51
|
Lietzke AC, Bealer E, Crumley K, King J, Stendahl AM, Zhu J, Pearson GL, Levi-D'Ancona E, Henry-Kanarek B, Reck EC, Arnipalli M, Sidarala V, Walker EM, Pennathur S, Madsen JGS, Shea LD, Soleimanpour SA. Limitations in mitochondrial programming restrain the differentiation and maturation of human stem cell-derived β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605318. [PMID: 39211191 PMCID: PMC11361182 DOI: 10.1101/2024.07.26.605318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for β cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived β (SC-β) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-β cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in β cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-β cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-β cells and may be a promising target to improve β cell replacement efforts for T1D.
Collapse
|
52
|
Mai W, Shang Y, Wang Y, Chen Y, Mu B, Zheng Q, Liu H. 1-DNJ Alleviates Obesity-Induced Testicular Inflammation in Mice Model by Inhibiting IKKβ/ NF-kB Pathway. Reprod Sci 2024; 31:2103-2113. [PMID: 38453770 PMCID: PMC11217107 DOI: 10.1007/s43032-024-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Obesity is associated with chronic inflammation that affects various organs in the body, including the reproductive system, which is a key factor in male infertility. 1-Deoxynojirimycin (1-DNJ) is a natural alkaloid in mulberry leaves, which has anti-inflammatory capabilities, yet, it's effects on obesity-induced inflammation-related male infertility remain unclear. Therefore, this research investigates the underlying mechanism by which 1-DNJ may mitigate fertility impairment in male mice caused by obesity-related inflammation. Male mice with high-fat diet (HFD)-induced obesity were treated with 1-DNJ or metformin for 8 weeks. Metabolic profiles were evaluated by enzyme method. Reproductive capacity was assessed by sperm viability, motility and counts, immunohistochemistry was performed to evaluate the testicular damage caused by obesity and inflammation. The inflammation was assessed by measuring the levels of tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and interleukin 6 (IL-6). The activation of IκB kinase β (IKKβ) and nuclear factor κB (NF-κB) was examined using western blot and immunohistochemistry. HFD induced obesity in mice with obvious lipid metabolism disorder. The obese male mice had a decreased testosterone level, impaired sperm motility, and increased inflammatory factors. 1-DNJ treatment improved the testosterone level in the obese mice, ameliorated the testicular structure damage and improve sperm viability. In addition, 1-DNJ treatment inhibited IKKβ/NF-kB signaling pathway and reduced inflammation in obese mice. 1-DNJ can improve the fertility of obese men by reducing obesity as well as obesity-induced inflammation. These findings provide new insights for 1-DNJ to alleviate inflammation caused by obesity and provide future possibilities for treating male infertility.
Collapse
Affiliation(s)
- Wenli Mai
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Sichuan, 637000, China
| | - Yi Shang
- The Second Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Yibin Wang
- Department of Imaging Medicine, North Sichuan Medical College, Sichuan, 637000, China
| | - Ying Chen
- Department of Clinical Medicine, North Sichuan Medical College, Sichuan, 637000, China
| | - Bo Mu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Sichuan, 637000, China
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Sichuan, 637000, China
| | - Hua Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Sichuan, 637000, China.
| |
Collapse
|
53
|
Bouchi R, Kondo T, Ohta Y, Goto A, Tanaka D, Satoh H, Yabe D, Nishimura R, Harada N, Kamiya H, Suzuki R, Yamauchi T. A consensus statement from the Japan Diabetes Society (JDS): a proposed algorithm for pharmacotherapy in people with type 2 diabetes-2nd Edition (English version). Diabetol Int 2024; 15:327-345. [PMID: 39101173 PMCID: PMC11291844 DOI: 10.1007/s13340-024-00723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 08/06/2024]
Abstract
The Japan Diabetes Society (JDS) adopted a sweeping decision to release consensus statements on relevant issues in diabetes management that require updating from time to time and launched a "JDS Committee on Consensus Statement Development." In March 2020, the committee's first consensus statement on "Medical Nutrition Therapy and Dietary Counseling for People with Diabetes" was published. In September 2022, a second consensus "algorithm for pharmacotherapy in people with type 2 diabetes" was proposed. In developing an algorithm for diabetes pharmacotherapy in people with type 2 diabetes, the working concept was that priority should be given to selecting such medications as would appropriately address the diabetes pathology in each patient while simultaneously weighing the available evidence for these medications and the prescribing patterns in clinical practice in Japan. These consensus statements are intended to present the committee's take on diabetes management in Japan, based on the evidence currently available for each of the issues addressed. It is thus hoped that practicing diabetologists will not fail to consult these statements to provide the best available practice in their respective clinical settings. Given that the persistent dual GIP/GLP-1 receptor agonist tirzepatide was approved in April 2023, these consensus statements have been revised1). In this revision, specifically, tirzepatide was added to the end of [likely involving insulin resistance] of "Obese patients" in Step 1: "Select medications to address the diabetes pathology involved" in Fig. 2. While the sentence, "Insulin insufficiency and resistance can be assessed by referring to the various indices listed in the JDS 'Guide to Diabetes Management.' was mentioned in the previous edition as well, "While insulin resistance is analogized based on BMI, abdominal obesity, and visceral fat accumulation, an assessment of indicators (e.g., HOMA-IR) is desirable" was added as information in order to more accurately recognize the pathology. Regarding Step 2: "Give due consideration to safety," "For renal excretion" was added to the "Rule of thumb 2: Avoid glinides in patients with renal impairment." The order of the medications in "rule of thumb 3: Avoid thiazolidinediones and biguanides in patients with heart failure (in whom they are contraindicated)." to thiazolidinediones then biguanides. In the description of the lowest part of Fig. 2, for each patient failing to achieve his/her HbA1c control goal, "while reverting to step 1" was changed to "while reverting to the opening" and "including reassessment if the patient is indicated for insulin therapy" was added. In the separate table, the column for tirzepatides was added, while the two items, "Characteristic side effects" and "Persistence of effect" were added to the area of interest. The revision also carried additional descriptions of the figure and table such as tirzepatides and "Characteristic side effects" in the statement, and while not mentioned in the proposed algorithm figure, nonalcoholic fatty liver disease (NAFLD) is covered from this revision for patients with comorbidities calling for medical attention. Moreover, detailed information was added to the relative/absolute indication for insulin therapy, the Kumamoto Declaration 2013 for glycemic targets, and glycemic targets for older people with diabetes. Again, in this revision, it is hoped that the algorithm presented here will not only contribute to improved diabetes management in Japan, but will continue to evolve into a better algorithm over time, reflecting new evidence as it becomes available.
Collapse
Affiliation(s)
- Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuya Kondo
- Department of Diabetes, Metabolism and Endocrinology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Atsushi Goto
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | - Daisuke Tanaka
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Satoh
- Department of Diabetes and Endocrinology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Jikei University School of Medicine, Tokyo, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Ryo Suzuki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
54
|
El-Damanawi R, Stanley IK, Staatz C, Pascoe EM, Craig JC, Johnson DW, Mallett AJ, Hawley CM, Milanzi E, Hiemstra TF, Viecelli AK. Metformin for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2024; 6:CD013414. [PMID: 38837240 PMCID: PMC11152183 DOI: 10.1002/14651858.cd013414.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Metformin has been used in the management of diabetes for decades. It is an effective, low-cost intervention with a well-established safety profile. Emerging evidence suggests that metformin targets a number of pathways that lead to chronic kidney damage, and long-term use may, therefore, slow the rate of kidney function decline and chronic kidney disease (CKD) progression. OBJECTIVES To evaluate the effect of metformin therapy on kidney function decline in patients with CKD with or without diabetes mellitus and assess the safety and dose tolerability in this population. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 19 July 2023 with assistance from an Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) that reported kidney-related outcomes with a minimum duration of 12 months delivery of the metformin intervention and whose eligibility criteria included adult participants with either i) a diagnosis of CKD of any aetiology and/or ii) those with a diagnosis of diabetes mellitus. Comparisons included placebo, no intervention, non-pharmacological interventions, other antidiabetic medications or any other active control. Studies that included patients on any modality of kidney replacement therapy were excluded. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction using a standard data extraction form. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS This review included 11 studies reporting on 8449 randomised participants. Studies were conducted in patient populations with Autosomal Dominant Polycystic Kidney Disease (ADPKD) (four studies) or diabetes mellitus (seven studies). Six studies compared metformin with no active control, four studies compared metformin with active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), and one study included treatment arms that randomised to either metformin, diet and lifestyle modifications, or other antidiabetic therapies. The risk of bias in included studies varied; two studies were abstract-only publications and were judged to have a high risk of bias in most domains. Other included publications were judged to have a low risk of bias in most domains. Across comparisons, GRADE evaluations for most outcomes were judged as low or very low certainty, except for those relating to side effects, tolerance, and withdrawals, which were judged as moderate certainty. The evidence suggests that compared to placebo, metformin may result in i) a slightly smaller decline in kidney function (3 studies, 505 participants: MD 1.92 mL/min, 95% CI 0.33 to 3.51; I2 = 0%; low certainty), ii) very uncertain effects on the incidence of kidney failure (1 study, 753 participants: RR 1.20, 95% CI 0.17 to 8.49), iii) little or no effect on death (3 studies, 865 participants: RR 1.00, 95% CI 0.76 to 1.32; I2 = 0%; moderate certainty), iv) little or no effect on the incidence of serious adverse events (3 studies, 576 participants: RR 1.15, 95% CI 0.76 to 1.72; I2 = 0%; moderate certainty), and v) likely higher incidence of intolerance leading to study withdrawal than placebo (4 studies, 646 participants: RR 2.19, 95% CI 1.46 to 3.27; I2 = 0%; moderate certainty). The certainty of the evidence for proteinuria was very uncertain. Compared to other active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), metformin i) demonstrated very uncertain effects on kidney function decline, ii) may result in little or no difference in death (3 studies, 5608 participants: RR 0.95 95% CI 0.63 to 1.43; I2 = 0%; low certainty), iii) probably results in little or no difference in intolerance leading to study withdrawal (3 studies, 5593 participants: RR 0.92, 95% CI, 0.79 to 1.08; I2 = 0%; moderate certainty), iv) probably results in little or no difference in the incidence of serious adverse events (2 studies, 5545 participants: RR 1.16, 95% CI 0.79 to 1.71; I2 = 0%; moderate certainty), and v) may increase the urinary albumin-creatinine ratio (2 studies, 3836 participants: MD 14.61, 95% CI 8.17 to 21.05; I2 = 0%; low certainty). No studies reported the incidence of kidney failure. AUTHORS' CONCLUSIONS This review highlights the lack of RCTs reporting on the effects of metformin on kidney function, particularly in patients with CKD. Future research in this field requires adequately powered RCTs comparing metformin to placebo or standard care in those with CKD. Seven ongoing studies were identified in this review, and future updates, including their findings, may further inform the results of this review.
