51
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
52
|
Torrance HD, Zhang P, Longbottom ER, Mi Y, Whalley JP, Allcock A, Kwok AJ, Cano-Gamez E, Geoghegan CG, Burnham KL, Antcliffe DB, Davenport EE, Pearse RM, O’Dwyer MJ, Hinds CJ, Knight JC, Gordon AC. A Transcriptomic Approach to Understand Patient Susceptibility to Pneumonia After Abdominal Surgery. Ann Surg 2024; 279:510-520. [PMID: 37497667 PMCID: PMC10829899 DOI: 10.1097/sla.0000000000006050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVE To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia. BACKGROUND Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality. METHODS From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h). Twelve patients diagnosed with postoperative pneumonia and 27 matched patients remaining infection-free were identified for analysis with RNA-sequencing. RESULTS Compared to preoperative sampling, 3639 genes were upregulated and 5043 downregulated at 2 to 6 hours. Pathway analysis demonstrated innate-immune activation with neutrophil degranulation and Toll-like-receptor signaling upregulation alongside adaptive-immune suppression. Cell-type deconvolution of preoperative RNA-sequencing revealed elevated S100A8/9-high neutrophils alongside reduced naïve CD4 T-cells in those later developing pneumonia. Preoperatively, a gene-signature characteristic of neutrophil degranulation was associated with postoperative pneumonia acquisition ( P =0.00092). A previously reported Sepsis Response Signature (SRSq) score, reflecting neutrophil dysfunction and a more dysregulated host response, at 48 hours postoperatively, differed between patients subsequently developing pneumonia and those remaining infection-free ( P =0.045). Analysis of the novel neutrophil gene-signature and SRSq scores in independent major abdominal surgery and polytrauma cohorts indicated good predictive performance in identifying patients suffering later infection. CONCLUSIONS Major abdominal surgery acutely upregulates innate-immune pathways while simultaneously suppressing adaptive-immune pathways. This is more prominent in patients developing postoperative pneumonia. Preoperative transcriptomic signatures characteristic of neutrophil degranulation and postoperative SRSq scores may be useful predictors of subsequent pneumonia risk.
Collapse
Affiliation(s)
- Hew D. Torrance
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - E. Rebecca Longbottom
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Yuxin Mi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Justin P. Whalley
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Andrew J. Kwok
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Eddie Cano-Gamez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | | | - Katie L. Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| | - Emma E. Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Rupert M. Pearse
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Michael J. O’Dwyer
- Department of Anaesthesia and Critical Care, St Vincent’s University Hospital, Dublin. Ireland
| | - Charles J. Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Anthony C. Gordon
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| |
Collapse
|
53
|
Nakamura Y, Saldajeno DP, Kawaguchi K, Kawaoka S. Progressive, multi-organ, and multi-layered nature of cancer cachexia. Cancer Sci 2024; 115:715-722. [PMID: 38254286 PMCID: PMC10921013 DOI: 10.1111/cas.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer cachexia is a complex, multifaceted condition that negatively impacts the health, treatment efficacy, and economic status of cancer patients. The management of cancer cachexia is an essential clinical need. Cancer cachexia is currently defined mainly according to the severity of weight loss and sarcopenia (i.e., macrosymptoms). However, such macrosymptoms may be insufficient to give clinicians clues on how to manage this condition as these symptoms appear at the late stage of cancer. We need to understand earlier events during the progression of cancer cachexia so as not to miss a clinical opportunity to control this complex syndrome. Recent research indicates that cancer-induced changes in the host are much wider than previously recognized, including disruption of liver function and the immune system. Furthermore, such changes are observed before the occurrence of visible distant metastases (i.e., in early, localized cancers). In light of these findings, we propose to expand the definition of cancer cachexia to include all cancer-induced changes to host physiology, including changes caused by early, localized cancers. This new definition of cancer cachexia can provide a new perspective on this topic, which can stimulate the research and development of novel cancer cachexia therapies.
Collapse
Affiliation(s)
- Yuki Nakamura
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Don Pietro Saldajeno
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Mathematical Informatics Laboratory, Division of Information ScienceNara Institute of Science and TechnologyIkomaNaraJapan
| | - Kosuke Kawaguchi
- Department of Breast SurgeryKyoto University Graduate School of MedicineKyotoJapan
| | - Shinpei Kawaoka
- Inter‐Organ Communication Research TeamInstitute for Life and Medical SciencesKyotoJapan
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| |
Collapse
|
54
|
Kaskas A, Clavijo P, Friedman J, Craveiro M, Allen CT. Complete tumor resection reverses neutrophilia-associated suppression of systemic anti-tumor immunity. Oral Oncol 2024; 150:106705. [PMID: 38280289 PMCID: PMC10939739 DOI: 10.1016/j.oraloncology.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVES Tumor infiltrating neutrophils suppress T cell function, but whether neutrophils in circulation contribute to systemic immunosuppression is unclear. We aimed to study whether peripheral neutrophils that accumulate with tumor progression contribute to systemic immunosuppression, and if observed suppression of systemic anti-tumor immunity could be reversed with complete surgical tumor removal. MATERIALS AND METHODS Syngeneic murine oral cancers were established in immunocompetent mice. Proteomic and functional immune assays were used to study plasma cytokine concentration, peripheral immune frequencies, and systemic anti-tumor immunity with and without complete primary tumor resection. RESULTS Ly6G+ neutrophilic cells, but not other myeloid cell types, accumulated in the periphery of mice with progressing tumors. This accumulation positively associated with plasma G-CSF concentration. Circulating neutrophils were functionally immunosuppressive. Complete surgical tumor removal reversed the observed neutrophilia, with neutrophil frequencies returning to baseline in 21 days. Multiple independent functional assays revealed enhanced systemic anti-tumor immunity in mice following tumor resection compared to tumor-bearing mice, and the observed enhanced systemic immunity could be reproduced with selective neutrophil depletion. CONCLUSIONS Complete primary tumor resection can reverse neutrophilia that develops during tumor progression and result in enhanced systemic anti-tumor immunity. Primary tumor removal relieves neutrophil-driven systemic immunosuppression and may itself contribute to the clinical benefit observed with neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Amir Kaskas
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Clavijo
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Surgical Oncology Program, Center For Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
55
|
Medvedeva A, Domakhina S, Vasnetsov C, Vasnetsov V, Kolomeisky A. Physical-Chemical Approach to Designing Drugs with Multiple Targets. J Phys Chem Lett 2024; 15:1828-1835. [PMID: 38330920 DOI: 10.1021/acs.jpclett.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Many people simultaneously exhibit multiple diseases, which complicates efficient medical treatments. For example, patients with cancer are frequently susceptible to infections. However, developing drugs that could simultaneously target several diseases is challenging. We present a novel theoretical method to assist in selecting compounds with multiple therapeutic targets. The idea is to find correlations between the physical and chemical properties of drug molecules and their abilities to work against multiple targets. As a first step, we investigated potential drugs against cancer and viral infections. Specifically, we investigated antimicrobial peptides (AMPs), which are short positively charged biomolecules produced by living systems as a part of their immune defense. AMPs show anticancer and antiviral activity. We use chemoinformatics and correlation analysis as a part of the machine-learning method to identify the specific properties that distinguish AMPs with dual anticancer and antiviral activities. Physical-chemical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Sofya Domakhina
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Catherine Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Victor Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
56
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
57
|
Liu Y, Liu D, Liu Y, Fu B, Ji S, Wang R, Yan F, Wang H, Zhao D, Yang W, Wang J, Tang L. Comprehensive Proteomics Analysis Reveals Dynamic Phenotypes of Tumor-Associated Macrophages and Their Precursor Cells in Tumor Progression. J Proteome Res 2024; 23:822-833. [PMID: 38173118 DOI: 10.1021/acs.jproteome.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor-associated macrophages (TAMs) are key regulators in tumor progression, but the precise role of bone marrow-derived monocytes (Mons) as TAM precursors and their dynamic phenotypes regulated by the tumor microenvironment (TME) remain unclear. Here, we developed an optimized microproteomics workflow to analyze low-cell-number mouse myeloid cells. We sorted TAMs and their corresponding Mons (1 × 105 per sample) from individual melanoma mouse models at both the early and late stages. We established the protein expression profiles for these cells by mass spectrometry. Subsequently, we analyzed the dynamics phenotypes of TAMs and identified a characteristic protein expression profile characterized by upregulated cholesterol metabolism and downregulated immune responses during tumor progression. Moreover, we found the downregulation of both STAT5 and PYCARD expression not only in late-stage TAMs but also in late-stage Mons, indicating a loss of the ability to induce inflammatory responses prior to Mons infiltration into TME. Taken together, our study provides valuable insights into the progression-dependent transitions between TAMs and their precursor cells, as well as the cross-organ communications of tumor and bone marrow.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Di Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuhui Ji
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ruixuan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fang Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dianyuan Zhao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenting Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Tang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
58
|
Meng Q, Zhao Y, Xu M, Wang P, Li J, Cui R, Fu W, Ding S. Increased circulating regulatory T cells and decreased follicular T helper cells are associated with colorectal carcinogenesis. Front Immunol 2024; 15:1287632. [PMID: 38343544 PMCID: PMC10853383 DOI: 10.3389/fimmu.2024.1287632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Colorectal cancer (CRC) is the third most prevalent cancer worldwide and is associated with high morbidity and mortality rates. Colorectal carcinogenesis occurs via the conventional adenoma-to-carcinoma and serrated pathways. Conventional T helper (Th) and innate lymphoid cells (ILCs) play vital roles in maintaining intestinal homeostasis. However, the contribution of these two major lymphoid cell populations and their associated cytokines to CRC development is unclear. Therefore, we aimed to analyze peripheral lymphocyte profiles during colorectal carcinogenesis. Methods We collected 86 blood samples concurrently, and pathologists confirmed the presence of various pathological conditions (i.e., HPs, adenoma, and carcinoma) using hematoxylin and eosin staining. Ten healthy donors were recruited as healthy controls (HCs) from the physical examination center. We performed flow cytometry on peripheral blood mononuclear cells collected from patients with various pathological conditions and the HCs, and cytokines (interleukin-2, interleukin-4, interleukin-5, interleukin-13, interleukin-17A, interleukin-17F, interleukin-22, interferon-γ, and tumor necrosis factor-α) were quantified. We also analyzed the published single-cell RNA sequence data derived from tissue samples from different stages of colorectal carcinogenesis. Results The cytokine response in peripheral CD4+ T cells was upregulated during the carcinoma process. The frequency of peripheral regulatory T cells (Tregs) increased in the adenoma and carcinoma stages. While the T follicular helper (Tfh) cell proportion was downregulated in the adenoma and carcinoma processes. Thus, Th cell subsets, especially Tregs and Tfh cells, were involved in colonic diseases. Moreover, the immunological profile characteristics in the HPs were clarified. Conclusion We comprehensively analyzed circulating ILCs and adaptive T-cell lymphocyte subtypes in colorectal carcinoma progression. Our results show the immunological profile characteristics and support the involvement of Th subsets, especially Treg and Tfh cell populations, in colonic diseases. These findings significantly enhance our understanding of the immune mechanisms underlying CRC and its precancerous lesions. Further investigation of the Treg and Tfh cells' function in colorectal disease development will provide potential therapeutic targets for monitoring and preventing CRC development.
