51
|
Albus CA, Ruf S, Schöttler MA, Lein W, Kehr J, Bock R. Y3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis. THE PLANT CELL 2010; 22:2838-55. [PMID: 20807881 PMCID: PMC2947186 DOI: 10.1105/tpc.110.073908] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 07/19/2010] [Accepted: 08/10/2010] [Indexed: 05/18/2023]
Abstract
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged version of ycf3 from tobacco (Nicotiana tabacum) and introduced it into the tobacco chloroplast genome by genetic transformation. Immunoaffinity purification of Ycf3 complexes from the transplastomic plants identified a novel nucleus-encoded thylakoid protein, Y3IP1 (for Ycf3-interacting protein 1), that specifically interacts with the Ycf3 protein. Subsequent reverse genetics analysis of Y3IP1 function in tobacco and Arabidopsis thaliana revealed that knockdown of Y3IP1 leads to a specific deficiency in PSI but does not result in loss of Ycf3. Our data indicate that Y3IP1 represents a novel factor for PSI biogenesis that cooperates with the plastid genome-encoded Ycf3 in the assembly of stable PSI units in the thylakoid membrane.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| |
Collapse
|
52
|
Cho WK, Chen XY, Rim Y, Chu H, Kim S, Kim SW, Park ZY, Kim JY. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:771-778. [PMID: 20138393 DOI: 10.1016/j.jplph.2010.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 05/26/2023]
Abstract
The phloem is the major transport route for both small substances and large molecules, such as proteins and RNAs, from their sources to sink tissues. To investigate the proteins present in pumpkin phloem sap, proteome analysis using multidimensional protein identification technology was carried out. Pumpkin phloem peptides obtained by liquid chromatography/mass spectrometry/mass spectrometry were searched against pumpkin protein data derived from the National Center for Biotechnology Information. A total of 47 pumpkin phloem proteins were identified. The identified proteins mainly corresponded to enzymes involved in gibberellin biosynthesis, antioxidation processes, or defense mechanisms. Interestingly, seven enzymes required for gibberellin biosynthesis were identified for the first time by this proteomics approach. In summary, the new phloem proteins identified in this study provide strong evidence for stress and defense signaling and new insights regarding the role of gibberellin in the developmental programming of higher plants through the phloem.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Beneteau J, Renard D, Marché L, Douville E, Lavenant L, Rahbé Y, Dupont D, Vilaine F, Dinant S. Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:1345-61. [PMID: 20442276 PMCID: PMC2899916 DOI: 10.1104/pp.110.153882] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/28/2010] [Indexed: 05/18/2023]
Abstract
Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N',N''-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a beta-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.
Collapse
|
54
|
Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 2010; 107:13532-7. [PMID: 20566864 DOI: 10.1073/pnas.0910558107] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucurbitaceous plants (cucurbits) have long been preferred models for studying phloem physiology. However, these species are unusual in that they possess two different phloem systems, one within the main vascular bundles [fascicular phloem (FP)] and another peripheral to the vascular bundles and scattered through stem and petiole cortex tissues [extrafascicular phloem (EFP)]. We have revisited the assumption that the sap released after shoot incision originates from the FP, and also investigated the long-standing question of why the sugar content of this sap is ~30-fold less than predicted for requirements of photosynthate delivery. Video microscopy and phloem labeling experiments unexpectedly reveal that FP very quickly becomes blocked upon cutting, whereas the extrafascicular phloem bleeds for extended periods. Thus, all cucurbit phloem sap studies to date have reported metabolite, protein, and RNA composition and transport in the relatively minor extrafascicular sieve tubes. Using tissue dissection and direct sampling of sieve tube contents, we show that FP in fact does contain up to 1 M sugars, in contrast to low-millimolar levels in the EFP. Moreover, major phloem proteins in sieve tubes of FP differ from those that predominate in the extrafascicular sap, and include several previously uncharacterized proteins with little or no homology to databases. The overall compositional differences of the two phloem systems strongly indicate functional isolation. On this basis, we propose that the fascicular phloem is largely responsible for sugar transport, whereas the extrafascicular phloem may function in signaling, defense, and transport of other metabolites.
Collapse
|
55
|
Bencharki B, Boissinot S, Revollon S, Ziegler-Graff V, Erdinger M, Wiss L, Dinant S, Renard D, Beuve M, Lemaitre-Guillier C, Brault V. Phloem protein partners of Cucurbit aphid borne yellows virus: possible involvement of phloem proteins in virus transmission by aphids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:799-810. [PMID: 20459319 DOI: 10.1094/mpmi-23-6-0799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.
Collapse
Affiliation(s)
- B Bencharki
- INRA Université de Strasbourg, UMR SVQV, 28 rue de Herrlisheim BP 20507, 68021 Colmar, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Dinant S, Bonnemain JL, Girousse C, Kehr J. Phloem sap intricacy and interplay with aphid feeding. C R Biol 2010; 333:504-15. [PMID: 20541162 DOI: 10.1016/j.crvi.2010.03.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aphididae feed upon the plant sieve elements (SE), where they ingest sugars, nitrogen compounds and other nutrients. For ingestion, aphid stylets penetrate SE, and because of the high hydrostatic pressure in SE, phloem sap exudes out into the stylets. Severing stylets to sample phloem exudates (i.e. stylectomy) has been used extensively for the study of phloem contents. Alternative sampling techniques are spontaneous exudation upon wounding that only works in a few plant species, and the popular EDTA-facilitated exudation technique. These approaches have allowed fundamental advances on the understanding of phloem sap composition and sieve tube physiology, which are surveyed in this review. A more complete picture of metabolites, ions, proteins and RNAs present in phloem sap is now available, which has provided large evidence for the phloem role as a signalling network in addition to its primary role in partitioning of photo-assimilates. Thus, phloem sap sampling methods can have remarkable applications to analyse plant nutrition, physiology and defence responses. Since aphid behaviour is suspected to be affected by phloem sap quality, attempts to manipulate phloem sap content were recently undertaken based on deregulation in mutant plants of genes controlling amino acid or sugar content of phloem sap. This opens up new strategies to control aphid settlement on a plant host.
Collapse
Affiliation(s)
- Sylvie Dinant
- UMR 1318 INRA-AgroParisTech, institut Jean-Pierre-Bourgin, bâtiment 2, route de Saint-Cyr, Versailles, France.
| | | | | | | |
Collapse
|
57
|
Abstract
The phloem is a central actor in plant development and nutrition, providing nutrients and energy to sink organs and integrating interorgan communication. A comprehensive picture of the molecules trafficking in phloem sap is being made available, with recent surveys of proteins, RNAs, sugars, and other metabolites, some of which are potentially acting as signals. In this review, we focus on recent breakthroughs on phloem transport and signalling. A case study was phloem loading of sucrose, acting both as a nutrient and as a signal, whose activity was shown to be tightly regulated. Recent advances also described actors of macromolecular trafficking in sieve elements, including chaperones and RNA binding proteins, involved potentially in the formation of ribonucleoprotein complexes. Likewise, long distance signalling appeared to integrate electrical potential waves, calcium bursts and potentially the generation of reactive oxygen species. The ubiquitin-proteasome system was also proposed to be on action in sieve elements for signalling and protein turnover. Surprisingly, several basic processes of phloem physiology are still under debate. Hence, the absence in phloem sap of reducing sugar species, such as hexoses, was recently challenged with observations based on an analysis of the sap from Ranunculaceae and Papaveraceae. The possibility that protein synthesis might occur in sieve elements was again questioned with the identification of components of the translational machinery in Pumpkin phloem sap. Altogether, these new findings strengthen the idea that phloem is playing a central role in interorgan nutrient exchanges and communication and demonstrate that the ways by which this is achieved can obey various patterns among species.
