51
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
52
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023:S0167-5273(23)00478-3. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previously studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
53
|
Kim JH, Almuwaqqat Z, Martini A, Liu C, Ko YA, Sullivan S, Dong T, Shah AJ, Bremner JD, Pearce BD, Nye JA, Vaccarino V, Quyyumi AA. Mental Stress-Induced Change in Plasma Stromal Cell-Derived Factor-1 and Adverse Cardiovascular Outcomes: A Cohort Study. CJC Open 2023; 5:325-332. [PMID: 37124969 PMCID: PMC10140748 DOI: 10.1016/j.cjco.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023] Open
Abstract
Background Acute psychological stress can provoke mental stress-induced myocardial ischemia (MSIMI) in coronary artery disease (CAD). Stromal cell-derived factor 1 (SDF1) is released in response to hypoxia, and higher levels of SDF1 are associated with adverse outcomes. We examined whether an increase in SDF1 level in response to mental stress predicts adverse outcomes in CAD patients. Methods A total of 554 patients with stable CAD (mean age 63 years; 76% male; 26% Black) underwent standardized mental stress testing. Plasma SDF1 levels were measured at rest and 90 minutes after mental stress, and MSIMI was evaluated by 99mTc-sestamibi perfusion imaging. Participants were followed for 5 years for the primary endpoint of composite of death and myocardial infarction (MI) and the secondary endpoint of composite of death, MI, and heart failure hospitalization. Cox hazard models were used to assess the association between SDF1 change and incident adverse events. Results Mean (standard deviation) SDF1 change with mental stress was +56.0 (230) pg/mL. During follow-up, a rise of 1 standard deviation in SDF1 with mental stress was associated with a 32% higher risk for the primary endpoint of death and MI (95% confidence interval, 6%-64%), independent of the resting SDF1 level, demographic and clinical risk factors, and presence of ischemia. A rise of 1 standard deviation in SDF1 was associated with a 33% (95% confidence interval, 11%-59%) increase in the risk for the secondary endpoint, independent of the resting SDF1 level, demographic, and clinical risk factors and presence of ischemia. Conclusions An increase in SDF1 level in response to mental stress is associated with a higher risk of adverse events in stable CAD, independent of MSIMI.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afif Martini
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chang Liu
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Samaah Sullivan
- Department of Epidemiology, Human Genetics, and Environmental Sciences at the University of Texas Health Sciences Center- Houston, Houston, Texas, USA
| | - Tiffany Dong
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amit J. Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - J. Douglas Bremner
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jonathan A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Arshed A. Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
54
|
Shi H, Nguyen T, Zhao Q, Cheng P, Sharma D, Kim HJ, Kim JB, Wirka R, Weldy CS, Monteiro JP, Quertermous T. Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circ Res 2023; 132:795-811. [PMID: 36852690 PMCID: PMC11056793 DOI: 10.1161/circresaha.122.321960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.
Collapse
Affiliation(s)
- Huitong Shi
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Disha Sharma
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Robert Wirka
- Departments of Medicine and Cell Biology and Physiology, and McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Chad S Weldy
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - João P. Monteiro
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| |
Collapse
|
55
|
Pan H, Guo Z, Lv P, Hu K, Wu T, Lin Z, Xue Y, Zhang Y, Guo Z. Proline/serine-rich coiled-coil protein 1 inhibits macrophage inflammation and delays atherosclerotic progression by binding to Annexin A2. Clin Transl Med 2023; 13:e1220. [PMID: 36932468 PMCID: PMC10023832 DOI: 10.1002/ctm2.1220] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS), the main pathological basis of life-threatening cardiovascular disease, is essentially caused by chronic macrophage inflammation. Overexpression of proline/serine-rich coiled-coil protein 1 (PSRC1) reduces macrophage inflammatory responses and delays AS development. However, the exact mechanism of PSRC1 is unclear. METHODS Proteins interacting with PSRC1 were screened by proteomics in RAW264.7 cells, followed by RT-qPCR, immunoprecipitation and immunofluorescence to explore the specific mechanistic pathways affecting inflammation. CRISPR-Cas9 constructs for PSRC1-/- ApoE-/- (DKO) mice and high-fat diet-fed ApoE-/- and DKO mice were used for AS models for in vivo experiments. Upstream transcription factors of PSRC1 were predicted by ATAC-seq, ChIP-seq and UCSC, and the regulatory mechanism was verified by ChIP-qPCR and dual luciferase assays. Peripheral blood serum and monocytes were collected from coronary artery disease (CAD) patients and non-CAD patients. RESULTS Increased binding of ANXA2 to PSRC1 in macrophages under oxidized low-density lipoprotein stimulation and decreased release of ANXA2 to the extracellular compartment were observed. Knockdown of ANXA2 in AS model mice delayed AS progression. Knockdown of ANXA2 in DKO mice reversed the AS-promoting effect of PSRC1 knockdown. Mechanistically, ANXA2 promotes STAT3 phosphorylation, which in turn promotes inflammatory responses. In addition, SP1 is a PSRC1 upstream repressive transcription factor, and the SP1 inhibitor mithramycin (Mith) elevated PSRC1 expression and exerted anti-AS effects in AS model mice. Patients with CAD had considerably greater serum levels of ANXA2 than those without CAD, and Mith reduced the secretion of ANXA2 in peripheral blood monocytes of CAD patients. CONCLUSION In macrophages, PSRC1 can interact with ANXA2 to inhibit its extracellular release and delay AS development. SP1 is an upstream transcription factor of PSRC1 and inhibits the transcription of PSRC1. The SP1 inhibitor Mith can elevate PSRC1 levels and slow AS progression while reducing ANXA2 release from monocytes in CAD patients. Mith is expected to be a new agent for AS treatment.