Collapse
Affiliation(s)
- Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing, China
| | - Yang Zhao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Miao Xu
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Rongli Cui
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing, China
| |
Collapse
|
59
|
Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int J Mol Sci 2024; 25:1371. [PMID: 38338649 PMCID: PMC10855826 DOI: 10.3390/ijms25031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.
Collapse
Affiliation(s)
| | | | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa (R.B.W.)
| |
Collapse
|
60
|
Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, Luan Y, Calderwood DA, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 + T cells. Nat Commun 2024; 15:603. [PMID: 38242867 PMCID: PMC10798966 DOI: 10.1038/s41467-024-44885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
CD8+ T cells play an important role in anti-tumor immunity. Better understanding of their regulation could advance cancer immunotherapies. Here we identify, via stepwise CRISPR-based screening, that CUL5 is a negative regulator of the core signaling pathways of CD8+ T cells. Knocking out CUL5 in mouse CD8+ T cells significantly improves their tumor growth inhibiting ability, with significant proteomic alterations that broadly enhance TCR and cytokine signaling and their effector functions. Chemical inhibition of neddylation required by CUL5 activation, also enhances CD8 effector activities with CUL5 validated as a major target. Mechanistically, CUL5, which is upregulated by TCR stimulation, interacts with the SOCS-box-containing protein PCMTD2 and inhibits TCR and IL2 signaling. Additionally, CTLA4 is markedly upregulated by CUL5 knockout, and its inactivation further enhances the anti-tumor effect of CUL5 KO. These results together reveal a negative regulatory mechanism for CD8+ T cells and have strong translational implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hongyue Zhou
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Barani Kumar Rajendran
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ao Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jingjing Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
61
|
Vallacchi V, Vergani E, Cossa M, Gargiuli C, Busico A, Devecchi A, Dugo M, Bergamaschi L, De Cecco L, Cavalieri S, Valeri B, Tamborini E, Gallino G, Del Vecchio M, Santinami M, Sensi M, Rivoltini L, Di Guardo L, Rodolfo M. Multistep tumor genetic evolution and changes in immunogenicity trigger immune-mediated disease eradication in stage IV melanoma: lessons from a single case. J Immunother Cancer 2024; 12:e007612. [PMID: 38177075 PMCID: PMC10773440 DOI: 10.1136/jitc-2023-007612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Durable remissions are observed in 10%-20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor's microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy.
Collapse
Affiliation(s)
- Viviana Vallacchi
- Department of Experimental Oncology, Unit of Translational Immunology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology, Unit of Translational Immunology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Cossa
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Gargiuli
- Applied Research and Technology Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Devecchi
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
| | - Laura Bergamaschi
- Department of Experimental Oncology, Unit of Translational Immunology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Barbara Valeri
- Pathology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Michele Del Vecchio
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Applied Research and Technology Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Department of Experimental Oncology, Unit of Translational Immunology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lorenza Di Guardo
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Department of Experimental Oncology, Unit of Translational Immunology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
62
|
Zhou Z, Pang Y, Ji J, He J, Liu T, Ouyang L, Zhang W, Zhang XL, Zhang ZG, Zhang K, Sun W. Harnessing 3D in vitro systems to model immune responses to solid tumours: a step towards improving and creating personalized immunotherapies. Nat Rev Immunol 2024; 24:18-32. [PMID: 37402992 DOI: 10.1038/s41577-023-00896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/06/2023]
Abstract
In vitro 3D models are advanced biological tools that have been established to overcome the shortcomings of oversimplified 2D cultures and mouse models. Various in vitro 3D immuno-oncology models have been developed to mimic and recapitulate the cancer-immunity cycle, evaluate immunotherapy regimens, and explore options for optimizing current immunotherapies, including for individual patient tumours. Here, we review recent developments in this field. We focus, first, on the limitations of existing immunotherapies for solid tumours, secondly, on how in vitro 3D immuno-oncology models are established using various technologies - including scaffolds, organoids, microfluidics and 3D bioprinting - and thirdly, on the applications of these 3D models for comprehending the cancer-immunity cycle as well as for assessing and improving immunotherapies for solid tumours.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China.
| | - Jingyuan Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Tiankun Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Aetiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing, China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China.
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
63
|
Xu Z, Wang Y, Jiang C, Wang Z, Cheng Y, Fan M. The regulation of the PD-1/PD-L1 pathway in imiquimod-induced chronic psoriasis itch and itch sensitization in mouse. Mol Pain 2024; 20:17448069241252384. [PMID: 38631843 PMCID: PMC11069332 DOI: 10.1177/17448069241252384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
PD-1/PD-L1 inhibitors have been demonstrated to induce itch in both humans and experimental animals. However, whether the PD-1/PD-L1 pathway is involved in the regulation of chronic psoriatic itch remains unclear. This study aimed to investigate the role of the PD-1/PD-L1 pathway in imiquimod-induced chronic psoriatic itch. The intradermal injection of PD-L1 in the nape of neck significantly alleviated chronic psoriatic itch in imiquimod-treated skin. Additionally, we observed that spontaneous scratching behavior induced by imiquimod disappeared on day 21. Still, intradermal injection of PD-1/PD-L1 inhibitors could induce more spontaneous scratching for over a month, indicating that imiquimod-treated skin remained in an itch sensitization state after the spontaneous scratching behavior disappeared. During this period, there was a significant increase in PD-1 receptor expression in both the imiquimod-treated skin and the spinal dorsal horn in mice, accompanied by significant activation of microglia in the spinal dorsal horn. These findings suggest the potential involvement of the peripheral and central PD-1/PD-L1 pathways in regulating chronic itch and itch sensitization induced by imiquimod.
Collapse
Affiliation(s)
- Zhehao Xu
- Department of Pharmacology, Clinic Medical College, Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pharmacology, Clinic Medical College, Anhui Medical University, Hefei, China
- Department of Science and Education, Hefei BOE Hospital, Hefei, China
| | - Changcheng Jiang
- Department of Pharmacology, Clinic Medical College, Anhui Medical University, Hefei, China
| | - Zhengwei Wang
- Department of Pharmacology, Clinic Medical College, Anhui Medical University, Hefei, China
| | - YongFeng Cheng
- Department of Pharmacology, Clinic Medical College, Anhui Medical University, Hefei, China
| | - Manli Fan
- Department of Pharmacy, Fuyang Hospital, Anhui Medical University, Fuyang, China
| |
Collapse
|
64
|
Liu MM, Ding CY, Li ZH, Yi RH, Ma LP, Ou XM, Liu HX, Gao L, Liu QJ. Multiple exposures to low-dose ionizing radiation induced the initiation and progression of pro-atherosclerotic phenotypes in mice and vascular endothelial cell damage. Sci Prog 2024; 107:368504241228668. [PMID: 38385346 PMCID: PMC10893836 DOI: 10.1177/00368504241228668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of low-dose radiation on the abdominal aorta of mice and vascular endothelial cells. METHODS Wild-type and tumor-bearing mice were exposed to 15 sessions of low-dose irradiation, resulting in cumulative radiation doses of 187.5, 375, and 750 mGy. The effect on the cardiovascular system was assessed. Immunohistochemistry analyzed protein expressions of PAPP-A, CD62, P65, and COX-2 in the abdominal aorta. Microarray technology, Gene Ontology analysis, and pathway enrichment analysis evaluated gene expression changes in endothelial cells exposed to 375 mGy X-ray. Cell viability was assessed using the Cell Counting Kit 8 assay. Immunofluorescence staining measured γ-H2AX levels, and real-time polymerase chain reaction quantified mRNA levels of interleukin-6 (IL-6), ICAM-1, and Cx43. RESULTS Hematoxylin and eosin staining revealed thickening of the inner membranes and irregular arrangement of smooth muscle cells in the media membrane at 375 and 750 mGy. Inflammation was observed in the inner membranes at 750 mGy, with a clear inflammatory response in the hearts of tumor-bearing mice. Immunohistochemistry indicated increased levels of PAPP-A, P65, and COX-2 post-irradiation. Microarray analysis showed 425 up-regulated and 235 down-regulated genes, associated with processes like endothelial cell-cell adhesion, IL-6, and NF-κB signaling. Cell Counting Kit 8 assay results indicated inhibited viability at 750 mGy in EA.hy926 cells. Immunofluorescence staining demonstrated a dose-dependent increase in γ-H2AX foci. Reverse transcription quantitative PCR results showed increased expression of IL6, ICAM-1, and Cx43 in EA.hy926 cells post 750 mGy X-ray exposure. CONCLUSION Repeated low-dose ionizing radiation exposures triggered the development of pro-atherosclerotic phenotypes in mice and damage to vascular endothelial cells.
