51
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
52
|
Collu R, Post JM, Scherma M, Giunti E, Fratta W, Lutz B, Fadda P, Bindila L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158578. [PMID: 31778792 DOI: 10.1016/j.bbalip.2019.158578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence underline the role of inflammation in the behavioral, emotional and cognitive dysregulations displayed in anorexia nervosa (AN). Among the inflammatory mediators acting at both peripheral and central levels, growing attention receives a class of lipids derived from arachidonic acid (AA), called eicosanoids (eiCs), which exert a complex, multifaceted role in a wide range of neuroinflammatory processes, peripheral inflammation, and generally in immune system function. To date, little is known about their possible involvement in the neurobiological underpinnings of AN. The present study evaluated whether the activity-based model of AN (ABA) may alter AA-metabolic pathways by changing the levels of AA-derived eiCs in specific brain areas implicated in the development of the typical anorexic-like phenotype, i.e. in prefrontal cortex, cerebral cortex, nucleus accumbens, caudate putamen, amygdala, hippocampus, hypothalamus and cerebellum. Our results point to brain region-specific alterations of the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP) metabolic pathways rendering altered levels of AA-derived eiCs (i.e. prostaglandins, thromboxanes and hydroxyeicosatetraenoic acids) in response to induction of and recovery from the ABA condition. These changes, supported by altered messenger RNA (mRNA) levels of genes coding for enzymes involved in eiCs-related methabolic pathways (i.e., PLA2, COX-2, 5-LOX and 15-LOX), underlie a widespread brain dysregulation of pro- and anti-inflammatory eiC-mediated processes in the ABA model of AN. These data suggest the importance of eiCs signaling within corticolimbic areas in regulating key neurobehavioral functions and highlight eiCs as biomarker candidates for monitoring the onset and development of AN, and/or as possible targets for pharmacological management.
Collapse
Affiliation(s)
- Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Julia Maria Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience - Cagliari, National Research Council, Cagliari, Italy; National Neuroscience Institute, Italy.
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
53
|
Hofer M, Hoferová Z, Falk M. Brief Story on Prostaglandins, Inhibitors of their Synthesis, Hematopoiesis, and Acute Radiation Syndrome. Molecules 2019; 24:molecules24224019. [PMID: 31698831 PMCID: PMC6891503 DOI: 10.3390/molecules24224019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/22/2023] Open
Abstract
Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.
Collapse
Affiliation(s)
- Michal Hofer
- Correspondence: ; Tel.: +420-541-517-171; Fax: +420-541-211-293
| | | | | |
Collapse
|
54
|
Abstract
Metabolomics uses advanced analytical chemistry techniques to enable the high-throughput characterization of metabolites from cells, organs, tissues, or biofluids. The rapid growth in metabolomics is leading to a renewed interest in metabolism and the role that small molecule metabolites play in many biological processes. As a result, traditional views of metabolites as being simply the "bricks and mortar" of cells or just the fuel for cellular energetics are being upended. Indeed, metabolites appear to have much more varied and far more important roles as signaling molecules, immune modulators, endogenous toxins, and environmental sensors. This review explores how metabolomics is yielding important new insights into a number of important biological and physiological processes. In particular, a major focus is on illustrating how metabolomics and discoveries made through metabolomics are improving our understanding of both normal physiology and the pathophysiology of many diseases. These discoveries are yielding new insights into how metabolites influence organ function, immune function, nutrient sensing, and gut physiology. Collectively, this work is leading to a much more unified and system-wide perspective of biology wherein metabolites, proteins, and genes are understood to interact synergistically to modify the actions and functions of organelles, organs, and organisms.
Collapse
Affiliation(s)
- David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
55
|
Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int J Mol Sci 2019; 20:E4246. [PMID: 31480243 PMCID: PMC6747625 DOI: 10.3390/ijms20174246] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia, a systemic vascular disorder characterized by new-onset hypertension and proteinuria after 20 weeks of gestation, is the leading cause of maternal and perinatal morbidity and mortality. Maternal endothelial dysfunction caused by placental factors has long been accepted with respect to the pathophysiology of preeclampsia. Over the past decade, increased production of placental antiangiogenic factors has been identified as a placental factor leading to maternal endothelial dysfunction and systemic vascular dysfunction. This review summarizes the recent advances in understanding the molecular mechanisms of endothelial dysfunction caused by placental antiangiogenic factors, and the novel clinical strategies based on these discoveries.
Collapse
Affiliation(s)
- Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | - Kazuya Mimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Tokyo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
56
|
Nasry WHS, Wang H, Jones K, Tesch M, Rodriguez-Lecompte JC, Martin CK. Cyclooxygenase and CD147 expression in oral squamous cell carcinoma patient samples and cell lines. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:400-410.e3. [PMID: 31350224 DOI: 10.1016/j.oooo.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In oral squamous cell carcinoma (OSCC), cyclooxygenases (COX-1 and COX-2) contribute to inflammation, and cluster of differentiation factor 147 (CD147) contributes to invasiveness, but their relationship has not been previously examined within a cohort of patients with OSCC or OSCC cell lines. STUDY DESIGN COX-2 and CD147 expression was determined by using immunohistochemistry on 39 surgical biopsy specimens of OSCC. Expression in tumor cells, stroma, and adjacent oral epithelium was characterized by using a visual grading system. COX-1, COX-2, and CD147 expression was determined in vitro by using OSCC cell lines (SCC25, BHY, and HN) and reverse transcriptase-quantitative polymerase chain reaction. Secretion of prostagladin E2 (PGE2) from OSCC cell lines was determined by using PGE2 enzyme-linked immunosorbent assay. RESULTS Biopsy specimens showed higher COX-2 expression in tumor cells compared with stroma and adjacent epithelium (P < .05). There was no difference in CD147 expression among the tumor cells, stroma, and adjacent epithelium. In OSCC cell lines, there was a trend for COX-2 and CD147 gene expression to be coordinated. Interestingly, PGE2 secretion was more closely related to COX-1 expression than to COX-2 expression. CONCLUSIONS COX-1, COX-2, and CD147 appear to be independently regulated in OSCC, potentially representing 2 therapeutic targets for future investigation. COX-1 expression in OSCC deserves further study because it may be an important determinant of PGE2 secretion from OSCC cells.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Haili Wang
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| |
Collapse
|
57
|
Hirano Y, Gao YG, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE, Patel DJ, Brown RE. Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A 2α. eLife 2019; 8:e44760. [PMID: 31050338 PMCID: PMC6550875 DOI: 10.7554/elife.44760] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/03/2019] [Indexed: 01/19/2023] Open
Abstract
Ca2+-stimulated translocation of cytosolic phospholipase A2α (cPLA2α) to the Golgi induces arachidonic acid production, the rate-limiting step in pro-inflammatory eicosanoid synthesis. Structural insights into the cPLA2α preference for phosphatidylcholine (PC)-enriched membranes have remained elusive. Here, we report the structure of the cPLA2α C2-domain (at 2.2 Å resolution), which contains bound 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and Ca2+ ions. Two Ca2+ are complexed at previously reported locations in the lipid-free C2-domain. One of these Ca2+ions, along with a third Ca2+, bridges the C2-domain to the DHPC phosphate group, which also interacts with Asn65. Tyr96 plays a key role in lipid headgroup recognition via cation-π interaction with the PC trimethylammonium group. Mutagenesis analyses confirm that Tyr96 and Asn65 function in PC binding selectivity by the C2-domain and in the regulation of cPLA2α activity. The DHPC-binding mode of the cPLA2α C2-domain, which differs from phosphatidylserine or phosphatidylinositol 4,5-bisphosphate binding by other C2-domains, expands and deepens knowledge of the lipid-binding mechanisms mediated by C2-domains.