Collapse
Affiliation(s)
- Sylvie Dinant
- Institut National de la Recherche Agronomique, institut Jean-Pierre-Bourgin, route de St-Cyr, Versailles cedex, France.
| | | |
Collapse
|
58
|
Tang K, Zhan JC, Yang HR, Huang WD. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:95-102. [PMID: 19716623 DOI: 10.1016/j.jplph.2009.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 05/09/2023]
Abstract
Plants have evolved mechanisms to avoid and repair UV radiation damage, and the free radicals caused by UV tend to be involved in the induction of antioxidant defense systems. In this study, changes in resveratrol and antioxidant enzymes were investigated in relation to UV damage in peanut seedlings. Accumulation of endogenous resveratrol and stilbene synthase mRNA occurred rapidly and significantly in response to UV-C irradiation. Applying resveratrol before UV-C irradiation mitigated rusty spots and wilting of peanut leaves, and inhibition of resveratrol by applying 3,4-methylenedioxycinnamic acid worsened UV-C damage, an effect that was found to be concentration dependent. Correspondingly, the effect of resveratrol on malondialdehyde was similar to changes in the apparent morphology of seedling leaves. Changes in H(2)O(2), O(2)(-), and antioxidant enzymes showed some similarities after either UV-C irradiation or resveratrol treatment. Activities of superoxide dismutases, glutathione reductase, and catalase were more than 2-fold higher during the first 1h after treatments. Ascorbate peroxidase activity increased to more than 3-fold higher 24h after irradiation, whereas it was more than 2-fold higher 8h after resveratrol treatment. Activities of dehydroascorbate reductase and monodehydroascorbate reductase increased by 40% during 8-24h after treatments. Consequently, we proposed that changes in endogenous resveratrol and in antioxidant enzymes may have been involved in oxidative stress induced by UV-C exposure in peanut seedlings.
Collapse
Affiliation(s)
- Ke Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | |
Collapse
|
59
|
Tuteja N, Umate P, van Bel AJE. Forisomes: calcium-powered protein complexes with potential as 'smart' biomaterials. Trends Biotechnol 2009; 28:102-10. [PMID: 20004992 DOI: 10.1016/j.tibtech.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/09/2009] [Accepted: 11/17/2009] [Indexed: 12/23/2022]
Abstract
Sieve tubes in legumes contain forisomes, which are spindle-like bodies that are composed of ATP-independent, mechanically active proteins. Upon injury, forisomes occlude sieve tubes by dispersion and thus, help to prevent loss of nutrient-rich transport sap. Forisome enlargement by dispersion is brought about by Ca2+-induced conformational changes that confer radial expansion and longitudinal contraction. Forisomes recontract upon Ca2+ removal. In vitro, forisomes reversibly disperse and contract in the presence or absence of Ca2+, respectively, and at distinct pHs. Recently, forisomes have received renewed attention because of their unique capacity to convert chemical into mechanical energy independent of high-energy organic compounds. Forisome-based 'smart' materials can be used to produce self-powered monitoring and diagnostic systems. Here, we focus on physiological, chemical and physical aspects of forisomes and discuss their potential as biomimetic devices.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | | | |
Collapse
|
60
|
Chasov AV, Minibayeva FV. Effect of exogenous phenols on superoxide production by extracellular peroxidase from wheat seedling roots. BIOCHEMISTRY (MOSCOW) 2009; 74:766-74. [PMID: 19747097 DOI: 10.1134/s0006297909070098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Competitive and complimentary relationships of various peroxidase substrates were studied to elucidate the enzymatic mechanisms underlying production of reactive oxygen species in plant cell apoplast. Dianisidine peroxidase released from wheat seedling roots was inhibited by ferulate and coniferol, while ferulic and coniferyl peroxidases were activated by o-dianisidine. Both ferulate and coniferol, when added together with hydrogen peroxide, stimulated superoxide production by extracellular peroxidase. We suggest that substrate-substrate activation of extracellular peroxidases is important for stress-induced oxidative burst in plant cells.
Collapse
Affiliation(s)
- A V Chasov
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | |
Collapse
|
61
|
Kangasjärvi S, Nurmi M, Tikkanen M, Aro EM. Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants. PLANT, CELL & ENVIRONMENT 2009; 32:1230-1240. [PMID: 19344335 DOI: 10.1111/j.1365-3040.2009.01982.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.
Collapse
|
62
|
Dafoe NJ, Zamani A, Ekramoddoullah AKM, Lippert D, Bohlmann J, Constabel CP. Analysis of the poplar phloem proteome and its response to leaf wounding. J Proteome Res 2009; 8:2341-50. [PMID: 19245218 DOI: 10.1021/pr800968r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phloem exudate collected from hybrid poplar (Populus trichocarpa x Populus deltoides) was estimated to have more than 100 proteins, of which 48 were identified using LC-MS/MS. Comparative two-dimensional gel electrophoresis demonstrated that two phloem exudate proteins were significantly (P<0.05) upregulated 24 h after leaf wounding. These were identified as pop3/SP1 and a thaumatin-like protein. This is the first characterization of a phloem proteome from a tree species.
Collapse
Affiliation(s)
- Nicole J Dafoe
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Rubio MC, Becana M, Kanematsu S, Ushimaru T, James EK. Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. THE NEW PHYTOLOGIST 2009; 183:395-407. [PMID: 19594703 DOI: 10.1111/j.1469-8137.2009.02866.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The activities and localizations of superoxide dismutases (SODs) were compared in root and stem nodules of the semi-aquatic legume Sesbania rostrata using gel-activity assays and immunogold labelling, respectively. Nodules were fixed by high-pressure freezing and dehydrated by freeze substitution. Stem nodules showed more total and specific SOD activities than root nodules because of the presence of chloroplastic CuZnSOD. Most of the total SOD activity of stem and root nodules resulted from 'cytosolic' CuZnSOD, localized in the cytoplasm and chromatin, and from MnSOD in the bacteroids and in the mitochondria of vascular tissue. FeSOD was present in nodule plastids and in leaf chloroplasts, and was found to be associated with chromatin. Superoxide production was detected histochemically in the vascular bundles and in the infected tissue of stem and root nodules, whereas peroxide accumulation was observed in the cortical cell walls and intercellular spaces, as well as within the infection threads of both nodule types. These data suggest a role of CuZnSOD and FeSOD in protecting nuclear DNA from reactive oxygen species and/or in modulating gene activity. The enhanced levels of CuZnSOD, MnSOD and superoxide production in vascular bundle cells are consistent with a role of CuZnSOD and superoxide in the lignification of xylem vessels, but also suggest additional functions in coping with superoxide production by the high respiratory activity of parenchyma cells.