Collapse
Affiliation(s)
- Meng-Meng Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Chun-Yan Ding
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, P.R. China
| | - Zhi-Hui Li
- Department of Thoracic and Cardiovascular Surgery, Beijing Yanhua Hospital, Beijing, P.R. China
| | - Ru-Han Yi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xiang-Ming Ou
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
65
|
Ventin M, Cattaneo G, Maggs L, Arya S, Wang X, Ferrone CR. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy: A Review. JAMA Oncol 2024; 10:115-121. [PMID: 37943567 DOI: 10.1001/jamaoncol.2023.4504] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Importance Chimeric antigen receptor (CAR) T-cell therapy has redefined the therapeutic landscape of several hematologic malignant tumors. Despite its clinical efficacy, many patients with cancer experience nonresponse to CAR T-cell treatment, disease relapse within months, or severe adverse events. Furthermore, CAR T-cell therapy has demonstrated minimal to no clinical efficacy in the treatment of solid tumors in clinical trials. Observations A complex interplay between high tumor burden and the systemic and local tumor microenvironment on clinical outcomes of CAR T-cell therapy is emerging from preclinical and clinical data. The hallmarks of advanced cancers-namely, inflammation and immune dysregulation-sustain cancer progression. They negatively affect the production, expansion, antitumor activity, and persistence of CAR T-cell products. Understanding of CAR T-cell therapy, mechanisms underlying its failure, and adverse events under conditions of high tumor burden is critical for realizing the full potential of this novel treatment approach. Conclusions and Relevance This review focuses on linking the efficacy and safety of CAR T-cell therapy with tumor burden. Its limitations relative to high tumor burden, systemic inflammation, and immune dysregulation are discussed. Emerging clinical approaches to overcome these obstacles and more effectively incorporate this therapeutic strategy into the treatment paradigm of patients with solid malignant tumors are also described.
Collapse
Affiliation(s)
- Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
66
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DS, Li Z, DeBarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. eLife 2023; 12:RP87900. [PMID: 38127070 PMCID: PMC10735224 DOI: 10.7554/elife.87900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, intracellular bacteria, and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and memory. Comparative Argonaute-2 high-throughput sequencing of crosslinking immunoprecipitation (AHC) combined with gene expression profiling in normal and miR-15/16-deficient mouse T cells revealed a large network of hundreds of direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak. This binding site was among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16-binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of interleukin 2 (IL-2) and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence in mice following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long non-coding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Dimitre S Simeonov
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Rachel DeBarge
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Otolaryngology-Head and Neck Surgery, University of California San FranciscoSan FranciscoUnited States
- Parker Institute for Cancer Immunotherapy, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
- Department of Medicine, University of California San FranciscoLexingtonUnited States
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San FranciscoSan FranciscoUnited States
- Sandler Asthma Basic Research Program, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
67
|
Sidiropoulos DN, Ho WJ, Jaffee EM, Kagohara LT, Fertig EJ. Systems immunology spanning tumors, lymph nodes, and periphery. CELL REPORTS METHODS 2023; 3:100670. [PMID: 38086385 PMCID: PMC10753389 DOI: 10.1016/j.crmeth.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.
Collapse
Affiliation(s)
- Dimitrios N Sidiropoulos
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Won Jin Ho
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Luciane T Kagohara
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA.
| | - Elana J Fertig
- Johns Hopkins Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Johns Hopkins Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
68
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
69
|
Gerber-Ferder Y, Cosgrove J, Duperray-Susini A, Missolo-Koussou Y, Dubois M, Stepaniuk K, Pereira-Abrantes M, Sedlik C, Lameiras S, Baulande S, Bendriss-Vermare N, Guermonprez P, Passaro D, Perié L, Piaggio E, Helft J. Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nat Cell Biol 2023; 25:1736-1745. [PMID: 38036749 DOI: 10.1038/s41556-023-01291-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Myeloid cell infiltration of solid tumours generally associates with poor patient prognosis and disease severity1-13. Therefore, understanding the regulation of myeloid cell differentiation during cancer is crucial to counteract their pro-tumourigenic role. Bone marrow (BM) haematopoiesis is a tightly regulated process for the production of all immune cells in accordance to tissue needs14. Myeloid cells differentiate during haematopoiesis from multipotent haematopoietic stem and progenitor cells (HSPCs)15-17. HSPCs can sense inflammatory signals from the periphery during infections18-21 or inflammatory disorders22-27. In these settings, HSPC expansion is associated with increased myeloid differentiation28,29. During carcinogenesis, the elevation of haematopoietic growth factors supports the expansion and differentiation of committed myeloid progenitors5,30. However, it is unclear whether cancer-related inflammation also triggers demand-adapted haematopoiesis at the level of multipotent HSPCs. In the BM, HSPCs reside within the haematopoietic niche which delivers HSC maintenance and differentiation cues31-35. Mesenchymal stem cells (MSCs) are a major cellular component of the BM niche and contribute to HSC homeostasis36-41. Modifications of MSCs in systemic disorders have been associated with HSC differentiation towards myeloid cells22,42. It is unknown if MSCs are regulated in the context of solid tumours and if their myeloid supportive activity is impacted by cancer-induced systemic changes. Here, using unbiased transcriptomic analysis and in situ imaging of HSCs and the BM niche during breast cancer, we show that both HSCs and MSCs are transcriptionally and spatially modified. We demonstrate that breast tumour can distantly remodel the cellular cross-talks in the BM niche leading to increased myelopoiesis.
Collapse
Affiliation(s)
- Yohan Gerber-Ferder
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
- Université Paris Cité, INSERM U932, Paris, France
| | - Jason Cosgrove
- PSL University, Institut Curie Research Center, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aleria Duperray-Susini
- Institut Cochin, Leukemia and Niche Dynamics Laboratory, Université Paris Cité, INSERM, CNRS, Paris, France
| | | | - Marine Dubois
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Kateryna Stepaniuk
- Institut Cochin, Phagocytes and Cancer Immunology Laboratory, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Manuela Pereira-Abrantes
- Cancer Research Center of Lyon, Centre Léon Bérard, Université Claude Bernard Lyon 1, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - Christine Sedlik
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Sonia Lameiras
- Institut Curie, ICGex Next-Generation Sequencing Platform, PSL University, Paris, France
- Institut Curie, Single Cell Initiative, PSL University, Paris, France
| | - Sylvain Baulande
- Institut Curie, ICGex Next-Generation Sequencing Platform, PSL University, Paris, France
- Institut Curie, Single Cell Initiative, PSL University, Paris, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center of Lyon, Centre Léon Bérard, Université Claude Bernard Lyon 1, UMR INSERM 1052 CNRS 5286, Lyon, France
| | - Pierre Guermonprez
- Institut Pasteur, Dendritic Cells and Adaptive Immunity Unit, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Diana Passaro
- Institut Cochin, Leukemia and Niche Dynamics Laboratory, Université Paris Cité, INSERM, CNRS, Paris, France
| | - Leïla Perié
- PSL University, Institut Curie Research Center, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Eliane Piaggio
- Institut Curie, Immunity and Cancer, PSL University, INSERM U932, Paris, France
| | - Julie Helft
- Institut Cochin, Phagocytes and Cancer Immunology Laboratory, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
70
|
Schoenberg PLA, Song AK, Mohr EM, Rogers BP, Peterson TE, Murphy BA. Increased microglia activation in late non-central nervous system cancer survivors links to chronic systemic symptomatology. Hum Brain Mapp 2023; 44:6001-6019. [PMID: 37751068 PMCID: PMC10619383 DOI: 10.1002/hbm.26491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
Prolonged inflammatory expression within the central nervous system (CNS) is recognized by the brain as a molecular signal of "sickness", that has knock-on effects to the blood-brain barrier, brain-spinal barrier, blood-cerebrospinal fluid barrier, neuro-axonal structures, neurotransmitter activity, synaptic plasticity, neuroendocrine function, and resultant systemic symptomatology. It is concurred that the inflammatory process associated with cancer and cancer treatments underline systemic symptoms present in a large portion of survivors, although this concept is largely theoretical from disparate and indirect evidence and/or clinical anecdotal reports. We conducted a proof-of-concept study to link for the first time late non-CNS cancer survivors presenting chronic systemic symptoms and the presence of centralized inflammation, or neuroinflammation, using TSPO-binding PET tracer [11 C]-PBR28 to visualize microglial activation. We compared PBR28 SUVR in 10 non-CNS cancer survivors and 10 matched healthy controls. Our data revealed (1) microglial activation was significantly higher in caudate, temporal, and occipital regions in late non-central nervous system/CNS cancer survivors compared to healthy controls; (2) increased neuroinflammation in cancer survivors was not accompanied by significant differences in plasma cytokine markers of peripheral inflammation; (3) increased neuroinflammation was not accompanied by reduced fractional anisotropy, suggesting intact white matter microstructural integrity, a marker of neurovascular fiber tract organization; and (4) the presentation of chronic systemic symptoms in cancer survivors was significantly connected with microglial activation. We present the first data empirically supporting the concept of a peripheral-to-centralized inflammatory response in non-CNS cancer survivors, specifically those previously afflicted with head and neck cancer. Following resolution of the initial peripheral inflammation from the cancer/its treatments, in some cases damage/toxification to the central nervous system occurs, ensuing chronic systemic symptoms.
