51
|
Abstract
Apoptosis plays a major role in development, tissue renewal and the progression of degenerative diseases. Studies on various types of mammalian cells reported a pro-apoptotic function of acetylcholinesterase (AChE), particularly in the formation of the apoptosome and the degradation of nuclear DNA. While three AChE splice variants are present in mammals, invertebrates typically express two ache genes that code for a synaptically located protein and a protein with non-synaptic functions respectively. In order to investigate a potential contribution of AChE to apoptosis in insects, we selected the migratory locust Locusta migratoria. We established primary neuronal cultures of locust brains and characterized apoptosis progression in vitro. Dying neurons displayed typical characteristics of apoptosis, including caspase-activation, nuclear condensation and DNA fragmentation visualized by TUNEL staining. Addition of the AChE inhibitors neostigmine and territrem B reduced apoptotic cell death under normal culture conditions. Moreover, both inhibitors completely suppressed hypoxia-induced neuronal cell death. Exposure of live animals to severe hypoxia moderately increased the expression of ace-1 in locust brains in vivo. Our results indicate a previously unreported role of AChE in insect apoptosis that parallels the pro-apoptotic role in mammalian cells. This similarity adds to the list of apoptotic mechanisms shared by mammals and insects, supporting the hypothesized existence of an ancient, complex apoptosis regulatory network present in common ancestors of vertebrates and insects.
Collapse
|
52
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
53
|
Cruz RCR, Neto FR, Furtado RA, Souza LM, de Sousa FD, Ozelin SD, Bastos JK, Magalhães GM, Tavares DC, de Oliveira PF. Watermelon Reduces the Toxicity of Cisplatin Treatment in C57BL/6 Mice with Induced Melanoma. Nutr Cancer 2021; 74:1097-1105. [PMID: 34085572 DOI: 10.1080/01635581.2021.1918731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An alternative to reduce the undesirable effects of antineoplastic agents has been the combination of classical treatments with nutritional strategies aimed at reducing systemic toxicity without decreasing the antitumor activity of already used drugs. Within this context, this study evaluated the possible reduction of toxicity when cisplatin treatment is combined with watermelon pulp juice supplementation in C57BL/6 mice with melanoma. Watermelon is a fruit rich in vitamins, minerals, proteins, lycopene, carotene, and xanthophylls, which has shown effectiveness in the treatment of cardiovascular diseases, weight loss, urinary infections, gout, hypertension, and mutagenicity. The following parameters were analyzed: animal survival, bone marrow genotoxicity, serum creatinine and urea, histopathological features of the tumor tissue, tumor weight and volume, and weight of non-tumor tissues (kidney, liver, spleen, heart, and lung). The results showed that watermelon had no antitumor effect but reduced the toxicity of cisplatin, as demonstrated by an increase in the number of bone marrow cells and a decrease in serum creatinine and urea levels. The data suggest that watermelon pulp juice can be an alternative for reducing the side effects of antineoplastic agents.
Collapse
Affiliation(s)
| | - Francisco Rinaldi Neto
- Universidade de Franca, Franca, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Pollyanna Francielli de Oliveira
- Universidade de Franca, Franca, São Paulo, Brazil.,Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
54
|
Song YS, Lee SH, Jung JH, Song IH, Park HS, Moon BS, Kim SE, Lee BC. TSPO Expression Modulatory Effect of Acetylcholinesterase Inhibitor in the Ischemic Stroke Rat Model. Cells 2021; 10:cells10061350. [PMID: 34072449 PMCID: PMC8227181 DOI: 10.3390/cells10061350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
We performed in vivo PET imaging with 3-[18F]F-CP118,954 (1) for acetylcholinesterase (AChE) and [18F]fluoromethyl-PBR28-d2 (2) for translocator protein 18-kDa (TSPO) to investigate the inflammatory brain response after stroke. Imaging studies were performed in the middle cerebral artery occlusion (MCAO) Sprague-Dawley rat model for a period of three weeks. The percentage injected dose per tissue weight (%ID/g) of striatum of 1, and cortex of 2 were obtained, respectively. To trace the sequential inflammatory responses, AChE imaging of 1 was done on post-MCAO day 2, after giving cold PK-11195 for 1 day, and TSPO imaging of 2 was carried out on post-MCAO day 11, after giving donepezil for 10 days. AChE activity in the MCAO-lesioned side were significantly higher than that of the contralateral side on day one, and TSPO activity was highest on day 11. TSPO inhibitor, PK-11195 did not affect AChE activity on day two, while AChE inhibitor, donepezil significantly lowered TSPO binding on day 12. Our study demonstrates that AChE level is elevated in the early course of brain ischemia as a trigger for the inflammatory response, and TSPO level is elevated persistently throughout the post-ischemic injury in the brain. Also, the AChE inhibitor may be able to inhibit or delay neurotoxic inflammatory responses and serve as a beneficial treatment option.
Collapse
Affiliation(s)
- Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea;
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea
- Correspondence: (S.E.K.); (B.C.L.); Tel.: +82-31-787-7671 (S.E.K.); +82-31-787-2956 (B.C.L.)
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea
- Correspondence: (S.E.K.); (B.C.L.); Tel.: +82-31-787-7671 (S.E.K.); +82-31-787-2956 (B.C.L.)
| |
Collapse
|
55
|
Vieira HC, Rodrigues ACM, Pires SFS, Oliveira JMM, Rocha RJM, Soares AMVM, Bordalo MD. Ocean Warming May Enhance Biochemical Alterations Induced by an Invasive Seaweed Exudate in the Mussel Mytilus galloprovincialis. TOXICS 2021; 9:121. [PMID: 34071183 PMCID: PMC8229087 DOI: 10.3390/toxics9060121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Ocean warming and biological invasions are among the most pervasive factors threatening coastal ecosystems with a potential to interact. Ongoing temperature rise may affect physiological and cellular mechanisms in marine organisms. Moreover, non-indigenous species spread has been a major challenge to biodiversity and ecosystem functions and services. The invasive red seaweed Asparagopsis armata has become successfully established in Europe. Its exudate has been considered deleterious to surrounding native species, but no information exists on its effect under forecasted temperature increase. This study evaluated the combined effects of temperature rise and A. armata exudate exposure on the native mussel Mytilus galloprovincialis. Oxidative stress, neurophysiological and metabolism related biomarkers were evaluated after a 96 h-exposure to exudate (0% and 2%) under present (20 °C) and warming (24 °C) temperature scenarios. Short-term exposure to A. armata exudate affected the oxidative stress status and neurophysiology of the mussels, with a tendency to an increasing toxic action under warming. Significant oxidative damage at protein level was observed in the digestive gland and muscle of individuals exposed simultaneously to the exudate and temperature rise. Thus, under a climate change scenario, it may be expected that prolonged exposure to the combined action of both stressors may compromise M. galloprovincialis fitness and survival.
Collapse
Affiliation(s)
- Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (J.M.M.O.); (R.J.M.R.); (A.M.V.M.S.); (M.D.B.)
| | | | | | | | | | | | | |
Collapse
|
56
|
Meng W, Pei Z, Wang Y, Sun M, Xu Q, Cen J, Guo K, Xiao K, Li Z. Two birds with one stone: The detection of nerve agents and AChE activity with an ICT-ESIPT-based fluorescence sensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124811. [PMID: 33450470 DOI: 10.1016/j.jhazmat.2020.124811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Nerve agents are among the world's deadliest poisons, and the target enzyme is acetylcholinesterase (AChE). To better diagnosis nerve agent poisonings, a reliable diagnostic method for both nerve agents and AChE is desirable. Herein, we synthesized a series of fluorescent sensors for both real nerve agents and acetylcholinesterase activity detection. Among these sensors, HBQ-AE exhibited a fast response rate (within 10 s for nerve agent and 8 min for AChE), good sensitivity (the limit of detection is 6 nM and 0.2 U/mL) and a high off/on contrast. To the best of our knowledge, HBQ-AE is the first fluorescence sensor for nerve agents and AChE activity detection. The fluorescent change of HBQ-AE from nonfluorescence to blue fluorescence (nerve agent) or orange fluorescence (AChE) by excitation at 365 nm can be easily observed with the naked eye. HBQ-AE was successfully applied to image nerve agents and AChE activity in living cells. Moreover, HBQ-AE is the vital member to construct a test paper that can be employed to detect and diagnose chemical warfare agents.