Collapse
Affiliation(s)
- Yoshinori Hirano
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
- Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)TakayamaJapan
| | - Yong-Guang Gao
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
| | - Ngoc T Vu
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University Medical CenterRichmondUnited States
| | - Lucy Malinina
- Hormel InstituteUniversity of MinnesotaAustinUnited States
| | - Dhirendra K Simanshu
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaUnited States
- Research ServiceJames A. Haley Veterans HospitalTampaUnited States
- The Moffitt Cancer CenterTampaUnited States
| | - Dinshaw J Patel
- Structural Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUnited States
| | | |
Collapse
|
58
|
Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019; 86:235-246. [PMID: 30611793 DOI: 10.1016/j.actbio.2019.01.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), β-sodium glycerophosphate (β-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/β-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/β-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/β-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/β-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.
Collapse
|
59
|
Atallah A, Lecarpentier E, Goffinet F, Gaucherand P, Doret-Dion M, Tsatsaris V. [Aspirin and preeclampsia]. Presse Med 2019; 48:34-45. [PMID: 30665790 DOI: 10.1016/j.lpm.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Indications for aspirin during pregnancy are a matter of debate and there is a recent trend to an extended prescription and an overuse of aspirin in pregnancy. Aspirin is efficient in secondary prevention of preeclampsia essentially in patients with a personal history of preeclampsia. The effect of aspirin on platelet aggregation and on the TXA2/PGI2 balance is dose-dependent. The optimum dosage, from 75mg/day to 150mg/day, needs to be determined. Fetal safety data at 150mg/day are still limited. The efficacy of aspirin seems to be subject to a chronobiological effect. It is recommended to prescribe an evening or bedtime intake. Aspirin, in primary prevention of preeclampsia, given to high-risk patients identified in the first trimester by screening tests, seems to reduce the occurrence of early-onset preeclampsia. Nevertheless, there are insufficient data for the implementation of such screening procedures in practice.
Collapse
Affiliation(s)
- Anthony Atallah
- Groupement hospitalier Est, centre hospitalier universitaire, département de gynécologie-obstétrique, maternité de l'hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69100 Bron, France; Université Claude-Bernard Lyon1, Lyon, France.
| | - Edouard Lecarpentier
- Centre hospitalier intercommunal de Créteil, centre hospitalier universitaire, université Paris Est Créteil, département de gynécologie-obstétrique, maternité de l'hôpital intercommunal de Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - François Goffinet
- Assistance publique-Hôpital de Paris, centre hospitalier universitaire Cochin Broca Hôtel-Dieu, groupe hospitalier universitaire Ouest, département de gynécologie-obstétrique, maternité de Port-Royal, 53, avenue de l'Observatoire, 75014 Paris, France; PRES Sorbonne Paris Cité, université Paris Descartes, Paris, France; Fondation PremUP, Paris, France; DHU Risques et grossesse, Paris, France
| | - Pascal Gaucherand
- Groupement hospitalier Est, centre hospitalier universitaire, département de gynécologie-obstétrique, maternité de l'hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69100 Bron, France; Université Claude-Bernard Lyon1, Lyon, France
| | - Muriel Doret-Dion
- Groupement hospitalier Est, centre hospitalier universitaire, département de gynécologie-obstétrique, maternité de l'hôpital Femme-Mère-Enfant, hospices civils de Lyon, 59, boulevard Pinel, 69100 Bron, France; Université Claude-Bernard Lyon1, Lyon, France
| | - Vassilis Tsatsaris
- Assistance publique-Hôpital de Paris, centre hospitalier universitaire Cochin Broca Hôtel-Dieu, groupe hospitalier universitaire Ouest, département de gynécologie-obstétrique, maternité de Port-Royal, 53, avenue de l'Observatoire, 75014 Paris, France; PRES Sorbonne Paris Cité, université Paris Descartes, Paris, France; Fondation PremUP, Paris, France; DHU Risques et grossesse, Paris, France
| |
Collapse
|
60
|
Abstract
Eicosanoids are bioactive lipid mediators generated in almost all mammalian cells from the oxidation of arachidonic acid and other related twenty-carbon polyunsaturated fatty acids (PUFA). Eicosanoids regulate various physiological functions, including cellular homoeostasis and modulation of inflammatory responses in mammals. The mode of action of these lipid mediators depend on their binding to different G-protein coupled receptors. The three main enzymatic pathways associated with their production are the COX pathway, LOX pathway and cytochrome P450 pathway. Interestingly, investigations have also revealed that several human pathogenic fungi are capable of producing these bioactive lipid mediators; however, the exact biosynthetic pathways and their function in pathogenicity are not yet extensively characterized. The aim of the current review is to summarize the recent discoveries pertaining to eicosanoid production by human pathogenic yeasts with a special focus on the opportunistic human fungal pathogen Candida parapsilosis.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Renáta Tóth
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
61
|
Lin YM, Lu CC, Hsiang YP, Pi SC, Chen CI, Cheng KC, Pan HL, Chien PH, Chen YJ. c-Met inhibition is required for the celecoxib-attenuated stemness property of human colorectal cancer cells. J Cell Physiol 2018; 234:10336-10344. [PMID: 30480806 DOI: 10.1002/jcp.27701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase-2 (COX-2) is frequently overexpressed and enhances colorectal cancer (CRC) tumorigenesis, including cancer stem cell (CSC) regulation. Accordingly, nonsteroidal anti-inflammatory drugs (NSAIDs), inhibiting COX-1/2 activity, are viewed as potential drugs for CRC treatment. Accumulated evidence indicates that celecoxib has the most potency for antitumor growth among NSAIDs and the underlying mechanism is only partly dependent on COX-2 inhibition. However, the potency of these NSAIDs on CSC inhibition is still not known. In this study, we found that among these NSAIDs, celecoxib has the most potency for CSC inhibition of CRC cells, largely correlating to inhibition of c-Met, not COX-2. Further analysis reveals that c-Met activity was required for basal CSC property. Silence of c-Met blocked whereas overexpression of c-Met enhanced the celecoxib-inhibited CSC property. Collectively, these results not only first elucidate the mechanism underlying celecoxib-inhibited CSC but also indicate c-Met as a critical factor for the CSC property of CRC cells.