Collapse
Affiliation(s)
| | | | - Christine Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Elaine M Pascoe
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Andrew J Mallett
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Renal Medicine, Townsville Hospital & Health Service, Townsville, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Elasma Milanzi
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Thomas F Hiemstra
- Cambridge Clinical Trials Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrea K Viecelli
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
| |
Collapse
|
55
|
Moon JH, Choe HJ, Lim S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J Diabetes Investig 2024; 15:669-683. [PMID: 38676410 PMCID: PMC11143426 DOI: 10.1111/jdi.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the focus of diabetes treatment has switched from lowering the glucose level to preserving glycemic homeostasis and slowing the disease progression. The main pathophysiology of both type 1 diabetes and long-standing type 2 diabetes is pancreatic β-cell mass loss and dysfunction. According to recent research, human pancreatic β-cells possess the ability to proliferate in response to elevated insulin demands. It has been demonstrated that in insulin-resistant conditions in humans, such as obesity or pregnancy, the β-cell mass increases. This ability could be helpful in developing novel treatment approaches to restore a functional β-cell mass. Treatment strategies aimed at boosting β-cell function and mass may be a useful tool for managing diabetes mellitus and stopping its progression. This review outlines the processes of β-cell failure and detail the many β-cell abnormalities that manifest in people with diabetes mellitus. We also go over standard techniques for determining the mass and function of β-cells. Lastly, we provide the therapeutic implications of utilizing antidiabetic drugs in controlling the mass and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hun Jee Choe
- Department of Internal MedicineHallym University Dongtan Sacred Heart HospitalHwaseongSouth Korea
| | - Soo Lim
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| |
Collapse
|
56
|
Lim S, Lee SH, Min KW, Lee CB, Kim SY, Yoo HJ, Kim NH, Kim JH, Oh S, Won JC, Kwon HS, Kim MK, Park JH, Jeong IK, Kim S. A multicentre, double-blind, placebo-controlled, randomized, parallel comparison, phase 3 trial to evaluate the efficacy and safety of pioglitazone add-on therapy in type 2 diabetic patients treated with metformin and dapagliflozin. Diabetes Obes Metab 2024; 26:2188-2198. [PMID: 38425186 DOI: 10.1111/dom.15526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
AIM To investigate the efficacy and safety of pioglitazone compared to placebo when added to metformin plus dapagliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, for patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In a multicentre study, with a randomized, double-blind, placebo-controlled design, 249 Korean patients with T2DM suboptimally managed on metformin and dapagliflozin were assigned to receive either pioglitazone (15 mg daily) or placebo for 24 weeks, followed by a 24-week pioglitazone extension. Primary outcomes included changes in glycated haemoglobin (HbA1c), with secondary outcomes assessing insulin resistance, adiponectin levels, lipid profiles, liver enzymes, body weight and waist circumference. RESULTS Pioglitazone administration resulted in a significant reduction in HbA1c levels (from 7.80% ± 0.72% to 7.27% ± 0.82%) compared with placebo (from 7.79% ± 0.76% to 7.69% ± 0.86%, corrected mean difference: -0.42% ± 0.08%; p < 0.01) at 24 weeks. Additional benefits from pioglitazone treatment included enhanced insulin sensitivity, increased adiponectin levels, raised high-density lipoprotein cholesterol levels and reduced liver enzyme levels, resulting in improvement in nonalcoholic fatty liver disease liver fat score. Despite no serious adverse events in either group, pioglitazone therapy was modestly but significantly associated with weight gain and increased waist circumference. CONCLUSIONS Adjunctive pioglitazone treatment in T2DM inadequately controlled with metformin and dapagliflozin demonstrates considerable glycaemic improvement, metabolic benefits, and a low risk of hypoglycaemia. These advantages must be weighed against the potential for weight gain and increased waist circumference.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Seung-Hwan Lee
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung-Wan Min
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, South Korea
| | - Chang Beom Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri, South Korea
| | - Sang Yong Kim
- Department of Internal Medicine, Chosun University Hospital, Gwangju, South Korea
| | - Hye Jin Yoo
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Nan Hee Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jae Hyeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seungjoon Oh
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Jong Chul Won
- Department of Internal Medicine, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hyuk Sang Kwon
- Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - In-Kyung Jeong
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Sungrae Kim
- Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
57
|
Kolars B, Minakovic I, Grabovac B, Zivanovic D, Mijatovic Jovin V. Treatment adherence and the contemporary approach to treating type 2 diabetes mellitus. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:97-104. [PMID: 38511473 DOI: 10.5507/bp.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The rising burden of type 2 diabetes mellitus (T2D) poses a significant healthcare challenge on a global scale. The economic impact is also substantial and continually increasing. In Serbia, even though the prevalence is officially around 12 percent, nearly 40 percent of the adult population is estimated to be living with undiagnosed diabetes and more than half the population is obese or overweight. This review comprehensively addresses the present approach to treating T2D, emphasizing the critical role of treatment adherence. We review the various components of T2D treatment, underlining the significance of lifestyle modifications. The pros and cons of medications used in treatment are discussed and factors influencing adherence are analysed. A healthy lifestyle remains the foundation of the treatment, and if not sufficient, early pharmacotherapy is initiated. Medications have been developed to lower blood sugar levels with cardiorenal protection, however, due to their still high cost, metformin remains the drug of first choice for most patients. Adherence to the treatment regimen is often poor. Factors associated with this are diverse and often multiple in a particular patient. Poor adherence is associated with poor glycaemic control, increased risk of disease complications, higher cardiovascular risk, increased mortality, hospitalizations, and healthcare costs. In addition to reducing the complexity of drug therapy and better informing the patient, improved education and motivation could lead to greater adherence. Enhanced communication between the patient and the physician and reduced treatment costs could also have a positive impact. The review concludes that addressing factors affecting adherence can significantly improve T2D outcomes and reduce costs. Further research is needed to identify region-specific risk factors for poor adherence.
Collapse
Affiliation(s)
- Bela Kolars
- Department of General Medicine and Geriatrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Health Center "Novi Sad", Novi Sad, Serbia
| | - Ivana Minakovic
- Department of General Medicine and Geriatrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Health Center "Novi Sad", Novi Sad, Serbia
| | - Beata Grabovac
- Department of Social Sciences and Humanities, Hungarian Language Teacher Training Faculty in Subotica, University of Novi Sad, Subotica, Serbia
| | - Dejan Zivanovic
- Department of Psychology, College of Human Development, Belgrade, Serbia
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Vesna Mijatovic Jovin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
58
|
Long J, Li M, Yao C, Ma W, Liu H, Yan D. Structural characterization of Astragalus polysaccharide-D1 and its improvement of low-dose metformin effect by enriching Staphylococcus lentus. Int J Biol Macromol 2024; 272:132860. [PMID: 38834117 DOI: 10.1016/j.ijbiomac.2024.132860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-β-D-Galp-(1→ residue and terminal-α/β-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Meng Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Chengcheng Yao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.
| |
Collapse
|
59
|
Andraos J, Smith SR, Tran A, Pham DQ. Narrative review of data supporting alternate first-line therapies over metformin in type 2 diabetes. J Diabetes Metab Disord 2024; 23:385-394. [PMID: 38932889 PMCID: PMC11196467 DOI: 10.1007/s40200-024-01406-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 06/28/2024]
Abstract
Purpose Metformin has been the first-line treatment for type 2 diabetes mellitus as monotherapy or concomitantly with other glucose-lowering therapies due to its efficacy, safety, and affordability. Recent studies on the cardioprotective and renoprotective benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have influenced guidelines on diabetes management to consider these newer agents as alternative first-line therapies. This paper explores the literature supporting the use of these newer medications alone as a first-line agent in place of metformin. Methods A review of citations from the most recent guidelines along with a literature search via PubMed was completed to review (1) what, historically, made metformin first-line (2) if newer agents' benefits remain when used without metformin (3) how newer agents compare against metformin when used without it. Results Evaluation of the historical literature was completed to summarize the key findings that support metformin as a first-line therapy agent. Additionally, an assessment of the literature reveals that the benefits of these two newer classes are independent of concomitant metformin therapy. Finally, studies have demonstrated that these newer agents can be either non-inferior or sometimes superior to metformin when used as monotherapy. Conclusion GLP-1 RA and SGLT-2i can be considered as first line monotherapies for select patients with high cardiovascular risks, renal disease, or weight loss requirements. However, pharmacoeconomic considerations along with lesser long-term safety outcomes should limit these agents' use in certain patients as the management of diabetes continues to transition towards shared-decision making. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01406-6.
Collapse
Affiliation(s)
- John Andraos
- Western University of Health Sciences, College of Pharmacy, Pomona, CA USA
| | - Shawn R. Smith
- Western University of Health Sciences, College of Pharmacy, Pomona, CA USA
| | - Amanda Tran
- HOAG, Mary & Dick Allen Diabetes Center, Newport Beach, CA USA
| | - David Q. Pham
- Western University of Health Sciences, College of Pharmacy, Pomona, CA USA
- HOAG, Mary & Dick Allen Diabetes Center, Newport Beach, CA USA
| |
Collapse
|
60
|
Mesquita LA, Spiazzi BF, Piccoli GF, Nogara DA, da Natividade GR, Garbin HI, Wayerbacher LF, Wiercinski VM, Baggio VA, Zingano CP, Schwartsmann G, Lopes G, Petrie JR, Colpani V, Gerchman F. Does metformin reduce the risk of cancer in obesity and diabetes? A systematic review and meta-analysis. Diabetes Obes Metab 2024; 26:1929-1940. [PMID: 38389430 DOI: 10.1111/dom.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
AIM To evaluate the effect of metformin on cancer incidence in subjects with overweight/obesity and/or prediabetes/diabetes. MATERIALS AND METHODS We searched MEDLINE, Embase and CENTRAL for randomized controlled trials (RCTs) in adults with overweight/obesity and/or prediabetes/diabetes that compared metformin to other interventions for ≥24 weeks. Independent reviewers selected and extracted data including population and intervention characteristics and new diagnoses of cancer. We used the RoB 2.0 risk-of-bias tool and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework to assess risk of bias and certainty of evidence. RESULTS From 14 895 records after removal of duplicates, 27 trials were included, providing a total of 10 717 subjects in the metformin group and 10 003 in the control group, with 170 and 208 new cases of cancer, respectively. Using a random-effects model, the relative risk was 1.07 (95% confidence interval 0.87-1.31), with similar results in subgroup analyses by study duration or effect of control intervention on weight. Risk of bias in most studies was low, and no evidence of publication bias was found. Trial sequential analysis provided evidence that the cumulative sample size was large enough to exclude a significant effect of metformin on cancer incidence. CONCLUSIONS Metformin did not reduce cancer incidence in RCTs involving subjects with overweight/obesity and/or prediabetes/diabetes.