Collapse
Affiliation(s)
- Wenqi Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Zhipeng Pei
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yurun Wang
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Mingxue Sun
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qingqiang Xu
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jinfeng Cen
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Xiao
- Lab of Toxicology & Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
57
|
Piner Benli P, Çelik M. In Vivo Effects of Neonicotinoid-Sulfoximine Insecticide Sulfoxaflor on Acetylcholinesterase Activity in the Tissues of Zebrafish ( Danio rerio). TOXICS 2021; 9:toxics9040073. [PMID: 33916113 PMCID: PMC8066955 DOI: 10.3390/toxics9040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/04/2023]
Abstract
Sulfoxaflor is the first member of the neonicotinoid-sulfoximine insecticides that acts as an agonist of nicotinic acetylcholine receptors (nAChRs). This study investigated the acute effects of sulfoxaflor on acetylcholinesterase (AChE; EC 3.1.1.7) enzyme activity in the brain and muscle tissues of zebrafish (Danio rerio) as a model organism. The zebrafish were exposed to 0.87 mg/L (2.5% of 96 h 50% lethal concentration (LC50), 1.75 mg/L (5% of 96 h LC50) and 3.51 mg/L (10% of 96 h LC50) of sulfoxaflor for 24 h-48 h and 96 h periods. AChE enzyme activities were analysed by a spectrophotometric method in the brain and muscle tissues. The results of this study showed that in vivo acute sulfoxaflor exposure significantly increased AChE enzyme activity in the brain and muscle tissues of zebrafish. The induction percentages of AChE were between 10 and 83%, and 19 and 79% for brain and muscle tissues, respectively. As a result, it was found that sulfoxaflor had an effect on AChE enzyme activity in the two main tissues containing this enzyme, and it can be considered as a potential neuroactive compound for zebrafish.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana 01330, Turkey
- Correspondence: or ; Tel./Fax: +90-322-6133507
| | - Mehmet Çelik
- Department of Veterinary Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana 01330, Turkey;
| |
Collapse
|
58
|
Salgado LD, Marques AEML, Kramer RD, Garrido de Oliveira F, Moretto SL, Alves de Lima B, Prodocimo MM, Cestari MM, Azevedo JCRD, Silva de Assis HC. Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii - Gobiidae) from a marine protected area in South Atlantic. ENVIRONMENTAL RESEARCH 2021; 195:110308. [PMID: 33068573 DOI: 10.1016/j.envres.2020.110308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The Estuarine-Lagoon Complex of Iguape-Cananéia (ELCIC), a Marine Protected Area (MPA) in Brazil, was the focus of this study that aimed to relate external levels of exposure to contaminants to toxic effects on Gobioides broussonnetii fish. Different anthropogenic contaminants such as metals, polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals and personal care products (PPCPs) were analyzed in the sediments; and biochemical, histopathological and genotoxicity biomarkers evaluated in fish; in two different seasons at three sites of the estuarine region. Higher contamination of the sediments was observed near the main urban center (Iguape city - IG). Metal concentrations were considered low to moderate, while PAHs concentrations were considered low. The concentrations of PPCPs increased due to the anthropogenic presence and were higher near IG and the Cananéia Island (CI). Contributions from historical mining, agriculture, nautical activities, oil, sewage and waste disposal, biomass and fossil fuels combustion were identified. Higher concentrations of metals and PPCPs were observed during the cold-dry season, suggesting influences of the lower hydrodynamics during the season of lower precipitation. Higher PAHs concentrations occurred in the hot-rainy season, indicating influences of greater human presence in summer. In fish, biological responses followed the same spatial and seasonal pattern. More pronounced changes in antioxidant, biotransformation, histopathological and genotoxic biomarkers were observed in IG and CI. The multivariate analysis and the integrated biomarkers response index (IBR) also evidenced worse environmental conditions in these sites. This result can indicate a negative influence of anthropogenic activities on the contamination of sediments and on the biological responses of fish. This study presented the first ecotoxicological data for the species and suggested that these chronic exposures can cause adverse effects on this fish population. The data contribute to the understanding of local environmental quality and can be applied in the future to the environmental and social management of marine protected areas.
Collapse
Affiliation(s)
- Lilian Dalago Salgado
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil; Cananéia Research Institute, 11990-000, Cananéia, São Paulo, Brazil.
| | | | - Rafael Duarte Kramer
- Department of Chemistry and Biology, Federal Technological University of Paraná, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Garrido de Oliveira
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Sarah Lott Moretto
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Barbara Alves de Lima
- Department of Chemistry and Biology, Federal Technological University of Paraná, 81280-340, Curitiba, Paraná, Brazil.
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, P.O. Box 19031, 81530-980, Curitiba, Paraná, Brazil.
| | | | | |
Collapse
|
59
|
Santana MS, Sandrini-Neto L, Di Domenico M, Prodocimo MM. Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143829. [PMID: 33248758 DOI: 10.1016/j.scitotenv.2020.143829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Fish cholinesterases (ChEs) - like acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) - are common biomarkers of environmental contamination due to their sensitivity to a variety of toxicants. To understand pesticide effects on fish ChEs mean activity and variability, we conducted a systematic review and meta-analyses. Our goal was to verify (i) if brain and muscle ChEs responded differently to pesticide exposure; (ii) how fish size and life stage (i.e., juvenile and adult) influence ChEs variability and mean activity; (iii) what type of pesticides (i.e., herbicide, insecticide, and fungicide) has the strongest effect, and if the analytical-grade compounds differ from commercial formulations; (iv) if increasing concentrations combined with prolonged exposure leads to stronger ChEs inhibition; and (v) how each class of pesticide affects these enzymes. We validated ChEs reliability as biomarkers and identified factors influencing their response. Regardless of tissue, BChE response was more variable than AChE, and no difference between their average activity was detected. The size of juvenile fish is an important factor affecting ChEs mean activity and variability, whereas pesticide had no significant effect on adult fish ChEs. Insecticides were stronger inhibitors compared to herbicides and fungicides. Analytical-grade compounds decreased ChEs mean activity to a higher degree than commercial formulations. The combined effect of concentration and time was only significant for fungicides and insecticides. Among classes, organophosphorus insecticides had the strongest effect on ChEs, followed by carbamates, organochlorines, and pyrethroids. Organophosphorus herbicides and oxazolidinones were the only herbicides to decrease ChEs mean activity significantly, and their effects were similar from those of pyrethroids and organochlorines. Additionally, our results identified research gaps, such as the small number of studies on fungicides, neonicotinoids and other relevant pesticides. These findings suggest future directions, which might help researchers identify robust cause-effect relationships between fish ChEs and pesticides.
Collapse
Affiliation(s)
- Manuela S Santana
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil; Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil.
| | - Leonardo Sandrini-Neto
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil
| | - Maikon Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976 Pontal do Paraná, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
60
|
The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci 2021; 22:ijms22041653. [PMID: 33562110 PMCID: PMC7915290 DOI: 10.3390/ijms22041653] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apoptosis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition, and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a therapeutic target of cancer treatment.
Collapse
|
61
|
Multi-Biomarker Responses of Asian Clam Corbicula fluminea (Bivalvia, Corbiculidea) to Cadmium and Microplastics Pollutants. WATER 2021. [DOI: 10.3390/w13040394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most widespread aquatic organisms in the rivers and estuarine ecosystems, in the world, is Asian clam Corbiculafluminea. This clam, that can adapt to environmental changes, is an invasive species in several areas and it was adopted as a model for toxicity tests. This study evaluated the effects of the exposure to cadmium (Cd), to microplastics (MPs) and their mixtures on C. fluminea. The oxidative stress responses, lipid peroxidation (LPO), changes in the activity of energy-related enzymes and neurotoxicity were assessed on the gill, digestive gland and gonad. The results show that Cd, MPs and their mixtures cause oxidative stress, damage and neurotoxicity. The enzymes superoxide dismutase (SOD), glutathione S-transferase (GST), acetylcholinesterase (AChE) and the LPO levels could be chosen as biomarkers of Cd pollution. Exposure to MPs induced an increase in reduced/oxidized glutathione (GSH/GSSG) ratio and increased AChE activity. The combined exposure to Cd and MPs caused a synergetic effect in gill and gonad, while an antagonism response was recorded in the digestive gland. The results provide new insights for unveiling the biologic effects of heavy metal, microplastics and their mixtures on C. fluminea. Besides, we demonstrated that the Asian clam is a good bioindicator of microplastic pollution that can occur in aquatic environments.
Collapse
|
62
|
Cruz-Santiago O, Pérez-Maldonado IN, González-Mille DJ, Espinosa-Reyes G, Martínez-Toledo Á, Ilizaliturri-Hernández CA. Nondestructive biomarkers in giant toad (Rhinella marina) to assess the effect of complex mixture of pollutants in Coatzacoalcos River, Mexico. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103558. [PMID: 33307127 DOI: 10.1016/j.etap.2020.103558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the usefulness of nondestructive biomarkers approach in giant toads (Rhinella marina). We obtained blood samples and the residual condition index of toads from rural and industrial zones from Coatzacoalcos River, Mexico (COA). In the blood samples, we determined the activity of enzymes, lipid peroxidation, and the presence of cell death (apoptosis). We found that the activity of the enzyme delta-aminolevulinic dehydratase was lower. Still, the glutathione s-transferase activity and the percentage of apoptosis in erythrocytes were higher in the toads of COA than laboratory toads. Meanwhile, some biomarkers in toads showed differences when compared between Industrial and Rural zones. These results and correlations between biomarkers showed how the response changed in the toads living near the industrial zones. We demonstrate that a nondestructive biomarkers approach can be useful in environmental studies with anuran amphibians.
Collapse
Affiliation(s)
- Omar Cruz-Santiago
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210, San Luis Potosí, Mexico
| | - Iván Nelinho Pérez-Maldonado
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, Mexico
| | - Donaji Josefina González-Mille
- Cátedras Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, Mexico
| | - Guillermo Espinosa-Reyes
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, Mexico
| | - Ángeles Martínez-Toledo
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, Mexico
| | - César Arturo Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT - Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2ª. Sección, 78210, San Luis Potosí, Mexico.
| |
Collapse
|
63
|
Shen H, Zheng Y, Chen R, Huang X, Shi G. Neuroprotective effects of quercetin 3-O-sophoroside from Hibiscus rosa-sinensis Linn. on scopolamine-induced amnesia in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
64
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
65
|
Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev 2020; 64:101206. [PMID: 33144124 DOI: 10.1016/j.arr.2020.101206] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the main cause of dementia. Common hallmarks of AD include the amyloid β-peptide (Aβ) aggregation, high levels of hyperphosphorylated tau protein (p-tau) and failure in redox homeostasis. To date, all proposed drugs affecting Aβ and/or p-tau have been failed in clinical trials. A decline in the expression of the transcription factor Nrf2 (nuclear factor-erythroid 2-p45 derived factor 2) and its driven genes (NQO1, HO-1, and GCLC), and alteration of the Nrf2-related pathways have been observed in AD brains. Nrf2 plays a critical role in maintaining cellular redox homeostasis and regulating inflammation response. Nrf2 activation also provides cytoprotection against increasing pathologies including neurodegenerative diseases. These lines of evidence imply that Nrf2 activation may be a novel AD treatment option. Interestingly, recent studies have also demonstrated that Nrf2 interferes with several key pathogenic processes in AD including Aβ and p-tau pathways. The current review aims to provide insights into the role of Nrf2 in AD. Also, we discuss the progress and challenges regarding the Nrf2 activators for AD treatment.