Collapse
Affiliation(s)
- Yueh-Ming Lin
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Chien-Chang Lu
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Yi-Ping Hsiang
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Shu-Chuan Pi
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, ROC
| | - Chih-I Chen
- Department of Surgery, Division of Colon and Rectal Surgery, E-Da Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Kung-Chuan Cheng
- Department of Surgery, Division of Colorectal Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Hsiao-Lin Pan
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Pei-Hsuan Chien
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Yun-Ju Chen
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC.,Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
62
|
Ye J, Ghosh S. Omega-3 PUFA vs. NSAIDs for Preventing Cardiac Inflammation. Front Cardiovasc Med 2018; 5:146. [PMID: 30406113 PMCID: PMC6205954 DOI: 10.3389/fcvm.2018.00146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jiayu Ye
- Irving K. Barber School of Arts and Sciences (IKBSAS), Department of Biology, University of University of British Columbia, Kelowna, BC, Canada
| | - Sanjoy Ghosh
- Irving K. Barber School of Arts and Sciences (IKBSAS), Department of Biology, University of University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
63
|
Wang L, Yao D, Deepak RNVK, Liu H, Xiao Q, Fan H, Gong W, Wei Z, Zhang C. Structures of the Human PGD 2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition. Mol Cell 2018; 72:48-59.e4. [PMID: 30220562 DOI: 10.1016/j.molcel.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022]
Abstract
The signaling of prostaglandin D2 (PGD2) through G-protein-coupled receptor (GPCR) CRTH2 is a major pathway in type 2 inflammation. Compelling evidence suggests the therapeutic benefits of blocking CRTH2 signaling in many inflammatory disorders. Currently, a number of CRTH2 antagonists are under clinical investigation, and one compound, fevipiprant, has advanced to phase 3 clinical trials for asthma. Here, we present the crystal structures of human CRTH2 with two antagonists, fevipiprant and CAY10471. The structures, together with docking and ligand-binding data, reveal a semi-occluded pocket covered by a well-structured amino terminus and different binding modes of chemically diverse CRTH2 antagonists. Structural analysis suggests a ligand entry port and a binding process that is facilitated by opposite charge attraction for PGD2, which differs significantly from the binding pose and binding environment of lysophospholipids and endocannabinoids, revealing a new mechanism for lipid recognition by GPCRs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dandan Yao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingpin Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138671, Singapore
| | - Weimin Gong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
64
|
Jafari F, Agh N, Noori F, Tokmachi A, Gisbert E. Effects of dietary soybean lecithin on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). FISH & SHELLFISH IMMUNOLOGY 2018; 80:487-496. [PMID: 29906622 DOI: 10.1016/j.fsi.2018.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
An eleven weeks feeding trial was conducted to determine the effects of different levels of dietary soybean lecithin (SBL) on growth performance, blood chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus). Fish were fed seven isoproteic (44% crude protein) and isolipidic (17% crude fat) diets containing graded levels of SBL: 0 (control), 1, 2, 4, 6, 8 and 10%. Results showed that dietary SBL supplementation significantly improved the final body weight (BW) and weight gain (WG). Fish fed 6% SBL showed the highest BW and WG values in comparison to fish fed the control diet (P < 0.05), whereas increasing SBL levels above 6% had little practical benefit in terms of somatic growth performance. The inclusion of SBL in diets significantly improved the immune response as data from lysozyme, total Ig levels, alternative complement, phagocytic and bactericidal activities indicated (P < 0.05). The broken-line regression analysis of immunological variable revealed that depending on the parameter considered, the optimal SBL levels in diets for stellate sturgeon juveniles varied. In particular, dietary SBL levels requirements in stellate sturgeon when considering the phagocytic activity rate were determined at 3.3%, whereas 4.1-4.2% were recommended when considering data from lysozyme, alternative complement and bactericidal activities. In contrast, the highest minimum dietary SBL content was estimated at 6.9% when data from total Ig levels were considered. These results indicated that dietary PLs are required for boosting innate immunity in stellate sturgeon, although their minimal level changed depending on the immunological parameter considered. Therefore, we assume that SBL levels comprised between 3.3 and 6.9% may be used as a prophylactic measure to improve the health status in stellate sturgeon. Red blood cell count, hemoglobin and hematocrit levels increased with increasing dietary SBL levels, especially in those sturgeons fed the diet with 6% SBL (P < 0.05). In addition, white blood cell counts significantly increased as dietary SBL levels increased from 4 to 8% in comparison to the control group. Blood biochemistry was also affected by different dietary SBL levels. In particular, significantly higher levels of glucose, cholesterol, HDL and triglycerides were detected in fish fed >6%, >4%, >2% and 2% SBL, respectively (P < 0.05). Based on somatic growth parameters, blood chemistry and systemic immunity parameters, diets containing ca. 6% SBL are recommended for juvenile stellate sturgeon.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Naser Agh
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
| | - Farzaneh Noori
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Amir Tokmachi
- Faculty of Veterinary, Urmia University, Urmia, Iran
| | - Enric Gisbert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita, Unitat de Cultius Aqüícoles, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Rapita, Spain
| |
Collapse
|
65
|
Loynes CA, Lee JA, Robertson AL, Steel MJG, Ellett F, Feng Y, Levy BD, Whyte MK, Renshaw SA. PGE 2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. SCIENCE ADVANCES 2018; 4:eaar8320. [PMID: 30191175 PMCID: PMC6124908 DOI: 10.1126/sciadv.aar8320] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/23/2018] [Indexed: 05/12/2023]
Abstract
Neutrophils are the first immune cells recruited to a site of injury or infection, where they perform many functions. Having completed their role, neutrophils must be removed from the inflammatory site-either by apoptosis and efferocytosis or by reverse migration away from the wound-for restoration of normal tissue homeostasis. Disruption of these tightly controlled physiological processes of neutrophil removal can lead to a range of inflammatory diseases. We used an in vivo zebrafish model to understand the role of lipid mediator production in neutrophil removal. Following tailfin amputation in the absence of macrophages, neutrophillic inflammation does not resolve, due to loss of macrophage-dependent handling of eicosanoid prostaglandin E2 (PGE2) that drives neutrophil removal via promotion of reverse migration. Knockdown of endogenous PGE synthase gene reveals PGE2 as essential for neutrophil inflammation resolution. Furthermore, PGE2 is able to signal through EP4 receptors during injury, causing an increase in Alox12 production and switching toward anti-inflammatory eicosanoid signaling. Our data confirm regulation of neutrophil migration by PGE2 and LXA4 (lipoxin A4) in an in vivo model of inflammation resolution. This pathway may contain therapeutic targets for driving inflammation resolution in chronic inflammatory disease.
Collapse
Affiliation(s)
- Catherine A. Loynes
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jou A. Lee
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne L. Robertson
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Division of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael JG. Steel
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Felix Ellett
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Yi Feng
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Moira K.B. Whyte
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen A. Renshaw
- The Bateson Centre, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
66
|
Surana K, Chaudhary B, Diwaker M, Sharma S. Benzophenone: a ubiquitous scaffold in medicinal chemistry. MEDCHEMCOMM 2018; 9:1803-1817. [PMID: 30542530 DOI: 10.1039/c8md00300a] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The benzophenone scaffold represents a ubiquitous structure in medicinal chemistry because it is found in several naturally occurring molecules which exhibit a variety of biological activities, such as anticancer, anti-inflammatory, antimicrobial, and antiviral. In addition, various synthetic benzophenone motifs are present in marketed drugs. They also represent important ingredients in perfumes and can act as photoinitiators. This review will provide an overview of benzophenone moieties with medicinal aspects synthesized in the last 15 years and will cover the most potent molecule in each report. In this review, only benzophenones with substitutions on their aryl rings, i.e. diphenyl ketone analogues, have been covered.
Collapse
Affiliation(s)
- Khemchand Surana
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Ahmedabad (NIPER-A) , Gandhinagar , Gujarat - 382355 , India .
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Ahmedabad (NIPER-A) , Gandhinagar , Gujarat - 382355 , India .
| | - Monika Diwaker
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Ahmedabad (NIPER-A) , Gandhinagar , Gujarat - 382355 , India .
| | - Satyasheel Sharma
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Ahmedabad (NIPER-A) , Gandhinagar , Gujarat - 382355 , India .
| |
Collapse
|
67
|
Ishigaki M, Nishii T, Puangchit P, Yasui Y, Huck CW, Ozaki Y. Noninvasive, high-speed, near-infrared imaging of the biomolecular distribution and molecular mechanism of embryonic development in fertilized fish eggs. JOURNAL OF BIOPHOTONICS 2018; 11:e201700115. [PMID: 29165906 DOI: 10.1002/jbio.201700115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
In this study, the distribution of biomaterials and its molecular mechanism of embryonic development in Japanese medaka fish were analyzed nondestructively and noninvasively without staining using near-infrared (NIR) imaging. The microscopic NIR imaging system used in this research was a device capable of ultra-high-speed imaging; using this system, one can acquire microscopic imaging data in a few seconds. Therefore, the medaka eggs remained alive throughout measurements and were successfully monitored in vivo. The distributions of biomolecules were examined by mapping the intensities of NIR bands resulting from lipids, proteins and water in 2 dimensions (2D). The structures of eyes, lipid bilayer membranes, micelles and water-structure differences at the interface of different substances constituting different structures on the egg were visualized. Furthermore, insights on the metabolic mechanisms of lipids and membrane functions were drawn from the biased distribution of lipoproteins and the presence of unsaturated fatty acids in the egg membrane. These results indicated the potential for NIR imaging in evaluating the biological functions and metabolic systems of cells and embryos.