Collapse
Affiliation(s)
- Hangyu Pan
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongzhou Guo
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ping Lv
- Department of Cardiovascular SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kexin Hu
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tongwei Wu
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zixiang Lin
- Department of CardiologyShenzhen HospitalHuazhong University of Science and Technology UnionShenzhenChina
| | - Yazhi Xue
- Department of General PracticeNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanan Zhang
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhigang Guo
- Department of CardiologyHuiqiao Medical CenterNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
56
|
Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E, Goulielmos GN. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med 2023; 51:29. [PMID: 36799179 PMCID: PMC9943539 DOI: 10.3892/ijmm.2023.5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a broad spectrum of pathological conditions that affect the heart or blood vessels, including sequelae that arise from damaged vasculature in other organs of the body, such as the brain, kidneys or eyes. Atherosclerosis is a chronic inflammatory disease of the arterial intima and is the primary cause of coronary artery disease, peripheral vascular disease, heart attack, stroke and renal pathology. It represents a leading cause of mortality worldwide and the loss of human productivity that is marked by an altered immune response. Endometriosis is a heritable, heterogeneous, common gynecological condition influenced by multiple genetic, epigenetic and environmental factors, affecting up to 10% of the female population of childbearing age, causing pain and infertility; it is characterized by the ectopic growth of endometrial tissue outside the uterine cavity. Of note, epidemiological data obtained thus far have suggested a link between endometriosis and the risk of developing CVD. The similarities observed in specific molecular and cellular pathways of endometriosis and CVD may be partially explained by a shared genetic background. The present review presents and discusses the shared genetic factors which have been reported to be associated with the development of both disorders.
Collapse
Affiliation(s)
- Vassilios M. Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece
| | - Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Louis Papageorgiou
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
57
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
58
|
Abstract
Polygenic scores quantify inherited risk by integrating information from many common sites of DNA variation into a single number. Rapid increases in the scale of genetic association studies and new statistical algorithms have enabled development of polygenic scores that meaningfully measure-as early as birth-risk of coronary artery disease. These newer-generation polygenic scores identify up to 8% of the population with triple the normal risk based on genetic variation alone, and these individuals cannot be identified on the basis of family history or clinical risk factors alone. For those identified with increased genetic risk, evidence supports risk reduction with at least two interventions, adherence to a healthy lifestyle and cholesterol-lowering therapies, that can substantially reduce risk. Alongside considerable enthusiasm for the potential of polygenic risk estimation to enable a new era of preventive clinical medicine is recognition of a need for ongoing research into how best to ensure equitable performance across diverse ancestries, how and in whom to assess the scores in clinical practice, as well as randomized trials to confirm clinical utility.