Collapse
Affiliation(s)
- Poppy L. A. Schoenberg
- Department of Physical Medicine and RehabilitationVanderbilt University Medical CenterNashvilleTennesseeUSA
- Osher Center for Integrative HealthVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alexander K. Song
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
| | - Emily M. Mohr
- Osher Center for Integrative HealthVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Baxter P. Rogers
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Todd E. Peterson
- Vanderbilt Brain InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Barbara A. Murphy
- Division of Hematology and OncologyVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| |
Collapse
|
71
|
Li D, Cao Z, Chen C, Li H, He S, Hou X, Liang M, Yang X, Wang J. Nanoassembly of doxorubicin-conjugated polyphosphoester and siRNA simultaneously elicited macrophage- and T cell- mediated anticancer immune response for cancer therapy. Biomaterials 2023; 302:122339. [PMID: 37778054 DOI: 10.1016/j.biomaterials.2023.122339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Efficiently reawakening immune cells, including T cells and macrophages, to eliminate tumor cells is a promising strategy for cancer treatment, but remains a huge challenge nowadays. Herein, a nanoassembly formed by doxorubicin (DOX)-conjugated polyphosphoester (PP-(hDOX)) and CD47-targeting siRNA (siCD47) via electrostatic and π-π stacking interactions, termed as PP-(hDOX&siCD47), was developed to reawaken the T cell and macrophage-mediated anticancer activity. The PP-(hDOX&siCD47) could efficiently blockade antiphagocytic signal by downregulation of CD47 expression to reactive macrophage-mediated anticancer immunotherapy. Moreover, the conjugated DOX of PP-(hDOX&siCD47) can perform the chemotherapy towards tumor cells and also elicit the T cell-mediated anticancer immune response via immunogenic cell death (ICD) effect. Therefore, the PP-(hDOX&siCD47) treatment could significantly increase M1-like macrophages proportion and tumor infiltration of CD8+ T cells, while the proportions of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) were considerably reduced in tumor tissue, eventually achieving significantly tumor growth inhibition. Overall, this study provides a simple siRNA and DOX codelivery approach to simultaneously elicit the macrophage- and T cell-mediated anticancer immune response for cancer therapy.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Ziyang Cao
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Hengyi Li
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Shan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China
| | - Xurui Hou
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
72
|
Liang J, Zhu F, Cheng K, Ma N, Ma X, Feng Q, Xu C, Gao X, Wang X, Shi J, Zhao X, Nie G. Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306158. [PMID: 37643537 DOI: 10.1002/adma.202306158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chen Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
73
|
Xu T, Dai J, Tang L, Sun L, Si L, Guo J. Systemic administration of STING agonist promotes myeloid cells maturation and antitumor immunity through regulating hematopoietic stem and progenitor cell fate. Cancer Immunol Immunother 2023; 72:3491-3505. [PMID: 37550427 PMCID: PMC10991199 DOI: 10.1007/s00262-023-03502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
STING is a pivotal mediator of effective innate and adaptive anti-tumor immunity; however, intratumoral administration of STING agonists have shown limited therapeutic benefit in clinical trials. The systemic effect of the intravenous delivery of STING agonists in cancer is not well-defined. Here, we demonstrated that systemic administration of STING agonist inhibited melanoma growth, improved inflammatory effector cell infiltration, and induced bone marrow mobilization and extramedullary hematopoiesis, causing widespread changes in immune components in the peripheral blood. The systemically administered STING agonist promoted HSC expansion and influenced lineage fate commitment, which was manifested as the differentiation of HSPCs was skewed toward myeloid cells at the expense of B-cell lymphopoiesis and erythropoiesis. Transcriptome analysis revealed upregulation of myeloid lineage differentiation-related and type I interferon-related genes. This myeloid-biased differentiation promoted the production and maturation of myeloid cells toward an activated phenotype. Furthermore, depletion of Gr-1+ myeloid cells attenuated the anti-tumor immunity of STING agonist. Our findings reveal the anti-tumor mechanism of systemic administration of STING agonist that involves modulating HSPC differentiation and promoting myeloid cells maturation. Our study may help explain the limited clinical activity of STING agonists administered intratumorally.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lirui Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
74
|
Nguyen A, Brown D, Krishnan R, Bastin D, Deng L, Chen L, Salem O, Walsh SR, Bramson JL, Wan Y. HDACi-dependent Microenvironmental Normalization Overcomes Tumor Burden-induced T-cell Exhaustion. Clin Cancer Res 2023; 29:4289-4305. [PMID: 37561398 DOI: 10.1158/1078-0432.ccr-22-2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE T-cell exhaustion limits immunotherapy for the treatment of solid tumors. Although immune checkpoint blockade and adoptive T-cell therapy (ACT) can mediate tumor regression, their potency is often determined by tumor burden. Here, we identified tumor burden-related pathway changes that are conducive to T-cell exhaustion. We then determined whether microenvironmental reprogramming via epigenetic modulation could reverse T-cell exhaustion and improve immunotherapeutic responsiveness. EXPERIMENTAL DESIGN We developed a murine syngeneic tumor model wherein an increased burden ablated therapeutic responsiveness to ACT, which corresponded with systemic induction of T-cell exhaustion. Transcriptome analysis of these large tumors allowed us to characterize changes to immunosuppressive pathway expression during class I histone deacetylase inhibitor MS-275 treatment. We then measured the therapeutic impact of MS-275 during ACT and assessed T-cell exhaustion by transcriptome/phenotypic analysis. RESULTS ACT durably regressed small tumors but failed to control large tumors, which were associated with systemic T-cell exhaustion and ablation of T-cell responses. Large tumors were defined by an immunosuppressive pathway signature. MS-275 reversed this pathway signature and promoted durable regression of large tumors during ACT. Prototypical exhaustion marker Tim-3 was selectively upregulated in transferred T cells despite displaying a reduced exhaustion signature. Instead, we observed enhanced activation-dependent signaling correlating with enrichment of the IL2-STAT5 signaling axis. Activated CD8+ T-cell responses were predominantly skewed toward terminal effector cell-like CD44+ Tim-3hi TCF1- CD127- KLRG1+ differentiation. CONCLUSIONS Tumor burden-induced pathway changes can be reversed through epigenetic reprogramming, enabling the conversion from T-cell exhaustion to effector lineage differentiation.
Collapse
Affiliation(s)
- Andrew Nguyen
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Dominique Brown
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Ramya Krishnan
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Donald Bastin
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Li Deng
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Lan Chen
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Omar Salem
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Scott R Walsh
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Yonghong Wan
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| |
Collapse
|
75
|
Qiu K, Duan X, Mao M, Song Y, Rao Y, Cheng D, Feng L, Shao X, Jiang C, Huang H, Wang Y, Li H, Chen X, Wu S, Luo D, Chen F, Peng X, Zheng Y, Wang H, Liu J, Zhao Y, Song X, Ren J. mRNA-LNP vaccination-based immunotherapy augments CD8 + T cell responses against HPV-positive oropharyngeal cancer. NPJ Vaccines 2023; 8:144. [PMID: 37773254 PMCID: PMC10542330 DOI: 10.1038/s41541-023-00733-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
Although mRNA vaccines are known as potent activators of antigen-specific immune responses against infectious diseases, limited understanding of how they drive the functional commitment of CD8+ T cells in tumor microenvironment (TME) and secondary lymphoid organs hinders their broader application in cancer immunotherapy. Here, we systematically evaluated the immunological effects of a lipid nanoparticle (LNP)-encapsulated mRNA vaccine that encodes human papillomavirus E7 protein (HPV mRNA-LNP), a tumor-specific antigen of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC). HPV mRNA-LNP vaccination activated overall and HPV-specific CD8+ T cells, as well as differentially drove the functional commitment of CD8+ T cells through distinct IFN-response and exhaustion trajectories in the spleen and TME, respectively. Combination therapies of HPV mRNA-LNP vaccination with immune checkpoint blockades boosted HPV-specific CD8+ T cells while maintaining their anti-tumor function, thus further promoting tumor regression. Our results showed that the HPV mRNA-LNP vaccination combined with immune checkpoint blockade is a promising approach for immunotherapy of HPV-positive OPSCC.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Duan
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yao Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Rao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danni Cheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan Feng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuli Shao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhuan Jiang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Huang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuemei Chen
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sisi Wu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Luo
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy and National Clinical Research Center for Geriatrics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongbo Zheng
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Wang
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiangrong Song
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery and Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
76
|
Patel RK, Jaszczak RG, Im K, Carey ND, Courau T, Bunis DG, Samad B, Avanesyan L, Chew NW, Stenske S, Jespersen JM, Publicover J, Edwards AW, Naser M, Rao AA, Lupin-Jimenez L, Krummel MF, Cooper S, Baron JL, Combes AJ, Fragiadakis GK. Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data. Front Immunol 2023; 14:1167241. [PMID: 37731497 PMCID: PMC10507399 DOI: 10.3389/fimmu.2023.1167241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery.