Collapse
Affiliation(s)
- Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, ES-50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, ES-50080 Zaragoza, Spain
| | - Sumio Kanematsu
- Department of Food Science, Minami-Kyushu University, Kirishima 5-1-2, Miyazaki 880-0032, Japan
| | - Takashi Ushimaru
- Department of Biology, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Euan K James
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- (present address) Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
64
|
Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 2008; 8:343-56. [PMID: 18936055 DOI: 10.1074/mcp.m800420-mcp200] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Increasing evidence suggests that proteins present in the angiosperm sieve tube system play an important role in the long distance signaling system of plants. To identify the nature of these putatively non-cell-autonomous proteins, we adopted a large scale proteomics approach to analyze pumpkin phloem exudates. Phloem proteins were fractionated by fast protein liquid chromatography using both anion and cation exchange columns and then either in-solution or in-gel digested following further separation by SDS-PAGE. A total of 345 LC-MS/MS data sets were analyzed using a combination of Mascot and X!Tandem against the NCBI non-redundant green plant database and an extensive Cucurbit maxima expressed sequence tag database. In this analysis, 1,209 different consensi were obtained of which 1,121 could be annotated from GenBank and BLAST search analyses against three plant species, Arabidopsis thaliana, rice (Oryza sativa), and poplar (Populus trichocarpa). Gene ontology (GO) enrichment analyses identified sets of phloem proteins that function in RNA binding, mRNA translation, ubiquitin-mediated proteolysis, and macromolecular and vesicle trafficking. Our findings indicate that protein synthesis and turnover, processes that were thought to be absent in enucleate sieve elements, likely occur within the angiosperm phloem translocation stream. In addition, our GO analysis identified a set of phloem proteins that are associated with the GO term "embryonic development ending in seed dormancy"; this finding raises the intriguing question as to whether the phloem may exert some level of control over seed development. The universal significance of the phloem proteome was highlighted by conservation of the phloem proteome in species as diverse as monocots (rice), eudicots (Arabidopsis and pumpkin), and trees (poplar). These results are discussed from the perspective of the role played by the phloem proteome as an integral component of the whole plant communication system.
Collapse
Affiliation(s)
- Ming-Kuem Lin
- Department of Plant Biology, College of Biological Sciences, Genome Center, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
65
|
Montero-Tavera V, Ruiz-Medrano R, Xoconostle-Cázares B. Systemic nature of drought-tolerance in common bean. PLANT SIGNALING & BEHAVIOR 2008; 3:663-6. [PMID: 19704819 PMCID: PMC2634550 DOI: 10.4161/psb.3.9.5776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 05/21/2023]
Abstract
The response to drought at the physiological and molecular levels was studied in two common bean varieties with contrasting susceptibility to drought stress. A number of genes were found to be upregulated in the tolerant variety Pinto Villa relative to the susceptible cultivar, Carioca. The products of these genes fell in different functional categories. Further analyses of selected genes, consisting of their spatial differential expression and in situ mRNA accumulation patterns displayed interesting profiles. The drought-tolerant variety displayed a more developed root vasculature in drought conditions, when compared to the susceptible tropical bean Carioca. The in situ localization of three selected genes indicated the accumulation of their corresponding mRNAs in companion cells, sieve tubes and in developing phloem, suggesting that these, and/or the encoded proteins could constitute phloem-mobile signals. Indeed, a number of transcripts that are induced in response to water deficit accumulate in the phloem in other plant species, suggesting a general phenomenon. Moreover, the analysis of drought stress in plant varieties with contrasting tolerance to such stimulus will help to determine the role of differential expression of specific genes in response to such phenomenon, as well as other biochemical, morphological and physiological features in both cultivars.Drought-tolerant plants likely evolved a system that would allow them to maintain its vascular tissue integrity under stress. A functional phloem would then still function in the transmission of long-range signals, important for the systemic adaptation to the stress. It is expected that plants showing increased tolerance to abiotic stress, such as drought, are able to better protect their conductive tissues. This general strategy might help such plants evolve under stress conditions and colonize successfully new habitats.
Collapse
Affiliation(s)
- Víctor Montero-Tavera
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; México DF México
| | | | | |
Collapse
|
66
|
Krügel U, Veenhoff LM, Langbein J, Wiederhold E, Liesche J, Friedrich T, Grimm B, Martinoia E, Poolman B, Kühn C. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. THE PLANT CELL 2008; 20:2497-513. [PMID: 18790827 PMCID: PMC2570718 DOI: 10.1105/tpc.108.058271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 08/25/2008] [Accepted: 09/03/2008] [Indexed: 05/18/2023]
Abstract
The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJE, Kogel KH, Kehr J. Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3297-306. [PMID: 18632729 PMCID: PMC2529238 DOI: 10.1093/jxb/ern181] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/03/2008] [Accepted: 06/16/2008] [Indexed: 05/18/2023]
Abstract
Sieve tubes are transport conduits not only for photoassimilates but also for macromolecules and other compounds that are involved in sieve tube maintenance and systemic signalling. In order to gain sufficient amounts of pure phloem exudates from barley plants for analyses of the protein and mRNA composition, a previously described stylectomy set-up was optimized. Aphids were placed in sealed cages, which, immediately after microcauterization of the stylets, were flooded with water-saturated silicon oil. The exuding phloem sap was collected with a capillary connected to a pump. Using up to 30 plants and 600 aphids (Rhopalosiphum padi) in parallel, an average of 10 mul of phloem sap could be obtained within 6 h of sampling. In first analyses of the macromolecular content, eight so far unknown phloem mRNAs were identified by cDNA-amplified fragment length polymorphism. Transcripts in barley phloem exudates are related to metabolism, signalling, and pathogen defence, for example coding for a protein kinase and a pathogen- and insect-responsive WIR1A (wheat-induced resistance 1A)-like protein. Further, one-dimensional gel electrophoresis and subsequent partial sequencing by mass spectrometry led to the identification of seven major proteins with putative functions in stress responses and transport of mRNAs, proteins, and sugars. Two of the discovered proteins probably represent isoforms of a new phloem-mobile sucrose transporter. Notably, two-dimensional electrophoresis confirmed that there are >250 phloem proteins awaiting identification in future studies.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Phytopathology and Applied Zoology, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Wenger JP, Marks MD. E2F and retinoblastoma related proteins may regulate GL1 expression in developing Arabidopsis trichomes. PLANT SIGNALING & BEHAVIOR 2008; 3:420-2. [PMID: 19704586 PMCID: PMC2634322 DOI: 10.4161/psb.3.6.5471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/27/2007] [Indexed: 05/10/2023]
Abstract
This is an addendum to our recent paper published in The Plant Journal (52:352-61). The major findings were: (1) trichomes on the leaves of gl3-sst sim double mutants developed as large multi-cellular clusters whereas wild type trichomes are composed of single cells; (2) ectopic CYCD3;1 expression in gl3-sst trichomes also resulted in trichome cluster formation; and (3) that GL1 expression is prolonged in the gl3-sst sim trichome clusters. This addendum shows that ectopic CYCD3;1 expression in gl3-sst also enhanced GL1 expression. An analysis of the GL1 promoter found two overlapping potential E2F binding sites in a region of the promoter known to be essential for GL1 function. This finding indicates that GL1 may be directly regulated by the activity of a CYCD3/CDKA complex that phosphorylates E2F-RB bound to the GL1 promoter.