Collapse
Affiliation(s)
- Aniruddh P Patel
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; , .,Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amit V Khera
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; , .,Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Verve Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
59
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
60
|
Chen Z, Lehertshuber C, Schunkert H. Genome Editing in Dyslipidemia and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:139-156. [DOI: 10.1007/978-981-19-5642-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
61
|
Valverde-Hernández JC, Flores-Cruz A, Chavarría-Soley G, Silva de la Fuente S, Campos-Sánchez R. Frequencies of variants in genes associated with dyslipidemias identified in Costa Rican genomes. Front Genet 2023; 14:1114774. [PMID: 37065472 PMCID: PMC10098023 DOI: 10.3389/fgene.2023.1114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Dyslipidemias are risk factors in diseases of significant importance to public health, such as atherosclerosis, a condition that contributes to the development of cardiovascular disease. Unhealthy lifestyles, the pre-existence of diseases, and the accumulation of genetic variants in some loci contribute to the development of dyslipidemia. The genetic causality behind these diseases has been studied primarily on populations with extensive European ancestry. Only some studies have explored this topic in Costa Rica, and none have focused on identifying variants that can alter blood lipid levels and quantifying their frequency. To fill this gap, this study focused on identifying variants in 69 genes involved in lipid metabolism using genomes from two studies in Costa Rica. We contrasted the allelic frequencies with those of groups reported in the 1000 Genomes Project and gnomAD and identified potential variants that could influence the development of dyslipidemias. In total, we detected 2,600 variants in the evaluated regions. However, after various filtering steps, we obtained 18 variants that have the potential to alter the function of 16 genes, nine variants have pharmacogenomic or protective implications, eight have high risk in Variant Effect Predictor, and eight were found in other Latin American genetic studies of lipid alterations and the development of dyslipidemia. Some of these variants have been linked to changes in blood lipid levels in other global studies and databases. In future studies, we propose to confirm at least 40 variants of interest from 23 genes in a larger cohort from Costa Rica and Latin American populations to determine their relevance regarding the genetic burden for dyslipidemia. Additionally, more complex studies should arise that include diverse clinical, environmental, and genetic data from patients and controls and functional validation of the variants.
Collapse
Affiliation(s)
| | - Andrés Flores-Cruz
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
| | - Gabriela Chavarría-Soley
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
- Escuela de Biología, University of Costa Rica, San José, Costa Rica
| | - Sandra Silva de la Fuente
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
- *Correspondence: Rebeca Campos-Sánchez,
| |
Collapse
|
62
|
Hodel F, Xu ZM, Thorball CW, de La Harpe R, Letang-Mathieu P, Brenner N, Butt J, Bender N, Waterboer T, Marques-Vidal PM, Vollenweider P, Vaucher J, Fellay J. Associations of genetic and infectious risk factors with coronary heart disease. eLife 2023; 12:79742. [PMID: 36785929 PMCID: PMC9928420 DOI: 10.7554/elife.79742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
Coronary heart disease (CHD) is one of the most pressing health problems of our time and a major cause of preventable death. CHD results from complex interactions between genetic and environmental factors. Using multiplex serological testing for persistent or frequently recurring infections and genome-wide analysis in a prospective population study, we delineate the respective and combined influences of genetic variation, infections, and low-grade inflammation on the risk of incident CHD. Study participants are enrolled in the CoLaus|PsyCoLaus study, a longitudinal, population-based cohort with baseline assessments from 2003 through 2008 and follow-up visits every 5 years. We analyzed a subgroup of 3459 individuals with available genome-wide genotyping data and immunoglobulin G levels for 22 persistent or frequently recurring pathogens. All reported CHD events were evaluated by a panel of specialists. We identified independent associations with incident CHD using univariable and multivariable stepwise Cox proportional hazards regression analyses. Of the 3459 study participants, 210 (6.07%) had at least one CHD event during the 12 years of follow-up. Multivariable stepwise Cox regression analysis, adjusted for known cardiovascular risk factors, socioeconomic status, and statin intake, revealed that high polygenic risk (hazard ratio [HR] 1.31, 95% CI 1.10-1.56, p=2.64 × 10-3) and infection with Fusobacterium nucleatum (HR 1.63, 95% CI 1.08-2.45, p=1.99 × 10-2) were independently associated with incident CHD. In a prospective, population-based cohort, high polygenic risk and infection with F. nucleatum have a small, yet independent impact on CHD risk.
Collapse
Affiliation(s)
- Flavia Hodel
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland,Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Zhi Ming Xu
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland,Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Roxane de La Harpe
- Department of Medicine, Internal medicine, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Prunelle Letang-Mathieu
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland,Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research CenterHeidelbergGermany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology, German Cancer Research CenterHeidelbergGermany
| | - Noemi Bender
- Division of Infections and Cancer Epidemiology, German Cancer Research CenterHeidelbergGermany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research CenterHeidelbergGermany
| | - Pedro Manuel Marques-Vidal
- Department of Medicine, Internal medicine, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Peter Vollenweider
- Department of Medicine, Internal medicine, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Julien Vaucher
- Precision Medicine Unit, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland,Swiss Institute of BioinformaticsLausanneSwitzerland,Precision Medicine Unit, Lausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
63
|
Herrington D, Wang Y. CLINICAL HETEROGENEITY IN THE AGE OF BIG DATA, ADVANCED ANALYTICS, AND COMPLEXITY THEORY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:56-68. [PMID: 37701617 PMCID: PMC10493739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Clinical heterogeneity remains a challenge in the practice of medicine and is an underlying motivation for much of biomedical research. Unfortunately, despite an abundance of technologies capable of producing millions of discrete data elements with information about a patient's health status or disease prognosis, our ability to translate those data into meaningful improvements in understanding of clinical heterogeneity is limited. To address this gap, we have applied newer approaches to manifold learning and developed additional and complementary techniques to interrogate and interpret complex, high dimensional omics data. The central premise is that there exist manifolds embedded in high dimensional data that represent fundamental biologic processes that may help address the challenges of clinical heterogeneity. Preliminary evidence from several real-world data sets suggests that these techniques can identify coherent and reproducible manifolds embedded in higher dimensional omics data. Work is currently ongoing to determine the clinical informativeness of these novel data structures.