Collapse
Affiliation(s)
- Ravi K. Patel
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Rebecca G. Jaszczak
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Kwok Im
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Nicholas D. Carey
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
| | - Tristan Courau
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Daniel G. Bunis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Bushra Samad
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Lia Avanesyan
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
- The Ibrahim El-Hefni Liver Biorepository at California Pacific Medical Center (IELBC), San Francisco, CA, United States
- Division of General and Transplant Hepatology, California Pacific Medical Center & Research Institute, San Francisco, CA, United States
| | - Nayvin W. Chew
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Sarah Stenske
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
| | - Jillian M. Jespersen
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
| | - Jean Publicover
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
| | - Austin W. Edwards
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Mohammad Naser
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Arjun A. Rao
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Leonard Lupin-Jimenez
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
| | - Matthew F. Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Stewart Cooper
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
- The Ibrahim El-Hefni Liver Biorepository at California Pacific Medical Center (IELBC), San Francisco, CA, United States
- Division of General and Transplant Hepatology, California Pacific Medical Center & Research Institute, San Francisco, CA, United States
| | - Jody L. Baron
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Liver Center, University of California San Francisco, San Francisco, CA, United States
- The Ibrahim El-Hefni Liver Biorepository at California Pacific Medical Center (IELBC), San Francisco, CA, United States
| | - Alexis J. Combes
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Division of Gastroenterology, University of California San Francisco, San Francisco, CA, United States
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, United States
| | - Gabriela K. Fragiadakis
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
77
|
Haraguchi M, Kiyotani K, Tate T, Sakata S, Sagawa R, Takagi S, Nagayama S, Takeuchi K, Takahashi K, Katayama R. Spatiotemporal commonality of the TCR repertoire in a T-cell memory murine model and in metastatic human colorectal cancer. Cancer Immunol Immunother 2023; 72:2971-2989. [PMID: 37270735 PMCID: PMC10992958 DOI: 10.1007/s00262-023-03473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have shown superior clinical responses and significantly prolong overall survival (OS) for many types of cancer. However, some patients exhibit long-term OS, whereas others do not respond to ICI therapy at all. To develop more effective and long-lasting ICI therapy, understanding the host immune response to tumors and the development of biomarkers are imperative. In this study, we established an MC38 immunological memory mouse model by administering an anti-PD-L1 antibody and evaluating the detailed characteristics of the immune microenvironment including the T cell receptor (TCR) repertoire. In addition, we found that the memory mouse can be established by surgical resection of residual tumor following anti-PD-L1 antibody treatment with a success rate of > 40%. In this model, specific depletion of CD8 T cells revealed that they were responsible for the rejection of reinoculated MC38 cells. Analysis of the tumor microenvironment (TME) of memory mice using RNA-seq and flow cytometry revealed that memory mice had a quick and robust immune response to MC38 cells compared with naïve mice. A TCR repertoire analysis indicated that T cells with a specific TCR repertoire were expanded in the TME, systemically distributed, and preserved in the host for a long time period. We also identified shared TCR clonotypes between serially resected tumors in patients with colorectal cancer (CRC). Our results suggest that memory T cells are widely preserved in patients with CRC, and the MC38 memory model is potentially useful for the analysis of systemic memory T-cell behavior.
Collapse
Affiliation(s)
- Mizuki Haraguchi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kazuma Kiyotani
- Immunopharmacogenomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomohiro Tate
- Immunopharmacogenomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ray Sagawa
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Satoshi Nagayama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
78
|
Rudqvist NP, Charpentier M, Lhuillier C, Wennerberg E, Spada S, Sheridan C, Zhou XK, Zhang T, Formenti SC, Sims JS, Alonso A, Demaria S. Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors. Nat Commun 2023; 14:5146. [PMID: 37620372 PMCID: PMC10449830 DOI: 10.1038/s41467-023-40844-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Radiation therapy (RT) increases tumor response to CTLA-4 inhibition (CTLA4i) in mice and in some patients, yet deep responses are rare. To identify rational combinations of immunotherapy to improve responses we use models of triple negative breast cancer highly resistant to immunotherapy in female mice. We find that CTLA4i promotes the expansion of CD4+ T helper cells, whereas RT enhances T cell clonality and enriches for CD8+ T cells with an exhausted phenotype. Combination therapy decreases regulatory CD4+ T cells and increases effector memory, early activation and precursor exhausted CD8+ T cells. A combined gene signature comprising these three CD8+ T cell clusters is associated with survival in patients. Here we show that targeting additional immune checkpoints expressed by intratumoral T cells, including PD1, is not effective, whereas CD40 agonist therapy recruits resistant tumors into responding to the combination of RT and CTLA4i, indicating the need to target different immune compartments.
Collapse
Affiliation(s)
- Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson, Houston, TX, 77030, USA
- Department of Immunology, University of Texas MD Anderson, Houston, TX, 77030, USA
| | - Maud Charpentier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Immuno-Oncology, Sanofi, 94403, Vitry-sur-Seine, France
| | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SM2 5NG, UK
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Caroline Sheridan
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xi Kathy Zhou
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennifer S Sims
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alicia Alonso
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
79
|
Anandakrishnan R, Zyvoloski IJ, Zyvoloski LR, Opoku NK, Dai A, Antony V. Potential immunosuppressive clonal hematopoietic mutations in tumor infiltrating immune cells in breast invasive carcinoma. Sci Rep 2023; 13:13131. [PMID: 37573441 PMCID: PMC10423211 DOI: 10.1038/s41598-023-40256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
A hallmark of cancer is a tumor cell's ability to evade immune destruction. Somatic mutations in tumor cells that prevent immune destruction have been extensively studied. However, somatic mutations in tumor infiltrating immune (TII) cells, to our knowledge, have not been previously studied. Understandably so since normal hematopoiesis prevents the accumulation of somatic mutations in immune cells. However, clonal hematopoiesis does result in the accumulation of somatic mutations in immune cells. These mutations cannot "drive" tumor growth, however, they may "facilitate" it by inhibiting an effective anti-tumor immune response. To identify potential immunosuppressive clonal hematopoietic (CH) mutations in TII cells, we analyzed exome and RNA sequencing data from matched tumor and normal blood samples, and single-cell RNA sequencing data, from breast cancer patients. We selected mutations that were somatic, present in TII cells, clonally expanded, potentially pathogenic, expressed in TII cells, unlikely to be a passenger mutation, and in immune response associated genes. We identified eight potential immunosuppressive CH mutations in TII cells. This work is a first step towards determining if immunosuppressive CH mutations in TII cells can affect the progression of solid tumors. Subsequent experimental confirmation could represent a new paradigm in the etiology of cancer.
Collapse
Affiliation(s)
- Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, VA, USA.
- Virginia Tech, Blacksburg, VA, USA.
- Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.
| | | | | | - Nana K Opoku
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, VA, USA
| | - Andrew Dai
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, VA, USA
| | - Veneeth Antony
- Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, VA, USA
| |
Collapse
|
80
|
Dong G, Fan F, He Y, Luo Y, Yu J, Liang P. T-Lymphocyte Gene-Regulated CCL5 and Its Association with Extrahepatic Metastasis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1267-1279. [PMID: 37551333 PMCID: PMC10404438 DOI: 10.2147/jhc.s420836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Extrahepatic metastasis in hepatocellular carcinoma (HCC) greatly limits the prognostic survival of HCC patients. Levels of preoperative peripheral lymphocyte subsets and cytokines in the serum for predicting extrahepatic spread of hepatocellular carcinoma are still not common in clinical practice. The aim of this study is to investigate the value and mechanisms of peripheral lymphocyte subsets and cytokines in predicting extrahepatic spread of HCC. METHODS We used a retrospective design to analyze data pertaining to a total of 380 patients with HCC who were examined for peripheral T-lymphocyte subsets before receiving microwave ablation. We performed Cox regression analysis to screen out independent risk factors and used pathology specimens from the patients and public databases of liver cancer to investigate the correlation between cytokines and intra-tumor immune cells. RESULTS The CD4low group had better metastasis-free 1-year, 3-year, and 5-year survival rates compared to the CD4high group (80% vs 69%, 67% vs 51%, and 57% vs 39%, respectively; HR 1.7 (1.2, 2.3), P = 0.0019). Similarly, the CD8high group had better metastasis-free 1-year, 3-year, and 5-year survival rates compared to the CD8low group (65% vs 78%, 46% vs 64%, and 34% vs 54%, respectively; HR 0.6 (0.4, 0.8), P < 0.001). Patients with the CD4high/CD8low phenotype had significantly worse metastasis-free survival times compared to other patients (HR 2.0 (1.5, 2.8), P < 0.001). Additionally, T lymphocyte-specific genes (CD4, CD8) were correlated with CCL5 expression, which was also positively correlated with the level of intra-tumoral infiltrating CD8 T cells and the prognosis of HCC patients. CONCLUSION Both CD4+ and CD8+ T lymphocyte subsets were independent risk factors for extrahepatic metastasis in HCC. Serum CCL5 levels could indicate the infiltration level of intra-tumoral CD8+ T cells and the risk of extrahepatic metastasis in HCC patients, aiding in patient risk stratification for metastasis.
Collapse
Affiliation(s)
- Guoping Dong
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Fangying Fan
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Yao He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People’s Republic of China
| | - Yanchun Luo
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| |
Collapse
|
81
|
Lax BM, Palmeri JR, Lutz EA, Sheen A, Stinson JA, Duhamel L, Santollani L, Kennedy A, Rothschilds AM, Spranger S, Sansom DM, Wittrup KD. Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies. Proc Natl Acad Sci U S A 2023; 120:e2300895120. [PMID: 37487077 PMCID: PMC10400942 DOI: 10.1073/pnas.2300895120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.