Collapse
Affiliation(s)
- Leonardo A Mesquita
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Critical Care Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bernardo F Spiazzi
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giovana F Piccoli
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniela A Nogara
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriella R da Natividade
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Henrique I Garbin
- Division of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura F Wayerbacher
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa M Wiercinski
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Viviane A Baggio
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carolina P Zingano
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gilberto Lopes
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Verônica Colpani
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Gerchman
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Endocrinology and Metabolism, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
61
|
Alnuaimi S, Reljic T, Abdulla FS, Memon H, Al-Ali S, Smith T, Serdarevic F, Velija Asimi Z, Kumar A, Semiz S. PPAR agonists as add-on treatment with metformin in management of type 2 diabetes: a systematic review and meta-analysis. Sci Rep 2024; 14:8809. [PMID: 38627464 PMCID: PMC11021491 DOI: 10.1038/s41598-024-59390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The combination of metformin and the peroxisome proliferator-activated receptors (PPAR) agonists offers a promising avenue for managing type 2 diabetes (T2D) through their potential complementary mechanisms of action. The results from randomized controlled trials (RCT) assessing the efficacy of PPAR agonists plus metformin versus metformin alone in T2D are inconsistent, which prompted the conduct of the systematic review and meta-analysis. We searched MEDLINE and EMBASE from inception (1966) to March 2023 to identify all RCTs comparing any PPAR agonists plus metformin versus metformin alone in T2D. Categorical variables were summarized as relative risk along with 95% confidence interval (CI). Twenty RCTs enrolling a total of 6058 patients met the inclusion criteria. The certainty of evidence ranged from moderate to very low. Pooled results show that using PPAR agonist plus metformin, as compared to metformin alone, results in lower concentrations of fasting glucose [MD = - 22.07 mg/dl (95% CI - 27.17, - 16.97), HbA1c [MD = - 0.53% (95% CI - 0.67, - 0.38)], HOMA-IR [MD = - 1.26 (95% CI - 2.16, - 0.37)], and fasting insulin [MD = - 19.83 pmol/L (95% CI - 29.54, - 10.13)] without significant increase in any adverse events. Thus, synthesized evidence from RCTs demonstrates the beneficial effects of PPAR agonist add-on treatment versus metformin alone in T2D patients. In particular, novel dual PPARα/γ agonist (tesaglitazar) demonstrate efficacy in improving glycaemic and lipid concentrations, so further RCTs should be performed to elucidate the long-term outcomes and safety profile of these novel combined and personalized therapeutic strategies in the management of T2D.PROSPERO registration no. CRD42023412603.
Collapse
Affiliation(s)
- Saif Alnuaimi
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Fatima S Abdulla
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Sarah Al-Ali
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Teagen Smith
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Fadila Serdarevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zelija Velija Asimi
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
62
|
Rasouli N, Younes N, Ghosh A, Albu J, Cohen RM, DeFronzo RA, Diaz E, Sayyed Kassem L, Luchsinger JA, McGill JB, Sivitz WI, Tamborlane WV, Utzschneider KM, Kahn SE. Longitudinal Effects of Glucose-Lowering Medications on β-Cell Responses and Insulin Sensitivity in Type 2 Diabetes: The GRADE Randomized Clinical Trial. Diabetes Care 2024; 47:580-588. [PMID: 38211595 PMCID: PMC10973918 DOI: 10.2337/dc23-1070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To compare the long-term effects of glucose-lowering medications (insulin glargine U-100, glimepiride, liraglutide, and sitagliptin) when added to metformin on insulin sensitivity and β-cell function. RESEARCH DESIGN AND METHODS In the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE) cohort with type 2 diabetes (n = 4,801), HOMA2 was used to estimate insulin sensitivity (HOMA2-%S) and fasting β-cell function (HOMA2-%B) at baseline and 1, 3, and 5 years on treatment. Oral glucose tolerance test β-cell responses (C-peptide index [CPI] and total C-peptide response [incremental C-peptide/incremental glucose over 120 min]) were evaluated at the same time points. These responses adjusted for HOMA2-%S in regression analysis provided estimates of β-cell function. RESULTS HOMA2-%S increased from baseline to year 1 with glargine and remained stable thereafter, while it did not change from baseline in the other treatment groups. HOMA2-%B and C-peptide responses were increased to variable degrees at year 1 in all groups but then declined progressively over time. At year 5, CPI was similar between liraglutide and sitagliptin, and higher for both than for glargine and glimepiride [0.80, 0.87, 0.74, and 0.64 (nmol/L)/(mg/dL) * 100, respectively; P < 0.001], while the total C-peptide response was greatest with liraglutide, followed in descending order by sitagliptin, glargine, and glimepiride [1.54, 1.25, 1.02, and 0.87 (nmol/L)/(mg/dL) * 100, respectively, P < 0.001]. After adjustment for HOMA2-%S to obtain an estimate of β-cell function, the nature of the change in β-cell responses reflected those in β-cell function. CONCLUSIONS The differential long-term effects on insulin sensitivity and β-cell function of four different glucose-lowering medications when added to metformin highlight the importance of the loss of β-cell function in the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Neda Rasouli
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, and VA Eastern Colorado Health Care System, Aurora, CO
| | - Naji Younes
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Alokananda Ghosh
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Jeanine Albu
- Icahn School of Medicine, Mount Sinai Morningside, New York, NY
| | - Robert M. Cohen
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati College of Medicine and Cincinnati VA Medical Center, Cincinnati, OH
| | | | - Elsa Diaz
- VA San Diego Healthcare System, San Diego, CA
| | - Laure Sayyed Kassem
- Department of Endocrinology, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY
| | - Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | | | | | - Kristina M. Utzschneider
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle
| |
Collapse
|
63
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
64
|
Utzschneider KM, Younes N, Butera NM, Balasubramanyam A, Bergenstal RM, Barzilay J, DeSouza C, DeFronzo RA, Elasy T, Krakoff J, Kahn SE, Rasouli N, Valencia WM, Sivitz WI. Impact of Insulin Sensitivity and β-Cell Function Over Time on Glycemic Outcomes in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE): Differential Treatment Effects of Dual Therapy. Diabetes Care 2024; 47:571-579. [PMID: 38190619 PMCID: PMC10973903 DOI: 10.2337/dc23-1059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE To compare the effects of insulin sensitivity and β-cell function over time on HbA1c and durability of glycemic control in response to dual therapy. RESEARCH DESIGN AND METHODS GRADE participants were randomized to glimepiride (n = 1,254), liraglutide (n = 1,262), or sitagliptin (n = 1,268) added to baseline metformin and followed for mean ± SD 5.0 ± 1.3 years, with HbA1c assessed quarterly and oral glucose tolerance tests at baseline, 1, 3, and 5 years. We related time-varying insulin sensitivity (HOMA 2 of insulin sensitivity [HOMA2-%S]) and early (0-30 min) and total (0-120 min) C-peptide (CP) responses to changes in HbA1c and glycemic failure (primary outcome HbA1c ≥7% [53 mmol/mol] and secondary outcome HbA1c >7.5% [58 mmol/mol]) and examined differential treatment responses. RESULTS Higher HOMA2-%S was associated with greater initial HbA1c lowering (3 months) but not subsequent HbA1c rise. Greater CP responses were associated with a greater initial treatment response and slower subsequent HbA1c rise. Higher HOMA2-%S and CP responses were each associated with lower risk of primary and secondary outcomes. These associations differed by treatment. In the sitagliptin group, HOMA2-%S and CP responses had greater impact on initial HbA1c reduction (test of heterogeneity, P = 0.009 HOMA2-%S, P = 0.018 early CP, P = 0.001 total CP) and risk of primary outcome (P = 0.005 HOMA2-%S, P = 0.11 early CP, P = 0.025 total CP) but lesser impact on HbA1c rise (P = 0.175 HOMA2-%S, P = 0.006 early CP, P < 0.001 total CP) in comparisons with the glimepiride and liraglutide groups. There were no differential treatment effects on secondary outcome. CONCLUSIONS Insulin sensitivity and β-cell function affected treatment outcomes irrespective of drug assignment, with greater impact in the sitagliptin group on initial (short-term) HbA1c response in comparison with the glimepiride and liraglutide groups.
Collapse
Affiliation(s)
- Kristina M. Utzschneider
- VA Puget Sound Health Care System and Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Naji Younes
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Nicole M. Butera
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
| | | | - Joshua Barzilay
- Department of Endocrinology, Kaiser Permanente of Georgia, Duluth, GA
| | - Cyrus DeSouza
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska and Omaha VA Medical Center, Omaha, NE
| | - Ralph A. DeFronzo
- Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Tom Elasy
- Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan Krakoff
- Division of General Internal Medicine and Public Health, Southwestern American Indian Center, Phoenix, AZ
| | - Steven E. Kahn
- VA Puget Sound Health Care System and Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Neda Rasouli
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, and VA Eastern Colorado Health Care System, Aurora, CO
| | - Willy M. Valencia
- Geriatric Research Education and Clinical Center, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL
- Department of Public Health Sciences, University of Miami, Miami, FL
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL
- Endocrinology & Metabolism Institute, Cleveland Clinic, Cleveland, OH
| | - William I. Sivitz
- Department of Internal Medicine, Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| |
Collapse
|
65
|
Kim H, Choi CU, Rhew K, Park J, Lim Y, Kim MG, Kim K. Comparative effects of glucose-lowering agents on endothelial function and arterial stiffness in patients with type 2 diabetes: A network meta-analysis. Atherosclerosis 2024; 391:117490. [PMID: 38452432 DOI: 10.1016/j.atherosclerosis.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND AIMS Despite accumulating evidence on the potential of glucose-lowering agents (GLAs) to prevent cardiovascular events, the comparative effects of GLAs on vascular function remain unclear. This study utilized validated indicators such as flow-mediated dilation (FMD; positive value favors) and pulse wave velocity (PWV; negative value favors) to uncover the comparative effects of GLAs on vascular function. METHODS Randomized controlled trials (RCTs) comparing the effects of GLAs on FMD or PWV with placebo or other GLAs in patients with type 2 diabetes (T2DM) were searched through PubMed and Embase. The frequentist method of network meta-analysis (NMA) was conducted using a random effects model, and standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated. RESULTS The NMA included 38 RCTs with 2,065 patients. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium glucose cotransporter-2 inhibitors (SGLT-2Is) had significantly more positive effects on FMD improvement and PWV reduction than placebo. Thiazolidinedione (TZD) treatment resulted in significantly improved FMD compared to other GLAs as well as placebo (SMD: 1.14; 95% CI: 0.84 to 1.43). Both pioglitazone and rosiglitazone were discovered to have considerably more favorable effects on improving FMD and reducing PWV compared to placebo and other GLAs, as a result of the analysis incorporating each drug in the TZD class. The sensitivity analysis results corroborated the main findings. CONCLUSIONS This NMA showed more favorable effects of GLP-1RAs and SGLT-2Is than placebo in improving both arterial stiffness and endothelial function in patients with T2DM. In addition, TZDs showed superior effects in improving endothelial function as compared with the other GLAs and placebo.