Collapse
Affiliation(s)
- Jonathan P Wenger
- Department of Plant Biology; University of Minnesota; St. Paul, Minnesota USA
| | | |
Collapse
|
69
|
Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. PLANT & CELL PHYSIOLOGY 2008; 49:767-90. [PMID: 18372294 DOI: 10.1093/pcp/pcn049] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The main physiological roles of phloem and xylem in higher plants involve the transport of water, nutrients and metabolites. They are also involved, however, in whole plant events including stress responses and long-distance signaling. Phloem and xylem saps therefore include a variety of proteins. In this study, we have performed a shotgun analysis of the proteome of phloem and xylem saps from rice, taking advantage of the complete and available genomic information for this plant. Xylem sap was prepared using the root pressure method, whereas phloem sap was prepared with a unique method with the assistance of planthoppers to ensure the robustness of the detected proteins. The technical difficulties caused by the very limited availability of rice samples were overcome by the use of nano-flow liquid chromatography linked to a mass spectrometer. We identified 118 different proteins and eight different peptides in xylem sap, and 107 different proteins and five different peptides in phloem sap. Signal transduction proteins, putative transcription factors and stress response factors as well as metabolic enzymes were identified in these saps. Interestingly, we found the presence of three TERMINAL FLOWER 1/FLOWERING LOCUS T (FT)-like proteins in phloem sap. The detected FT-like proteins were not rice Hd3a (OsFTL2) itself that acted as a non-cell-autonomous signal for flowering control, but they were members of distinct subfamilies of the FT family with differential expression patterns. These results imply that proteomics on a nano scale is a potent tool for investigation of biological processes in plants.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | | | | | | | | |
Collapse
|
70
|
[Phloem, transport between organs and long-distance signalling]. C R Biol 2008; 331:334-46. [PMID: 18472079 DOI: 10.1016/j.crvi.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.
Collapse
|
71
|
Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A. Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1267-77. [PMID: 18356145 DOI: 10.1093/jxb/ern037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), C/ Prof. Albareda 1, E-18008-Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Slesak I, Slesak H, Libik M, Miszalski Z. Antioxidant response system in the short-term post-wounding effect in Mesembryanthemum crystallinum leaves. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:127-37. [PMID: 17928099 DOI: 10.1016/j.jplph.2007.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 02/26/2007] [Accepted: 03/02/2007] [Indexed: 05/08/2023]
Abstract
Mechanical wounding of Mesembryanthemum crystallinum leaves in planta induced a fast decrease in stomatal conductance, which was related to accumulation of hydrogen peroxide (H(2)O(2)). Higher levels of H(2)O(2) were accompanied by an increase in total activity of superoxide dismutase (SOD) and a decrease in catalase (CAT) activity. Among SOD forms, manganese SOD (MnSOD) and copper/zinc SOD (Cu/ZnSOD) seem to be especially important sources of H(2)O(2) at early stages of wounding response. Moreover, NADP-malic enzyme (NADP-ME), one of the key enzymes of primary carbon metabolism, which is also involved in stress responses, showed a strong increase in activity in wounded leaves. All these symptoms: high accumulation of H(2)O(2), high activities of Cu/ZnSOD and NADP-ME, together with the decrease of CAT activity, were also observed in the major veins of unwounded leaves. The potential role of veinal tissues as an important source of H(2)O(2) during wounding response is discussed.
Collapse
Affiliation(s)
- Ireneusz Slesak
- Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland.
| | | | | | | |
Collapse
|
73
|
Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, De Koeyer D, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R. Physiological and molecular adaptations to drought in Andean potato genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2109-23. [PMID: 18535297 PMCID: PMC2413284 DOI: 10.1093/jxb/ern073] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 01/17/2008] [Accepted: 02/14/2008] [Indexed: 05/18/2023]
Abstract
The drought stress tolerance of two Solanum tuberosum subsp. andigena landraces, one hybrid (adgxtbr) and Atlantic (S. tuberosum subsp. tuberosum) has been evaluated. Photosynthesis in the Andigena landraces during prolonged drought was maintained significantly longer than in the Tuberosum (Atlantic) line. Among the Andigena landraces, 'Sullu' (SUL) was more drought resistant than 'Negra Ojosa' (NOJ). Microarray analysis and metabolite data from leaf samples taken at the point of maximum stress suggested higher mitochondrial metabolic activity in SUL than in NOJ. A greater induction of chloroplast-localized antioxidant and chaperone genes in SUL compared with NOJ was evident. ABA-responsive TFs were more induced in NOJ compared with SUL, including WRKY1, mediating a response in SA signalling that may give rise to increased ROS. NOJ may be experiencing higher ROS levels than SUL. Metabolite profiles of NOJ were characterized by compounds indicative of stress, for example, proline, trehalose, and GABA, which accumulated to a higher degree than in SUL. The differences between the Andigena lines were not explained by protective roles of compatible solutes; hexoses and complex sugars were similar in both landraces. Instead, lower levels of ROS accumulation, greater mitochondrial activity and active chloroplast defences contributed to a lower stress load in SUL than in NOJ during drought.
Collapse
Affiliation(s)
- Cecilia Vasquez-Robinet
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shrinivasrao P. Mane
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alexander V. Ulanov
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Verlyn K. Stromberg
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - David De Koeyer
- Agriculture and Agri-Food Canada, New Brunswick, Canada E3B 4Z7
| | | | | | | | - Hans J. Bohnert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Gaupels F, Knauer T, van Bel AJE. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:95-103. [PMID: 17997192 DOI: 10.1016/j.jplph.2007.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 05/11/2023]
Abstract
This study investigated advantages and drawbacks of two sieve-tube sap sampling methods for comparison of phloem proteins in powdery mildew-infested vs. non-infested Hordeum vulgare plants. In one approach, sieve tube sap was collected by stylectomy. Aphid stylets were cut and immediately covered with silicon oil to prevent any contamination or modification of exudates. In this way, a maximum of 1muL pure phloem sap could be obtained per hour. Interestingly, after pathogen infection exudation from microcauterized stylets was reduced to less than 40% of control plants, suggesting that powdery mildew induced sieve tube-occlusion mechanisms. In contrast to the laborious stylectomy, facilitated exudation using EDTA to prevent calcium-mediated callose formation is quick and easy with a large volume yield. After two-dimensional (2D) electrophoresis, a digital overlay of the protein sets extracted from EDTA solutions and stylet exudates showed that some major spots were the same with both sampling techniques. However, EDTA exudates also contained large amounts of contaminative proteins of unknown origin. A combinatory approach may be most favourable for studies in which the protein composition of phloem sap is compared between control and pathogen-infected plants. Facilitated exudation may be applied for subtractive identification of differentially expressed proteins by 2D/mass spectrometry, which requires large amounts of protein. A reference gel loaded with pure phloem sap from stylectomy may be useful for confirmation of phloem origin of candidate spots by digital overlay. The method provides a novel opportunity to study differential expression of phloem proteins in monocotyledonous plant species.