Collapse
Affiliation(s)
- Mika Ishigaki
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Takashi Nishii
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Paralee Puangchit
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Yui Yasui
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innsbruck, Austria
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
68
|
González-Mira A, Torreblanca A, Hontoria F, Navarro JC, Mañanós E, Varó I. Effects of ibuprofen and carbamazepine on the ion transport system and fatty acid metabolism of temperature conditioned juveniles of Solea senegalensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:693-701. [PMID: 29172150 DOI: 10.1016/j.ecoenv.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The increasing presence of pharmaceuticals in aquatic environments in the last decades, derived from human and veterinary use, has become an important environmental problem. Previous studies have shown that ibuprofen (IB) and carbamazepine (CBZ) modify physiological and biochemical processes in Senegalese sole (Solea senegalensis) in a temperature-dependent manner. In other vertebrates, there is evidence that both of these pharmaceuticals interfere with the 'arachidonic acid (AA) cascade', which is responsible for the biosynthesis of numerous enzymes that are involved in the osmoregulatory process. The present work aims to study the temperature-dependent effects of these two pharmaceuticals on several biochemical and molecular parameters in Senegalese sole. Regarding osmoregulation, Na+, K+ -ATPase enzyme activity was determined in the gills, kidney and intestine, and the expressions of both Na+, K+ -ATPase 1α-subunit isoforms (ATP1A1a and ATP1A1b) were quantified in gills. Gill prostaglandin-endoperoxide synthase-2 (PTGS2) gene expression and fatty acid composition were selected to determine the interference of both pharmaceuticals with the AA cascade. Senegalese sole juveniles, acclimatised at 15°C or 20°C, were exposed through intraperitoneal injection to IB (10mg/kg) and CBZ (1mg/kg) for 48h. Non-injected fish (Control) and those injected with the carrier (sunflower oil; S.O.), acclimated at each of the two temperatures, were used for comparison. The results show that IB directly affected the osmoregulatory mechanisms that alter gill and intestine Na+, K+ -ATPase activities. In addition, the copy number of ATP1A1a was higher at 20°C than at 15°C, which could be a direct response to the temperature variation. The gene expression of PTGS2 was affected by neither drug administration nor acclimation temperature. Nevertheless, detailed analysis of AA and eicosapentaenoic acid (EPA) percentages revealed a CBZ-derived effect in the fatty acid composition of the gills.
Collapse
Affiliation(s)
- A González-Mira
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - A Torreblanca
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - F Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - J C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - E Mañanós
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - I Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
69
|
Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V. Aspirin for Prevention of Preeclampsia. Drugs 2017; 77:1819-1831. [PMID: 29039130 PMCID: PMC5681618 DOI: 10.1007/s40265-017-0823-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aspirin is currently the most widely prescribed treatment in the prevention of cardiovascular complications. The indications for the use of aspirin during pregnancy are, however, the subject of much controversy. Since the first evidence of the obstetric efficacy of aspirin in 1985, numerous studies have tried to determine the effect of low-dose aspirin on the incidence of preeclampsia, with very controversial results. Large meta-analyses including individual patient data have demonstrated that aspirin is effective in preventing preeclampsia in high-risk patients, mainly those with a history of preeclampsia. However, guidelines regarding the usage of aspirin to prevent preeclampsia differ considerably from one country to another. Screening modalities, target population, and aspirin dosage are still a matter of debate. In this review, we report the pharmacodynamics of aspirin, its main effects according to dosage and gestational age, and the evidence-based indications for primary and secondary prevention of preeclampsia.
Collapse
Affiliation(s)
- A Atallah
- Hospices Civils de Lyon, Department of Obstetrics and Gynecology, Femme Mère Enfant Hospital, University Hospital Center, 59 boulevard Pinel, 69500, Bron, France
- Claude-Bernard University Lyon1, Lyon, France
| | - E Lecarpentier
- Assistance Publique-Hôpital de Paris, Department of Obstetrics and Gynecology, Port-Royal Maternity, University Hospital Center Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, 53, Avenue de l'Observatoire, 75014, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- PremUP Foundation, Paris, France
- DHU Risques et Grossesse, Paris, France
| | - F Goffinet
- Assistance Publique-Hôpital de Paris, Department of Obstetrics and Gynecology, Port-Royal Maternity, University Hospital Center Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, 53, Avenue de l'Observatoire, 75014, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- PremUP Foundation, Paris, France
- DHU Risques et Grossesse, Paris, France
| | - M Doret-Dion
- Hospices Civils de Lyon, Department of Obstetrics and Gynecology, Femme Mère Enfant Hospital, University Hospital Center, 59 boulevard Pinel, 69500, Bron, France
- Claude-Bernard University Lyon1, Lyon, France
| | - P Gaucherand
- Hospices Civils de Lyon, Department of Obstetrics and Gynecology, Femme Mère Enfant Hospital, University Hospital Center, 59 boulevard Pinel, 69500, Bron, France
- Claude-Bernard University Lyon1, Lyon, France
| | - V Tsatsaris
- Assistance Publique-Hôpital de Paris, Department of Obstetrics and Gynecology, Port-Royal Maternity, University Hospital Center Cochin Broca Hôtel Dieu, Groupe Hospitalier Universitaire Ouest, 53, Avenue de l'Observatoire, 75014, Paris, France.
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France.
- PremUP Foundation, Paris, France.
- DHU Risques et Grossesse, Paris, France.
| |
Collapse
|
70
|
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017; 9:E1165. [PMID: 29068398 PMCID: PMC5707637 DOI: 10.3390/nu9111165] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Collapse
Affiliation(s)
- Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Michael C Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
71
|
Effects of pulpotomy using mineral trioxide aggregate on prostaglandin transporter and receptors in rat molars. Sci Rep 2017; 7:6870. [PMID: 28761141 PMCID: PMC5537257 DOI: 10.1038/s41598-017-07167-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Mineral trioxide aggregate (MTA) is a commonly used dental pulp-capping material with known effects in promoting reparative dentinogenesis. However, the mechanism by which MTA induces dentine repair remains unclear. The aim of the present study was to investigate the role of prostaglandin E2 (PGE2) in dentine repair by examining the localisation and mRNA expression levels of its transporter (Pgt) and two of its receptors (Ep2 and Ep4) in a rat model of pulpotomy with MTA capping. Ep2 expression was detected in odontoblasts, endothelial cells, and nerve fibres in normal and pulpotomised tissues, whereas Pgt and Ep4 were immunolocalised only in the odontoblasts. Moreover, mRNA expression of Slco2a1 (encoding Pgt), Ptger2 (encoding Ep2), and Ptger4 (encoding Ep4) was significantly upregulated in pulpotomised dental pulp and trigeminal ganglia after MTA capping. Our results provide insights into the functions of PGE2 via Pgt and Ep receptors in the healing dentine/pulp complex and may be helpful in developing new therapeutic targets for dental disease.
Collapse
|
72
|
Ohkura M, Ohkura N, Yoshiba N, Yoshiba K, Ida-Yonemochi H, Ohshima H, Saito I, Okiji T. Orthodontic force application upregulated pain-associated prostaglandin-I 2/PGI 2-receptor/TRPV1 pathway-related gene expression in rat molars. Odontology 2017. [PMID: 28631175 DOI: 10.1007/s10266-017-0309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to analyze the mRNA expression and protein localization of prostaglandin I2 (PGI2) synthase (PGIS), the PGI2 receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI2-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6-72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR. PGIS, IP receptor, and TRPV1 proteins were immunostained. The force stimulation induced significant upregulation of PGIS at 6-24 h, and PTGIR and TRPV1 at 6 and 12 h in the pulp. PGIS was immunolocalized in odontoblasts and some fibroblasts in the force-stimulated pulp. The IP receptor and TRPV1 immunoreactivities were detected on odontoblasts and some nerve fibers. It was concluded that PGIS, PTGIR, and TRPV1 in rat molar pulp were significantly upregulated shortly after the force application, and that the IP receptor was co-expressed on TRPV1-expressing nerves and odontoblasts. These findings suggest that the PGI2-IP receptor-TRPV1 pathway is associated with the acute phase of force-induced pulp changes involving odontoblasts and nerves.