Collapse
Affiliation(s)
- Hayeon Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Cheol Ung Choi
- Cardiovascular Center, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Kiyon Rhew
- College of Pharmacy, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Jiwon Park
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Yejee Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620, Republic of Korea
| | - Myeong Gyu Kim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea; Institute of Pharmaceutical Science, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
66
|
Yang Y, Qiu W, Xiao J, Sun J, Ren X, Jiang L. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1α and PPARα-mediated autophagy pathway. J Transl Med 2024; 22:309. [PMID: 38532480 PMCID: PMC10964712 DOI: 10.1186/s12967-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Dihydromyricetin (DHM), a flavonoid compound of natural origin, has been identified in high concentrations in ampelopsis grossedentata and has a broad spectrum of biological and pharmacological functions, particularly in regulating glucose and lipid metabolism. The objective of this research was to examine how DHM affected nonalcoholic fatty liver disease (NAFLD) and its underlying mechanisms involved in the progression of NAFLD in a rat model subjected to a high-fat diet (HFD). Additionally, the study examines the underlying mechanisms in a cellular model of steatohepatitis using palmitic acid (PA)-treated HepG2 cells, with a focus on the potential correlation between autophagy and hepatic insulin resistance (IR) in the progress of NAFLD. METHODS SD rats were exposed to a HFD for a period of eight weeks, followed by a treatment with DHM (at doses of 50, 100, and 200 mg·kg-1·d-1) for additional six weeks. The HepG2 cells received a 0.5 mM PA treatment for 24 h, either alone or in conjunction with DHM (10 µM). The histopathological alterations were assessed by the use of Hematoxylin-eosin (H&E) staining. The quantification of glycogen content and lipid buildup in the liver was conducted by the use of PAS and Oil Red O staining techniques. Serum lipid and liver enzyme levels were also measured. Autophagic vesicle and autolysosome morphology was studied using electron microscopy. RT-qPCR and/or western blotting techniques were used to measure IR- and autophagy-related factors levels. RESULTS The administration of DHM demonstrated efficacy in ameliorating hepatic steatosis, as seen in both in vivo and in vitro experimental models. Moreover, DHM administration significantly increased GLUT2 expression, decreased G6Pase and PEPCK expression, and improved IR in the hepatic tissue of rats fed a HFD and in cells exhibiting steatosis. DHM treatment elevated Beclin 1, ATG 5, and LC3-II levels in hepatic steatosis models, correlating with autolysosome formation. The expression of AMPK levels and its downstream target PGC-1α, and PPARα were decreased in HFD-fed rats and PA-treated hepatocytes, which were reversed through DHM treatment. AMPK/ PGC-1α and PPARα knockdown reduced the impact of DHM on hepatic autophagy, IR and accumulation of hepatic lipid. CONCLUSIONS Our findings revealed that AMPK/ PGC-1α, PPARα-dependent autophagy pathways in the pathophysiology of IR and hepatic steatosis has been shown, suggesting that DHM might potentially serve as a promising treatment option for addressing this disease.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Qiu
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiyuan Xiao
- Department of Pharmacology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jie Sun
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuan Ren
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Luxia Jiang
- Department of Cardiac Surgery ICU, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
67
|
Sivadas A, Sahana S, Jolly B, Bhoyar RC, Jain A, Sharma D, Imran M, Senthivel V, Divakar MK, Mishra A, Mukhopadhyay A, Gibson G, Narayan KV, Sivasubbu S, Scaria V, Kurpad AV. Landscape of pharmacogenetic variants associated with non-insulin antidiabetic drugs in the Indian population. BMJ Open Diabetes Res Care 2024; 12:e003769. [PMID: 38471670 PMCID: PMC10936492 DOI: 10.1136/bmjdrc-2023-003769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION Genetic variants contribute to differential responses to non-insulin antidiabetic drugs (NIADs), and consequently to variable plasma glucose control. Optimal control of plasma glucose is paramount to minimizing type 2 diabetes-related long-term complications. India's distinct genetic architecture and its exploding burden of type 2 diabetes warrants a population-specific survey of NIAD-associated pharmacogenetic (PGx) variants. The recent availability of large-scale whole genomes from the Indian population provides a unique opportunity to generate a population-specific map of NIAD-associated PGx variants. RESEARCH DESIGN AND METHODS We mined 1029 Indian whole genomes for PGx variants, drug-drug interaction (DDI) and drug-drug-gene interactions (DDGI) associated with 44 NIADs. Population-wise allele frequencies were estimated and compared using Fisher's exact test. RESULTS Overall, we found 76 known and 52 predicted deleterious common PGx variants associated with response to type 2 diabetes therapy among Indians. We report remarkable interethnic differences in the relative cumulative counts of decreased and increased response-associated alleles across NIAD classes. Indians and South Asians showed a significant excess of decreased metformin response-associated alleles compared with other global populations. Network analysis of shared PGx genes predicts high DDI risk during coadministration of NIADs with other metabolic disease drugs. We also predict an increased CYP2C19-mediated DDGI risk for CYP3A4/3A5-metabolized NIADs, saxagliptin, linagliptin and glyburide when coadministered with proton-pump inhibitors (PPIs). CONCLUSIONS Indians and South Asians have a distinct PGx profile for antidiabetes drugs, marked by an excess of poor treatment response-associated alleles for various NIAD classes. This suggests the possibility of a population-specific reduced drug response in atleast some NIADs. In addition, our findings provide an actionable resource for accelerating future diabetes PGx studies in Indians and South Asians and reconsidering NIAD dosing guidelines to ensure maximum efficacy and safety in the population.
Collapse
Affiliation(s)
- Ambily Sivadas
- St John's Research Institute, Bangalore, Karnataka, India
| | - S Sahana
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Disha Sharma
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Greg Gibson
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | |
Collapse
|
68
|
Ahmed R, de Souza RJ, Li V, Banfield L, Anand SS. Twenty years of participation of racialised groups in type 2 diabetes randomised clinical trials: a meta-epidemiological review. Diabetologia 2024; 67:443-458. [PMID: 38177564 PMCID: PMC10844363 DOI: 10.1007/s00125-023-06052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 01/06/2024]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus prevalence is increasing globally and the greatest burden is borne by racialised people. However, there are concerns that the enrolment of racialised people into RCTs is limited, resulting in a lack of ethnic and racial diversity. This may differ depending whether an RCT is government funded or industry funded. The aim of this study was to review the proportions of racialised and white participants included in large RCTs of type 2 diabetes pharmacotherapies relative to the disease burden of type 2 diabetes in these groups. METHODS The Ovid MEDLINE database was searched from 1 January 2000 to 31 December 2020. English language reports of RCTs of type 2 diabetes pharmacotherapies published in select medical journals were included. Studies were included in this review if they had a sample size of at least 100 participants and all participants were adults with type 2 diabetes. Industry-funded trials must have recruited participants from at least two countries. Government-funded trials were not held to the same standard because they are typically conducted in a single country. Data including the numbers and proportions of participants by ethnicity and race were extracted from trial reports. The participation-to-prevalence ratio (PPR) was calculated for each trial by dividing the percentage of white and racialised participants in each trial by the percentage of white and racialised participants with type 2 diabetes, respectively, for the regions of recruitment. A random-effects meta-analysis was used to generate the pooled PPRs and 95% CIs across study types. A PPR <0.80 indicates under-representation and a PPR >1.20 indicates over-representation. Risk of bias assessments were not conducted for this study as the objective was to examine recruitment of racialised and white participants rather than evaluate the trustworthiness of clinical trial outcomes. RESULTS A total of 83 trials were included, involving 283,122 participants, of which 15 were government-funded and 68 were industry-funded trials. In government-funded trials, the PPR for white participants was 1.11 (95% CI 0.99, 1.24) and the PPR for racialised participants was 0.72 (95% CI 0.60, 0.86). In industry-funded trials, the PPR for white participants was 1.95 (95% CI 1.74, 2.18) and the PPR for racialised participants was 0.36 (95% CI 0.32, 0.42). The limitations of this study include the reliance on investigator-reported ethnicity and race to classify participants as 'white' or 'racialised', the use of estimates for type 2 diabetes prevalence and demographic data, and the high levels of heterogeneity of pooled estimates. However, despite these limitations, the results were consistent with respect to direction. CONCLUSIONS/INTERPRETATION Racialised participants are under-represented in government- and industry-funded type 2 diabetes trials. Strategies to improve recruitment and enrolment of racialised participants into RCTs should be developed. REGISTRATION Open Science Framework registration no. f59mk ( https://osf.io/f59mk ) FUNDING: The authors received no financial support for this research or authorship of the article.
Collapse
Affiliation(s)
- Rabeeyah Ahmed
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
| | - Russell J de Souza
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Vincent Li
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, ON, Canada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
69
|
Choe HJ, Oh HR, Bu D, An N, Scherer PE, An Z, Lim S. Evaluation of the efficacy of a combination of dapagliflozin and lobeglitazone on glucose concentrations and body fat in patients with type 2 diabetes: Location-F study. Diabetes Obes Metab 2024; 26:1114-1119. [PMID: 38073421 DOI: 10.1111/dom.15388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 02/06/2024]
Affiliation(s)
- Hun Jee Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - He Ran Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dawei Bu
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ningyan An
- Touchstone Diabetes Center, The University of Texas Health Science Center at Houston Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiqiang An
- Touchstone Diabetes Center, The University of Texas Health Science Center at Houston Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
70
|
Abushamat LA, Schauer IE, Low Wang CC, Mitchell S, Herlache L, Bridenstine M, Durbin R, Snell-Bergeon JK, Regensteiner JG, Reusch JE. Rosiglitazone improves insulin resistance but does not improve exercise capacity in individuals with impaired glucose tolerance: A randomized clinical study. J Investig Med 2024; 72:294-304. [PMID: 38148342 DOI: 10.1177/10815589231225183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Dysmetabolic states, such as type 2 diabetes (T2D), characterized by insulin resistance (IR), are associated with fatty liver, increased cardiovascular disease (CVD) risk, and decreased functional exercise capacity (FEC). Rosiglitazone (RO) improves exercise capacity and IR in T2D. However, the effects of RO on FEC and other markers of CVD risk in prediabetes are unknown. We hypothesized that insulin sensitization with RO would improve exercise capacity and markers of CVD risk in participants with impaired glucose tolerance (IGT). Exercise performance (peak oxygen consumption and oxygen uptake kinetics), IR (homeostasis model assessment of IR and quantitative insulin sensitivity check index), and surrogate cardiovascular endpoints (coronary artery calcium (CAC) volume and density and C-reactive protein (CRP)) were measured in participants with IGT after 12 and 18 months of RO or placebo (PL). RO did not significantly improve exercise capacity. Glycemic measures and IR were significantly lower in people on RO compared to PL at 18 months. CAC volume progression was not different between PL and RO groups. RO did not improve exercise capacity during an 18-month intervention despite improved IR and glycemia in people with IGT. Future studies should explore why effects on FEC with RO occur in T2D but not IGT. Understanding these questions may help in targeting therapeutic approaches in T2D and IGT.