Collapse
Affiliation(s)
- Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Juan Yao
- School of pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
66
|
Aranha MLG, Garcia MS, de Carvalho Cavalcante DN, Silva APG, Fontes MK, Gusso-Choueri PK, Choueri RB, Perobelli JE. Biochemical and histopathological responses in peripubertal male rats exposed to agrochemicals isolated or in combination: A multivariate data analysis study. Toxicology 2020; 447:152636. [PMID: 33217513 DOI: 10.1016/j.tox.2020.152636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The widespread use of agrochemicals results in the exposure of the general human population, including children, to several of these chemicals simultaneously. In the present preclinical study, it was investigated the hepatic damages caused by exposure to acephate, carbendazim and mancozeb when administered alone or in different combinations (binary and ternary). Juvenile male Wistar rats were exposed to agrochemicals from post-natal day 53, by gavage. The doses of agrochemicals applied here were determined from previous studies whose results showed no signs of systemic toxicity. All exposures provoked a significant increase in DNA damage (except for acephate alone) and activation of the xenobiotic biotransformation system (except for the ternary mixture). Interestingly, the ternary mixture did not exhibit an exacerbation in adverse effects caused by agrochemicals isolated or in binary combination, even though they are sharing genotoxicity damage induction as a common toxicity pathway. Conversely, some effects observed for isolated or binary combinations of agrochemicals were not observed for ternary combination, suggesting a chemical interaction that could imply antagonism character. Using a multivariate data analysis approach, exposure to isolated agrochemicals were related to a group of adverse effects characterized by hepatic lesion and the attempt of the tissue to mobilize defense cells and increase mitotic rates to minimize damages. Binary mixtures also share similarities in relation to the effects they exhibited, mainly a moderate to high increase in the GST activity and in histopathological alterations suggesting that binary combinations trigger an increased response of the mechanism of xenobiotics biotransformation. Together, obtained results bring important insights regarding adverse effects and possible interaction of the three agrochemicals whose residues are commonly detected in agro-food products.
Collapse
Affiliation(s)
- Maria Luiza Garcia Aranha
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mariana Simões Garcia
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | | | - Ana Priscila Gomes Silva
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mayana Karoline Fontes
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| |
Collapse
|
67
|
Nogueira AF, Nunes B. Effects of low levels of the antibiotic ciprofloxacin on the polychaete Hediste diversicolor: biochemical and behavioural effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103505. [PMID: 33002593 DOI: 10.1016/j.etap.2020.103505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The release of pharmaceutical chemicals in the biosphere can have unpredictable ecological consequences, and knowledge concerning their putative toxic effects is still scarce. One example of a widely used pharmaceutical that is present in the aquatic environment is ciprofloxacin. Previous indications suggest that this drug may exert several adverse effects on exposed biota, but the characterization of a full ecotoxicological response to this drug is far from complete, especially in estuarine ecosystems. This work aimed to characterize the acute and chronic effects of ciprofloxacin in the polychaete Hediste diversicolor (Annelida: Polychaeta), exposed to environmentally relevant levels of this drug, close to the real concentrations of this pharmaceutical in surface waters. The adopted toxic endpoints were behavioral parameters, combined with a biomarker-based approach (quantification of the activities of catalase (CAT), glutathione-S-transferase (GSTs), cholinesterases (ChEs), glutathione peroxidase (GPx), and lipid peroxidation levels. Exposure to ciprofloxacin caused effects on behavioural traits, such as an increase in burrowing times and hyperactivity, alongside alterations in biomarkers, including a significant increase in CAT activity following acute exposure. In addition, and after both acute and chronic exposure, lipid peroxidation was reduced, while AChE activities were enhanced. It was possible to ascertain the occurrence of pro-oxidative alterations following exposure to low levels of ciprofloxacin, which were counteracted by the triggering of CAT activity. The meaning of the enhancement of AChE activity is not clear, but it appears to be linked with the observed behavioural changes, and may have been associated with the stimulation of the behavioural traits. These data strongly suggest that the presence of ciprofloxacin in estuarine areas is not without risks, and exposed biota, namely polychaete species, are likely to have their ecological roles affected, thereby compromising the chemical, physical and microbiological stability of sediments, which in turn alters nutrient cycles.
Collapse
Affiliation(s)
- Ana Filipa Nogueira
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
68
|
Everitt S, MacPherson S, Brinkmann M, Wiseman S, Pyle G. Effects of weathered sediment-bound dilbit on freshwater amphipods (Hyalella azteca). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105630. [PMID: 32971354 DOI: 10.1016/j.aquatox.2020.105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Bitumen mined in the oil sands region of Northern Alberta, Canada, is diluted with natural gas condensates to form dilbit, which is transported through pipelines. Sections of these pipelines come close to freshwater ecosystems. If dilbit is spilled into or near an aquatic environment, environmental weathering processes, such as evaporation and sediment interaction, influence the fate and toxicity of dilbit to aquatic organisms. To date, most studies of the effects of dilbit on the health of aquatic organisms have not considered weathering processes. Thus, the goal of this study was to assess the toxicity of weathered sediment-bound dilbit (WSD) to an aquatic organism. Adult freshwater amphipods (Hyalella azteca) were exposed directly to WSD or the water-soluble fraction (WSF) of WSD. Direct exposure to WSD resulted in oil-mineral aggregates adhering to the appendages and gas exchange structures of amphipods, causing acute lethality. After a 10-min exposure to WSD, amphipods consumed half as much oxygen and their appendage movement was impaired. Exposure to the WSF, which contained a total PAH concentration of 1.08 μg/L, did not result in acute lethality, or significantly affect respiration, activity or acetylcholinesterase activity. Results of the present study indicate that physical interaction with oil-mineral aggregates after a spill of dilbit is a threat to benthic invertebrates, whereas the WSF does not cause acute adverse effects. As the transport of dilbit through pipelines increases in North America, studies must incorporate environmental weathering processes when determining the effects of dilbit on aquatic organisms.
Collapse
Affiliation(s)
- Sean Everitt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
69
|
Cortés‐Gómez M, Llorens‐Álvarez E, Alom J, del Ser T, Avila J, Sáez‐Valero J, García‐Ayllón M. Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. J Neurochem 2020; 157:2091-2105. [PMID: 32955735 PMCID: PMC8359467 DOI: 10.1111/jnc.15189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
In Alzheimer's disease (AD), the enzyme acetylcholinesterase (AChE) co‐localizes with hyperphosphorylated tau (P‐tau) within neurofibrillary tangles. Having demonstrated that AChE expression is increased in the transgenic mouse model of tau Tg‐VLW, here we examined whether modulating phosphorylated tau levels by over‐expressing wild‐type human tau and glycogen synthase kinase‐3β (GSK3β) influences AChE expression. In SH‐SY5Y neuroblastoma cells expressing higher levels of P‐tau, AChE activity and protein increased by (20% ± 2%) and (440% ± 150%), respectively. Western blots and qPCR assays showed that this increment mostly corresponded to the cholinergic ACHE‐T variant, for which the protein and transcript levels increased ~60% and ~23%, respectively. Moreover, in SH‐SY5Y cells differentiated into neurons by exposure to retinoic acid (10 µM), over‐expression of GSK3β and tau provokes an imbalance in cholinergic activity with a decrease in the neurotransmitter acetylcholine in the cell (45 ± 10%). Finally, we obtained cerebrospinal fluid (CSF) from AD patients enrolled on a clinical trial of tideglusib, an irreversible GSK3β inhibitor. In CSF of patients that received a placebo, there was an increase in AChE activity (35 ± 16%) respect to basal levels, probably because of their treatment with AChE inhibitors. However, this increase was not observed in tideglusib‐treated patients. Moreover, CSF levels of P‐tau at the beginning measured by commercially ELISA kits correlated with AChE activity. In conclusion, this study shows that P‐tau can modulate AChE expression and it suggests that AChE may possibly increase in the initial phases of AD.