Collapse
Affiliation(s)
- Mariko Ohkura
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kunihiko Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Isao Saito
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
73
|
Chandrasekhar S, Yu X, Harvey AK, Oskins JL, Lin C, Wang X, Blanco M, Fisher MJ, Kuklish SL, Schiffler MA, Vetman T, Warshawsky AM, York JS, Bendele AM, Chambers MG. Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists. Pharmacol Res Perspect 2017; 5:e00316. [PMID: 28603634 PMCID: PMC5464344 DOI: 10.1002/prp2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/07/2022] Open
Abstract
Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE 2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE 2 are transduced through various receptor sub-types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE 2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.
Collapse
Affiliation(s)
| | - Xiao‐Peng Yu
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Anita K. Harvey
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Jennifer L. Oskins
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Chaohua Lin
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Xushan Wang
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Maria‐Jesus Blanco
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Matthew J. Fisher
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Steven L. Kuklish
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | | | - Tatiana Vetman
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Alan M. Warshawsky
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Jeremy S. York
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | | | - Mark G. Chambers
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| |
Collapse
|
74
|
Sander WJ, O'Neill HG, Pohl CH. Prostaglandin E 2 As a Modulator of Viral Infections. Front Physiol 2017; 8:89. [PMID: 28261111 PMCID: PMC5306375 DOI: 10.3389/fphys.2017.00089] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/01/2017] [Indexed: 02/06/2023] Open
Abstract
Viral infections are a major cause of infectious diseases worldwide. Inflammation and the immune system are the major host defenses against these viral infection. Prostaglandin E2 (PGE2), an eicosanoid generated by cyclooxygenases, has been shown to modulate inflammation and the immune system by regulating the expression/concentration of cytokines. The effect of PGE2 on viral infection and replication is cell type- and virus-family-dependent. The host immune system can be modulated by PGE2, with regards to immunosuppression, inhibition of nitrogen oxide (NO) production, inhibition of interferon (IFN) and apoptotic pathways, and inhibition of viral receptor expression. Furthermore, PGE2 can play a role in viral infection directly by increasing the production and release of virions, inhibiting viral binding and replication, and/or stimulating viral gene expression. PGE2 may also have a regulatory role in the induction of autoimmunity and in signaling via Toll-like receptors. In this review the known effects of PGE2 on the pathogenesis of various infections caused by herpes simplex virus, rotavirus, influenza A virus and human immunodeficiency virus as well the therapeutic potential of PGE2 are discussed.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| |
Collapse
|
75
|
Kouskoura T, Katsaros C, von Gunten S. The Potential Use of Pharmacological Agents to Modulate Orthodontic Tooth Movement (OTM). Front Physiol 2017; 8:67. [PMID: 28228735 PMCID: PMC5296343 DOI: 10.3389/fphys.2017.00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
The biological processes that come into play during orthodontic tooth movement (OTM) have been shown to be influenced by a variety of pharmacological agents. The effects of such agents are of particular relevance to the clinician as the rate of tooth movement can be accelerated or reduced as a result. This review aims to provide an overview of recent insights into drug-mediated effects and the potential use of drugs to influence the rate of tooth movement during orthodontic treatment. The limitations of current experimental models and the need for well-designed clinical and pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Thaleia Kouskoura
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern Bern, Switzerland
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern Bern, Switzerland
| | | |
Collapse
|
76
|
Šavikin KP, Krstić-Milošević DB, Menković NR, Beara IN, Mrkonjić ZO, Pljevljakušić DS. Crataegus orientalis Leaves and Berries: Phenolic Profiles, Antioxidant and Anti-inflammatory Activity. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study was designed to define the phenolic content, antioxidant and anti-inflammatory activity of Crateagus orientalis Pall. ex M. Bieb., traditionally used by local people in southern parts of F.Y.R. Macedonia. The presence and content of 7 phenolics in ethanolic extracts of leaves and berries were studied using HPLC-DAD, where the most dominant compounds were hyperoside, isoquercitrin and chlorogenic acid. The leaf extract was more effective as a DPPH radical scavenger (IC50 = 29.7 μg/g) than the berry extract, as well as in the relative reducing power on Fe3+. Anti-inflammatory potential was studied by means of cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) inhibitory activity; both extracts evinced activity. Furthermore, C. orientalis leaf extract showed a concentration dependent inhibition of COX-1 pathway products 12-HHT and TXB2, reaching IC50 values below the lowest applied concentration (68.9% and 55.2% of 12-HHT and TXB2 production inhibition, respectively, at concentration of 0.4 mg/mL). Although inhibitors such as acetylsalicylic acid and quercetin showed higher activity, this study demonstrates that the investigated extracts are potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Katarina P. Šavikin
- Institute for Medicinal Plants Research ‘Dr. Josif Pančić’, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dijana B. Krstić-Milošević
- University of Belgrade, Institute for Biological Research ‘Siniša Stanković’, 142 Despota Stefana Blvd., 11060 Belgrade, Serbia
| | - Nebojša R. Menković
- Institute for Medicinal Plants Research ‘Dr. Josif Pančić’, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Ivana N. Beara
- Institute for Medicinal Plants Research ‘Dr. Josif Pančić’, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Zorica O. Mrkonjić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Dejan S. Pljevljakušić
- Institute for Medicinal Plants Research ‘Dr. Josif Pančić’, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
77
|
Nagao M, Tanabe N, Manaka S, Takayama T, Kawato T, Torigoe G, Sekino J, Tsukune N, Ozaki M, Maeno M, Suzuki N, Sato S. Low-intensity pulsed ultrasound inhibits lipopolysaccharide-induced IL-6 and RANKL expression in osteoblasts. J Oral Sci 2017. [DOI: 10.2334/josnusd.16-0624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mayu Nagao
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Soichiro Manaka
- Department of Periodontology, Nihon University School of Dentistry
| | - Tadahiro Takayama
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| | - Takayuki Kawato
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | - Go Torigoe
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry
| | - Jumpei Sekino
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry
| | - Naoya Tsukune
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry
| | - Manami Ozaki
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry
| | - Masao Maeno
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
- Department of Oral Health Sciences, Nihon University School of Dentistry
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
78
|
Xu X, Zhang K, Zhao L, Li C, Bu W, Shen Y, Gu Z, Chang B, Zheng C, Lin C, Sun H, Yang B. Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32706-32716. [PMID: 27934165 DOI: 10.1021/acsami.6b12252] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The emerging photoluminescent carbon-based nanomaterials are promising in various fields besides cell imaging and carrier transport. Carbon nanomaterials with specific biological functions, however, are rarely investigated. Aspirin is a very common anti-inflammatory medication to relieve aches and pains. In this study, we have tried to create a carbon nanoparticle with aspirin, and we expect that this new carbon nanoparticle will have both anti-inflammatory and fluorescent biomarker functions. Fluorescent aspirin-based carbon dots (FACDs) were synthesized by condensing aspirin and hydrazine through a one-step microwave-assisted method. Imaging data demonstrated that FACDs efficiently entered into human cervical carcinoma and mouse monocyte macrophage cells in vitro with low cell toxicity. Results from quantitative polymerase chain reaction and histological analysis indicated that FACDs possessed effective anti-inflammatory effects in vitro and in vivo compared to aspirin only. Hematology, serum biochemistry, and histology results suggested that FACDs also had no significant toxicity in vivo. Our results clearly demonstrate that FACDs have dual functions, cellular imaging/bioimaging and anti-inflammation, and suggest that FACDs have great potential in future clinical applications.