Collapse
|
64
|
Liu YT, Romero C, Xiao X, Guo L, Zhou X, Applebaum MA, Xu L, Skapek SX. Methyltransferase Inhibition Enables Tgf β Driven Induction of CDKN2A and B in Cancer Cells. Mol Cell Biol 2023; 43:115-129. [PMID: 36941772 PMCID: PMC10038032 DOI: 10.1080/10985549.2023.2186074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
CDKN2A/B deletion or silencing is common across human cancer, reinforcing the general importance of bypassing its tumor suppression in cancer formation or progression. In rhabdomyosarcoma (RMS) and neuroblastoma, two common childhood cancers, the three CDKN2A/B transcripts are independently expressed to varying degrees, but one, ARF, is uniformly silenced. Although TGFβ induces certain CDKN2A/B transcripts in HeLa cells, it was unable to do so in five tested RMS lines unless the cells were pretreated with a broadly acting methyltransferase inhibitor, DZNep, or one targeting EZH2. CDKN2A/B induction by TGFβ correlated with de novo appearance of three H3K27Ac peaks within a 20 kb cis element ∼150 kb proximal to CDKN2A/B. Deleting that segment prevented their induction by TGFβ but not a basal increase driven by methyltransferase inhibition alone. Expression of two CDKN2A/B transcripts was enhanced by dCas9/CRISPR activation targeting either the relevant promoter or the 20 kb cis elements, and this "precise" manipulation diminished RMS cell propagation in vitro. Our findings show crosstalk between methyltransferase inhibition and TGFβ-dependent activation of a remote enhancer to reverse CDKN2A/B silencing. Though focused on CDKN2A/B here, such crosstalk may apply to other TGFβ-responsive genes and perhaps govern this signaling protein's complex effects promoting or blocking cancer.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Celeste Romero
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xue Xiao
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lei Guo
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoyun Zhou
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark A. Applebaum
- Section of Hematology/Oncology, Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Lin Xu
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen X. Skapek
- Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
65
|
Pan-Lizcano R, Mariñas-Pardo L, Núñez L, Rebollal-Leal F, López-Vázquez D, Pereira A, Molina-Nieto A, Calviño R, Vázquez-Rodríguez JM, Hermida-Prieto M. Rare Variants in Genes of the Cholesterol Pathway Are Present in 60% of Patients with Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232416127. [PMID: 36555767 PMCID: PMC9786046 DOI: 10.3390/ijms232416127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (AMI) is a pandemic in which conventional risk factors are inadequate to detect who is at risk early in the asymptomatic stage. Although gene variants in genes related to cholesterol, which may increase the risk of AMI, have been identified, no studies have systematically screened the genes involved in this pathway. In this study, we included 105 patients diagnosed with AMI with an elevation of the ST segment (STEMI) and treated with primary percutaneous coronary intervention (PPCI). Using next-generation sequencing, we examined the presence of rare variants in 40 genes proposed to be involved in lipid metabolism and we found that 60% of AMI patients had a rare variant in the genes involved in the cholesterol pathway. Our data show the importance of considering the wide scope of the cholesterol pathway in order to assess the genetic risk related to AMI.