Collapse
Affiliation(s)
- María‐Ángeles Cortés‐Gómez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Esther Llorens‐Álvarez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Jordi Alom
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Servicio de NeurologíaHospital General Universitario de ElcheFISABIOElcheSpain
| | - Teodoro del Ser
- Alzheimer’s Disease Investigation Research UnitCIEN FoundationQueen Sofia Foundation Alzheimer Research CenterMadridSpain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of Molecular NeuropathologyCentro de Biología Molecular 'Severo Ochoa'CBMSOCSIC‐UAMMadridSpain
| | - Javier Sáez‐Valero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - María‐Salud García‐Ayllón
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| |
Collapse
|
70
|
Wu X, An JM, Shang J, Huh E, Qi S, Lee E, Li H, Kim G, Ma H, Oh MS, Kim D, Yoon J. A molecular approach to rationally constructing specific fluorogenic substrates for the detection of acetylcholinesterase activity in live cells, mice brains and tissues. Chem Sci 2020; 11:11285-11292. [PMID: 34094370 PMCID: PMC8162927 DOI: 10.1039/d0sc04213g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Acetylcholinesterase (AChE) is an extremely critical hydrolase tightly associated with neurological diseases. Currently, developing specific substrates for imaging AChE activity still remains a great challenge due to the interference from butyrylcholinesterase (BChE) and carboxylesterase (CE). Herein, we propose an approach to designing specific substrates for AChE detection by combining dimethylcarbamate choline with a self-immolative scaffold. The representative P10 can effectively eliminate the interference from CE and BChE. The high specificity of P10 has been proved via imaging AChE activity in cells. Moreover, P10 can also be used to successfully map AChE activity in different regions of a normal mouse brain, which may provide important data for AChE evaluation in clinical studies. Such a rational and effective approach can also provide a solid basis for designing probes with different properties to study AChE in biosystems and another way to design specific substrates for other enzymes.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Eugene Huh
- Department of Medical Science of Meridian, College of Korean Medicine, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Sujie Qi
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Eunhye Lee
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Haidong Li
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University Seoul 02447 Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
71
|
Silva MSS, Pires A, Almeida M, Oliveira M. The use of Hediste diversicolor in the study of emerging contaminants. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105013. [PMID: 32662441 DOI: 10.1016/j.marenvres.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The contamination of aquatic environments has been the focus of research to understand effects on ecosystems and its species. Benthic organisms are considered potential targets since sediments act as sources and sinks for environmental contaminants. This review presents information on the effects of three types of emerging contaminants: pharmaceuticals (tested concentrations between 0.1 ng/L - 250 mg/L and 0.01 ng/g - 2.5 μg/g), metal-based nanoparticles (<100 nm) (tested concentrations between 10 μg/L - 1 mg/L and 5 - 140 μg/g) and micro(nano)plastics (tested concentrations between 5 μg/L - 50 mg/L and 10 - 50 mg/kg), on the polychaete Hediste diversicolor, a key species in estuarine/coastal ecosystems. Data shows that these contaminants promote alterations in burrowing activity (lowest concentration inducing effects: 10 ng/L), neurotransmission and damage related parameters (lowest concentration inducing effects: 100 ng/L). The characteristics of this polychaete, such as regenerative capacity, make the use of this species in biomedical studies involving environmental contaminants valuable.
Collapse
Affiliation(s)
- M S S Silva
- Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
72
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Solé M, Freitas R. Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138143. [PMID: 32408439 DOI: 10.1016/j.scitotenv.2020.138143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification and warming are among the man-induced factors that most likely impact aquatic wildlife worldwide. Besides effects caused by temperature rise and lowered pH conditions, chemicals of current use can also adversely affect aquatic organisms. Both climate change and emerging pollutants, including toxic impacts in marine invertebrates, have been investigated in recent years. However, less information is available on the combined effects of these physical and chemical stressors that, in nature, occur simultaneously. Thus, this study contrasts the effects caused by the antimicrobial agent and plastic additive, Triclosan (TCS) in the related clams Ruditapes philippinarum (invasive) and Ruditapes decussatus (native) and evaluates if the impacts are influenced by combined temperature and pH modifications. Organisms were acclimated for 30 days at two conditions (control: 17 °C; pH 8.1 and climate change scenario: 21 °C, pH 7.7) in the absence of the drug (experimental period I) followed by a 7 days exposure under the same water physical parameters but either in absence (unexposed) or presence of TCS at 1 μg/L (experimental period II). Biochemical responses covering metabolic, oxidative defences and damage-related biomarkers were contrasted in clams at the end of experimental period II. The overall picture showed a well-marked antioxidant activation and higher TCS bioaccumulation of the drug under the forecasted climate scenario despite a reduction on respiration rate and unaltered metabolism in the exposed clams. Since clams are highly consumed shellfish, the consequences for higher tissue bioaccumulation of anthropogenic chemicals to final consumers should be alerted not only at present conditions but more significantly under predicted climatic conditions for humans but also for other components of the marine trophic chain.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
73
|
Pandey SN, Kwatra M, Dwivedi DK, Choubey P, Lahkar M, Jangra A. 7,8-Dihydroxyflavone alleviated the high-fat diet and alcohol-induced memory impairment: behavioral, biochemical and molecular evidence. Psychopharmacology (Berl) 2020; 237:1827-1840. [PMID: 32206827 DOI: 10.1007/s00213-020-05502-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Alcoholism and obesity impart a deleterious impact on human health and affects the quality of life. Chronic consumption of alcohol and western diet has been reported to cause memory deficits. 7,8-dihydroxyflavone (7,8-DHF), a TrkB agonist, comprises antioxidant and anti-inflammatory properties in treating various neurological disorders. OBJECTIVES The current study was aimed to determine the protective effect and molecular mechanism of 7,8-DHF against alcohol and high-fat diet (HFD)-induced memory deficits in rats. METHODS The adult male Wistar rats were given alcohol (3-15%) and HFD ad libitum for 12 weeks in different experimental groups. 7,8-DHF (5 mg/kg) was intraperitoneally injected daily for the last 4 weeks (9th-12th week). RESULTS The alcohol and HFD administration caused cognitive impairment as evaluated through the Morris water maze (MWM) test in alcohol, HFD, and alcohol + HFD-fed animals. The last 4-week treatment of 7,8-DHF (5 mg/kg; i.p.) attenuated alcohol and HFD-induced memory loss. 7,8-DHF treatment also restored the glutathione (GSH) level along with attenuation of nitrite, malondialdehyde content (markers of oxidative and nitrosative stress), and reduction of the acetylcholinesterase activity in the hippocampus of alcohol and HFD-fed animals. Furthermore, the administration of 7,8-DHF caused downregulation of NF-κB, iNOS, and caspase-3 and upregulation of Nrf2, HO-1, and BDNF mRNA level in rat hippocampus. CONCLUSION 7,8-DHF administration conferred beneficial effects against alcohol and HFD-induced memory deficit via its unique antioxidant, anti-inflammatory, anti-apoptotic potential, along with the activation of TrkB/BDNF signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India. .,Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
74
|
Sun Y, Liu J, Lu G. Influence of aquatic colloids on the bioaccumulation and biological effects of diclofenac in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110470. [PMID: 32199218 DOI: 10.1016/j.ecoenv.2020.110470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Natural aquatic colloids play an important role in the migration, transformation of pollutants in the environment, but their potential effects are often ignored in ecotoxicology research. In this study, diclofenac (DCF) was selected as a typical drug to study the effects of natural colloids on the bioaccumulation and biotoxicity in juvenile zebrafish (Danio rerio) exposed to an environmentally relevant concentration (1 μg/L) and a high concentration (100 μg/L) of DCF. The results showed that the presence of colloids accelerated and enhanced the accumulation of DCF in zebrafish muscle and viscera, and the effects are greater at the environmentally relevant concentration of DCF. However, the colloids enhanced the burden in the head in the environmentally relevant concentration group, but reduced it in the high concentration group. This observation may be related to the occurrence of variations in the contribution of the adsorption forms of DCF and the colloids depending on different DCF concentrations. At the same time, the presence of colloids can significantly induce AChE activity of DCF in the brain and alter swimming activity and shoaling behaviour of the individuals, however no significant effects on the attack and shock behaviour were observed. These findings indicate that the combination of natural colloids and pollutants may change with pollutant concentrations, thereby altering the bioaccumulation and biological effects in aquatic organisms.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
75
|
Zhang C, Hu L, Liu D, Huang J, Lin W. Circumdatin D Exerts Neuroprotective Effects by Attenuating LPS-Induced Pro-Inflammatory Responses and Downregulating Acetylcholinesterase Activity In Vitro and In Vivo. Front Pharmacol 2020; 11:760. [PMID: 32523534 PMCID: PMC7261837 DOI: 10.3389/fphar.2020.00760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with multifactorial causes, of which systemic inflammation may play a key role to promote neurodegeneration, and acetylcholinesterase (AChE) is a target protein to induce cholinergic transmission. Inhibitors toward inflammation and targeting AChE are regarded to promote cholinergic signaling of the central nervous system in AD therapy. During the search for neuroprotection agents from marine-derived compounds, seven circumdatin-type alkaloids from a coral-associated fungus Aspergillus ochraceus LZDX-32-15 showed potent inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and activation of NF-κB report gene along with anti-AChE activities. Among the tested compounds, circumdatin D showed the most potent inhibitory effect against AChE activity and NO production. In vivo experiments using AD-like nematode models demonstrated that circumdatin D effectively delayed paralysis of CL4176 worms upon temperature up-shift via suppression of AChE activity and inflammatory-related gene expression. Moreover, circumdatin D interfered with inflammatory response by inhibiting the secretion of pro-inflammatory cytokines in LPS-induced BV-2 and primary microglia cells. Mechanistically, circumdatin D modulated Toll-like receptor 4 (TLR4)-mediated NF-κB, MAPKs and JAK/STAT inflammatory pathways in LPS-stimulated BV-2 cells, and protected primary neurons cells from LPS-induced neurotoxicity. Thus, circumdatin D is a potential agent for neuroprotective effects by the multi-target strategy.