Collapse
Affiliation(s)
- Xiaowei Xu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
- Department of Periodontology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University , Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Liang Zhao
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Chen Li
- Department of Oral Medicine, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Wenhuan Bu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Yuqin Shen
- Department of Periodontology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Zhongyi Gu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Bei Chang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Chongtao Lin
- Department of Periodontology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University , Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University , Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|
79
|
Lerner R, Post J, Loch S, Lutz B, Bindila L. Targeting brain and peripheral plasticity of the lipidome in acute kainic acid-induced epileptic seizures in mice via quantitative mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:255-267. [PMID: 27871881 DOI: 10.1016/j.bbalip.2016.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/25/2022]
Abstract
Epilepsy is a highly common chronic neurological disorder, manifested in many different types, affecting ~1% of the worldwide human population. The molecular mechanisms of epileptogenesis have not yet been clarified, and pharmacoresistance exhibited by 30-40% of epilepsy patients remains a major obstacle in medical care. Growing evidence indicates a role of lipid signalling pathways in epileptogenesis, thus lipid signals emerge as potential biomarkers for the onset and evolving course of the epileptic disorder, as well as potential therapeutic agents and targets. For this purpose, we applied a lipidomic strategy to unravel lipid alterations in brain regions, periphery tissues and plasma that are specific for acute epileptic seizures in mice at 1h after seizure induction by systemic kainic acid injection as compared to vehicle controls. Specifically, levels of (i) selected phospholipids and sphingomyelins, (ii) the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), and the endocannabinoid-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), (iii) arachidonic acid (AA), (iv) selected eicosanoids, and (v) fatty acyl content of lipidome were determined in pulverized tissues from six brain regions of kainic acid induced epileptic seizure models and vehicle controls: hypothalamus, hippocampus, thalamus, striatum, cerebellum and cerebral cortex, and from peripheral organs, such as heart and lungs, and in plasma. Alterations in lipid levels after acute epileptic seizures as compared to non-seizure controls were found to be brain region- and periphery tissue-specific, including specific plasma lipid correlates, highlighting their value as marker candidates in translational research studies, and/or drug discovery and response monitoring.
Collapse
Affiliation(s)
- Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Julia Post
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Sebastian Loch
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
80
|
Kuklish SL, Antonysamy S, Bhattachar SN, Chandrasekhar S, Fisher MJ, Fretland AJ, Gooding K, Harvey A, Hughes NE, Luz JG, Manninen PR, McGee JE, Navarro A, Norman BH, Partridge KM, Quimby SJ, Schiffler MA, Sloan AV, Warshawsky AM, York JS, Yu XP. Characterization of 3,3-dimethyl substituted N-aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors. Bioorg Med Chem Lett 2016; 26:4824-4828. [DOI: 10.1016/j.bmcl.2016.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/28/2023]
|
81
|
Raouf J, Rafique N, Goodman MC, Idborg H, Bergqvist F, Armstrong RN, Jakobsson PJ, Morgenstern R, Spahiu L. Arg126 and Asp49 Are Essential for the Catalytic Function of Microsomal Prostaglandin E2 Synthase 1 and Ser127 Is Not. PLoS One 2016; 11:e0163600. [PMID: 27684486 PMCID: PMC5042469 DOI: 10.1371/journal.pone.0163600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Prostaglandins are signaling molecules that regulate different physiological processes, involving allergic and inflammatory responses and cardiovascular control. They are involved in several pathophysiological processes, including inflammation and cancer. The inducible terminal enzyme, microsomal prostaglandin E synthase 1 (MPGES1), catalyses prostaglandin E2 production during inflammation. MPGES1 has therefore been intensively studied as a pharmaceutical target and many competitive inhibitors targeting its active site have been developed. However, little is known about its catalytic mechanism. AIM The objective of this study was to investigate which amino acids play a key role in the catalytic mechanism of MPGES1. MATERIALS AND METHODS Based on results and predictions from previous structural studies, the amino acid residues Asp49, Arg73, Arg126, and Ser127 were chosen and altered by site-directed mutagenesis. The mutated enzyme variants were cloned and expressed in both the E. coli and the Baculovirus expression systems. Their catalytic significance was evaluated by activity measurements with prostanoid profiling. RESULTS AND CONCLUSIONS Our study shows that Arg126 and Asp49 are absolutely required for the catalytic activity of MPGES1, as when exchanged, the enzyme variants loose activity. Ser127 and Arg73 on the other hand, don't seem to be central to the catalytic mechanism because when exchanged, their variants retain considerable activity. Our finding that the Ser127Ala variant retains activity was surprising since high-resolution structural data supported a role in glutathione activation. The close proximity of Ser127 to the active site is, however, supported since the Ser127Cys variant displays 80% lowered activity.
Collapse
Affiliation(s)
- Joan Raouf
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Nazmi Rafique
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| | | | - Helena Idborg
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Filip Bergqvist
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Richard N. Armstrong
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Unit of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Spahiu
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
82
|
Affiliation(s)
- Douglas A. Kniss
- Department of Obstetrics and Gynecology, Laboratory of Perinatal Research, The Ohio State University, College of Medicine and Public Health, Columbus, Ohio
| |
Collapse
|
83
|
Liao L, Chen Y, Wang W. The current progress in understanding the molecular functions and mechanisms of visfatin in osteoarthritis. J Bone Miner Metab 2016; 34:485-90. [PMID: 26969394 DOI: 10.1007/s00774-016-0743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
Osteoarthritis, (OA), also known as degenerative arthritis or degenerative joint disease, is the most common form of arthritis, affecting millions of people worldwide. It is a group of mechanical abnormalities involving degradation of the joints and occurs when the protective cartilage (articular cartilage) on the ends of bones such as the knees, hips and fingers abrades over time. It mainly affects the whole joint structure, including the articular cartilage, subchondral bone and synovial tissue. Extensive work has been done in the past decades to investigate the cellular mechanism of this disease. However, to date, it is still poorly understood, and there is no effective treatment. Recently, both in vitro and in vivo studies have confirmed adipokines play critical roles during OA development. Among these, leptin and adiponectin have been well investigated, whereas the effect of the novel adipokine, visfatin, on OA still needs to be revealed. Therefore, in this short review, we will focus on visfatin and summarize the current progress in the research on its role in OA development.
Collapse
Affiliation(s)
- Lele Liao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Yuhua, Changsha, Hunan, China
| | - Yiyue Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Yuhua, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, 86 Renmin Middle Rd, Yuhua, Changsha, Hunan, China.
| |
Collapse
|
84
|
Gupta A, Aparoy P. Insights into the structure activity relationship of mPGES-1 inhibitors: Hints for better inhibitor design. Int J Biol Macromol 2016; 88:624-32. [DOI: 10.1016/j.ijbiomac.2016.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
85
|
Abstract
Platelets play an important, but often under-recognized role in cardiovascular disease. For example, the normal response of the platelet can be altered, either by increased pro-aggregatory stimuli or by diminished anti-aggregatory substances to produce conditions of increased platelet activation/aggregation and occur in active cardiovascular disease states both on a chronic (e.g. stable angina pectoris) and acute basis (e.g. acute myocardial infarction). In addition, platelet hyperaggregability is also associated with the risk factors for coronary artery disease (e.g. smoking, hypertension, and hypercholesterolaemia). Finally, the utility of an increasing range of anti-platelet therapies in the management of the above disease states further emphasizes the pivotal role platelets play in the pathogenesis of cardiovascular disease. This paper provides a comprehensive overview of the normal physiologic role of platelets in maintain homeostasis, the pathophysiologic processes that contribute to platelet dysfunction in cardiovascular disease and the associated role and benefits of anti-platelet therapies.
