbiota, faecal metabolites, and physiological and biochemical indices). RESULTS The results revealed that LBO, a potential prebiotic source, is a pyranose cyclic oligosaccharide possessing α-glycosidic and β-glycosidic bonds. Moreover, LBO supplementation restored the configuration of the bacterial community, enhanced the proliferation of beneficial species in the gastrointestinal tract (e.g., Bacillus, Tyzzerella, Fournierella and Coriobacteriaceae UCG-002), improved microbial metabolic alterations (i.e., carbohydrate metabolism, vitamin metabolism and entero-hepatic circulation), and increased antioxidants, including doxepin, in mice. Finally, LBO administration reduced serum inflammatory cytokine and hepatic hydroxyproline levels, improved intestinal and hepatic mitochondrial functions, and ameliorated mouse liver fibrosis. CONCLUSION These findings indicate that LBO can be utilized as a prebiotic and has a remarkable ability to mitigate liver fibrosis.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinyi Ge
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiao Chen
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250353, China.
| |
Collapse
|
98
|
Hertel J, Heinken A, Fässler D, Thiele I. Causal inference on microbiome-metabolome relations in observational host-microbiome data via in silico in vivo association pattern analyses. CELL REPORTS METHODS 2023; 3:100615. [PMID: 37848031 PMCID: PMC10626217 DOI: 10.1016/j.crmeth.2023.100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Understanding the effects of the microbiome on the host's metabolism is core to enlightening the role of the microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association pattern analyses, combining microbiome metabolome association studies with in silico constraint-based community modeling. Via theoretical dissection of confounding and causal paths, we show that in silico in vivo association pattern analyses allow for causal inference on microbiome-metabolome relations in observational data. We justify the corresponding theoretical criterion by structural equation modeling of host-microbiome systems, integrating deterministic microbiome community modeling into population statistics approaches. We show the feasibility of our approach on a published multi-omics dataset (n = 347), demonstrating causal microbiome-metabolite relations for 26 out of 54 fecal metabolites. In summary, we generate a promising approach for causal inference in metabolic host-microbiome interactions by integrating hypothesis-free screening association studies with knowledge-based in silico modeling.
Collapse
Affiliation(s)
- Johannes Hertel
- School of Medicine, University of Galway, Galway, Ireland; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Almut Heinken
- School of Medicine, University of Galway, Galway, Ireland; UMRS Inserm 1256 NGERE (Nutrition-Genetics-Environmental Risks), Institute of Medical Research (Pôle BMS) - University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland; Discipline of Microbiology, University of Galway, Galway, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Ryan Institute, University of Galway, Galway, Ireland.
| |
Collapse
|
99
|
Diwan B, Yadav R, Singh A, Kumar D, Sharma R. Murine sterile fecal filtrate is a potent pharmacological agent that exerts age-independent immunomodulatory effects in RAW264.7 macrophages. BMC Complement Med Ther 2023; 23:362. [PMID: 37833682 PMCID: PMC10576334 DOI: 10.1186/s12906-023-04193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Sterile fecal filtrate (SFF) is being considered a safer alternative to fecal microbiota transplantation (FMT) therapy; however, its bioactive potency is very little understood. The present study thus assessed the age-dependent immunostimulatory and immunomodulatory attributes of murine SFF in vitro. METHODS SFF from young (Y-SFF) and old (O-SFF) Swiss albino mice were prepared. Immunostimulatory and immunomodulatory effects of SFF were evaluated in resting and lipopolysaccharide (LPS) stimulated macrophage cells by measuring intracellular reactive oxygen species (ROS), nitric oxide (NO) production, inflammatory cytokines profile, as well as gene expression of oxidative and inflammatory transcription factors. SFF were also evaluated for native antioxidant capacity by measuring DPPH and ABTS free radical scavenging activity. Bioactive components present in SFF were also determined by GC/MS analysis. RESULTS Both Y-SFF and O-SFF induced potent immunostimulatory effects characterized by changes in cell morphology, a significant increase in NO production, ROS levels, and an increased ratio of pro-inflammatory (IL-6, TNF-α, IL-1β) to anti-inflammatory (IL-10) secretory proteins although no significant aggravation in the transcription of NF-κB and Nrf-2 could be observed. Application of LPS to cells significantly augmented a pro-oxidative and pro-inflammatory response which was much higher in comparison to Y-SFF or O-SFF application alone and mediated by strong suppression of Nrf-2 gene expression. Pre-treatment of macrophages with both Y-SFF and O-SFF robustly attenuated cellular hyperresponsiveness to LPS characterized by significantly decreased levels of NO, ROS, and inflammatory cytokines while a concomitant increase in anti-inflammatory protein (IL-10) was observed. Further, both Y-SFF and O-SFF strongly resisted LPS-induced downregulation of Nrf-2 expression although O-SFF appeared to protect cells slightly better from the overall LPS threat. Neat SFF samples exhibited moderate antioxidant capacity and GC/MS analysis of SFF revealed diverse volatile organic compounds characterized by alkanes, organosulphur compounds, furans, amides, amino acids, and antimicrobial elements. CONCLUSION Our results indicate that SFF is a potent stimulant of macrophages and confers strong anti-inflammatory effects regardless of donor age thereby suggesting its therapeutic efficacy in lieu of FMT therapy.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rahul Yadav
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Anamika Singh
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Dinesh Kumar
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan, 173229, India.
| |
Collapse
|
100
|
Zheng S, Zhou L, Hoene M, Peter A, Birkenfeld AL, Weigert C, Liu X, Zhao X, Xu G, Lehmann R. A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine. Metabolites 2023; 13:1061. [PMID: 37887386 PMCID: PMC10608496 DOI: 10.3390/metabo13101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome is of tremendous relevance to human health and disease, so it is a hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying group-assisted metabolomics approach (covering 40 types of modifications) was applied to investigate urine samples collected in two independent experiments at various time points before and after laxative use. Fasting over the same time period served as the control condition. As a result, depletion of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including 100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfations, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds, including common, but also unexpected fecal microbiota-associated metabolites, were annotated. The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs. disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives for human gut microbiome research and diagnostics beyond analyzing feces.
Collapse
Affiliation(s)
- Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
- Internal Medicine 4, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (S.Z.); (L.Z.); (X.L.); (X.Z.)
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tuebingen, Germany; (M.H.); (A.P.); (C.W.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 90451 Neuherberg, Germany
| |
Collapse
|