Collapse
Affiliation(s)
- Chanjuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Likun Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
76
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
77
|
IGFBP-3 Blocks Hyaluronan-CD44 Signaling, Leading to Increased Acetylcholinesterase Levels in A549 Cell Media and Apoptosis in a p53-Dependent Manner. Sci Rep 2020; 10:5083. [PMID: 32193421 PMCID: PMC7081274 DOI: 10.1038/s41598-020-61743-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) belongs to a family of six IGF binding proteins. We previously found that IGFBP-3 exerts its cytotoxic effects on A549 (p53 wild-type) cell survival through a mechanism that depends on hyaluronan-CD44 interactions. To shed light on the mechanism employed, we used CD44-negative normal human lung cells (HFL1), A549, and H1299 (p53-null) lung cancer cells. A synthetic IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant (K228AR230A), was able to bind hyaluronan more efficiently than the analogous sequences from the other IGFBPs. In a manner comparable to that of the IGFBP-3 protein, the peptide blocked hyaluronan-CD44 signaling, and more effectively inhibited viability of A549 cells than viability of either H1299 or HFL1 cell lines. Treatment with the IGFBP-3 protein or its peptide resulted in increased acetylcholinesterase concentration and activity in the A549 cell media but not in the media of either HFL1 or H1299, an effect that correlated with increased apoptosis and decreased cell viability. These effects were diminished upon the same treatment of A549 cells transfected with either p53 siRNA or acetylcholinesterase siRNA. Taken together, our results show that IGFBP-3 or its peptide blocks hyaluronan-CD44 signaling via a mechanism that depends on both p53 and acetylcholinesterase.
Collapse
|
78
|
Mercury in Juvenile Solea senegalensis: Linking Bioaccumulation, Seafood Safety, and Neuro-Oxidative Responses under Climate Change-Related Stressors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mercury (Hg) is globally recognized as a persistent chemical contaminant that accumulates in marine biota, thus constituting an ecological hazard, as well as a health risk to seafood consumers. Climate change-related stressors may influence the bioaccumulation, detoxification, and toxicity of chemical contaminants, such as Hg. Yet, the potential interactions between environmental stressors and contaminants, as well as their impacts on marine organisms and seafood safety, are still unclear. Hence, the aim of this work was to assess the bioaccumulation of Hg and neuro-oxidative responses on the commercial flat fish species Solea senegalensis (muscle, liver, and brain) co-exposed to dietary Hg in its most toxic form (i.e., MeHg), seawater warming (ΔT°C = +4 °C), and acidification (pCO2 = +1000 µatm, equivalent to ΔpH = −0.4 units). In general, fish liver exhibited the highest Hg concentration, followed by brain and muscle. Warming enhanced Hg bioaccumulation, whereas acidification decreased this element’s levels. Neuro-oxidative responses to stressors were affected by both climate change-related stressors and Hg dietary exposure. Hazard quotient (HQ) estimations evidenced that human exposure to Hg through the consumption of fish species may be aggravated in tomorrow’s ocean, thus raising concerns from the seafood safety perspective.
Collapse
|
79
|
Kumar N, Chandan NK, Wakchaure GC, Singh NP. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108678. [PMID: 31783177 DOI: 10.1016/j.cbpc.2019.108678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
In the present study, an experiment was carried out to delineate the lethal concentration of (LC50) zinc nanoparticles (Zn-NPs) alone and with concurrent to high temperature (34 °C) in Pangasianodon hypophthalmus. The lethal concentration of Zn-NPs alone and with high temperature was estimated as 21.89 and 19.74 mg/L respectivey in P. hypophthalmus. The lethal concentration was decided with the help of definite concentration via 16, 18, 20, 22, 24, 26, 28 and 30 mg/L. The Zn-NPs were significantly alter the biochemical and histopathology of different fish tissues. The stress biomarkers such as oxidative stress (catalase superoxide dismutase and glutathione-s-transferase, lipid peroxidation) was studied in the liver, gill and kidney tissue, which was noticeable (p < 0.01) enhanced with higher concentration in both condition (Zn-NPs alone and Zn-NPs-T) in dose dependent manners. The carbohydrate (lactate dehydrogenase and malate dehydrogenase) and protein metabolic enzymes (alanine amino transferase and aspartate amino transferase) were also remarkable enhanced (p < 0.01) with higher concentration of Zn-NPs and Zn-NPs-T. The neurotransmitter (acetylcholine esterase) activities were significant inhibited (p < 0.01) with exposure to Zn-NPs and Zn-NPs-T and digestive enzymes such as protease and amylase were non-significant (p > 0.01) with the exposure of Zn-NPs and Zn-NPs-T, further, lipase were significantly reduced (p < 0.01) with exposure to Zn-NPs and temperature exposure group. The histopathological alteration were also observed in the liver and gill tissue. The present investigation suggested that, essential trace elements at higher concentration in acute exposure led to pronounced deleterious alteration on histopathology and cellular and metabolic activities in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
80
|
Ma J, Si T, Yan C, Li Y, Li Q, Lu X, Guo Y. Near-Infrared Fluorescence Probe for Evaluating Acetylcholinesterase Activity in PC12 Cells and In Situ Tracing AChE Distribution in Zebrafish. ACS Sens 2020; 5:83-92. [PMID: 31875385 DOI: 10.1021/acssensors.9b01717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) plays crucial roles in numerous physiological processes such as cell differentiation, cell apoptosis, and nerve tissue developments. Hence, it is highly necessary to design a fluorescent probe for monitoring AChE activity in complex living organisms. In this work, a near-infrared (NIR) off-on probe (CyN) was developed for AChE detection. CyN was exactly synthesized by introducing an N,N-dimethyl carbamyl moiety to hemicyanine (CyOH). AChE can "light up" strong NIR fluorescence through a cleavage special ester bond and transform CyN into CyOH. Moreover, CyN was qualified for imaging the dynamic change of AChE activity in PC12 cells with retinoic acid or hypoxia stimulation. In particular, the probe has been successfully applied for in situ tracing the intact distribution of AChE in living zebrafish. The observations indicate that major occurrence sites of endogenic AChE on zebrafish are the yolk sac and neuromasts. Overall, CyN shows great potential for use in AChE-related physiological studies.
Collapse
Affiliation(s)
- Jianlong Ma
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tiantian Si
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yijing Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000, P. R. China
| | - Qiang Li
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000, P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000, P. R. China
| |
Collapse
|
81
|
Lee HJ, Lee SK, Lee DR, Choi BK, Le B, Yang SH. Ameliorating effect of Citrus aurantium extracts and nobiletin on β‑amyloid (1‑42)‑induced memory impairment in mice. Mol Med Rep 2019; 20:3448-3455. [PMID: 31432129 DOI: 10.3892/mmr.2019.10582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/27/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the neuroprotective effect of Citrus aurantium extract (CAE) and nobiletin against amyloid β 1‑42 (Aβ 1‑42)‑induced spatial learning and memory impairment in mice. After injecting Aβ 1‑42 (5 µl/2.5 min, intracerebroventricular injection), amnesic mice were orally administered CAE and nobiletin for 28 days. Memory, spatial and cognitive ability were measured using passive avoidance and a Morris water maze task. Acetylcholinesterase (AchE) activity was investigated in the hippocampus and cortex using commercial kits and the analysis of Bax, Bcl‑2, and cleaved caspase‑3 protein expression by western blot assays was used to confirm the anti‑apoptotic mechanism of CAE and nobiletin. The present study confirmed impairments in learning and memory in the Aβ‑induced neurodegenerative mice with increased AchE activity in the brain. However, the daily administration of CAE and nobiletin reduced the spatial learning deficits and increased the AchE activity in the cortex and hippocampus. Furthermore, CAE and nobiletin significantly downregulated the Bax and cleaved caspase‑3 protein expression and upregulated the Bcl‑2 and Bcl‑2/Bax expression in the cortex and hippocampus of Aβ‑treated mice. These results suggest that CAE and nobiletin exert a neuroprotective effect by regulating anti‑apoptotic mechanisms, including reduced AchE activity in the cortex and hippocampus of the cognitive deficit mouse model.
Collapse
Affiliation(s)
- Hae Jin Lee
- Department of Biotechnology, Chonnam National University, Yeosu, South Jeolla 59626, Republic of Korea
| | - Sung-Kwon Lee
- Nutrapharm Tech, Jungwon‑gu, Seongnam, Gyunggi 13201, Republic of Korea
| | - Dong-Ryung Lee
- Nutrapharm Tech, Jungwon‑gu, Seongnam, Gyunggi 13201, Republic of Korea
| | - Bong-Keun Choi
- Nutrapharm Tech, Jungwon‑gu, Seongnam, Gyunggi 13201, Republic of Korea
| | - Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, South Jeolla 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Jeolla 59626, Republic of Korea
| |
Collapse
|
82
|
Nigam AK, Verma N, Srivastava A, Kumari U, Mittal S, Mittal AK. Characterisation of cholinesterases in mucous secretions and their localisation in epidermis of Labeo rohita and Cirrhinus mrigala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1355-1366. [PMID: 31177354 DOI: 10.1007/s10695-019-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Cholinesterases are multifunctional enzymes and have been associated with diverse physiological functions in addition to their classical role at synapses. In the present study, cholinesterase (ChE) isozymes have been characterised in mucous secretions and their activity has been localised in the epidermis of Labeo rohita and Cirrhinus mrigala. Zymography using specific substrates and inhibitors revealed the presence of two ChE isozymes-ChE-1 and ChE-2. The isozyme ChE-1 was characterised as an atypical butyrylcholinesterase and ChE-2 as a typical acetylcholinesterase in skin mucous secretions of both the fish species. Enzyme histochemical analysis demonstrated the presence of ChE activity in the epidermis of the fish species investigated. In both the fish species, strong ChE activity was observed in the outer-layer epithelial cells, taste buds and neuromasts. The middle and basal layer epithelial cells showed moderate to weak ChE activity. Club cells and mucous goblet cells showed the absence of ChE activity. Characterisation with specific inhibitors indicates that acetylcholinesterase (AChE) was the major cholinesterase type expressed in the epidermis of the two fish species investigated. Immunohistochemical localisation of apoptotic and cell proliferation markers, in addition, revealed high expression of active caspase 3 in the outer-layer epithelial cells, and proliferating cell nuclear antigen (PCNA) in the middle and basal layer epithelial cells. High ChE activity in caspase 3-positive cells in the outer layer of the epidermis and low in PCNA-positive cells in middle and basal layers could point towards the possible involvement of ChEs in cell death and their final extrusion from skin surface.