Collapse
Affiliation(s)
- Scott Willoughby
- Cardiology Unit, The Queen Elizabeth Hospital, Adelaide University, Adelaide, South Australia, Australia
| | - Andrew Holmes
- Cardiology Unit, The Queen Elizabeth Hospital, Adelaide University, Adelaide, South Australia, Australia
| | - Joseph Loscalzo
- The Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
86
|
Simeonov SP, Nunes JPM, Guerra K, Kurteva VB, Afonso CAM. Synthesis of Chiral Cyclopentenones. Chem Rev 2016; 116:5744-893. [DOI: 10.1021/cr500504w] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - João P. M. Nunes
- Department
of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Krassimira Guerra
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanya B. Kurteva
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str, bl.9, 1113 Sofia, Bulgaria
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
87
|
Rahman K, Lowe GM, Smith S. Aged Garlic Extract Inhibits Human Platelet Aggregation by Altering Intracellular Signaling and Platelet Shape Change. J Nutr 2016; 146:410S-415S. [PMID: 26764324 DOI: 10.3945/jn.114.202408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increased platelet aggregation plays a pivotal role in the etiology of cardiovascular disease. Upon platelet aggregation, an increase in free cytoplasmic Ca(2+) results in the inhibition of soluble guanylyl cyclase (sGC) and adenylyl cyclase (AC), leading to a decrease in cyclic guaninosine-5'-monophosphate (cGMP) and cAMP, respectively. This leads to the activation of the glycoprotein IIb/IIIa (GPIIb/IIIa) fibrinogen receptor, resulting in platelet shape change. Aged garlic extract (AGE) decreases platelet aggregation; however, the mechanisms involved are not clearly defined. OBJECTIVE Our objective was to investigate the effects of AGE on intraplatelet cell signaling and platelet shape change. METHODS Platelets from 14 participants were studied. Platelet aggregation was induced by ADP in the presence of AGE up to a concentration of 6.25% (vol:vol) alone or in combination with 3-morpholinosydnonimine (Sin-1), a nitric oxide donor. The experiments with AGE were repeated in the presence of 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. In a series of separate experiments, platelet aggregation was induced in the presence of either 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an sGC inhibitor, or 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), an AC inhibitor, or a combination of both in the presence of IBMX and AGE. Intraplatelet cGMP and cAMP were measured. The platelets were also subjected to scanning electron microscopic analysis, and their binding to fibrinogen was determined. RESULTS AGE decreased platelet aggregation at all concentrations tested; this decrease was more marked in the presence of Sin-1 and ranged between 15% and 67%.The presence of IBMX also led to a decrease (17-35%) in platelet aggregation at all AGE concentrations and a significant decrease in the amounts of cGMP (24-41%) and cAMP (19-70%), respectively, in the presence of ODQ and SQ22536. The presence of AGE significantly inhibited the binding of activated platelets to fibrinogen, preventing changes in platelet shape. CONCLUSION These results indicate that AGE inhibits platelet aggregation by increasing cyclic nucleotides and inhibiting fibrinogen binding and platelet shape change.
Collapse
Affiliation(s)
- Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gordon M Lowe
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Sarah Smith
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
88
|
Chandrasekhar S, Harvey AK, Yu XP, Chambers MG, Oskins JL, Lin C, Seng TW, Thibodeaux SJ, Norman BH, Hughes NE, Schiffler MA, Fisher MJ. Identification and Characterization of Novel Microsomal Prostaglandin E Synthase-1 Inhibitors for Analgesia. ACTA ACUST UNITED AC 2016; 356:635-44. [DOI: 10.1124/jpet.115.228932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023]
|
89
|
Khurana P, Jachak SM. Chemistry and biology of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors as novel anti-inflammatory agents: recent developments and current status. RSC Adv 2016. [DOI: 10.1039/c5ra25186a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostaglandin (PG) E2, a key mediator of inflammatory pain and fever, is biosynthesized from PGH2 by mPGES-1.
Collapse
Affiliation(s)
- Puneet Khurana
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Sanjay M. Jachak
- Department of Natural Products
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| |
Collapse
|
90
|
Borges RS, Castle SL. The antioxidant properties of salicylate derivatives: A possible new mechanism of anti-inflammatory activity. Bioorg Med Chem Lett 2015; 25:4808-4811. [DOI: 10.1016/j.bmcl.2015.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023]
|
91
|
Campione E, Paternò EJ, Candi E, Falconi M, Costanza G, Diluvio L, Terrinoni A, Bianchi L, Orlandi A. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5843-50. [PMID: 26604686 PMCID: PMC4630202 DOI: 10.2147/dddt.s84849] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Piroxicam (PXM), a nonsteroidal anti-inflammatory drug, is an enolic benzothiazine and a potent member of the oxicam series. The drug suppresses the synthesis of proinflammatory enzymes, such as cyclo-oxygenases-1 and -2 (COX-1 and 2), downregulates the production of prostaglandins (PGs) and tromboxanes, and inhibits polyamines production by blocking ornithine decarboxylase induction involved in nonmelanoma skin carcinogenesis. In addition, PXM is able to induce tumor cell apoptosis and suppresses metalloproteinase 2 activities. Skin carcinogenesis is a multistep process in which the accumulation of genetic events leads to a gradually dysplastic cellular expression, deregulation of cell growth, and carcinomatous progression. COX-1 upregulation plays a significant role in PG and vascular epidermal growth factor production supporting tumor growth. Increased level of PGs in premalignant and/or malignant cutaneous tumors is also favored by upregulation of COX-2 and downregulation of the tumor suppressor gene 15-hydroxy-prostaglandin dehydrogenase. Chemoprevention can be a hopeful approach to inhibit carcinoma occurrence before an invasive tumor develops. The chemopreventive effect of nonsteroidal anti-inflammatory drugs on nonmelanoma skin cancers has been established. In this study, we highlighted the different modalities of action of PXM on the pathogenesis of nonmelanoma skin cancer, analyzing and evaluating binding modes and energies between COX-1 or COX-2 and PXM by protein–ligand molecular docking. Our clinical experience about the local use of PXM on actinic keratoses and field cancerization is also reported, confirming its efficacy as target therapy.
Collapse
Affiliation(s)
- Elena Campione
- Department of Dermatology, University of Rome "Tor Vergata" Rome, Italy
| | | | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata" Rome, Italy ; Biochemistry Laboratory IDI-IRCCS, Faculty of Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome "Tor Vergata" Rome, Italy
| | - Gaetana Costanza
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" Rome, Italy
| | - Laura Diluvio
- Department of Dermatology, University of Rome "Tor Vergata" Rome, Italy
| | - Alessandro Terrinoni
- Biochemistry Laboratory IDI-IRCCS, Faculty of Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, University of Rome "Tor Vergata" Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata" Rome, Italy ; Institute of Anatomic Pathology, University of Rome "Tor Vergata" Rome, Italy ; Tor Vergata University-Policlinic of Rome, Rome, Italy
| |
Collapse
|
92
|
Mantel A, Newsome A, Thekkudan T, Frazier R, Katdare M. The role of aldo-keto reductase 1C3 (AKR1C3)-mediated prostaglandin D2 (PGD2) metabolism in keloids. Exp Dermatol 2015; 25:38-43. [PMID: 26308156 DOI: 10.1111/exd.12854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 01/12/2023]
Abstract
Keloids are progressively expanding scars, mostly prevalent in individuals of African descent. Previous data identified increased mast cell number and activation state in keloids suggesting a role in disease progression. The major eicosanoid secreted by mast cells is prostaglandin D2 (PGD2), a relatively unstable pro-inflammatory mediator which can be spontaneously converted to 15-deoxy-(Delta12,14)-prostaglandin J2(15d-PGJ2) or enzymatically metabolized to 9α,11β-PGF2 by aldo-keto reductase 1C3 (AKR1C3). In this work, we investigated the possible role of PGD2 and its metabolites in keloids using CRL1762 keloid fibroblasts (KF) and immunohistochemical staining. Our data suggested approximately 3-fold increase of tryptase-positive mast cell count in keloids compared with normal skin. Furthermore, AKR1C3 was overexpressed in the fibrotic area of keloids while relatively weak staining detected in normal skin. Metabolism of PGD2 to 9α,11β-PGF2 by both, KF and normal fibroblasts, was dependent on AKR1C3 as this reaction was attenuated in the presence of the AKR1C3 inhibitor, 2'-hydroxyflavanone, or in cells with decreased AKR1C3 expression. 15d-PGJ2, but not the other tested PGs, inhibited KF proliferation, attenuated KF-mediated collagen gel contraction and increased caspase-3 activation. In addition, treatment with 15d-PGJ2 activated P38-MAPK, induced reactive oxygen species and upregulated superoxide dismutase-1 (SOD-1). Finally, inhibition of P38-MAPK further augmented 15d-PGJ2-induced caspase-3 cleavage and attenuated its effect on SOD-1 transcription. This work suggests that localized dual inhibition of AKR1C3 and P38-MAPK may inhibit keloid progression. Inhibiting AKR1C3 activity may generate oxidative environment due to redirection of PGD2 metabolism towards 15d-PGJ2 while inhibition of P38-MAPK will sensitize keloid cells to ROS-induced apoptosis.