Collapse
Affiliation(s)
- Frank Gaupels
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | |
Collapse
|
75
|
Nawrot R, Kalinowski A, Gozdzicka-Jozefiak A. Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. PHYTOCHEMISTRY 2007; 68:1612-22. [PMID: 17512564 DOI: 10.1016/j.phytochem.2007.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 05/11/2023]
Abstract
Milky sap, a milky-like orange fluid, isolated from the Greater Celandine (Chelidonium majus L.), family Papaveraceae, serves as a rich source of various biologically active substances such as alkaloids, several flavonoids, phenolic acids and proteins. The objective of this study was to separate Ch. majus milky sap extract proteins using two-dimensional gel electrophoresis (2-DE) to demonstrate for the first time the protein composition in the sap and to identify them using liquid chromatography-tandem mass spectrometry analysis (LC-ESI-MS/MS). It was possible to identify 21 proteins, which comprise disease/defence-related, signalling, Krebs cycle, nucleic acid binding and other proteins. The majority of the identified proteins can be linked to direct and indirect stress and defence reactions, e.g. against different pathogens. The specific protein composition of the milky sap suggests an important role of these proteins for the whole plant physiology and development.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Morasko Campus, Umultowska 89, 61-614 Poznan, Poland.
| | | | | |
Collapse
|
76
|
Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients, and signaling molecules. PLANT PHYSIOLOGY 2007; 144:550-61. [PMID: 17556518 PMCID: PMC1914204 DOI: 10.1104/pp.107.098046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Craig Anthony Atkins
- School of Plant Biology M090, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
77
|
Drew DP, Lunde C, Lahnstein J, Fincher GB. Heterologous expression of cDNAs encoding monodehydroascorbate reductases from the moss, Physcomitrella patens and characterization of the expressed enzymes. PLANTA 2007; 225:945-54. [PMID: 16983536 DOI: 10.1007/s00425-006-0394-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 08/22/2006] [Indexed: 05/11/2023]
Abstract
Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) catalyses the reduction of the monodehydroascorbate (MDHA) radical to ascorbate, using NADH or NADPH as an electron donor, and is believed to be involved in maintaining the reactive oxygen scavenging capability of plant cells. This key enzyme in the ascorbate-glutathione cycle has been studied here in the moss Physcomitrella patens, which is tolerant to a range of abiotic stresses and is increasingly used as a model plant. In the present study, three cDNAs encoding different MDHAR isoforms of 47 kDa were identified in P. patens, and found to exhibit enzymic characteristics similar to MDHARs in vascular plants despite low-sequence identity and a distant evolutionary relationship between the species. The three cDNAs for the P. patens MDHAR enzymes were expressed in Escherichia coli and the active enzymes were purified and characterized. Each recombinant protein displayed an absorbance spectrum typical of flavoenzymes and contained a single non-covalently bound FAD coenzyme molecule. The Km and kcat values for the heterologously expressed PpMDHAR enzymes ranged from 8 to 18 microM and 120-130 s(-1), respectively, using NADH as the electron donor. The Km values were at least an order of magnitude higher for NADPH. The Km values for the MDHA radical were approximately 0.5-1.0 microM for each of the purified enzymes, and further kinetic analyses indicated that PpMDHARs follow a 'ping-pong' kinetic mechanism. In contrast to previously published data, site-directed mutagenesis indicated that the conserved cysteine residue is not directly involved in the reduction of MDHA.
Collapse
Affiliation(s)
- Damian P Drew
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
78
|
Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J, Dwyer RA, McNair RJ, Klebl F, Sauer N. Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. PLANT PHYSIOLOGY 2006; 142:1427-41. [PMID: 17041024 PMCID: PMC1676067 DOI: 10.1104/pp.106.089169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The vascular tissue of higher plants consists of specialized cells that differ from all other cells with respect to their shape and size, their organellar composition, their extracellular matrix, the type of their plasmodesmata, and their physiological functions. Intact and pure vascular tissue can be isolated easily and rapidly from leaf blades of common plantain (Plantago major), a plant that has been used repeatedly for molecular studies of phloem transport. Here, we present a transcriptome analysis based on 5,900 expressed sequence tags (ESTs) and 3,247 independent mRNAs from the Plantago vasculature. The vascular specificity of these ESTs was confirmed by the identification of well-known phloem or xylem marker genes. Moreover, reverse transcription-polymerase chain reaction, macroarray, and northern analyses revealed genes and metabolic pathways that had previously not been described to be vascular specific. Moreover, common plantain transformation was established and used to confirm the vascular specificity of a Plantago promoter-beta-glucuronidase construct in transgenic Plantago plants. Eventually, the applicability and usefulness of the obtained data were also demonstrated for other plant species. Reporter gene constructs generated with promoters from Arabidopsis (Arabidopsis thaliana) homologs of newly identified Plantago vascular ESTs revealed vascular specificity of these genes in Arabidopsis as well. The presented vascular ESTs and the newly developed transformation system represent an important tool for future studies of functional genomics in the common plantain vasculature.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Samanani N, Alcantara J, Bourgault R, Zulak KG, Facchini PJ. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:547-63. [PMID: 16813579 DOI: 10.1111/j.1365-313x.2006.02801.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The benzylisoquinoline alkaloids of opium poppy, including the narcotic analgesics morphine and codeine, accumulate in the multinucleate cytoplasm of specialized laticifers that accompany vascular tissues throughout the plant. In mature opium poppy plants, immunofluorescence labeling using specific antibodies showed that four alkaloid biosynthetic enzymes, (S)-norcoclaurine 6-O-methyltransferase (6OMT), (S)-coclaurine N-methyltransferase (CNMT), (S)-3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) and salutaridinol-7-O-acetyltransferase (SAT) were restricted to sieve elements of the phloem adjacent or proximal to laticifers. The identity of sieve elements was confirmed by (i) the specific immunogold labeling of the characteristic cytoplasm of this cell type, (ii) the co-localization of a sieve element-specific H(+)-ATPase with all biosynthetic enzymes and (iii) the strict association of sieve plates with immunofluorescent cells. The localization of laticifers was demonstrated antibodies specific to major latex protein (MLP), which is characteristic of this cell type. In situ hybridization using antisense RNA probes for 6OMT, CNMT, 4'OMT and SAT showed that the corresponding gene transcripts were found in the companion cell paired with each sieve element. Seven benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), berberine bridge enzyme, codeinone reductase, 6OMT, CNMT, 4'OMT and SAT were localized by immunofluorescence labeling to the sieve elements in the root and hypocotyl of opium poppy seedlings. The abundance of these enzymes increased rapidly between 1 and 3 days after seed germination. The localization of seven biosynthetic enzymes to the sieve elements provides strong support for the unique, cell type-specific biosynthesis of benzylisoquinoline alkaloids in the opium poppy.
Collapse
Affiliation(s)
- Nailish Samanani
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
80
|
Requena A, Simón-Buela L, Salcedo G, García-Arenal F. Potential involvement of a cucumber homolog of phloem protein 1 in the long-distance movement of Cucumber mosaic virus particles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:734-46. [PMID: 16838786 DOI: 10.1094/mpmi-19-0734] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The systemic movement of Cucumber mosaic virus (CMV) in cucumber plants was analyzed. The structure that is translocated and its putative interactions with phloem components were analyzed in phloem exudate (PE) samples, which reflect sieve tubes stream composition. Rate zonal centrifugation and electron-microscopy analyses of PE from CMV-infected plants showed that CMV moves through sieve tubes as virus particles. Gel overlay assays revealed that CMV particles interact with a PE protein, p48. The amino-acid sequence of several tryptic peptides of p48 was determined. Partial amino-acid sequence of p48 showed it was a cucumber homolog of phloem protein 1 (PP1) from pumpkin, with which p48 also shares several chemical properties. PP1 from pumpkin has plasmodesmata-gating ability and translocates in sieve tubes. Encapsidated CMV RNA in PE samples from infected plants was less accessible to digestion by RNase A than RNA in purified CMV particles, a property that was reconstituted by the in vitro interaction of purified CMV particles and protein p48. These results indicate that the interaction with p48 modifies CMV particle structure and suggest that CMV particles interact with the cucumber homolog of PP1 during translocation in the sieve tubes.