Collapse
Affiliation(s)
- Ashwini Kumar Nigam
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Neeraj Verma
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Ayan Srivastava
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India
| | - Usha Kumari
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Swati Mittal
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Banaras Hindu University, Varanasi, 221005, India.
| | - Ajay Kumar Mittal
- Former Head of Department of Zoology, Banaras Hindu University, 9, Mani Nagar, Kandawa, Near Chitaipur Crossing, Varanasi, 221106, India
| |
Collapse
|
83
|
Giménez V, Nunes B. Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological traits of the sea snail Gibbula umbilicalis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21858-21870. [PMID: 31134547 DOI: 10.1007/s11356-019-04653-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Over time, the consumption of pharmaceutical drugs has highly augmented, directly contributing for an increase of the discharges of these substances into sewage water due to excretion, and their direct release to the environment, with or without adequate treatment. Considering that part of the sewage water is dumped into rivers and seas, this is the major source of contamination of the aquatic environment. Paracetamol and acetylsalicylic acid are among the most worldwide consumed pharmaceutical drugs, frequently found in wastewater discharges and consequently in the aquatic environment in considerable amounts, posing ecotoxicity concerns especially towards aquatic non-target species. Thus, it is important to study the ecotoxicological implications that these drugs might pose to organisms from aquatic environments. The objective of this study was to assess the toxic effects of these two compounds on key biochemical features (antioxidant defenses and damage, metabolism, and cholinergic neurotoxicity) of the marine snail species Gibbula umbilicalis after an acute (96 h) exposure, simulating pulses of contamination. In order to understand the effects that those drugs have on this species, the biochemical biomarkers analyzed were the activities of catalase (CAT), glutathione-S-transferases (GSTs), cholinesterases (ChEs), and the levels of lipid peroxidation (TBARS). After acute exposure to paracetamol, catalase activity decreased significantly in organisms exposed to both highest concentrations; no significant alterations were observed for glutathione-S-transferases activity; TBARS concentration decreased significantly in organisms exposed to the intermediate and both highest concentrations, and cholinesterase activity increased significantly in animals exposed to the lowest concentration. However, after acute exposure to acetylsalicylic acid, catalase activity increased significantly; no significant alterations were observed for glutathione-S-transferases activity, and TBARS concentrations and cholinesterase activity increased. This set of data shows that G. umbilicalis is highly responsive to the presence of the tested drugs, and may thus be a promising species to serve as test organism in future marine ecotoxicological testing. The adoption of this species may broaden the offer of highly ecologically representative test organisms to be included in biomonitoring projects of the coastal and marine environment. Furthermore, it is possible to suggest that both drugs may pose significant deleterious effects of pro-oxidative origin to the physiology of the selected species, with potential adverse ecological consequences, even after short periods of exposure. The absence of neurotoxicity showed that despite being able to trigger antioxidant mechanisms, both drugs did not affect neurotransmission.
Collapse
Affiliation(s)
- Valéria Giménez
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
84
|
Fernández-Cabezudo MJ, George JA, Bashir G, Mohamed YA, Al-Mansori A, Qureshi MM, Lorke DE, Petroianu G, Al-Ramadi BK. Involvement of Acetylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes. Front Immunol 2019; 10:1038. [PMID: 31156627 PMCID: PMC6529936 DOI: 10.3389/fimmu.2019.01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Type I diabetes (T1D) is a T cell-driven autoimmune disease that results in the killing of pancreatic β-cells and, consequently, loss of insulin production. Using the multiple low-dose streptozotocin (MLD-STZ) model of experimental autoimmune diabetes, we previously reported that pretreatment with a specific acetylcholinesterase inhibitor (AChEI), paraoxon, prevented the development of hyperglycemia in C57BL/6 mice. This correlated with an inhibition of T cell infiltration into the pancreatic islets and a reduction in pro-inflammatory cytokines. The cholinergic anti-inflammatory pathway utilizes nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs, respectively) expressed on a variety of cell types. In this study, we carried out a comparative analysis of the effect of specific antagonists of nAChRs or mAChRs on the development of autoimmune diabetes. Co-administration of mecamylamine, a non-selective antagonist of nAChRs maintained the protective effect of AChEI on the development of hyperglycemia. In contrast, co-administration of atropine, a non-selective antagonist of mAChRs, mitigated AChEI-mediated protection. Mice pretreated with mecamylamine had an improved response in glucose tolerance test (GTT) than mice pretreated with atropine. These differential effects of nAChR and mAChR antagonists correlated with the extent of islet cell infiltration and with the structure and functionality of the β-cells. Taken together, our data suggest that mAChRs are essential for the protective effect of cholinergic stimulation in autoimmune diabetes.
Collapse
Affiliation(s)
- Maria J Fernández-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Junu A George
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alreem Al-Mansori
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed M Qureshi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Dietrich E Lorke
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Georg Petroianu
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
85
|
Teles M, Oliveira M, Jerez-Cepa I, Franco-Martínez L, Tvarijonaviciute A, Tort L, Mancera JM. Transport and Recovery of Gilthead Sea Bream ( Sparus aurata L.) Sedated With Clove Oil and MS222: Effects on Oxidative Stress Status. Front Physiol 2019; 10:523. [PMID: 31130870 PMCID: PMC6509202 DOI: 10.3389/fphys.2019.00523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
The use of anesthesia is a common practice in aquaculture to sedate fish and mitigate handling stress. Although the employ of anesthesia is considered beneficial for fish, as it reduces stress and improves welfare, at the same time it may induce hazardous side-effects. The aim of the present study was to investigate the effects of clove oil (CO) and tricaine methanesulfonate (MS222), two of the most used anesthetics, on several oxidative stress related parameters in gilthead sea bream (Sparus aurata), as these types of effects of anesthetics have been seldom investigated. To assess these effects, S. aurata juveniles were placed in a setup of mobile water tanks and were transported during 6 h with either 2.5 mg/L CO or 5 mg/L MS222. After transport, half of the fish were sampled, whereas the remaining fish were transferred to tanks without anesthetics where they were allowed to recover for 18 h before sampling. Changes in the expression levels of several target genes related with the antioxidant response and cell-tissue repair were evaluated in the gills, liver and brain. Those transcripts included glutathione peroxidase 1 (gpx1), catalase (cat), glutathione S-transferase 3 (gst3), glutathione reductase (gr), superoxide dismutase [Zn] (sod2), heat shock protein-70 (hsp70), and metallothionein (mt). Antioxidant enzymatic activities glutathione S-transferase, GST; catalase, CAT; and glutathione reductase, GR, levels of non-enzymatic antioxidants (non-protein thiols - NPT), and pro-oxidative damage, assessed as lipid peroxidation (LPO), were determined in gills, liver and brain. Acetylcholinesterase activity (AChE) was determined in plasma, gills, brain, muscle and heart as an indicator of neuro-muscular alterations. In plasma, the total antioxidant capacity (TAC) and total oxidative status (TOS) were also measured. Results showed that the use of both anesthetic agents, CO and MS222, interferes with fish antioxidant status. All tested biological matrices displayed alterations in antioxidant endpoints, confirming that these substances, although minimizing the effects of transport stress, may have long term effects on fish defenses. This result is of high relevance to aquaculture considering that the oxidative stress, may increase the susceptibility to different environmental or biotic stress and different types of pathologies.
Collapse
Affiliation(s)
- Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Ismael Jerez-Cepa
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Cádiz, Spain
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, University of Murcia, Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis INTERLAB-UMU, University of Murcia, Murcia, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan M. Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
86
|
Türkan F, Taslimi P, Saltan FZ. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer's disease. J Biochem Mol Toxicol 2019; 33:e22340. [PMID: 30974029 DOI: 10.1002/jbt.22340] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 01/02/2023]
Abstract
Multiple studies have been recorded on the synthesis and design of multi-aim anti-Alzheimer molecules. Using dual butyrylcholinesterase/acetylcholinesterase inhibitor molecules has attracted more interest in the therapy for Alzheimer's disease. In this study, a tannic acid compound showed excellent inhibitory effects against acetylcholine esterase (AChE), α-glycosidase, α-amylase, and butyrylcholinesterase (BChE). IC50 values of tannic acid obtained 11.9 nM against α-glycosidase and 3.3 nM against α-amylase, respectively. In contrast, Ki values were found of 50.96 ± 2.18 µM against AChE and 53.17 ± 4.47 µM against BChE. α-Glycosidase inhibitor compounds can be utilized as a novel group of antidiabetic drugs. By competitively decreasing glycosidase activity, these inhibitor molecules help to hamper the fast breakdown of sugar molecules and thereby control the blood sugar level.