Collapse
Affiliation(s)
- Layla A Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Irene E Schauer
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| | - Cecilia C Low Wang
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stacey Mitchell
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Denver Endocrinology, Diabetes and Thyroid Center, Englewood, CO, USA
| | - Leah Herlache
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Roy Durbin
- Arbor Family Medicine PC, Westminster, CO, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus School of Public Health, Aurora, CO, USA
| | - Judith G Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| | - Jane Eb Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| |
Collapse
|
71
|
Orandi BJ, Lofton H, Montgomery RA, Segev DL. Antiobesity pharmacotherapy to facilitate living kidney donation. Am J Transplant 2024; 24:328-337. [PMID: 38072121 DOI: 10.1016/j.ajt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Obesity is a chronic, relapsing disease that increases the risks of living kidney donation; at the same time, transplant centers have liberalized body mass index constraints for donors. With the increasing number of antiobesity medications available, the treatment of obesity with antiobesity medications may increase the pool of potential donors and enhance donor safety. Antiobesity medications are intended for long-term use given the chronic nature of obesity. Cessation of treatment can be expected to lead to weight regain and increase the risk of comorbidity rebound/development. In addition, antiobesity medications are meant to be used in conjunction with-rather than in replacement of-diet and physical activity optimization. Antiobesity medication management includes selecting medications that may ameliorate any coexisting medical conditions, avoiding those that are contraindicated in such conditions, and being sensitive to any out-of-pocket expenses that may be incurred by the potential donor. A number of questions remain regarding who will and should shoulder the costs of long-term obesity treatment for donors. In addition, future studies are needed to quantify the degree of weight loss and duration of weight loss maintenance needed to normalize the risk of adverse kidney outcomes relative to comparable nondonors and lower-weight donors.
Collapse
Affiliation(s)
- Babak J Orandi
- New York University Department of Surgery, New York, New York, USA; New York University Department of Medicine, New York, New York, USA.
| | - Holly Lofton
- New York University Department of Medicine, New York, New York, USA
| | | | - Dorry L Segev
- New York University Department of Surgery, New York, New York, USA; New York University Department of Population Health, New York, New York, USA
| |
Collapse
|
72
|
Wheeler AE, Stoeger V, Owens RM. Lab-on-chip technologies for exploring the gut-immune axis in metabolic disease. LAB ON A CHIP 2024; 24:1266-1292. [PMID: 38226866 DOI: 10.1039/d3lc00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The continued rise in metabolic diseases such as obesity and type 2 diabetes mellitus poses a global health burden, necessitating further research into factors implicated in the onset and progression of these diseases. Recently, the gut-immune axis, with diet as a main regulator, has been identified as a possible role player in their development. Translation of conventional 2D in vitro and animal models is however limited, while human studies are expensive and preclude individual mechanisms from being investigated. Lab-on-chip technology therefore offers an attractive new avenue to study gut-immune interactions. This review provides an overview of the influence of diet on gut-immune interactions in metabolic diseases and a critical analysis of the current state of lab-on-chip technology to study this axis. While there has been progress in the development of "immuno-competent" intestinal lab-on-chip models, with studies showing the ability of the technology to provide mechanical cues, support longer-term co-culture of microbiota and maintain in vivo-like oxygen gradients, platforms which combine all three and include intestinal and immune cells are still lacking. Further, immune cell types and inclusion of microenvironment conditions which enable in vivo-like immune cell dynamics as well as host-microbiome interactions are limited. Future model development should focus on combining these conditions to create an environment capable of hosting more complex microbiota and immune cells to allow further study into the effects of diet and related metabolites on the gut-immune ecosystem and their role in the prevention and development of metabolic diseases in humans.
Collapse
Affiliation(s)
- Alexandra E Wheeler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| |
Collapse
|
73
|
Tassoulas LJ, Wackett LP. Insights into the action of the pharmaceutical metformin: Targeted inhibition of the gut microbial enzyme agmatinase. iScience 2024; 27:108900. [PMID: 38318350 PMCID: PMC10839685 DOI: 10.1016/j.isci.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
74
|
Mascarenhas C, Sousa ACA, Rato L. Effects of Pharmaceutical Substances with Obesogenic Activity on Male Reproductive Health. Int J Mol Sci 2024; 25:2324. [PMID: 38397000 PMCID: PMC10889417 DOI: 10.3390/ijms25042324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Obesogens have been identified as a significant factor associated with increasing obesity rates, particularly in developed countries. Substances with obesogenic traits are prevalent in consumer products, including certain pharmaceuticals. Specific classes of pharmaceuticals have been recognized for their ability to induce weight gain, often accompanied by hormonal alterations that can adversely impact male fertility. Indeed, research has supplied evidence underscoring the crucial role of obesogens and therapeutic agents in the normal functioning of the male reproductive system. Notably, sperm count and various semen parameters have been closely linked to a range of environmental and nutritional factors, including chemicals and pharmacological agents exhibiting obesogenic properties. This review aimed to explore studies focused on analyzing male fertility parameters, delving into the intricacies of sperm quality, and elucidating the direct and adverse effects that pharmacological agents may have on these aspects.
Collapse
Affiliation(s)
- Caio Mascarenhas
- School of Health, Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal;
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal;
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
| | - Luís Rato
- School of Health, Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal;
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
75
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
76
|
Watanabe H, Asahara SI, Son J, McKimpson WM, de Cabo R, Accili D. Cyb5r3 activation rescues secondary failure to sulfonylurea but not β-cell dedifferentiation. PLoS One 2024; 19:e0297555. [PMID: 38335173 PMCID: PMC10857566 DOI: 10.1371/journal.pone.0297555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetes mellitus is characterized by insulin resistance and β-cell failure. The latter involves impaired insulin secretion and β-cell dedifferentiation. Sulfonylurea (SU) is used to improve insulin secretion in diabetes, but it suffers from secondary failure. The relationship between SU secondary failure and β-cell dedifferentiation has not been examined. Using a model of SU secondary failure, we have previously shown that functional loss of oxidoreductase Cyb5r3 mediates effects of SU failure through interactions with glucokinase. Here we demonstrate that SU failure is associated with partial β-cell dedifferentiation. Cyb5r3 knockout mice show more pronounced β-cell dedifferentiation and glucose intolerance after chronic SU administration, high-fat diet feeding, and during aging. A Cyb5r3 activator improves impaired insulin secretion caused by chronic SU treatment, but not β-cell dedifferentiation. We conclude that chronic SU administration affects progression of β-cell dedifferentiation and that Cyb5r3 activation reverses secondary failure to SU without restoring β-cell dedifferentiation.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shun-ichiro Asahara
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jinsook Son
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Wendy M. McKimpson
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Domenico Accili
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
77
|
Al Neyadi S, Adem A, Amir N, Ghattas MA, Abdou IM, Salem AA. Novel Thiazolidinedione and Rhodanine Derivatives Regulate Glucose Metabolism, Improve Insulin Sensitivity, and Activate the Peroxisome Proliferator-Activated γ Receptor. ACS OMEGA 2024; 9:5463-5484. [PMID: 38343951 PMCID: PMC10851269 DOI: 10.1021/acsomega.3c07149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 07/08/2024]
Abstract
Sixteen novel thiazolidinedione (TZD) and rhodanine (RD) derivatives were designed and synthesized by introducing a pyrimidine moiety at different sites of pioglitazone's structure. The effects of synthesized compounds on regulating glucose metabolism, improving insulin sensitivity, and activating the peroxisome proliferator-activated γ receptor (PPAR-γ) were evaluated in βTC6 cells. Compounds TZDs # 7a, 7b, 7c, and 29 reduced the basal insulin secretion by ∼20.0-67.0% and increased insulin secretion stimulated by glucose by ∼25.0-50.0% compared to control. Compounds TZDs # 14 and 21 and RDs # 33a-b and 33d-f increased basal insulin secretion by ∼20.0-100.0%, while its glucose-stimulated secretion remained unchanged. These findings suggested that the former compounds can act as antihypoglycemic during fasting and antihyperglycemic during postprandial conditions. The latter compounds should be administered before meals to avoid their hypoglycemic effect. Additionally, both TZDs and RDs improved insulin sensitivity by increasing glucose uptake by 17.0-155.0% relative to control. In silico molecular docking of synthesized drugs onto the PPAR-γ structure revealed exothermic binding modes through hydrogen bonding, van der Waals forces, and π-π stacking with binding affinities of -6.02 to -9.70 kcal/mol. Insights into the structure-activity relationship revealed that the introduction of pyrimidine linked to sulfonyl or peptide groups accounted for increased antidiabetic activity. These results demonstrated novel TZDs and RDs with high potency in stimulating insulin secretion, enhancing insulin sensitivity, and activating PPAR-γ relative to pioglitazone. They are recommended for further development as potential antidiabetic agents.
Collapse
Affiliation(s)
- Shaikha
S. Al Neyadi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al-Ain 15551, United Arab
Emirates
| | - Abdu Adem
- Department
of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - Naheed Amir
- Department
of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates
| | - Mohammad A. Ghattas
- College
of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Ibrahim M. Abdou
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al-Ain 15551, United Arab
Emirates
| | - Alaa A. Salem
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al-Ain 15551, United Arab
Emirates
| |
Collapse
|
78
|
Kim JY, Kim NH. Initial Combination Therapy in Type 2 Diabetes. Endocrinol Metab (Seoul) 2024; 39:23-32. [PMID: 38031401 PMCID: PMC10901659 DOI: 10.3803/enm.2023.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes (T2D) is a progressive disease in which it is challenging to achieve long-term durable glycemic control. However, intensive glycemic control is crucial for preventing diabetes-related complications. Previous studies showed that monotherapy with a stepwise add-on approach was seldom effective for long-term durable glycemic control. Combination therapy, which refers to the use of two or more drugs to control hyperglycemia, has multiple benefits, including the ability to target a variety of pathophysiological processes underlying hyperglycemia. In clinical trials, initial combination therapy showed better glycemic control than monotherapy or a stepwise approach. Emerging evidence indicates that initial combination therapy is associated with preserved β-cell function and fewer complications in T2D. However, cost-effectiveness and adverse events with combination therapy are issues that should be considered. Therefore, initial combination therapy is an important option for patients with T2D that clinicians should consider with a view toward balancing benefits and potential harms. In this review, we summarize the literature addressing initial combination therapy in T2D, and we suggest optimal strategies based on clinical situations and patient characteristics.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
79
|
Pearson ER. New Insights Into the Genetics of Glycemic Response to Metformin. Diabetes Care 2024; 47:193-195. [PMID: 38241501 DOI: 10.2337/dci23-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Affiliation(s)
- Ewan R Pearson
- Division of Population Health & Genomics, University of Dundee, Dundee, U.K
| |
Collapse
|
80
|
Elbere I, Orlovskis Z, Ansone L, Silamikelis I, Jagare L, Birzniece L, Megnis K, Leskovskis K, Vaska A, Turks M, Klavins K, Pirags V, Briviba M, Klovins J. Gut microbiome encoded purine and amino acid pathways present prospective biomarkers for predicting metformin therapy efficacy in newly diagnosed T2D patients. Gut Microbes 2024; 16:2361491. [PMID: 38868903 PMCID: PMC11178274 DOI: 10.1080/19490976.2024.2361491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Metformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future. We combined targeted metabolomics and metagenomic profiling of gut microbiomes in newly diagnosed T2D patients before and after metformin therapy to identify potential pre-treatment biomarkers and functional signatures for metformin efficacy and induced changes in metformin therapy responders. Our sequencing data were largely corroborated by our metabolic profiling and identified that pre-treatment enrichment of gut microbial functions encoding purine degradation and glutamate biosynthesis was associated with good therapy response. Furthermore, we identified changes in glutamine-associated amino acid (arginine, ornithine, putrescine) metabolism that characterize differences in metformin efficacy before and after the therapy. Moreover, metformin Responders' microbiota displayed a shifted balance between bacterial lipidA synthesis and degradation as well as alterations in glutamate-dependent metabolism of N-acetyl-galactosamine and its derivatives (e.g. CMP-pseudaminate) which suggest potential modulation of bacterial cell walls and human gut barrier, thus mediating changes in microbiome composition. Together, our data suggest that glutamine and associated amino acid metabolism as well as purine degradation products may potentially condition metformin activity via its multiple effects on microbiome functional composition and therefore serve as important biomarkers for predicting metformin efficacy.