Collapse
Affiliation(s)
- Ricardo Pan-Lizcano
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Lucía Núñez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Departamento de Ciencias de la Salud, GRINCAR Research Group, Universidade da Coruña, 15403 A Coruña, Spain
- Correspondence: ; Tel.: +34-981-178-150
| | - Fernando Rebollal-Leal
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Domingo López-Vázquez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ana Pereira
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Aranzazu Molina-Nieto
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ramón Calviño
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Manuel Vázquez-Rodríguez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Hermida-Prieto
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
66
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
67
|
Saad M, El-Menyar A, Kunji K, Ullah E, Al Suwaidi J, Kullo IJ. Validation of Polygenic Risk Scores for Coronary Heart Disease in a Middle Eastern Cohort Using Whole Genome Sequencing. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003712. [PMID: 36252120 PMCID: PMC9770120 DOI: 10.1161/circgen.122.003712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Enthusiasm for using polygenic risk scores (PRSs) in clinical practice is tempered by concerns about their portability to diverse ancestry groups, thus motivating genome-wide association studies in non-European ancestry cohorts. METHODS We conducted a genome-wide association study for coronary heart disease in a Middle Eastern cohort using whole genome sequencing and assessed the performance of 6 PRSs developed with methods including LDpred (PGS000296), metaGRS (PGS000018), Pruning and Thresholding (PGS000337), and an EnsemblePRS we developed. Additionally, we evaluated the burden of rare variants in lipid genes in cases and controls. Whole genome sequencing at 30× coverage was performed in 1067 coronary heart disease cases (mean age=59 years; 70.3% males) and 6170 controls (mean age=40 years; 43.5% males). RESULTS The majority of PRSs performed well; odds ratio (OR) per 1 SD increase (OR1sd) was highest for PGS000337 (OR1sd=1.81, 95% CI [1.66-1.98], P=3.07×10-41). EnsemblePRS performed better than individual PRSs (OR1sd=1.8, 95% CI [1.66-1.96], P=5.89×10-44). The OR for the 10th decile versus the remaining deciles was >3.2 for PGS000337, PGS000296, PGS000018, and reached 4.58 for EnsemblePRS. Of 400 known genome-wide significant loci, 33 replicated at P<10-4. However, the 9p21 locus did not replicate. Six suggestive (P<10-5) new loci/genes with plausible biological function were identified (eg, CORO7, RBM47, PDE4D). The burden of rare functional variants in LDLR, APOB, PCSK9, and ANGPTL4 was greater in cases than controls. CONCLUSIONS Overall, we demonstrate that PRSs derived from European ancestry genome-wide association studies performed well in a Middle Eastern cohort, suggesting these could be used in the clinical setting while ancestry-specific PRSs are developed.
Collapse
Affiliation(s)
- Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Khalid Kunji
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, and the Gonda Vascular Center, Mayo Clinic, Rochester, MN (I.J.K.)
| |
Collapse
|
68
|
Khera AV, Wang M, Chaffin M, Emdin CA, Samani NJ, Schunkert H, Watkins H, McPherson R, Elosua R, Boerwinkle E, Ardissino D, Butterworth AS, Di Angelantonio E, Naheed A, Danesh J, Chowdhury R, Krumholz HM, Sheu WHH, Rich SS, Rotter JI, Chen YDI, Gabriel S, Lander ES, Saleheen D, Kathiresan S. Gene Sequencing Identifies Perturbation in Nitric Oxide Signaling as a Nonlipid Molecular Subtype of Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003598. [PMID: 36215124 PMCID: PMC9771961 DOI: 10.1161/circgen.121.003598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND A key goal of precision medicine is to disaggregate common, complex diseases into discrete molecular subtypes. Rare coding variants in the low-density lipoprotein receptor gene (LDLR) are identified in 1% to 2% of coronary artery disease (CAD) patients, defining a molecular subtype with risk driven by hypercholesterolemia. METHODS To search for additional subtypes, we compared the frequency of rare, predicted loss-of-function and damaging missense variants aggregated within a given gene in 41 081 CAD cases versus 217 115 controls. RESULTS Rare variants in LDLR were most strongly associated with CAD, present in 1% of cases and associated with 4.4-fold increased CAD risk. A second subtype was characterized by variants in endothelial nitric oxide synthase gene (NOS3), a key enzyme regulating vascular tone, endothelial function, and platelet aggregation. A rare predicted loss-of-function or damaging missense variants in NOS3 was present in 0.6% of cases and associated with 2.42-fold increased risk of CAD (95% CI, 1.80-3.26; P=5.50×10-9). These variants were associated with higher systolic blood pressure (+3.25 mm Hg; [95% CI, 1.86-4.65]; P=5.00×10-6) and increased risk of hypertension (adjusted odds ratio 1.31; [95% CI, 1.14-1.51]; P=2.00×10-4) but not circulating cholesterol concentrations, suggesting that, beyond lipid pathways, nitric oxide synthesis is a key nonlipid driver of CAD risk. CONCLUSIONS Beyond LDLR, we identified an additional nonlipid molecular subtype of CAD characterized by rare variants in the NOS3 gene.