Collapse
Affiliation(s)
- A Requena
- Dpto Biotecnología, ETSI Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
81
|
Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodríguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, del Río LA, Barroso JB. The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. PLANT & CELL PHYSIOLOGY 2006; 47:984-94. [PMID: 16766574 DOI: 10.1093/pcp/pcj071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Superoxide dismutase (SOD) is a key antioxidant enzyme present in prokaryotic and eukaryotic cells as a first line of defense against the accumulation of superoxide radicals. In olive leaves, the SOD enzymatic system was characterized and was found to be comprised of three isozymes, an Mn-SOD, an Fe-SOD and a CuZn-SOD. Transcript expression analysis of whole leaves showed that the three isozymes represented 82, 17 and 0.8% of the total SOD expressed, respectively. Using the combination of laser capture microdissection (LCM) and real-time quantitative reverse transcription-PCR (RT-PCR), the expression of these SOD isozymes was studied in different cell types of olive leaves, including spongy mesophyll, palisade mesophyll, xylem and phloem. In spongy mesophyll cells, the isozyme proportion was similar to that in whole leaves, but in the other cells the proportion of expressed SOD isozymes was different. In palisade mesophyll cells, Fe-SOD was the most abundant, followed by Mn-SOD and CuZn-SOD, but in phloem cells Mn-SOD was the most prominent isozyme, and Fe-SOD was present in trace amounts. In xylem cells, only the Mn-SOD was detected. On the other hand, the highest accumulation of superoxide radicals was localized in vascular tissue which was the tissue with the lowest level of SOD transcripts. These data show that in olive leaves, each SOD isozyme has a different gene expression depending on the cell type of the leaf.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. PLANT, CELL & ENVIRONMENT 2006; 29:1449-59. [PMID: 17080966 DOI: 10.1111/j.1365-3040.2006.01530.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
NADPH is an important molecule in the redox balance of the cell. In this paper, using olive tissue cultures as a model of the function of the NADPH-generating dehydrogenases in the mechanism of oxidative stress induced by severe salinity conditions was studied. When olive (Olea europaea) plants were grown with 200 mM NaCl, a 40% reduction in leaf fresh weight was produced. The content of non-enzymatic antioxidants such as ascorbate and glutathione was diminished between 20% to 39%, whereas the H2O2 content was increased threefold. In contrast, the analysis of the activity and protein contents of the main antioxidative enzymes showed a significant increase of catalase, superoxide dismutase and glutathione reductase. Overall, these changes strongly suggests that NaCl induces oxidative stress in olive plants. On the other hand, while the content of glucose-6-phosphate was increased almost eightfold in leaves of plants grown under salt stress, the content of NAD(P)H (reduced and oxided forms) did not show significant variations. Under salt stress conditions, the activity and protein contents of the main NADPH-recycling enzymes, glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (ICDH), malic enzyme (ME) and ferrodoxin-NADP reductase (FNR) showed an enhancement of 30-50%. In leaves of olive plants grown with 200 mM NaCl, analysis of G6PDH by immunocytochemistry and confocal laser scanning microscopy showed a general increase of this protein in epidermis, palisade and spongy mesophyll cells. These results indicate that in olive plants, salinity causes reactive oxygen species (ROS)-mediated oxidative stress, and plants respond to this situation by inducing different antioxidative enzymes, especially the NADPH-producing dehydrogenases in order to recycle NADPH necessary for the protection against oxidative damages. These NADP-dehydrogenases appear to be key antioxidative enzymes in olive plants under salt stress conditions.
Collapse
Affiliation(s)
- Raquel Valderrama
- Grupo de Señalización Molecular y Sistemas Antioxidants en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J. Towards the proteome of Brassica napus phloem sap. Proteomics 2006; 6:896-909. [PMID: 16400686 DOI: 10.1002/pmic.200500155] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The soluble proteins in sieve tube exudate from Brassica napus plants were systematically analyzed by 1-DE and high-resolution 2-DE, partial amino acid sequence determination by MS/MS, followed by database searches. 140 proteins could be identified by their high similarity to database sequences (135 from 2-DE, 5 additional from 1-DE). Most analyzed spots led to successful protein identifications, demonstrating that Brassica napus, a close relative of Arabidopsis thaliana, is a highly suitable model plant for phloem research. None of the identified proteins was formerly known to be present in Brassica napus phloem, but several proteins have been described in phloem sap of other species. The data, which is discussed with respect to possible physiological importance of the proteins in the phloem, further confirms and substantially extends earlier findings and uncovers the presence of new protein functions in the vascular system. For example, we found several formerly unknown phloem proteins that are potentially involved in signal generation and transport, e.g., proteins mediating calcium and G-protein signaling, a set of RNA-binding proteins, and FLOWERING LOCUS T (FT) and its twin sister that might be key components for the regulation of flowering time.
Collapse
Affiliation(s)
- Patrick Giavalisco
- Max-Planck-Institute of Molecular Plant Physiology, Department Lothar Willmitzer, Potsdam, Germany
| | | | | | | | | |
Collapse
|
84
|
Lough TJ, Lucas WJ. Integrative plant biology: role of phloem long-distance macromolecular trafficking. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:203-32. [PMID: 16669761 DOI: 10.1146/annurev.arplant.56.032604.144145] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent studies have revealed the operation of a long-distance communication network operating within the vascular system of higher plants. The evolutionary development of this network reflects the need to communicate environmental inputs, sensed by mature organs, to meristematic regions of the plant. One consequence of such a long-distance signaling system is that newly forming organs can develop properties optimized for the environment into which they will emerge, mature, and function. The phloem translocation stream of the angiosperms contains, in addition to photosynthate and other small molecules, a variety of macromolecules, including mRNA, small RNA, and proteins. This review highlights recent progress in the characterization of phloem-mediated transport of macromolecules as components of an integrated long-distance signaling network. Attention is focused on the role played by these proteins and RNA species in coordination of developmental programs and the plant's response to both environmental cues and pathogen challenge. Finally, the importance of developing phloem transcriptome and proteomic databases is discussed within the context of advances in plant systems biology.
Collapse
|
85
|
Kehr J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:767-74. [PMID: 16495410 DOI: 10.1093/jxb/erj087] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phloem is a well-known target of sucking and piercing insects that utilize the transported fluid as their major nutrient source. In addition to small molecules like sugars and amino acids, phloem sap of higher land plants contains proteins that can accumulate up to high concentrations. Although the knowledge about the identities of these phloem sap proteins is increasing, the functions of most of them are still poorly understood. Since many phloem sap proteins have predicted roles in wound and defence responses, they constitute a class of compounds that can potentially influence plant-insect interactions. However, there are as yet no studies published that have examined direct effects of phloem sap proteins on insect feeding or vice versa. This review summarizes the current knowledge about the identities of phloem sap proteins, focused on polypeptides with probable functions in wound and defence reactions, and their potential impact on plant-insect interactions is discussed.