Collapse
Affiliation(s)
- Ilze Elbere
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Zigmunds Orlovskis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Ansone
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamikelis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Jagare
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Liga Birzniece
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kristaps Leskovskis
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Annija Vaska
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Maris Turks
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Kristaps Klavins
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Valdis Pirags
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Monta Briviba
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
81
|
Szczerbinski L, Florez JC. Precision medicine in diabetes - current trends and future directions. Is the future now? COMPREHENSIVE PRECISION MEDICINE 2024:458-483. [DOI: 10.1016/b978-0-12-824010-6.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
82
|
Hitt TA, Hannon TS, Magge SN. Approach to the Patient: Youth-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2023; 109:245-255. [PMID: 37584397 DOI: 10.1210/clinem/dgad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Youth-onset type 2 diabetes is a growing epidemic with a rising incidence worldwide. Although the pathogenesis and diagnosis of youth-onset type 2 diabetes are similar to adult-onset type 2 diabetes, youth-onset type 2 diabetes is unique, with greater insulin resistance, insulin hypersecretion, and faster progression of pancreatic beta cell function decline. Individuals with youth-onset type 2 diabetes also develop complications at higher rates within short periods of time compared to adults with type 2 diabetes or youth with type 1 diabetes. The highest prevalence and incidence of youth-onset type 2 diabetes in the United States is among youth from minoritized racial and ethnic groups. Risk factors include obesity, family history of type 2 diabetes, comorbid conditions and use of medications associated with insulin resistance and rapid weight gain, socioeconomic and environmental stressors, and birth history of small-for-gestational-age or pregnancy associated with gestational or pregestational diabetes. Patients with youth-onset type 2 diabetes should be treated using a multidisciplinary model with frequent clinic visits and emphasis on addressing of social and psychological barriers to care and glycemic control, as well as close monitoring for comorbidities and complications. Intensive health behavior therapy is an important component of treatment, in addition to medical management, both of which should be initiated at the diagnosis of type 2 diabetes. There are limited but growing pharmacologic treatment options, including metformin, insulin, glucagon-like peptide 1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors. Although long-term outcomes are not fully known, metabolic/bariatric surgery in youth with type 2 diabetes has led to improved cardiometabolic outcomes.
Collapse
Affiliation(s)
- Talia A Hitt
- Division of Endocrinology and Diabetes, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Room 3114, Baltimore, MD 21287, USA
| | - Tamara S Hannon
- Division of Endocrinology and Diabetology, Department of Pediatrics, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sheela N Magge
- Division of Endocrinology and Diabetes, Department of Pediatrics, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Room 3114, Baltimore, MD 21287, USA
| |
Collapse
|
83
|
Zhang X, Li Q, Han N, Song C, Lin Y, Zhang L, Ren D, Zhao Y, Yang X, Li T. Effects of Fu brick tea polysaccharides on gut microbiota and fecal metabolites of HFD/STZ-induced type 2 diabetes rats. Food Funct 2023; 14:10910-10923. [PMID: 37997787 DOI: 10.1039/d3fo04215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) has dramatically increased globally, and the antidiabetic effects and underlying mechanisms of the polysaccharides extracted from Fu brick tea (FBTP) were investigated in high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM rats. Administration of FBTP at 200 and 400 mg per kg bw significantly relieved dyslipidemia (i.e. TC, TG, LDL-C and HDL-C), insulin resistance (IR) and pancreas oxidative stress (i.e. CAT and GSH-Px) in T2DM rats. Mechanistically, FBTP rescued the HFD/STZ-induced alterations in the abundance of Bacteroidota, Actinobacteriota, Proteobacteria and Firmicutes. At the genus level, FBTP notably increased the abundance of Ruminococcus, Lactobacillus and Lachnospiraece_NK4A136_group, but reduced the population of Prevotella and Faecalibaculum in T2DM rats. FBTP also significantly elevated colonic short-chain fatty acid (SCFAs) levels. Moreover, apparent changes in amino acid absorption and metabolism were observed upon FBTP intervention. These findings suggested that FBTP might alleviate T2DM by reshaping the gut microbiota and regulating intestinal metabolites.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ning Han
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Chaofan Song
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yangnan Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Liansheng Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
84
|
Prasad TN, Arjunan D, Pal R, Bhadada SK. Diabetes and Osteoporosis. Indian J Orthop 2023; 57:209-217. [PMID: 38107797 PMCID: PMC10721588 DOI: 10.1007/s43465-023-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
Bone fragility is an emerging complication of diabetes. People with diabetes are at a significantly higher risk of fractures compared to the general population. Bone fragility occurs in diabetes as a result of complex and poorly understood mechanisms occurring at the cellular level contributed by vascular, inflammatory and mechanical derangements. Bone mineral density (BMD) as assessed by DEXA is low in type 1 diabetes. Type 2 diabetes has a high risk of fracture despite a normal to raised BMD. DEXA thus underestimates the fracture risk in diabetes. Data are scare regarding the efficacy of the available therapies in this low bone turnover state.
Collapse
Affiliation(s)
- Trupti Nagendra Prasad
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Durairaj Arjunan
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
85
|
Bordier L, Doucet J, Bauduceau B. Therapeutic choices in elderly diabetic patients. ANNALES D'ENDOCRINOLOGIE 2023; 84:773-778. [PMID: 37086949 DOI: 10.1016/j.ando.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
The care of elderly diabetic patients has now become a real public health issue due to the increase in the number of patients. In this population, complications are more serious and are intertwined with more specifically gerontological issues. Treatment goals should be individualized based on the patient's clinical presentation. New therapeutic drug classes are particularly interesting because of their effectiveness in terms of cardiovascular and renal protection, but the risk/benefit ratio needs to be well assessed on an individual basis. Insulin therapy is often necessary, either in case of failure of oral antidiabetics or because of comorbidities, particularly in the event of renal failure. Educating the patient and family early in the course of the disease is one of the keys to effective and safe treatment. The management of elderly diabetic patients must avoid both too much laxity in those who have successfully aged and unreasonable activism in fragile subjects because of the risk of hypoglycemia.
Collapse
Affiliation(s)
- Lyse Bordier
- Service d'Endocrinologie, Hôpital Bégin, avenue de Paris, 94160 Saint-Mandé, France.
| | - Jean Doucet
- Service de Médecine Interne Polyvalente, Université de Normandie, CHU de Rouen, 76031 Rouen cedex, France
| | - Bernard Bauduceau
- Service d'Endocrinologie, Hôpital Bégin, avenue de Paris, 94160 Saint-Mandé, France
| |
Collapse
|
86
|
Alami M, Boumezough K, Khalil A, Ramchoun M, Boulbaroud S, Fulop T, Morvaridzadeh M, Berrougui H. The Modulatory Bioeffects of Pomegranate ( Punica granatum L.) Polyphenols on Metabolic Disorders: Understanding Their Preventive Role against Metabolic Syndrome. Nutrients 2023; 15:4879. [PMID: 38068738 PMCID: PMC10707905 DOI: 10.3390/nu15234879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Modern research achievements support the health-promoting effects of natural products and diets rich in polyphenols. Pomegranate (PG) (Punica granatum L.) contains a considerable number of bioactive compounds that exert a broad spectrum of beneficial biological activities, including antimicrobial, antidiabetic, antiobesity, and atheroprotective properties. In this context, the reviewed literature shows that PG intake might reduce insulin resistance, cytokine levels, redox gene expression, blood pressure elevation, vascular injuries, and lipoprotein oxidative modifications. The lipid parameter corrective capabilities of PG-ellagitannins have also been extensively reported to be significantly effective in reducing hyperlipidemia (TC, LDL-C, VLDL-C, and TAGs), while increasing plasma HDL-C concentrations and improving the TC/HDL-C and LDL-C/HDL-C ratios. The health benefits of pomegranate consumption seem to be acheived through the amelioration of adipose tissue endocrine function, fatty acid utilization, GLUT receptor expression, paraoxonase activity enhancement, and the modulation of PPAR and NF-κB. While the results from animal experiments are promising, human findings published in this field are inconsistent and are still limited in several aspects. The present review aims to discuss and provide a critical analysis of PG's bioeffects on the components of metabolic syndrome, type-2 diabetes, obesity, and dyslipidemia, as well as on certain cardiovascular-related diseases. Additionally, a brief overview of the pharmacokinetic properties, safety, and bioavailability of PG-ellagitannins is included.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Abdelouahed Khalil
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
| | - Tamas Fulop
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Mojgan Morvaridzadeh
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (M.R.); (S.B.)