Collapse
Affiliation(s)
- Amit V. Khera
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Cardiology Division, Dept of Medicine, Massachusetts General Hospital, Boston, MA
| | - Minxian Wang
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- CAS Key Laboratory of Genome Sciences & Information, Beijing Inst of Genomics, Chinese Academy of Sciences & China National Ctr for Bioinformation, Beijing, China
| | - Mark Chaffin
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Connor A. Emdin
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Nilesh J. Samani
- Dept of Cardiovascular Sciences, Univ of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Ctr, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Dept of Cardiology, German Heart Ctr Munich, Technical Univ of Munich, Munich, Germany
- DZHK (German Ctr for Cardiovascular Research), Partner site Munich, Munich Heart Alliance, Munich, Germany
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Dept of Medicine, Univ of Oxford, Headington, UK
- Wellcome Trust Ctr for Human Genetics, Univ of Oxford, Oxford, UK
| | - Ruth McPherson
- Inst for Cardiogenetics, Univ of Lübeck, Lübeck, Schleswig-Holstein, Germany
- German Research Ctr for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel & Univ Heart Center Lübeck (J.E.), Berlin, Brandenburg, Germany
- Depts of Medicine & Biochemistry, Univ of Ottawa Heart Inst, Ottawa, ON, Canada
| | - Roberto Elosua
- Cardiovascular Epidemiology & Genetics, Hospital del Mar Research Inst, Barcelona, Spain
- CIBER Enfermedades Cardiovasculares, Barcelona, Spain
- Facultat de Medicina, Universitat de Vic-Central de Cataluña, Barcelona, Spain
| | - Eric Boerwinkle
- Ctr for Human Genetics & Dept. of Epidemiology, Univ of Texas Health Science Ctr School of Public Health, Houston, TX
| | - Diego Ardissino
- Cardiology, Azienda Ospedaliero-Universitaria di Parma, Univ of Parma, Parma, Italy
- Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- National Inst for Health Research Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
- NIHR Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- BHF Ctr of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, Univ of Cambridge, Cambridge, UK
- Health Data Science Research Ctr, Human Technopole, Milan, Italy
| | - Aliya Naheed
- Initiative for Noncommunicable Bangladesh, Diseases, Health Systems & Population Studies Division, International Ctr for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- National Inst for Health Research Blood & Transplant Research Unit in Donor Health & Genomics, Univ of Cambridge, Cambridge, UK
- British Heart Foundation Ctr of Research Excellence, Univ of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus & Univ of Cambridge, Cambridge, UK
- Dept of Human Genetics, Wellcome Sanger Inst, Hinxton, UK
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Dept of Public Health & Primary Care, Univ of Cambridge, Cambridge, UK
- Centre for Non-Communicable Disease Research, Dhaka, Bangladesh
| | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Dept of Medicine, Yale Univ, New Haven, CT
- Ctr for Outcomes Research & Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Wayne H-H Sheu
- Cardiovascular Research Ctr, Dept of Medicine, National Yang Ming Univ School of Medicine, Taipei, Taiwan
| | - Stephen S. Rich
- Ctr for Public Health Genomics, Univ of Virginia, Charlottesville, VA
| | - Jerome I. Rotter
- The Inst for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Inst for Biomedical Innovation at Harbor-UCLA Medical Ctr, Torrance, CA
| | - Yii-der Ida Chen
- The Inst for Translational Genomics & Population Sciences, Dept of Pediatrics, The Lundquist Inst for Biomedical Innovation at Harbor-UCLA Medical Ctr, Torrance, CA
| | - Stacey Gabriel
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
| | - Eric S. Lander
- Program in Medical & Population Genetics, Broad Inst of MIT & Harvard, Cambridge, MA
- Dept of Biology, MIT, Cambridge, MA
- Dept of Systems Biology, Harvard Medical School, Boston, MA
| | - Danish Saleheen
- Dept of Medicine, Columbia Univ, New York, NY
- Ctr for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | - Sekar Kathiresan
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Dept of Medicine, Harvard Medical School, Boston, MA
- Cardiology Division, Dept of Medicine, Massachusetts General Hospital, Boston, MA
- Verve Therapeutics, Cambridge, MA
| |
Collapse
|
69
|
9p21 Locus Polymorphism Is A Strong Predictor of Metabolic Syndrome and Cardiometabolic Risk Phenotypes Regardless of Coronary Heart Disease. Genes (Basel) 2022; 13:genes13122226. [PMID: 36553493 PMCID: PMC9778176 DOI: 10.3390/genes13122226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The world population is genetically predisposed to metabolic syndrome (MetS) and its components, also known as cardiometabolic risk phenotypes, which can cause severe health complications including coronary heart disease (CHD). Genetic variants in the 9p21 locus have been associated with CHD in a number of populations including Pakistan. However, the role of the 9p21 locus in MetS and cardiometabolic risk phenotypes (such as obesity, hypertension, hyperglycemia, and dyslipidemia) in populations with CHD or no established CHD has not been explored. Therefore, the present study was designed to explore the association of the minor/risk allele (C) of 9p21 locus SNP