Collapse
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Fatma Zerrin Saltan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
87
|
Ecotoxicological Effect of Single and Combined Exposure of Carbamazepine and Cadmium on Female Danio rerio: A Multibiomarker Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In aquatic environments, organisms are exposed to mixtures of pollutants which may change the toxicity profile of each contaminant, compared to its toxicity alone. Carbamazepine (CBZ) and cadmium (Cd) are among the pollutants that co-occur in aquatic environments. To date, most research about their toxicity towards aquatic vertebrates is based on single exposure experiments. The present study aims to evaluate single and combined effects of CBZ and Cd on biomarkers in female Danio rerio (zebrafish) by exposing them to environmentally relevant concentrations of these two pollutants for ten days. Four kinds of biomarkers involved in antioxidant systems, energy metabolism, nervous system, and endocrine disruption, respectively, were studied. Our research results coincided with those of former studies in single exposure experiments. However, the combined exposure of CBZ and Cd exerted different responses from other studies in which these two contaminants were examined alone in zebrafish. The present study evidenced the need to conduct more coexposure studies to enhance the environmental relevance of these experimental results.
Collapse
|
88
|
Knockdown of acetylcholinesterase (AChE) gene in rice yellow stem borer, Scirpophaga incertulas (Walker) through RNA interference. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Moyano P, García JM, Anadon MJ, Lobo M, García J, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese induced ROS and AChE variants alteration leads to SN56 basal forebrain cholinergic neuronal loss after acute and long-term treatment. Food Chem Toxicol 2019; 125:583-594. [PMID: 30738988 DOI: 10.1016/j.fct.2019.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023]
Abstract
Manganese (Mn) induces cognitive disorders and basal forebrain (BF) cholinergic neuronal loss, involved on learning and memory regulation, which could be the cause of such cognitive disorders. However, the mechanisms through which it induces these effects are unknown. We hypothesized that Mn could induce BF cholinergic neuronal loss through oxidative stress generation, cholinergic transmission and AChE variants alteration that could explain Mn cognitive disorders. This study shows that Mn impaired cholinergic transmission in SN56 cholinergic neurons from BF through alteration of AChE and ChAT activity and CHT expression. Moreover, Mn induces, after acute and long-term exposure, AChE variants alteration and oxidative stress generation that leaded to lipid peroxidation and protein oxidation. Finally, Mn induces cell death on SN56 cholinergic neurons and this effect is independent of cholinergic transmission alteration, but was mediated partially by oxidative stress generation and AChE variants alteration. Our results provide new understanding of the mechanisms contributing to the harmful effects of Mn on cholinergic neurons and their possible involvement in cognitive disorders induced by Mn.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - José Manuel García
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
90
|
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Pousão-Ferreira P, Rosa R, Marques A, Diniz MS. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. ENVIRONMENTAL RESEARCH 2019; 169:7-25. [PMID: 30399468 DOI: 10.1016/j.envres.2018.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Sousa Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
91
|
Sharath Chandra G, Asokan R, Manamohan M, Krishna Kumar N. Enhancing RNAi by using concatemerized double-stranded RNA. PEST MANAGEMENT SCIENCE 2019; 75:506-514. [PMID: 30039906 DOI: 10.1002/ps.5149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/11/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a potential tool for functional characterization of genes and also in the management of insect pests. Accumulated literature reveals that the RNAi efficiency varies among insect species and is reported to be less efficient in lepidopteran insects. RESULTS We attempted to enhance RNAi efficiency by concatemerizing short double-stranded RNA (dsRNA) sequence. Then the effectiveness of concatemerized dsRNAs (C-dsRNAs) was compared with non-concatemerized long dsRNA (NCL-dsRNA) in silencing of acetylcholinesterase (AChE) in the diamondback moth, Plutella xylostella (Lepidoptera), a major pest on cruciferous vegetables. Results revealed that the C-dsRNAs enhanced the RNAi efficiency in terms of higher target gene silencing and consequently resulted in lower larval weight gain and higher mortality compared to the NCL-dsRNA treatment. Even the lower concentration (0.5 µg) of C-dsRNAs had a relatively similar effect to that of higher concentrations (2 µg) of NCL-dsRNA. The enhanced RNAi efficiency with C-dsRNAs was plausibly due to the higher expression of core RNAi pathway genes, Dicer-2 and Argonaute-2 (Ago-2), which are known to govern the efficiency of RNAi. CONCLUSION Overall, C-dsRNA enhanced the RNAi activity over routinely used long dsRNA in P. xylostella and this strategy may be applied for effective management of insect pests. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gaddelapati Sharath Chandra
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru, India
| | - Ramaswamy Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru, India
| | - Maligeppagol Manamohan
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake (PO), Bengaluru, India
| | | |
Collapse
|
92
|
Nkoom M, Lu G, Liu J, Dong H, Yang H. Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5704-5712. [PMID: 30612359 DOI: 10.1007/s11356-018-04072-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The non-steroidal anti-inflammatory drug (NSAID) diclofenac is one of the most frequently studied as well as controversially discussed pharmaceutically active drug on the subject of its relevance to the environment. This study was conducted to assess the bioconcentration potential of diclofenac and its behavioral and biochemical effects in Daphnia magna. The bioconcentration factors of diclofenac determined after 48 h of aqueous exposure in Daphnia magna were 70.94 and 8.02 for the nominal exposure concentrations of 5 and 100 μg/L, respectively. Diclofenac exposure obviously decreased the filtration and ingestion rates of the daphnids. A significant increase of the acetylcholinesterase activity that was observed in this study indicates that diclofenac might not have neurobehavioral toxicity in Daphnia magna. Significant induction of malondialdehyde content is an indication of overproduction of reactive oxygen species leading to oxidative damage in daphnids after diclofenac exposure. Moreover, significant inhibition of the superoxide dismutase, catalase, and glutathione reductase activities implies that the antioxidant defense system of Daphnia magna was overwhelmed. Also, significant inhibition of glutathione s-transferase activity might point to the fact that the enzyme was not capable to detoxify diclofenac in Daphnia magna. These findings indicate that diclofenac can accumulate and consequently stimulate behavioral and biochemical disturbances in Daphnia magna.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
93
|
Hackenberger DK, Feigl V, Lončarić Ž, Hackenberger BK. Biochemical and reproductive effects of red mud to earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:279-286. [PMID: 30390526 DOI: 10.1016/j.ecoenv.2018.10.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Red mud (RM) is the main waste of alumina production whose disposal poses a problem. The research of various possible effects of red mud on soil organisms has been scarce. We have exposed earthworms (Eisenia fetida) to red mud: artificial soil mixtures. The tested samples of red mud were of different origin: Croatian (CRRM) and Hungarian (HURM). The effects of exposure on the metabolic and oxidative status of earthworms were measured using several biochemical biomarkers (acetylcholinesterase, catalase and glutathione S-transferase activity and metallothionenin content) and reproductive success was assessed upon counting the number of hatched juveniles. The LC50 value for CRRM was 40% and for HURM 62% of red mud in the growth medium on weight basis, respectively. A significant effect (p < 0.001) of the RM concentration and origin, as well as significant interactions between the origin of RM and the applied concentrations on all measured biomarkers were observed. CRRM had a higher content of different metals as well as a higher conductivity in comparison to HURM. The reproduction was inhibited after exposure to both RMs. Namely, 25% CRRM caused a 53.26% reduction in the number of juveniles, whereas 18% HURM caused a 68.84% reduction, and 50% HURM caused 97.9% reduction, respectively. Both RMs caused changes in the measured biomarkers related to an oxidative stress. Consequently, the possible adverse effects on soil organisms before the environmental application of red mud should be assessed to avoid further environmental damage.
Collapse
Affiliation(s)
| | - Viktoria Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem Rkp. 3, Budapest, Hungary
| | - Željka Lončarić
- University of Osijek, Department of Biology, Cara Hadrijana 8A, Osijek, Croatia
| | | |
Collapse
|
94
|
Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B. Observation of Acetylcholinesterase in Stress-Induced Depression Phenotypes by Two-Photon Fluorescence Imaging in the Mouse Brain. J Am Chem Soc 2019; 141:2061-2068. [PMID: 30638380 DOI: 10.1021/jacs.8b11414] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress in depression is a prime cause of neurotransmitter metabolism dysfunction in the brain. Acetylcholinesterase (AChE), a key hydrolase in the cholinergic system, directly determines the degradation of neurotransmitters. However, due to the complexity of the brain and lack of appropriate in situ imaging tools, the mechanism underlying the changes in AChE activity in depression remains unclear. Hence, we generated a two-photon fluorescence probe (MCYN) for real-time visualization of AChE with excellent sensitivity and selectivity. AChE can specifically recognize and cleave the carbamic acid ester bond in MCYN, and MCYN emits bright fluorescence at 560 nm by two-photon excitation at 800 nm. By utilizing MCYN to monitor AChE, we discovered a significant increase in AChE activity in the brains of mice with depression phenotypes. Notably, with the assistance of a two-photon fluorescence imaging probe of the superoxide anion radical (O2•-), in vivo visualization for the first time revealed the positive correlation between AChE and O2•- levels associated with depressive behaviors. This finding suggests that oxidative stress may induce AChE overactivation, leading to depression-related behaviors. This work provides a new and rewarding perspective to elucidate the role of oxidative stress regulating AChE in the pathology of depression.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
95
|
Bisphenol A Exposure and Sperm ACHE Hydroxymethylation in Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010152. [PMID: 30626059 PMCID: PMC6339044 DOI: 10.3390/ijerph16010152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Exposure to bisphenol A (BPA) has been shown to impact human sperm quality. The epigenetic mechanisms underlying the effect remain unknown. The acetylcholinesterase (ACHE) gene is a sperm-expressed gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase and participates in the apoptosis of cells, including sperm. This study aimed to examine whether BPA exposure is associated with the hydroxymethylation level of the sperm ACHE gene. A total of 157 male factory workers were studied, among whom 74 had BPA exposure in the workplace (BPA exposure group) and 83 had no BPA exposure in the workplace (control group). Urine samples were collected for BPA measurement and semen samples were collected to assay for ACHE hydroxymethylation. Sperm ACHE hydroxymethylation level was higher in the BPA exposure group (p = 0.041) compared to the control group. When subjects were categorized according to tertiles of detected BPA level, higher ACHE hydroxymethylation levels were observed for the lowest, middle, and top tertiles compared to those with BPA below the limit of detection (LOD). In a linear regression analysis adjusted for confounders, a positive linear association between urine BPA concentration and 5-hydroxymethylcytosine (5hmC) rate of the sperm ACHE gene was observed, although the association did not reach statistical significance in all categories after being stratified by the BPA tertile. In conclusion, 5hmC of the sperm ACHE gene was positively associated with BPA exposure, which may provide supportive evidence for BPA’s effects on male fertility or other health endpoints.