Collapse
Affiliation(s)
- Alon Mantel
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Austin Newsome
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Theresa Thekkudan
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA
| | - Robert Frazier
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - Meena Katdare
- Hampton University Skin of Color Research Institute (HUSCRI), Hampton, VA, USA.,Department of Dermatology, Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| |
Collapse
|
93
|
Kennedy-Lydon T, Crawford C, Wildman SS, Peppiatt-Wildman CM. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes. Am J Physiol Renal Physiol 2015. [PMID: 26202223 DOI: 10.1152/ajprenal.00199.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage.
Collapse
Affiliation(s)
- Teresa Kennedy-Lydon
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Carol Crawford
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Scott S Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Claire M Peppiatt-Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| |
Collapse
|
94
|
Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function? Prog Lipid Res 2015. [DOI: 10.1016/j.plipres.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Abstract
Lipid-derived electrophilic molecules are endogenously generated and are causally involved in many pathophysiological effects. Prostaglandin D2, a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield the J-series PGs such as 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2). Because of the electrophilic α,β-unsaturated ketone moiety present in its cyclopentenone ring, 15d-PGJ2 acts as an endogenous electrophile. 15d-PGJ2 can covalently react via the Michael addition reaction with critical cellular nucleophiles, such as the free cysteine residues of proteins that play a key role in the regulation of the intracellular signaling pathways. Covalent modification of cellular proteins by 15d-PGJ2 may be one of the most important mechanisms by which 15d-PGJ2 induces many biological responses involved in the pathophysiological effects associated with inflammation. This current review is intended to provide a comprehensive summary of 15d-PGJ2 as an endogenous electrophilic mediator of biological activities.
Collapse
Affiliation(s)
- Takahiro Shibata
- a Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| |
Collapse
|
96
|
Pantham P, Heazell AE, Mullard G, Begley P, Chen Q, Brown M, Dunn WB, Chamley LW. Antiphospholipid Antibodies Alter Cell-Death-Regulating Lipid Metabolites in First and Third Trimester Human Placentae. Am J Reprod Immunol 2015; 74:181-99. [DOI: 10.1111/aji.12387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Priyadarshini Pantham
- Department of Obstetrics & Gynaecology; The University of Auckland; Auckland New Zealand
- Section of Neonatology; Department of Pediatrics; University of Colorado Anschutz Medical Campus; Aurora CO USA
| | - Alexander E.P. Heazell
- The Maternal and Fetal Health Research Centre; St. Mary's Hospital; The University of Manchester; Manchester UK
| | - Graham Mullard
- Centre for Advanced Discovery and Experimental Therapeutics; Manchester Biomedical Research Centre; The University of Manchester; Manchester UK
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics; Manchester Biomedical Research Centre; The University of Manchester; Manchester UK
| | - Qi Chen
- Department of Obstetrics & Gynaecology; The University of Auckland; Auckland New Zealand
| | - Maria Brown
- Centre for Advanced Discovery and Experimental Therapeutics; Manchester Biomedical Research Centre; The University of Manchester; Manchester UK
| | - Warwick B. Dunn
- Centre for Advanced Discovery and Experimental Therapeutics; Manchester Biomedical Research Centre; The University of Manchester; Manchester UK
- Centre for Endocrinology and Diabetes; Institute of Human Development; The University of Manchester; Manchester UK
- School of Biosciences; The University of Birmingham; Edgbaston Birmingham UK
| | - Lawrence W. Chamley
- Department of Obstetrics & Gynaecology; The University of Auckland; Auckland New Zealand
| |
Collapse
|
97
|
Nguyen LK, Cavadas MAS, Kholodenko BN, Frank TD, Cheong A. Species differential regulation of COX2 can be described by an NFκB-dependent logic AND gate. Cell Mol Life Sci 2015; 72:2431-43. [PMID: 25697863 PMCID: PMC4439527 DOI: 10.1007/s00018-015-1850-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/25/2022]
Abstract
Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation.
Collapse
Affiliation(s)
- Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
98
|
Mukai Y, Toda T, Takeuchi S, Senda A, Yamashita M, Eliasson E, Rane A, Inotsume N. Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System. Biol Pharm Bull 2015; 38:1673-9. [DOI: 10.1248/bpb.b15-00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mukai
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Takaki Toda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Satoya Takeuchi
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Asuna Senda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Miki Yamashita
- Division of Clinical Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | - Erik Eliasson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Nobuo Inotsume
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
99
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
100
|
Mitchell JA, Ahmetaj-Shala B, Kirkby NS, Wright WR, Mackenzie LS, Reed DM, Mohamed N. Role of prostacyclin in pulmonary hypertension. Glob Cardiol Sci Pract 2014; 2014:382-93. [PMID: 25780793 PMCID: PMC4355513 DOI: 10.5339/gcsp.2014.53] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
Prostacyclin is a powerful cardioprotective hormone released by the endothelium of all blood vessels. Prostacyclin exists in equilibrium with other vasoactive hormones and a disturbance in the balance of these factors leads to cardiovascular disease including pulmonary arterial hypertension. Since it's discovery in the 1970s concerted efforts have been made to make the best therapeutic utility of prostacyclin, particularly in the treatment of pulmonary arterial hypertension. This has centred on working out the detailed pharmacology of prostacyclin and then synthesising new molecules based on its structure that are more stable or more easily tolerated. In addition, newer molecules have been developed that are not analogues of prostacyclin but that target the receptors that prostacyclin activates. Prostacyclin and related drugs have without doubt revolutionised the treatment and management of pulmonary arterial hypertension but are seriously limited by side effects within the systemic circulation. With the dawn of nanomedicine and targeted drug or stem cell delivery systems it will, in the very near future, be possible to make new formulations of prostacyclin that can evade the systemic circulation allowing for safe delivery to the pulmonary vessels. In this way, the full therapeutic potential of prostacyclin can be realised opening the possibility that pulmonary arterial hypertension will become, if not curable, a chronic manageable disease that is no longer fatal. This review discusses these and other issues relating to prostacyclin and its use in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jane A Mitchell
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| | | | - Nicholas S Kirkby
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| | - William R Wright
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| | - Louise S Mackenzie
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| | - Daniel M Reed
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| | - Nura Mohamed
- National Heart & Lung Institute, Dovehouse Street, London SW36LY, United Kingdom
| |
Collapse
|