rs1333049 with MetS or its risk phenotypes regardless of an established CHD, in Pakistani subjects. Genotyping of rs1333049 (G/C) was performed on subjects under a case-control study design; healthy controls and cases, MetS with CHD (MetS-CHD+) and MetS with no CHD (MetS-CHD-), respectively. Genotype and allele frequencies were calculated in all study groups. Anthropometric and clinical variables (Means ± SD) were compared among study groups (i.e., controls, MetS + CHD and MetS-CHD) and minor/risk C allele carriers (GC + CC) vs. non-carriers (Normal GG genotype). Associations of the risk allele of rs1333049 SNP with disease and individual metabolic risk components were explored using adjusted multivariate logistic regression models (OR at 95% CI) with a threshold p-value of ≤0.05. Our results have shown that the minor allele frequency (MAF) was significantly high in the MAF cases (combined = 0.63, MetS-CHD+ = 0.57 and MetS-CHD- = 0.57) compared with controls (MAF = 0.39). The rs1333049 SNP significantly increased the risk of MetS, irrespective of CHD (MetS-CHD+ OR = 2.36, p < 0.05 and MetS-CHD- OR = 4.04, p < 0.05), and cardiometabolic risk phenotypes; general obesity, central obesity, hypertension, and dyslipidemia (OR = 1.56-3.25, p < 0.05) except hyperglycemia, which lacked any significant association (OR = 0.19, p = 0.29) in the present study group. The 9p21 genetic locus/rs1333049 SNP is strongly associated with, and can be a genetic predictor of, MetS and cardiometabolic risks, irrespective of cardiovascular diseases in the Pakistani population.
Collapse
|
70
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
71
|
The Link between ANRIL Gene RS4977574 Polymorphism and Common Atherosclerosis Cardiovascular Complications: A Hospital-Based Case-Control Study in Ukrainian Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8468202. [PMID: 36246967 PMCID: PMC9556174 DOI: 10.1155/2022/8468202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Materials and Methods 195 patients with ACS, 200 patients with LAS, and 234 control subjects were enrolled in this case-control study. Real-time PCR was used for ANRIL rs4977574 genotyping. SPSS software package (version 17.0, IBM, USA) was used for data analysis. Results A significant association between rs4977574 polymorphism and the risk of atherosclerosis and cardiovascular complications was found under the recessive model regardless of adjustment for nongenetic risk factors (OR = 1.551; p = 0.025). Moreover, the link between rs4977574 locus and serum levels of total cholesterol (p = 0.021) and LDL (p = 0.022) was detected. A separate analysis in subgroups demonstrated the association of rs4977574 polymorphism with increased risk of ACS under the recessive model (OR = 1.501; p = 0.048). No relation between rs4977574 site and LAS development was revealed (p > 0.05). Conclusion Obtained data suggested that ANRIL rs4977574-GG genotype can be a possible genetic marker for the development of atherosclerosis and cardiovascular complications in Ukrainian population.
Collapse
|
72
|
Park JY, Lengacher CA, Reich RR, Park HY, Whiting J, Nguyen AT, Rodríguez C, Meng H, Tinsley S, Chauca K, Gordillo-Casero L, Wittenberg T, Joshi A, Lin K, Ismail-Khan R, Kiluk JV, Kip KE. Translational Genomic Research: The Association between Genetic Profiles and Cognitive Functioning or Cardiac Function Among Breast Cancer Survivors Completing Chemotherapy. Biol Res Nurs 2022; 24:433-447. [PMID: 35499926 PMCID: PMC9630728 DOI: 10.1177/10998004221094386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Emerging evidence suggests that Chemotherapy (CT) treated breast cancer survivors (BCS) who have "risk variants" in genes may be more susceptible to cognitive impairment (CI) and/or poor cardiac phenotypes. The objective of this preliminary study was to examine whether there is a relationship between genetic variants and objective/subjective cognitive or cardiac phenotypes. Methods and Analysis: BCS were recruited from Moffitt Cancer Center, Morsani College of Medicine, AdventHealth Tampa and Sarasota Memorial Hospital. Genomic DNA were collected at baseline for genotyping analysis. A total of 16 single nucleotide polymorphisms (SNPs) from 14 genes involved in cognitive or cardiac function were evaluated. Three genetic models (additive, dominant, and recessive) were used to test correlation coefficients between genetic variants and objective/subjective measures of cognitive functioning and cardiac outcomes (heart rate, diastolic blood pressure, systolic blood pressure, respiration rate, and oxygen saturation). Results: BCS (207 participants) with a mean age of 56 enrolled in this study. The majority were non-Hispanic white (73.7%), married (63.1%), and received both CT and radiation treatment (77.3%). Three SNPs in genes related to cognitive functioning (rs429358 in APOE, rs1800497 in ANKK1, rs10119 in TOMM40) emerged with the most consistent significant relationship with cognitive outcomes. Among five candidate SNPs related to cardiac functioning, rs8055236 in CDH13 and rs1801133 in MTHER emerged with potential significant relationships with cardiac phenotype. Conclusions: These preliminary results provide initial targets to further examine whether BCS with specific genetic profiles may preferentially benefit from interventions designed to improve cognitive and cardiac functioning following CT.