Collapse
Affiliation(s)
- Julia Kehr
- Max Planck Institute of Molecular Plant Physiology, Department Willmitzer, Am Mühlenberg 1, D-14424 Potsdam, Germany.
| |
Collapse
|
86
|
Doering-Saad C, Newbury HJ, Couldridge CE, Bale JS, Pritchard J. A phloem-enriched cDNA library from Ricinus: insights into phloem function. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3183-93. [PMID: 16936221 DOI: 10.1093/jxb/erl082] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The aim of this study was to identify genes that are expressed in the phloem. Increased knowledge of phloem regulation will contribute to our understanding of its many roles, from transport of solutes to information about interactions with pathogens. A cDNA library constructed from phloem-enriched sap exuding from cut Ricinus communis (L.) hypocotyls was sequenced. To assess contamination from other tissues, two libraries were constructed: one using the first 15 min of exudation and the other from sap collected after 120 min of exudation had elapsed. Of 1012 clones sequenced, 158 unique transcripts were identified. The presence of marker molecules such as profilin, the low occurrence of chloroplast-related mRNAs, and the sieve element localization of constituent mRNA using in situ hybridization were consistent with a phloem origin of the sap. Functional analysis of the cDNAs revealed classifications including ribosomal function, interaction with the environment, transport, DNA/RNA binding, and protein turnover. An analysis of the closest Arabidopsis thaliana (L.) homologue for each clone indicated that genes involved in cell localization, protein synthesis, tissue localization, organ localization, organ differentiation, and cell fate were represented at twice the level occurring in the whole Arabidopsis genome. The transcripts found in this phloem-enriched library are discussed in the context of phloem function and the relationship between the companion cell and sieve element.
Collapse
Affiliation(s)
- C Doering-Saad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
87
|
Dühring U, Irrgang KD, Lünser K, Kehr J, Wilde A. Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:3-11. [PMID: 16364235 DOI: 10.1016/j.bbabio.2005.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 01/02/2023]
Abstract
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI). With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Deltaycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Deltaycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.
Collapse
Affiliation(s)
- Ulf Dühring
- Institute of Biology, Humboldt University Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
88
|
Pinheiro C, Kehr J, Ricardo CP. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. PLANTA 2005; 221:716-28. [PMID: 15668768 DOI: 10.1007/s00425-004-1478-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/18/2004] [Indexed: 05/18/2023]
Abstract
Lupinus albus plants can withstand severe drought stress and show signs of recovery 24 h after rewatering (RW). Two-dimensional gel electrophoresis was used to evaluate the effect of water deficit (WD) on the protein composition of the two components of the lupin stem (stele and cortex). This was performed at three distinct stress levels: an early stage, a severe WD, and early recovery. Protein characterisation was performed through mass spectrometric partial sequencing. Modifications in the protein expression were first noticed at 3 days of withholding water, when the plant water status was still unaffected but some decrease in the relative soil water content had already occurred. An increase in serine proteases, possibly associated with WD sensing, was an early alteration induced by WD. When the stress severity increased, a larger number of stem proteins were affected. Immunophilin, serine protease and cysteine protease (well-known components of animal sensing pathways) were some of these proteins. The simultaneous expression of proteases and protease inhibitors that reacted differently to the stress level and to RW was found. Although the level of protease inhibitors was significantly raised, RW did not cause de novo expression of proteins. Many amino acid sequences did not match known sequences of either protein or expressed sequence tag databases. This emphasises the largely unknown nature of stem proteins. Nevertheless, some important clues regarding the way the lupin plant copes with WD were revealed.
Collapse
Affiliation(s)
- C Pinheiro
- Instituto de Tecnologia Química e Biológica, Apartado127, 2781901 Oeiras, Portugal
| | | | | |
Collapse
|
89
|
Kehr J, Buhtz A, Giavalisco P. Analysis of xylem sap proteins from Brassica napus. BMC PLANT BIOLOGY 2005; 5:11. [PMID: 15969751 PMCID: PMC1182380 DOI: 10.1186/1471-2229-5-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 06/21/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND Substance transport in higher land plants is mediated by vascular bundles, consisting of phloem and xylem strands that interconnect all plant organs. While the phloem mainly allocates photoassimilates, the role of the xylem is the transport of water and inorganic nutrients from roots to all aerial plant parts. Only recently it was noticed that in addition to mineral salts, xylem sap contains organic nutrients and even proteins. Although these proteins might have important impact on the performance of above-ground organs, only a few of them have been identified so far and their physiological functions are still unclear. RESULTS We used root-pressure xylem exudate, collected from cut Brassica napus stems, to extract total proteins. These protein preparations were then separated by high-resolution two-dimensional gel electrophoresis (2-DE). After individual tryptic digests of the most abundant coomassie-stained protein spots, partial peptide sequence information was deduced from tandem mass spectrometric (MS/MS) fragmentation spectra and subsequently used for protein identifications by database searches. This approach resulted in the identification of 69 proteins. These identifications include different proteins potentially involved in defence-related reactions and cell wall metabolism. CONCLUSION This study provides a comprehensive overview of the most abundant proteins present in xylem sap of Brassica napus. A number of 69 proteins could be identified from which many previously were not known to be localized to this compartment in any other plant species. Since Brassica napus, a close relative of the fully sequenced model plant Arabidopsis thaliana, was used as the experimental system, our results provide a large number of candidate proteins for directed molecular and biochemical analyses of the physiological functions of the xylem under different environmental and developmental conditions. This approach will allow exploiting many of the already established functional genomic resources, like i.e. the large mutant collections, that are available for Arabidopsis.
Collapse
Affiliation(s)
- Julia Kehr
- Department Lothar Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, 14424 Potsdam, Germany
| | - Anja Buhtz
- Department Lothar Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, 14424 Potsdam, Germany
| | - Patrick Giavalisco
- Department Lothar Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, 14424 Potsdam, Germany
| |
Collapse
|
90
|
Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. PLANT PHYSIOLOGY 2004; 136:2722-33. [PMID: 15347796 PMCID: PMC523336 DOI: 10.1104/pp.104.042812] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/27/2004] [Accepted: 05/30/2004] [Indexed: 05/18/2023]
Abstract
The cellular and subcellular localization of endogenous nitric oxide (NO.) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO. was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO. generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)(2) and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO. was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO., with g = 2.05 and a(N) = 12.8 G, was detected in peroxisomes. By fluorometry, NO. was also found in these organelles, and the level measured of NO. was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO. from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO. mg(-1) protein min(-1); was strictly dependent on NADPH, calmodulin, and BH(4); and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO. could be involved in the process of senescence of pea leaves.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
VAN Bel AJE, Gaupels F. Pathogen-induced resistance and alarm signals in the phloem. MOLECULAR PLANT PATHOLOGY 2004; 5:495-504. [PMID: 20565623 DOI: 10.1111/j.1364-3703.2004.00243.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
SUMMARY Despite a long-standing notion of long-distance signals triggering systemic acquired resistance (SAR), the translocation pathway and the identity of the signals involved have not been determined with any degree of certainty. A critical assessment indicates that, in parallel to signalling via the phloem, alternative modes for SAR induction such as signalling via the xylem or air-borne signalling by volatile substances may occur. This review further evaluates several classes of compounds as being functional in systemic resistance signalling. Evidence in favour of SAR involvement of phloem-mobile substances such as salicylic acid, lipid-derived molecules, reactive oxygen species and components of the antioxidant machinery is contradictory, circumstantial or inconclusive, at best. Nitric oxide bound to proteins or thiols seems a good candidate for signalling, but has not been found in phloem sap thus far. No convincing support of the involvement in SAR of phloem-mobile substances such as calcium, oligosaccharides, peptides or RNA species, which function in other systemic signalling cascades, has yet been produced. Nevertheless, phloem-mobile macromolecules are considered as potential tools for SAR given their pivotal role in remote gene expression under stress conditions. In this framework, the existence of several cascades for signal generation along the phloem pathway is envisaged. Finally, recent methods for detection of molecular signals in phloem sap and their expression in companion cells are presented.