Collapse
Affiliation(s)
- Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - Adrienne M. Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
82
|
Chen X, Lin Y, Yue S, Yang Y, Yang X, He J, Gao L, Li Z, Hu L, Tang J, Wang Y, Tian Q, Hao Y, Xu L, Huang Q, Cao Y, Ye L. PD-1/PD-L1 blockade restores tumor-induced COVID-19 vaccine bluntness. Vaccine 2023; 41:4986-4995. [PMID: 37400286 PMCID: PMC10281226 DOI: 10.1016/j.vaccine.2023.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
The COVID-19 vaccinations are crucial in protecting against the global pandemic. However, accumulating studies revealed the severely blunted COVID-19 vaccine effectiveness in cancer patients. The PD-1/PD-L1 immune checkpoint blockade (ICB) therapy leads to durable therapeutic responses in a subset of cancer patients and has been approved to treat a wide spectrum of cancers in the clinic. In this regard, it is pivotal to explore the potential impact of PD-1/PD-L1 ICB therapy on COVID-19 vaccine effectiveness during ongoing malignancy. In this study, using preclinical models, we found that the tumor-suppressed COVID-19 vaccine responses are largely reverted in the setting of PD-1/PD-L1 ICB therapy. We also identified that the PD-1/PD-L1 blockade-directed restoration of COVID-19 vaccine effectiveness is irrelevant to anti-tumor therapeutic outcomes. Mechanistically, the restored COVID-19 vaccine effectiveness is entwined with the PD-1/PD-L1 blockade-driven preponderance of follicular helper T cell and germinal center responses during ongoing malignancy. Thus, our findings indicate that PD-1/PD-L1 blockade will greatly normalize the responses of cancer patients to COVID-19 vaccination, while regardless of its anti-tumor efficacies on these patients.
Collapse
Affiliation(s)
- Xiangyu Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Shuai Yue
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Cancer Center, Daping Hospital & Army Medical Center of PLA, Third Military Medical University, Chongqing 400042, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiaofan Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Junjian He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Leiqiong Gao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qizhao Huang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yingjiao Cao
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Lilin Ye
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
83
|
Wheeler BD, Gagnon JD, Zhu WS, Muñoz-Sandoval P, Wong SK, Simeonov DR, Li Z, Debarge R, Spitzer MH, Marson A, Ansel KM. The lncRNA Malat1 Inhibits miR-15/16 to Enhance Cytotoxic T Cell Activation and Memory Cell Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536843. [PMID: 37547023 PMCID: PMC10401941 DOI: 10.1101/2023.04.14.536843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proper activation of cytotoxic T cells via the T cell receptor and the costimulatory receptor CD28 is essential for adaptive immunity against viruses, many intracellular bacteria and cancers. Through biochemical analysis of RNA:protein interactions, we uncovered a non-coding RNA circuit regulating activation and differentiation of cytotoxic T cells composed of the long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) and the microRNA family miR-15/16. miR-15/16 is a widely and highly expressed tumor suppressor miRNA family important for cell proliferation and survival. miR-15/16 also play important roles in T cell responses to viral infection, including the regulation of antigen-specific T cell expansion and T cell memory. Comparative Argonaute-2 high throughput sequencing of crosslinking immunoprecipitation (Ago2 HITS-CLIP, or AHC) combined with gene expression profiling in normal and miR-15/16-deficient T cells revealed a large network of several hundred direct miR-15/16 target mRNAs, many with functional relevance for T cell activation, survival and memory formation. Among these targets, the long non-coding RNA Malat1 contained the largest absolute magnitude miR-15/16-dependent AHC peak in T cells. This binding site was also among the strongest lncRNA:miRNA interactions detected in the T cell transcriptome. We used CRISPR targeting with homology directed repair to generate mice with a 5-nucleotide mutation in the miR-15/16 binding site in Malat1. This mutation interrupted Malat1:miR-15/16 interaction, and enhanced the repression of other miR-15/16 target genes, including CD28. Interrupting Malat1 interaction with miR-15/16 decreased cytotoxic T cell activation, including the expression of IL-2 and a broader CD28-responsive gene program. Accordingly, Malat1 mutation diminished memory cell persistence following LCMV Armstrong and Listeria monocytogenes infection. This study marks a significant advance in the study of long noncoding RNAs in the immune system by ascribing cell-intrinsic, sequence-specific in vivo function to Malat1. These findings have implications for T cell-mediated autoimmune diseases, antiviral and anti-tumor immunity, as well as lung adenocarcinoma and other malignancies where Malat1 is overexpressed.
Collapse
Affiliation(s)
- Benjamin D Wheeler
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - John D Gagnon
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Wandi S Zhu
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Priscila Muñoz-Sandoval
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Wong
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dimitre R Simeonov
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Rachel Debarge
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Alexander Marson
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Program, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
84
|
Chen S, Xing Z, Geng M, Zhao R, Yang X, Zhu X, Anderson JM, Zhang X. Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response. SCIENCE ADVANCES 2023; 9:eadd9871. [PMID: 37467339 PMCID: PMC10355827 DOI: 10.1126/sciadv.add9871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
While most nanomaterials are designed to assist tumor therapy, some inorganic nanoparticles have been reported to impede cancer development. We assume that the immune response elicited by these foreign nanoparticles might be associated with the remodeling of immune landscape in the tumor microenvironment (TME). We studied representative inorganic nanoparticles widely used in the biomedical field and first demonstrated that needle-shaped hydroxyapatite (n-nHA), granule-shaped hydroxyapatite, and silicon dioxide can effectively impair tumor progression in vivo. Substantial multinucleated giant cells (MNGCs) were formed around these antitumor nanoparticles, while the ratio of monocytes and macrophages was decreased in the TME. We found that high expression of the STXBP6 protein induced by n-nHA-treated macrophages triggers autophagy, which markedly promotes macrophage fusion into MNGCs. In this way, extensive depletion of tumor-associated macrophages in the TME was achieved, which suppressed tumor growth and metastasis. This intrinsic antitumor immunity of inorganic nanoparticles should not be neglected when designing future nanomedicines to treat cancer.
Collapse
Affiliation(s)
- Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rui Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - James M. Anderson
- Departments of Pathology, Biomedical Engineering and Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
85
|
Watanabe S, Shimoi T, Nishikawa T, Kawachi A, Okuma HS, Tokura M, Yazaki S, Mizoguchi C, Arakaki M, Saito A, Kita S, Yamamoto K, Kojima Y, Sudo K, Noguchi E, Yoshida A, Kawai A, Fujiwara Y, Yonemori K. Lymphocyte-to-monocyte ratio as a prognostic and potential tumor microenvironment indicator in advanced soft tissue sarcoma treated with first-line doxorubicin therapy. Sci Rep 2023; 13:10734. [PMID: 37400504 DOI: 10.1038/s41598-023-37616-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/24/2023] [Indexed: 07/05/2023] Open
Abstract
Prognostic value of hematologic indices and their association with the tumor microenvironment (TME) remain unclear in advanced soft tissue sarcoma (STS). We aimed to evaluate their prognostic value and correlation with the TME status in advanced STS treated with first-line doxorubicin (DXR) therapy. Clinical data and three hematological indices, including lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio, and neutrophil-to-lymphocyte ratio, were collected from 149 patients with advanced STS. The TME status was pathologically examined by CD3, CD68, and CD20 staining of resected tumor slides. In a multivariate Cox analysis, low LMR and absence of primary tumor resection were independently associated with worse overall survival (OS) (HR 3.93, p = 0.001; HR 1.71, p = 0.03). A prognostic model using these variables predicted OS with greater area under curves than those obtained using Systemic Inflammatory Score and Glasgow Prognostic Score. The LMR significantly correlated with the tumoral CD3/CD68-positive cell ratio in surgical specimens (R = 0.959, p = 0.04). In conclusion, LMR was a prognostic factor in advanced STS treated with first-line DXR therapy. LMR could partially reflect anti-tumor immunity in the TME and have the prognostic value. The potential role of LMR as an indicator of TME status warrants further investigation.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center East, 5-1, Kashiwanoha 6, Kashiwa, Chiba, 277-8577, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Asuka Kawachi
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hitomi Sumiyoshi Okuma
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Momoko Tokura
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chiharu Mizoguchi
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motoko Arakaki
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayumi Saito
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shosuke Kita
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kasumi Yamamoto
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, 1-1, Tsukiji 5, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
86
|
Alevizakos M, McDermott D. Adjuvant immunotherapy for locally advanced renal cell carcinoma. Expert Opin Biol Ther 2023; 23:1265-1275. [PMID: 38069655 DOI: 10.1080/14712598.2023.2294001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION Locally advanced renal cell carcinoma (RCC) presents a therapeutic challenge due to 20-40% relapse risk post-nephrectomy. There has been substantial interest in utilizing immunotherapy interrupting the PD-1/PD-L1 axis in the perioperative space, especially in the adjuvant setting, in order to minimize such risk. AREAS COVERED We conducted a PubMed search using the terms 'adjuvant' and 'RCC.' We begin by examining landmark studies in the postoperative space for locally advanced RCC, with special emphasis on immunotherapeutic biologics. Important considerations are outlined in an effort to explain the conflicting data on the benefit of adjuvant immunotherapy as well as to adequately assess the magnitude of potential benefit of the recently approved adjuvant pembrolizumab. Relevant contemporary challenges and opportunities as well as future directions of the field are also discussed. EXPERT OPINION Systemic immunotherapy with monoclonal antibodies targeting the PD-1/PD-L1 axis likely holds promise, either alone or potentially in combinations, in minimizing recurrence risk for locally advanced RCC. However, emphasis on post-protocol care, robust endpoint selection, and continued work and validation on predictive biomarkers are needed to confidently select those patients that may benefit the most and minimize biologic and financial toxicity.