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.K.); (T.F.); (M.M.)
| |
Collapse
|
87
|
Gowdru Srinivasa M, B C R, Prabhu A, Rani V, Ghate SD, Kumar B R P. Development of novel thiazolidine-2,4-dione derivatives as PPAR-γ agonists through design, synthesis, computational docking, MD simulation, and comprehensive in vitro and in vivo evaluation. RSC Med Chem 2023; 14:2401-2416. [PMID: 37974963 PMCID: PMC10650958 DOI: 10.1039/d3md00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
The present study was conducted to develop new novel 2,4-thiazolidinedione derivatives (3h-3j) as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity. The objective was to overcome the adverse effects of existing thiazolidinediones while maintaining their pharmacological benefits. The synthesized compounds were elucidated based on FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Molecular docking was utilized to investigate the interaction binding modes, binding free energy, and amino acids engaged in the compounds' interactions with the target protein. Subsequently, molecular dynamics modelling was used to assess the stability of the top-docked complexes and an assay was utilized to assess the cytotoxicity of the compounds to C2C12 myoblasts. Compounds 3h-3j exhibited PPAR-γ modulatory activity and demonstrated significant hypoglycaemic effects when compared to the reference drug pioglitazone. The new compounds were evaluated for their in vivo blood glucose-lowering potential by using a dexamethasone-induced diabetic rat model. All the compounds showed a hypoglycaemic effect of 108.04 ± 4.39, 112.55 ± 6.10, and 117.48 ± 43.93, respectively, along with pioglitazone (153.93 ± 4.61) compared to the diabetic control. Additionally, all the compounds significantly reduced AST and ALT levels and did not cause liver damage.
Collapse
Affiliation(s)
- Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Revanasiddappa B C
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University) Deralakatte Mangalore Karnataka - 575 018 India
| | - Prashantha Kumar B R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India
| |
Collapse
|
88
|
Patel TJ, Ayub A, Bone JN, Hadjiyannakis S, Henderson M, Nour MA, Pinto TE, Wicklow B, Hamilton JK, Sellers EAC, Amed S. Incidence Trends of Type 2 Diabetes Mellitus, Medication-Induced Diabetes, and Monogenic Diabetes in Canadian Children, Then (2006-2008) and Now (2017-2019). Pediatr Diabetes 2023; 2023:5511049. [PMID: 40303241 PMCID: PMC12017104 DOI: 10.1155/2023/5511049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 05/02/2025] Open
Abstract
Introduction The landscape of childhood diabetes has evolved and addressing the knowledge gaps in non-Type 1 diabetes mellitus are key to accurate diagnosis. Objectives A national surveillance study was completed between 2006 and 2008 and then repeated between 2017 and 2019 to describe Canadian incidence trends and clinical characteristics of non-Type 1 diabetes mellitus. Methods We prospectively tracked new cases of non-Type 1 diabetes mellitus in children <18 years of age between June 1, 2017 and May 31, 2019. For each reported new case, a detailed questionnaire was completed, and cases were classified as Type 2 diabetes mellitus, medication-induced diabetes (MID), monogenic diabetes, or "indeterminate." Minimum incidence rates and 10-year incidence trends of non-Type 1 diabetes mellitus and its subtypes were calculated. Results 441 cases of non-Type 1 diabetes mellitus were included (Type 2 diabetes mellitus = 332; MID = 52; monogenic diabetes = 30; indeterminate = 27). Compared to 10 years ago, the incidence of MID and monogenic diabetes remained stable, while Type 2 diabetes mellitus increased by 60% (p < 0.001) overall and by 37% (p=0.005) and 50% (p=0.001) in females and males, respectively. Type 2 diabetes mellitus incidence increased by 1.5 times in Indigenous (p < 0.001) and doubled in Asian (p=0.003) children. Conclusions Canadian incidence rates of childhood-onset Type 2 diabetes mellitus have significantly increased. Further research, policy, and prevention efforts are needed to curb rising rates of youth onset Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Trisha J. Patel
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| | - Aysha Ayub
- BC Children's Hospital Research Institute, University of British Columbia, 938 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - Jeffrey N. Bone
- BC Children's Hospital Research Institute, University of British Columbia, 938 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - Stasia Hadjiyannakis
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario and University of Ottawa, 401 Smyth Road, Ottawa, ON, Canada K1H 8L1
| | - Mélanie Henderson
- Faculty of Medicine, Université de Montréal, 3175 Côte-Sainte-Catherine, Montréal, QC, Canada H3T 1C5
| | - Munier A. Nour
- Department of Pediatrics, University of Saskatchewan, 105 Administration Place, Saskatoon, SK, Canada S7N 5A2
| | - Teresa E. Pinto
- Dalhousie University and IWK Health, 6299 South Street, Halifax, NS, Canada B3H 4R2
| | - Brandy Wicklow
- Department of Paediatrics and Child Health and Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | - Jill K. Hamilton
- Department of Paediatrics Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, Canada M5G 1X8
| | - Elizabeth A. C. Sellers
- Department of Paediatrics and Child Health and Children's Hospital Research Institute of Manitoba, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB, Canada R3E 3P4
| | - Shazhan Amed
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
- BC Children's Hospital Research Institute, University of British Columbia, 938 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4
| |
Collapse
|
89
|
Leslie RD, Ma RCW, Franks PW, Nadeau KJ, Pearson ER, Redondo MJ. Understanding diabetes heterogeneity: key steps towards precision medicine in diabetes. Lancet Diabetes Endocrinol 2023; 11:848-860. [PMID: 37804855 DOI: 10.1016/s2213-8587(23)00159-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 10/09/2023]
Abstract
Diabetes is a highly heterogeneous condition; yet, it is diagnosed by measuring a single blood-borne metabolite, glucose, irrespective of aetiology. Although pragmatically helpful, disease classification can become complex and limit advances in research and medical care. Here, we describe diabetes heterogeneity, highlighting recent approaches that could facilitate management by integrating three disease models across all forms of diabetes, namely, the palette model, the threshold model and the gradient model. Once diabetes has developed, further worsening of established diabetes and the subsequent emergence of diabetes complications are kept in check by multiple processes designed to prevent or circumvent metabolic dysfunction. The impact of any given disease risk factor will vary from person-to-person depending on their background, diabetes-related propensity, and environmental exposures. Defining the consequent heterogeneity within diabetes through precision medicine, both in terms of diabetes risk and risk of complications, could improve health outcomes today and shine a light on avenues for novel therapy in the future.
Collapse
Affiliation(s)
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmo, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Kristen J Nadeau
- Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | | |
Collapse
|
90
|
Zhu H, Jia Z, Li YR, Danelisen I. Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin Exp Med 2023; 23:2941-2951. [PMID: 37016064 PMCID: PMC10072049 DOI: 10.1007/s10238-023-01051-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Metformin is among the most widely used antidiabetic drugs. Studies over the past few years have identified multiple novel molecular targets and pathways that metformin acts on to exert its beneficial effects in treating type 2 diabetes as well as other disorders involving dysregulated inflammation and redox homeostasis. In this mini-review, we discuss the latest cutting-edge research discoveries on novel molecular targets of metformin in glycemic control, cardiovascular protection, cancer intervention, anti-inflammation, antiaging, and weight control. Identification of these novel targets and pathways not only deepens our understanding of the molecular mechanisms by which metformin exerts diverse beneficial biological effects, but also provides opportunities for developing new mechanistically based drugs for human diseases.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology and Pathophysiology, Jerry M. Wallace School of Osteopathic Medicine, Campbell University SOM, Buies Creek, NC, USA.
| | - Zhenquan Jia
- Department of Biology, College of Arts and Sciences, University of North Carolina, Greensboro, NC, USA
| | - Yunbo Robert Li
- Department of Pharmacology, Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, USA
| | - Igor Danelisen
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
91
|
Zhao X, Zhang X, Pei J, Liu Y, Niu W, Sun H. Targeting BCAA metabolism to potentiate metformin's therapeutic efficacy in the treatment of diabetes in mice. Diabetologia 2023; 66:2139-2153. [PMID: 37581618 DOI: 10.1007/s00125-023-05985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS An increasing body of evidence has shown that the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine and valine) is impaired in obese animals and humans, contributing to the development of insulin resistance and type 2 diabetes. Promoting BCAA catabolism benefits glycaemic control. It remains unclear whether BCAA catabolism plays a role in the therapeutic efficacy of currently used glucose-lowering drugs such as metformin. METHODS Mice were treated with vehicle or metformin (250 mg/kg per day) for more than 4 weeks to investigate the effects of metformin in vivo. In vitro, primary mouse hepatocytes and HepG2 cells were treated with 2 mmol/l metformin. The therapeutic efficacy of metformin in the treatment of type 2 diabetes was assessed in genetically obese (ob/ob) mice and high-fat-diet-induced obese (DIO) mice. Enhancing BCAA catabolism was achieved with a pharmacological agent, 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (BT2). The ob/ob mice were treated with a low-BCAA diet or intermittent protein restriction (IPR) to reduce BCAA nutritional intake. RESULTS Metformin unexpectedly inhibited the catabolism of BCAAs in obese mice, resulting in an elevation of BCAA abundance. AMP-activated protein kinase (AMPK) mediated the impact of metformin on BCAA catabolism in hepatocytes. Importantly, enhancing BCAA catabolism via a pharmacological agent BT2 significantly potentiated the glucose-lowering effect of metformin while decreasing circulating BCAA levels in ob/ob and DIO mice. Similar outcomes were achieved by a nutritional approach of reducing BCAA intake. IPR also effectively reduced the circulating BCAA abundance and enhanced metformin's glucose-lowering effect in ob/ob mice. BT2 and IPR treatments reduced the expression of fructose-1,6-bisphosphatase 1, a rate-limiting enzyme in gluconeogenesis, in the kidney but not liver, indicating the involvement of renal gluconeogenesis. CONCLUSIONS/INTERPRETATION Metformin self-limits its therapeutic efficacy in the treatment of type 2 diabetes by triggering the suppression of BCAA catabolism. Enhancing BCAA catabolism pharmacologically or reducing BCAA intake nutritionally potentiates the glucose-lowering effect of metformin. These data highlight the nutritional impact of protein on metformin's therapeutic efficacy and provide new strategies targeting BCAA metabolism to improve metformin's effects on the clinical outcome in diabetes.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingjing Pei
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Haipeng Sun
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
92
|
Zhang XH, Tian YF, Huang GL, Cui WY, Sun Q, He WJ, Liu XJ. Advances in Studies of Chiglitazar Sodium, a Novel PPAR Pan-Agonist, for the Treatment of Type 2 Diabetes Mellitus. Curr Med Sci 2023; 43:890-896. [PMID: 37326885 DOI: 10.1007/s11596-023-2760-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023]
Abstract
Chiglitazar sodium is a new peroxisome proliferator-activated receptor (PPAR) pan-agonist with independent intellectual property rights in China. It can treat type 2 diabetes mellitus and regulate metabolism by modestly activating PPARα, PPARγ, and PPARδ to improve insulin sensitivity, regulate blood glucose, and promote fatty acid oxidation and utilization. Chiglitazar sodium has a significant insulin-sensitizing effect and is advantageous in reducing fasting and postprandial blood glucose levels, particularly at the 48 mg dose in patients with concomitant high triglycerides in terms of blood glucose and triglyceride level control.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yun-Fei Tian
- The University of Hong Kong, Hong Kong, 999077, China
| | - Guang-Liang Huang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wen-Yan Cui
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Qian Sun
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wen-Juan He
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiu-Ju Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
93
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
94
|
Li N, Yin L, Shang J, Liang M, Liu Z, Yang H, Qiang G, Du G, Yang X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115113. [PMID: 37418974 DOI: 10.1016/j.biopha.2023.115113] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jiamin Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Zhaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Haiguang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China.