Collapse
Affiliation(s)
- Aart J E VAN Bel
- Plant Cell Biology Research Group, Institute of General Botany, Senckenbergstrasse 17, 35390 Giessen, and Institute of Phytopathology, IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Justus Liebig University, Giessen, Germany
| | | |
Collapse
|
92
|
Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J. Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1473-81. [PMID: 15181102 DOI: 10.1093/jxb/erh161] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The phloem transport system is a complex tissue that primarily carries photoassimilate from source to sink. Its function depends on anucleate sieve elements (SE) supported by companion cells (CC). In this study, SE sap was sampled and the protein identity of soluble proteins was determined with the aim of understanding the function of proteins within the conduit. Unlike many plants, SE sap exudes from incisions in the bark of Ricinus communis and, although there is a greater possibility of contamination from tissues other than SE, sap can be obtained in sufficient quantities to separate proteins using 2D electrophoresis. Spots were excised for trypsin digest, then analysed by quadrupole time of flight (Q-TOF) mass spectrometry (MS) and database searched to determine sequence identity. Overall, 18 proteins were identified in the SE-enriched sap. Proteins identified that have not previously been identified directly from SE sap included a glycine-rich RNA-binding protein, metallothionein, phosphoglycerate mutase, and phosphopyruvate hydratase. The potential role of the identified protein in SE function is discussed. The protein identification in this study provides a first step towards the goal of a greater understanding of the function of proteins within the SE.
Collapse
Affiliation(s)
- Alan Barnes
- The University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
93
|
Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. PHYTOCHEMISTRY 2004; 65:1795-804. [PMID: 15276438 DOI: 10.1016/j.phytochem.2004.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/31/2004] [Indexed: 05/20/2023]
Abstract
Many different proteins can be separated from the sap of mature sieve tubes of different plant species. To date, only a limited number of those have been identified and functionally characterised. Due to sieve tubes inability of transcription and translation, the proteins are most probably synthesised in the intimately connected companion cells and transported into the sieve elements through plasmodesmata. The specific protein composition of phloem sap suggests an important role of these proteins not only for sieve tube maintenance, but also for whole plant physiology and development. Here we describe a comprehensive analysis of the phloem protein composition employing one- and high-resolution two-dimensional gel electrophoresis and partial sequencing by mass spectrometry. In this study more than 300 partial sequences generated by hybrid mass spectrometry were used to identify a total of 45 different proteins from the phloem exudates of cucumber (Cucumis sativus L. cv. Hoffmanns Giganta) and pumpkin (Cucurbita maxima Duch. cv. Gelber Zentner) plants. In addition to previously described phloem proteins, it was possible to localise proteins with high similarity to an acyl-CoA binding protein, a glyoxalase, a malate dehydrogenase, a rhodanese-like protein, a drought-induced protein, and a beta-glucosidase. The results indicate that the majority of the so far identified proteins are involved in stress and defence reactions.
Collapse
Affiliation(s)
- Christina Walz
- Department L. Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14424 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
94
|
|
95
|
Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R. Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:931-945. [PMID: 14675456 DOI: 10.1046/j.1365-313x.2003.01931.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
K+ channels control K+ homeostasis and the membrane potential in the sieve element/companion cell complexes. K+ channels from Arabidopsis phloem cells expressing green fluorescent protein (GFP) under the control of the AtSUC2 promoter were analysed using the patch-clamp technique and quantitative RT-PCR. Single green fluorescent protoplasts were selected after being isolated enzymatically from vascular strands of rosette leaves. Companion cell protoplasts, which could be recognized by their nucleus, vacuole and chloroplasts, and by their expression of the phloem-specific marker genes SUC2 and AHA3, formed the basis for a cell-specific cDNA library and expressed sequence tag (EST) collection. Although we used primers for all members of the Shaker K+ channel family, we identified only AKT2, KAT1 and KCO6 transcripts. In addition, we also detected transcripts for AtPP2CA, a protein phosphatase, that interacts with AKT2/3. In line with the presence of the K+ channel transcripts, patch-clamp experiments identified distinct K+ channel types. Time-dependent inward rectifying K+ currents were activated upon hyperpolarization and were characterized by a pronounced Ca2+-sensitivity and inhibition by protons. Whole-cell inward currents were carried by single K+-selective channels with a unitary conductance of approximately 4 pS. Outward rectifying K+ channels (approximately 19 pS), with sigmoidal activation kinetics, were elicited upon depolarization. These two dominant phloem K+ channel types provide a versatile mechanism to mediate K+ fluxes required for phloem action and potassium cycling.
Collapse
Affiliation(s)
- Natalya Ivashikina
- Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Hancock RD, McRae D, Haupt S, Viola R. Synthesis of L-ascorbic acid in the phloem. BMC PLANT BIOLOGY 2003; 3:7. [PMID: 14633288 PMCID: PMC317296 DOI: 10.1186/1471-2229-3-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 11/24/2003] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although plants are the main source of vitamin C in the human diet, we still have a limited understanding of how plants synthesise L-ascorbic acid (AsA) and what regulates its concentration in different plant tissues. In particular, the enormous variability in the vitamin C content of storage organs from different plants remains unexplained. Possible sources of AsA in plant storage organs include in situ synthesis and long-distance transport of AsA synthesised in other tissues via the phloem. In this paper we examine a third possibility, that of synthesis within the phloem. RESULTS We provide evidence for the presence of AsA in the phloem sap of a wide range of crop species using aphid stylectomy and histochemical approaches. The activity of almost all the enzymes of the primary AsA biosynthetic pathway were detected in phloem-rich vascular exudates from Cucurbita pepo fruits and AsA biosynthesis was demonstrated in isolated phloem strands from Apium graveolens petioles incubated with a range of precursors (D-glucose, D-mannose, L-galactose and L-galactono-1,4-lactone). Phloem uptake of D-[U-14C]mannose and L-[1-14C]galactose (intermediates of the AsA biosynthetic pathway) as well as L-[1-14C]AsA and L-[1-14C]DHA, was observed in Nicotiana benthamiana leaf discs. CONCLUSIONS We present the novel finding that active AsA biosynthesis occurs in the phloem. This process must now be considered in the context of mechanisms implicated in whole plant AsA distribution. This work should provoke studies aimed at elucidation of the in vivo substrates for phloem AsA biosynthesis and its contribution to AsA accumulation in plant storage organs.
Collapse
Affiliation(s)
- Robert D Hancock
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Diane McRae
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Sophie Haupt
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Roberto Viola
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
97
|
Hause B, Hause G, Kutter C, Miersch O, Wasternack C. Enzymes of jasmonate biosynthesis occur in tomato sieve elements. PLANT & CELL PHYSIOLOGY 2003; 44:643-648. [PMID: 12826630 DOI: 10.1093/pcp/pcg072] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000) Plant J. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003) Plant J. 33: 577], the data support a role of JA in systemic wound signaling.
Collapse
Affiliation(s)
- Bettina Hause
- Department of Secondary Product Metabolism, Institute for Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| | | | | | | | | |
Collapse
|
98
|
Abstract
Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.
Collapse
Affiliation(s)
- Oliver Fiehn
- Max-Planck-Institute of Molecular Plant Physiology, D-14424, Potsdam/Golm, Germany.
| |
Collapse
|