Collapse
|
96
|
da Silva Santos N, Oliveira R, Lisboa CA, Mona E Pinto J, Sousa-Moura D, Camargo NS, Perillo V, Oliveira M, Grisolia CK, Domingues I. Chronic effects of carbamazepine on zebrafish: Behavioral, reproductive and biochemical endpoints. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:297-304. [PMID: 30125776 DOI: 10.1016/j.ecoenv.2018.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine (Cbz), one of the most prescribed pharmaceuticals in the world is often detected in surface waters and sediments. However, few studies addressed its chronic effects in fish. In the present study, Danio rerio adults were exposed for 63 days to Cbz (0 - control, 10 μg L-1 - concentration found in effluents, and 10,000 μg L-1 - 5% of LC50 at 72 h). Assessed endpoints were: feeding behavior, growth rate, number of eggs produced and their viability, histological alterations in female gonads, and biochemical biomarkers associated with antioxidant defenses (catalase - CAT, and glutathione S-transferase - GST activities), neurotransmission (acetylcholinesterase activity - AChE) and metabolism (lactate dehydrogenase - LDH). Cbz exposure increased the total time for food intake but did not affect D. rerio growth. Although the total number of eggs was not affected by Cbz exposure, the eggs viability was significantly impaired. Exposure to Cbz caused alterations in the female gonads follicular stages. In terms of biochemical endpoints, CAT activity in liver and gills, was sensitive to the pharmaceutical exposure presenting a decreased activity. AChE activity was induced in the head (both concentrations) and muscle (10,000 μg L-1). GST activity was increased in gills (both concentrations) but inhibited in the intestine. Concerning LDH, enzymatic activity was increased in the liver and decreased in muscle and gills. Several of the above-mentioned effects can be directly linked with effects at population level (e.g. feeding behavior) and occurred at environmental concentrations (the lowest concentration tested), thus serious concerns regarding risks posed by Cbz residues to fish populations arise with this study.
Collapse
Affiliation(s)
- Niedja da Silva Santos
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332 Limeira, São Paulo, Brazil; Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, FCF - USP, 05508-000 São Paulo, Brazil
| | - Carolina Almeida Lisboa
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Joana Mona E Pinto
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Níchollas Serafim Camargo
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, AsaNorte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Vitória Perillo
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Miguel Oliveira
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brasil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
97
|
Yan X, Chen T, Zhang L, Du H. Study of the interactions of forsythiaside and rutin with acetylcholinesterase (AChE). Int J Biol Macromol 2018; 119:1344-1352. [DOI: 10.1016/j.ijbiomac.2018.07.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
|
98
|
Cortez FS, Souza LDS, Guimarães LL, Almeida JE, Pusceddu FH, Maranho LA, Mota LG, Nobre CR, Moreno BB, Abessa DMDS, Cesar A, Santos AR, Pereira CDS. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1363-1371. [PMID: 29801229 DOI: 10.1016/j.scitotenv.2018.05.069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 05/20/2023]
Abstract
The antihypertensive losartan (LOS) has been detected in wastewater and environmental matrices, however further studies focused on assessing the ecotoxicological effects on aquatic ecosystems are necessary. Considering the intensive use of this pharmaceutical and its discharges into coastal zones, our study aimed to determine the environmental concentrations of LOS in seawater, as well as to assess the biological effects of LOS on the marine bivalve Perna perna. For this purpose, fertilization rate and embryolarval development were evaluated through standardized assays. Phase I (ethoxyresorufin O‑deethylase EROD and dibenzylfluorescein dealkylase DBF) and II (glutathione S-transferase GST) enzymes, glutathione peroxidase (GPx), Cholinesterase (ChE), lipoperoxidation (LPO) and DNA damage were used to analyze sublethal responses in gills and digestive gland of adult individuals. Lysosomal membrane stability was also assessed in hemocytes. Our results showed the occurrence of LOS in 100% of the analyzed water samples located in Santos Bay, Sao Paulo, Brazil, in a range of 0.2 ng/L-8.7 ng/L. Effects on reproductive endpoints were observed after short-term exposure to concentrations up to 75 mg/L. Biomarker responses demonstrated the induction of CYP450 like activity and GST in mussel gills exposed to 300 and 3000 ng/L of LOS, respectively. GPx activity was also increased in concentration of exposure to 3000 ng/L of LOS. Cyto-genotoxic effects were found in gills and hemocytes exposed in concentrations up to 300 ng/L. These results highlighted the concern of introducing this class of contaminants into marine environments, and pointed out the need to include antihypertensive compounds in environmental monitoring programs.
Collapse
Affiliation(s)
- Fernando Sanzi Cortez
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | | | | | | | - Luciane Alves Maranho
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | - Caio Rodrigues Nobre
- Unesp - Universidade Estadual Paulista Julio de Mesquita, São Vicente, SP, Brazil
| | | | | | - Augusto Cesar
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unifesp - Universidade Federal de São Paulo, Santos, SP, Brazil
| | | | - Camilo Dias Seabra Pereira
- Unisanta - Universidade Santa Cecília, Santos, SP, Brazil; Unifesp - Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
99
|
Ayazgök B, Tüylü Küçükkılınç T. Low-dose bisphenol A induces RIPK1-mediated necroptosis in SH-SY5Y cells: Effects on TNF-α and acetylcholinesterase. J Biochem Mol Toxicol 2018; 33:e22233. [PMID: 30238673 DOI: 10.1002/jbt.22233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor-α (TNF-α) and caspase-8 levels were determined in SH-SY5Y cells. The current study reveals that low-dose BPA treatment induced cytotoxicity, NO, and caspase-8 levels in SH-SY5Y cells. We also evaluated the mechanism underlying BPA-induced cell death. Ours is the first report that receptor-interacting serine/threonine-protein kinase 1-mediated necroptosis is induced by nanomolar BPA treatment in SH-SY5Y cells. This effect is mediated by altered AChE and decreased TNF-α levels, which result in an apoptosis-necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.
Collapse
Affiliation(s)
- Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| | - Tuba Tüylü Küçükkılınç
- Faculty of Pharmacy, Department of Biochemistry, University of Hacettepe, Ankara, Turkey
| |
Collapse
|
100
|
Araújo MJ, Rocha RJM, Soares AMVM, Benedé JL, Chisvert A, Monteiro MS. Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1395-1404. [PMID: 30045559 DOI: 10.1016/j.scitotenv.2018.02.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
The inclusion of organic UV filters in personal care products (PCPs) has increased in recent years. 4-Methylbenzylidene camphor (4MBC) is one of the most used UV filters, and thus it is commonly found in aquatic ecosystems, with proved negative effects on aquatic organisms. Effects on early life stages of marine vertebrates are largely unknown. Therefore, the main goal of this work was to evaluate 4MBC effects on Senegalese sole (Solea Senegalensis Kaup, 1858) larvae at different levels of biological organization. S. senegalensis were exposed to increasing concentrations of 4MBC from egg stage until 96 h. Mortality, growth, malformations, behaviour and biochemical responses, including enzymatic biomarkers were studied. The exposure to 4MBC until 96 h post-fertilization (hpf) induced mortality and malformations in a dose-response manner. Besides, reduced growth with increasing concentrations was observed. The exposure to 4MBC also caused alterations on behaviour, including overall lower swimming time during light and dark periods. Biomarker alterations caused by 4MBC included imbalance of neurotransmission related endpoints (increased acetylcholinesterase activity) and decreased activity of enzymes related to anaerobic metabolism (lower cellular lactate dehydrogenase activity) at the lower concentrations tested. Furthermore, our results suggest that 4MBC do not induce oxidative stress in S. senegalensis larvae, since catalase and lipid peroxidation levels were not significantly altered by 4MBC. S. senegalensis revealed to be a good model species for vertebrate animal testing in the marine environment. Sub-lethal concentrations of 4MBC induced toxic effects at all organizational levels. Swimming behaviour was a sensitive endpoint and showed that exposure to 4MBC causes impairment on response to light stimulus which is possibly linked with the observed imbalances on cholinesterase activity in larvae. Conservation concerns along distribution range of S. senegalensis should consider that increasing levels of UV filters in marine environment might have impact on the ecology of the species.
Collapse
Affiliation(s)
- M J Araújo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - R J M Rocha
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J L Benedé
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - A Chisvert
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|