Collapse
Affiliation(s)
- Michail Alevizakos
- Department of Hematology/Medical Oncology, Riverside Cancer Specialists of Tidewater, Chesapeake, VA, USA
| | - David McDermott
- Hematology/Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
87
|
Pieper AA, Spiegelman DV, Felder MAR, Feils AS, Tsarovsky NW, Zaborek J, Morris ZS, Erbe AK, Rakhmilevich AL, Sondel PM. Factors impacting the efficacy of the in-situ vaccine with CpG and OX40 agonist. Cancer Immunol Immunother 2023; 72:2459-2471. [PMID: 37016127 PMCID: PMC10264285 DOI: 10.1007/s00262-023-03433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The in-situ vaccine using CpG oligodeoxynucleotide combined with OX40 agonist antibody (CpG + OX40) has been shown to be an effective therapy activating an anti-tumor T cell response in certain settings. The roles of tumor volume, tumor model, and the addition of checkpoint blockade in the efficacy of CpG + OX40 in-situ vaccination remains unknown. METHODS Mice bearing flank tumors (B78 melanoma or A20 lymphoma) were treated with combinations of CpG, OX40, and anti-CTLA-4. Tumor growth and survival were monitored. In vivo T cell depletion, tumor cell phenotype, and tumor infiltrating lymphocyte (TIL) studies were performed. Tumor cell sensitivity to CpG and macrophages were evaluated in vitro. RESULTS As tumor volumes increased in the B78 (one-tumor) and A20 (one-tumor or two-tumor) models, the anti-tumor efficacy of the in-situ vaccine decreased. In vitro, CpG had a direct effect on A20 proliferation and phenotype and an indirect effect on B78 proliferation via macrophage activation. As A20 tumors progressed in vivo, tumor cell phenotype changed, and T cells became more involved in the local CpG + OX40 mediated anti-tumor response. In mice with larger tumors that were poorly responsive to CpG + OX40, the addition of anti-CTLA-4 enhanced the anti-tumor efficacy in the A20 but not B78 models. CONCLUSIONS Increased tumor volume negatively impacts the anti-tumor capability of CpG + OX40 in-situ vaccine. The addition of checkpoint blockade augmented the efficacy of CpG + OX40 in the A20 but not B78 model. These results highlight the importance of considering multiple preclinical model conditions when assessing the efficacy of cancer immunotherapy regimens and their translation to clinical testing.
Collapse
Affiliation(s)
- Alexander A Pieper
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Dan V Spiegelman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mildred A R Felder
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Arika S Feils
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Noah W Tsarovsky
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Amy K Erbe
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alexander L Rakhmilevich
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Paul M Sondel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- 4159 MACC Fund UW Childhood Cancer Research Wing, Wisconsin Institute for Medical Research, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
| |
Collapse
|
88
|
Sun W, Ji P, Zhou T, Li Z, Xing C, Zhang L, Wei M, Yang G, Yuan L. Ultrasound Responsive Nanovaccine Armed with Engineered Cancer Cell Membrane and RNA to Prevent Foreseeable Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301107. [PMID: 37097746 PMCID: PMC10323640 DOI: 10.1002/advs.202301107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Cancer vaccine has been considered as a promising immunotherapy by inducing specific anti-tumor immune response. Rational vaccination at suitable time to efficiently present tumor associated antigen will boost tumor immunity and is badly needed. Here, a poly (lactic-co-glycolic acid) (PLGA)-based cancer vaccine of nanoscale is designed, in which engineered tumor cell membrane proteins, mRNAs, and sonosensitizer chlorin e6 (Ce6) are encapsulated at high efficiency. The nanosized vaccine can be efficiently delivered into antigen presentation cells (APCs) in lymph nodes after subcutaneous injection. In the APCs, the encapsulated cell membrane and RNA from engineered cells, which have disturbed splicing resembling the metastatic cells, provide neoantigens of metastatic cancer in advance. Moreover, the sonosensitizer Ce6 together with ultrasound irradiation promotes mRNA escape from endosome, and augments antigen presentation. Through 4T1 syngeneic mouse model, it has been proved that the proposed nanovaccine is efficient to elicit antitumor immunity and thus prevent cancer metastasis.
Collapse
Affiliation(s)
- Wenqi Sun
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Panpan Ji
- Department of Digestive SurgeryXijing HospitalFourth Military Medical UniversityShaanxi710032China
| | - Tian Zhou
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Zhelong Li
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Changyang Xing
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Liang Zhang
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| | - Mengying Wei
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Guodong Yang
- The State Laboratory of Cancer BiologyDepartment of Biochemistry and Molecular BiologyFourth Military Medical UniversityShaanxi710032China
| | - Lijun Yuan
- Department of Ultrasound DiagnosticsTangdu HospitalFourth Military Medical UniversityShaanxi710038China
| |
Collapse
|
89
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
90
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
91
|
Abstract
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Collapse
Affiliation(s)
- Emanuelle I. Grody
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
92
|
Schwenck J, Sonanini D, Seyfried D, Ehrlichmann W, Kienzle G, Reischl G, Krezer P, Wilson I, Korn R, Gonzalez-Menendez I, Quintanilla-Martinez L, Seith F, Forschner A, Eigentler T, Zender L, Röcken M, Pichler BJ, Flatz L, Kneilling M, la Fougere C. In vivo imaging of CD8 + T cells in metastatic cancer patients: first clinical experience with simultaneous [ 89Zr]Zr-Df-IAB22M2C PET/MRI. Theranostics 2023; 13:2408-2423. [PMID: 37215571 PMCID: PMC10196830 DOI: 10.7150/thno.79976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/04/2023] [Indexed: 05/24/2023] Open
Abstract
Aim/Introduction: Despite the spectacular success of immune checkpoint inhibitor therapy (ICT) in patients with metastatic cancer, only a limited proportion of patients benefit from ICT. CD8+ cytotoxic T cells are important gatekeepers for the therapeutic response to ICT and are able to recognize MHC class I-dependent tumor antigens and destroy tumor cells. The radiolabeled minibody [89Zr]Zr-Df-IAB22M2C has a high affinity for human CD8+ T cells and was successfully tested in a phase I study. Here, we aimed to gain the first clinical PET/MRI experience with the noninvasive assessment of the CD8+ T-cell distribution in cancer patients by in vivo [89Zr]Zr-Df-IAB22M2C with a distinct focus of identifying potential signatures of successful ICT. Material and Methods: We investigated 8 patients with metastasized cancers undergoing ICT. Radiolabeling of Df-IAB22M2C with Zr-89 was performed according to Good Manufacturing Practice. Multiparametric PET/MRI was acquired 24 h after injection of 74.2±17.9 MBq [89Zr]Zr-Df-IAB22M2C. We analyzed [89Zr]Zr-Df-IAB22M2C uptake within the metastases and within primary and secondary lymphatic organs. Results: [89Zr]Zr-Df-IAB22M2C injection was tolerated well without noticeable side effects. The CD8 PET/MRI data acquisitions 24 hours post-administration of [89Zr]Zr-Df-IAB22M2C revealed good image quality with a relatively low background signal due to only low unspecific tissue uptake and marginal blood pool retention. Only two metastatic lesions showed markedly increased tracer uptake in our cohort of patients. Furthermore, we observed high interpatient variability in [89Zr]Zr-Df-IAB22M2C uptake within the primary and secondary lymphoid organs. Four out of five ICT patients exhibited rather high [89Zr]Zr-Df-IAB22M2C uptake in the bone marrow. Two of these four patients as well as two other patients yielded pronounced [89Zr]Zr-Df-IAB22M2C uptake within nonmetastatic lymph nodes. Interestingly, cancer progression in ICT patients was associated with a relatively low [89Zr]Zr-Df-IAB22M2C uptake in the spleen compared to the liver in 4 out of the 6 patients. Lymph nodes with enhanced [89Zr]Zr-Df-IAB22M2C uptake revealed significantly reduced apparent diffusion coefficient (ADC) values in diffusion weighted MRI. Conclusion: Our first clinical experiences revealed the feasibility of [89Zr]Zr-Df-IAB22M2C PET/MRI in assessing potential immune-related changes in metastases and primary and secondary lymphatic organs. According to our results, we hypothesize that alterations in [89Zr]Zr-Df-IAB22M2C uptake in primary and secondary lymphoid organs might be associated with the response to ICT.
Collapse
Affiliation(s)
- Johannes Schwenck
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), Eberhard Karls University, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Gabriele Kienzle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Pascal Krezer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | | | - Ron Korn
- ImaginAb, Inc., Inglewood, California
| | - Irene Gonzalez-Menendez
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Thomas Eigentler
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Luisenstrasse 2, Berlin, 10177, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Martin Röcken
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| | - Lukas Flatz
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany
| | - Christian la Fougere
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
93
|
Palakurthi B, Fross SR, Guldner IH, Aleksandrovic E, Liu X, Martino AK, Wang Q, Neff RA, Golomb SM, Lewis C, Peng Y, Howe EN, Zhang S. Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer. Nat Commun 2023; 14:2109. [PMID: 37055410 PMCID: PMC10101955 DOI: 10.1038/s41467-023-37727-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.
Collapse
Affiliation(s)
- Bhavana Palakurthi
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Shaneann R Fross
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Emilija Aleksandrovic
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Xiyu Liu
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Anna K Martino
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ryan A Neff
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha M Golomb
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Cheryl Lewis
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yan Peng
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erin N Howe
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Siyuan Zhang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA.