| |
Collapse
|
95
|
Degaga A, Sirgu S, Huri HZ, Sim MS, Kebede T, Tegene B, Loganadan NK, Engidawork E, Shibeshi W. Association of Met420del Variant of Metformin Transporter Gene SLC22A1 with Metformin Treatment Response in Ethiopian Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2023; 16:2523-2535. [PMID: 37641646 PMCID: PMC10460611 DOI: 10.2147/dmso.s426632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Objective This study aimed to evaluate whether the M420del variants of SLC22A1 (rs72552763) is associated with metformin treatment response in Ethiopian patients with type 2 diabetes mellitus (T2DM). Patients and Methods A prospective observational cohort study was conducted on 86 patients with T2DM who had been receiving metformin monotherapy for <1 year. Patients showing ≥0.5% reduction in HbA1c levels from baseline within 3 months and remained low for at least another 3 months were defined as responders while those patients with <0.5% reduction in HbA1c levels and/or those whom started a new class of glucose-lowering drug(s) because of unsatisfactory reduction were defined as non-responders. In addition, good glycemic control was observed when HbA1c ≤7.0%, and the above values were regarded as poor. Genotyping of rs72552763 SNP was performed using TaqMan® Drug Metabolism Enzyme Genotyping Assay and its association with metformin response and glycemic control were assessed by measuring the change in HbA1c and fasting blood glucose levels using Chi-square, logistic regression and Mann-Whitney U-test. Statistical significance was set at p <0.05. Results The minor allele frequency of the rs72552763 SNP of SLC22A1 was 9.3%. Metformin response was significantly higher in deletion_GAT (del_G) genotypes as compared to the wild-type GAT_GAT (G_G) genotypes. Furthermore, a significantly lower median treatment HbA1 level was found in del_G genotypes as compared to G_G genotypes. However, the association of rs72552763 with metformin response was not replicated at the allele level. In contrast, the minor del_allele was significantly associated with good glycemic control compared to the G_allele, though not replicated at del_G genotypes level. Conclusion This study demonstrated that metformin response was significantly higher in study participants with a heterozygous carrier of M420del variants of SLC22A1 as compared to the wild-type G_G genotypes after 3 months of treatment.
Collapse
Affiliation(s)
- Abraham Degaga
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Sisay Sirgu
- Department of Internal Medicine, Diabetes and Endocrinology Unit, Saint Paul Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Hasniza Zaman Huri
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Tedla Kebede
- Department of Internal Medicine, Diabetes and Endocrinology Unit, Addis Ababa University, Addis Ababa, Ethiopia
| | - Birhanemeskel Tegene
- Department of Microbiology, Saint Paul Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
96
|
Trischitta V, Menzaghi C, Copetti M. Unveiling Novel Markers and Modeling Clinical Prediction of Treatment Effects Are Equally Important for Implementing Precision Therapeutics. Diabetes 2023; 72:1057-1059. [PMID: 37471601 DOI: 10.2337/dbi22-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/28/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| |
Collapse
|
97
|
Li JH, Perry JA, Jablonski KA, Srinivasan S, Chen L, Todd JN, Harden M, Mercader JM, Pan Q, Dawed AY, Yee SW, Pearson ER, Giacomini KM, Giri A, Hung AM, Xiao S, Williams LK, Franks PW, Hanson RL, Kahn SE, Knowler WC, Pollin TI, Florez JC. Identification of Genetic Variation Influencing Metformin Response in a Multiancestry Genome-Wide Association Study in the Diabetes Prevention Program (DPP). Diabetes 2023; 72:1161-1172. [PMID: 36525397 PMCID: PMC10382652 DOI: 10.2337/db22-0702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Genome-wide significant loci for metformin response in type 2 diabetes reported elsewhere have not been replicated in the Diabetes Prevention Program (DPP). To assess pharmacogenetic interactions in prediabetes, we conducted a genome-wide association study (GWAS) in the DPP. Cox proportional hazards models tested associations with diabetes incidence in the metformin (MET; n = 876) and placebo (PBO; n = 887) arms. Multiple linear regression assessed association with 1-year change in metformin-related quantitative traits, adjusted for baseline trait, age, sex, and 10 ancestry principal components. We tested for gene-by-treatment interaction. No significant associations emerged for diabetes incidence. We identified four genome-wide significant variants after correcting for correlated traits (P < 9 × 10-9). In the MET arm, rs144322333 near ENOSF1 (minor allele frequency [MAF]AFR = 0.07; MAFEUR = 0.002) was associated with an increase in percentage of glycated hemoglobin (per minor allele, β = 0.39 [95% CI 0.28, 0.50]; P = 2.8 × 10-12). rs145591055 near OMSR (MAF = 0.10 in American Indians) was associated with weight loss (kilograms) (per G allele, β = -7.55 [95% CI -9.88, -5.22]; P = 3.2 × 10-10) in the MET arm. Neither variant was significant in PBO; gene-by-treatment interaction was significant for both variants [P(G×T) < 1.0 × 10-4]. Replication in individuals with diabetes did not yield significant findings. A GWAS for metformin response in prediabetes revealed novel ethnic-specific associations that require further investigation but may have implications for tailored therapy.
Collapse
Affiliation(s)
- Josephine H. Li
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kathleen A. Jablonski
- Department of Epidemiology and Biostatistics, George Washington University Biostatistics Center, Washington, DC
| | - Shylaja Srinivasan
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Ling Chen
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jennifer N. Todd
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Maegan Harden
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Josep M. Mercader
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Qing Pan
- Department of Epidemiology and Biostatistics, George Washington University Biostatistics Center, Washington, DC
| | - Adem Y. Dawed
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, U.K
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ewan R. Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, U.K
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Robert L. Hanson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle
| | - William C. Knowler
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ
| | - Toni I. Pollin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Jose C. Florez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
98
|
van de Pas KGH, Esfandiyari Noushi A, Janssen L, Vreugdenhil ACE, Leclercq WKG, van Dielen FMH. A Population-Based Cohort Study on Efficacy and Safety of Bariatric Surgery in Young Adults Versus Adults. Obes Surg 2023; 33:2475-2484. [PMID: 37358718 PMCID: PMC10344832 DOI: 10.1007/s11695-023-06673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Bariatric surgery is the most effective treatment for severe obesity in adults and has shown promising results in young adults. Lack of insight regarding efficacy and safety outcomes might result in delayed bariatric surgery utilization in young adults. Therefore, this study aimed to assess the efficacy and safety of bariatric surgery in young adults compared to adults. METHODS This is a nationwide population-based cohort study utilizing data from the Dutch Audit Treatment of Obesity (DATO). Young adults (aged 18-25 years) and adults (aged 35-55 years) who underwent primary Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) were included. Primary outcome was percentage total weight loss (%TWL) until five years postoperatively. RESULTS A total of 2,822 (10.3%) young adults and 24,497 (89.7%) adults were included. The follow-up rates of the young adults were lower up to five years postoperatively (46.2% versus 56.7% three years postoperatively; p < 0.001). Young adults who underwent RYGB showed superior %TWL compared to adults until four years postoperatively (33.0 ± 9.4 versus 31.2 ± 8.7 three years after surgery; p < 0.001). Young adults who underwent SG showed superior %TWL until five years postoperatively (29.9 ± 10.9 versus 26.2 ± 9.7 three years after surgery; p < 0.001). Postoperative complications ≤ 30 days were more prevalent among adults, 5.3% versus 3.5% (p < 0.001). No differences were found in the long term complications. Young adults revealed more improvement of hypertension (93.6% versus 78.9%), dyslipidemia (84.7% versus 69.2%) and musculoskeletal pain (84.6% versus 72.3%). CONCLUSION Bariatric surgery appears to be at least as safe and effective in young adults as in adults. Based on these findings the reluctance towards bariatric surgery in the younger age group seems unfounded.
Collapse
Affiliation(s)
- Kelly G H van de Pas
- Department of Surgery, Máxima Medical Center, 5504DB, Veldhoven, The Netherlands.
- Department of Pediatrics, Maastricht University Medical Center, 6220HX, Maastricht, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | | | - Loes Janssen
- Department of Surgery, Máxima Medical Center, 5504DB, Veldhoven, The Netherlands
| | - Anita C E Vreugdenhil
- Department of Pediatrics, Maastricht University Medical Center, 6220HX, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Wouter K G Leclercq
- Department of Surgery, Máxima Medical Center, 5504DB, Veldhoven, The Netherlands
| | | |
Collapse
|
99
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
100
|
Ji H, Zhao Z, Liu Z, Sun R, Li Y, Ding X, Ni T. Real-World Effectiveness and Safety of Hydrogen Inhalation in Chinese Patients with Type 2 Diabetes: A Single-Arm, Retrospective Study. Diabetes Metab Syndr Obes 2023; 16:2039-2050. [PMID: 37431394 PMCID: PMC10329830 DOI: 10.2147/dmso.s412898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Aim To evaluate the real-life effectiveness and safety of Chinese patients with type 2 diabetes mellitus (T2DM) receiving hydrogen inhalation (HI) treatment as a supplementary treatment. Methods This retrospective, multicenter, observational 6-months clinical study included T2DM patients maintaining HI, visited at 4 time points. The primary outcome is the mean change in glycated hemoglobin (HbA1c) at the end of the study compared to baseline. The secondary outcome is analyzing the mean change of fasting plasma glucose (FPG), weight, lipid profile, insulin dose and homeostasis model assessment. Linear regression and logistics regression are applied to evaluate the effect of HI after the treatment. Results Of the 431 patients comprised, it is observed a significant decrease in HbA1c level (9.04±0.82% at baseline to 8.30±0.99% and 8.00±0.80% at the end, p<0.001), FPG (165.6±40.2 mg/dL at baseline to 157.1±36.3mg/dL and 143.6±32.3mg/dL at the end, p<0.001), weight (74.7±7.1kg at baseline to 74.8±10.0kg and 73.6±8.1kg at the end, p<0.001), insulin dose (49.3±10.8U/d at baseline to 46.7±8.0U/d and 45.2±8.7U/d, p<0.001). The individuals in subgroup with higher baseline HbA1c and longer daily HI time duration gain greater HbA1c decrease after 6 months. Linear regression shows that higher baseline HbA1c level and shorter diabetes duration are significantly in relation to greater HbA1c reduction. Logistics regression reveals that lower weight is associated with a higher possibility of reaching HbA1c<7%. The most common adverse event is hypoglycemia. Conclusion HI therapy significantly improves glycemic control, weight, insulin dose, lipid metabolism, β-cell function and insulin resistance of patients with type 2 diabetes after 6 months. Higher baseline HbA1c level and shorter diabetes duration is related to greater clinical response to HI.
Collapse
Affiliation(s)
- Hongxiang Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Ziyi Zhao
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zeyu Liu
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Ruitao Sun
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Yuquan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xiaoheng Ding
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tongshang Ni
- Center of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|