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
94
|
Liu Q, Ran L, Yue Z, Su X, Wang L, Wen S, Lei S, Yang X, Zhang Y, Hu J, Tang J, Li Z, Hu L, Zhu B, Xu L, Ye L, Huang Q. Tumor-specific memory CD8 + T cells are strictly resident in draining lymph nodes during tumorigenesis. Cell Mol Immunol 2023; 20:423-426. [PMID: 36859455 PMCID: PMC10066293 DOI: 10.1038/s41423-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Affiliation(s)
- Qiao Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ling Ran
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhengliang Yue
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xingxing Su
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Shuqiong Wen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Lei
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiaofan Yang
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
95
|
Rapoport BL, Steel HC, Benn CA, Nayler S, Smit T, Heyman L, Theron AJ, Hlatshwayo N, Kwofie LL, Meyer PW, Anderson R. Dysregulation of systemic soluble immune checkpoints in early breast cancer is attenuated following administration of neoadjuvant chemotherapy and is associated with recovery of CD27, CD28, CD40, CD80, ICOS and GITR and substantially increased levels of PD-L1, LAG-3 and TIM-3. Front Oncol 2023; 13:1097309. [PMID: 37064132 PMCID: PMC10098332 DOI: 10.3389/fonc.2023.1097309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) may alter the immune landscape of patients with early breast cancer (BC), potentially setting the scene for more effective implementation of checkpoint-targeted immunotherapy. This issue has been investigated in the current study in which alterations in the plasma concentrations of 16 soluble co-stimulatory and co-inhibitory, immune checkpoints were measured sequentially in a cohort of newly diagnosed, early BC patients (n=72), pre-treatment, post-NAC and post-surgery using a Multiplex® bead array platform. Relative to a group of healthy control subjects (n=45), the median pre-treatment levels of five co-stimulatory (CD27, CD40, GITRL, ICOS, GITR) and three co-inhibitory (TIM-3, CTLA-4, PD-L1) soluble checkpoints were significantly lower in the BC patients vs. controls (p<0.021-p<0.0001; and p<0.008-p<0.00001, respectively). Following NAC, the plasma levels of six soluble co-stimulatory checkpoints (CD28, CD40, ICOS, CD27, CD80, GITR), all involved in activation of CD8+ cytotoxic T cells, were significantly increased (p<0.04-p<0.00001), comparable with control values and remained at these levels post-surgery. Of the soluble co-inhibitory checkpoints, three (LAG-3, PD-L1, TIM-3) increased significantly post-NAC, reaching levels significantly greater than those of the control group. PD-1 remained unchanged, while BTLA and CTLA-4 decreased significantly (p<0.03 and p<0.00001, respectively). Normalization of soluble co-stimulatory immune checkpoints is seemingly indicative of reversal of systemic immune dysregulation following administration of NAC in early BC, while recovery of immune homeostasis may explain the increased levels of several negative checkpoint proteins, albeit with the exceptions of CTLA-4 and PD-1. Although a pathological complete response (pCR) was documented in 61% of patients (mostly triple-negative BC), surprisingly, none of the soluble immune checkpoints correlated with the pCR, either pre-treatment or post-NAC. Nevertheless, in the case of the co-stimulatory ICMs, these novel findings are indicative of the immune-restorative potential of NAC in early BC, while in the case of the co-inhibitory ICMs, elevated levels of soluble PD-L1, LAG-3 and TIM-3 post-NAC underscore the augmentative immunotherapeutic promise of targeting these molecules, either individually or in combination, as a strategy, which may contribute to the improved management of early BC.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Medical Oncology Centre of Rosebank, Johannesburg, South Africa
- Netcare Breast Care Centre, Johannesburg, South Africa
- *Correspondence: Bernardo L. Rapoport,
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carol A. Benn
- Netcare Breast Care Centre, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simon Nayler
- Netcare Breast Care Centre, Johannesburg, South Africa
- Drs Gritzman & Thatcher Inc. Laboratories, University of the Witwatersrand Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Teresa Smit
- Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Liezl Heyman
- Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nomsa Hlatshwayo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Luyanda L.I. Kwofie
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Pieter W.A. Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
96
|
30-color full spectrum flow cytometry panel for deep immunophenotyping of T cell subsets in murine tumor tissue. J Immunol Methods 2023; 516:113459. [PMID: 36931458 DOI: 10.1016/j.jim.2023.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
This 30-color full spectrum flow cytometry panel was developed and optimized for in-depth analysis T cells immunophenotype in tumor microenvironment and peripheral lymphoid organs. The panel presented here first identify the main cell subsets including myeloid cells, B cells, NKT cells, γδ T cells, CD4+ T cells and CD8+ T cells. For CD4+ T cells or CD8+ T cells, the panel includes markers for further characterization by including a selection of activation status(CD44, CD62L, CD69, Ki67, CD127, KLRG1 and CXCR3), costimulatory/co-inhibitory molecules (ICOS, OX-40, PD-1, LAG3, TIM-3, CTLA-4 and TIGIT), pro-inflammatory/anti-inflammatory cytokines (IFN-γ, TNF-α and IL-10) and cytotoxic molecules (Perforin, Granzymes B and CD107a). The panel has been tested on the tumor infiltrating T cells and corresponding spleen T cells in B16-F10 murine melanoma models.
Collapse
|
97
|
Patel RK, Jaszczak RG, Kwok I, Carey ND, Courau T, Bunis D, Samad B, Avanesyan L, Chew NW, Stenske S, Jespersen JM, Publicover J, Edwards A, Naser M, Rao AA, Lupin-Jimenez L, Krummel MF, Cooper S, Baron J, Combes AJ, Fragiadakis GK. Cyclone: an accessible pipeline to analyze, evaluate and optimize multiparametric cytometry data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531782. [PMID: 36945648 PMCID: PMC10028883 DOI: 10.1101/2023.03.08.531782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
In the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.
Collapse
|
98
|
Zhu G, Li Z, Zhang Y, Meng X, Guan M, Hu Z, Yang YG, Liu K, Sun T. Biosafety risk assessment of gold and aluminum nanoparticles in tumor-bearing mice. APL Bioeng 2023; 7:016116. [PMID: 36968454 PMCID: PMC10038691 DOI: 10.1063/5.0144481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
To improve the biosafety of the nanodelivery system, this study developed novel monodisperse spherical aluminum nanoparticles (Al NPs) and evaluated their cytotoxicity in vitro and distribution and biotoxicity in vivo. Compared with gold nanoparticles of the same size, Al NPs not only had low cytotoxicity in vitro but also did not cause accumulation in major organs in vivo after intravenous injections. No significant abnormalities were observed in the serum biochemical indices of mice injected with Al NPs. Additionally, no substantial changes occurred in the histopathology of major organs, and no apparent biological toxicity was measured after consecutive injections of Al NPs. These results indicate that Al NPs have a good biological safety and provide a new method for developing low-toxicity nanomedicine.
Collapse
Affiliation(s)
| | - Zhihan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China
- Authors to whom correspondence should be addressed: and
| | - Tianmeng Sun
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
99
|
Cao X, Geng Q, Fan D, Wang Q, Wang X, Zhang M, Zhao L, Jiao Y, Deng T, Liu H, Zhou J, Jia L, Xiao C. m 6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Mol Cancer 2023; 22:42. [PMID: 36859310 PMCID: PMC9976403 DOI: 10.1186/s12943-022-01704-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most universal internal modification in eukaryotic mRNA. With elaborate functions executed by m6A writers, erasers, and readers, m6A modulation is involved in myriad physiological and pathological processes. Extensive studies have demonstrated m6A modulation in diverse tumours, with effects on tumorigenesis, metastasis, and resistance. Recent evidence has revealed an emerging role of m6A modulation in tumour immunoregulation, and divergent m6A methylation patterns have been revealed in the tumour microenvironment. To depict the regulatory role of m6A methylation in the tumour immune microenvironment (TIME) and its effect on immune evasion, this review focuses on the TIME, which is characterized by hypoxia, metabolic reprogramming, acidity, and immunosuppression, and outlines the m6A-regulated TIME and immune evasion under divergent stimuli. Furthermore, m6A modulation patterns in anti-tumour immune cells are summarized.
Collapse
Affiliation(s)
- Xiaoxue Cao
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- grid.410318.f0000 0004 0632 3409Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- grid.24696.3f0000 0004 0369 153XChina-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Deng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhou
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China. .,Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
100
|
Matos I, Barvalia M, Chehal MK, Robertson AG, Kulic I, Silva JAFD, Ranganathan A, Short A, Huang YH, Long E, Priatel JJ, Dhanji S, Nelson BH, Krebs DL, Harder KW. Tumor-derived GCSF Alters Tumor and Systemic Immune System Cell Subset Composition and Signaling. CANCER RESEARCH COMMUNICATIONS 2023; 3:404-419. [PMID: 36911097 PMCID: PMC9997410 DOI: 10.1158/2767-9764.crc-22-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.
Collapse
Affiliation(s)
- Israel Matos
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Maunish Barvalia
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Manreet K Chehal
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency. Vancouver, British Columbia, Canada
| | - Iva Kulic
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Jessica A F D Silva
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Abhinandan Ranganathan
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Amy Short
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Yu-Hsuan Huang
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Erin Long
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - John J Priatel
- ME Therapeutics Inc. Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Salim Dhanji
- ME Therapeutics Inc. Vancouver, British Columbia, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - Danielle L Krebs
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.,ME Therapeutics Inc. Vancouver, British Columbia, Canada
| |
Collapse
|