Collapse
Affiliation(s)
- Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Richard R. Reich
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hyun Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Junmin Whiting
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anh Thy Nguyen
- Department of Epidemiology and
Biostatistics, USF College of Public Health, University of South
Florida, Tampa, FL, USA
| | | | - Hongdao Meng
- School of Aging Studies, College of
Behavioral and Community Sciences, University of South
Floridaa, Tampa, FL, USA
| | - Sara Tinsley
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Anisha Joshi
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Katherine Lin
- University of South Florida College
of Nursing, Tampa, FL, USA
| | - Roohi Ismail-Khan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - John V. Kiluk
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kevin E. Kip
- UPMC Health Services
Division, Pittsburgh, PA, USA
| |
Collapse
|
73
|
Wei B, Liu Y, Li H, Peng Y, Luo Z. Effect of 9p21.3 (lncRNA and CDKN2A/2B) variant on lipid profile. Front Cardiovasc Med 2022; 9:946289. [PMID: 36158791 PMCID: PMC9489913 DOI: 10.3389/fcvm.2022.946289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Several 9p21.3 variants, such as rs1333049, rs4977574, rs10757274, rs10757278, and rs10811661, identified from recent genome-wide association studies (GWASs) are reported to be associated with coronary artery disease (CAD) susceptibility but independent of dyslipidemia. This study investigated whether these 9p21.3 variants influenced lipid profiles. Methods and results By searching the PubMed and Cochrane databases, 101,099 individuals were included in the analysis. The consistent finding for the rs1333049 C allele on lipid profiles increased the triglyceride (TG) levels. Moreover, the rs4977574 G allele and the rs10757274 G allele, respectively, increased low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels. However, the rs10811661 C allele largely reduced LDL-C levels. Subgroup analyses indicated that the effects of the rs1333049 C allele, rs4977574 G allele, and rs10757274 G allele on lipid profiles were stronger in Whites compared with Asians. In contrast, the effect of the rs10811661 C allele on lipid profiles was stronger in Asians compared with Whites. Conclusion The rs1333049 C allele, rs4977574 G allele, and rs10757274 G allele of lncRNA, and the rs10811661 G allele of CDKN2A/2B had a significant influence on lipid levels, which may help the understanding of the underlying mechanisms between 9p21.3 variants and CAD.
Collapse
Affiliation(s)
- Baozhu Wei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
- *Correspondence: Baozhu Wei,
| | - Yang Liu
- Department of Endocrinology, China Resources and WISCO General Hospital, Wuhan, China
| | - Hang Li
- Department of Gerontology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuanyuan Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhi Luo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Zhi Luo,
| |
Collapse
|
74
|
Coronary artery disease and cancer: a significant resemblance. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:187. [PMID: 36071253 DOI: 10.1007/s12032-022-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Cancer and coronary artery disease (CAD) are two of the most common causes of death, and they frequently coexist, especially as the world's population ages. CAD can develop prior to or following cancer diagnosis, as well as a side effect of cancer treatment. CAD develops as complex interactions of lifestyle and hereditary variables, just like the development of the most complex and non-communicable diseases. Cancer is caused by both external/acquired factors (tobacco, food, physical activity, alcohol consumption, epigenetic alterations) and internal/inherited factors (genetic mutations, hormones, and immunological diseases). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system has recently emerged as a strong tool for gene therapy for both cancer as well as CAD treatment due to its great accuracy and efficiency. A deeper understanding of the complex link between CAD and cancer should lead to better prevention, faster detection, and safer treatment strategies.
Collapse
|
75
|
Bauer S, Eigenmann J, Zhao Y, Fleig J, Hawe JS, Pan C, Bongiovanni D, Wengert S, Ma A, Lusis AJ, Kovacic JC, Björkegren JLM, Maegdefessel L, Schunkert H, von Scheidt M. Identification of the Transcription Factor ATF3 as a Direct and Indirect Regulator of the LDLR. Metabolites 2022; 12:840. [PMID: 36144244 PMCID: PMC9504235 DOI: 10.3390/metabo12090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary artery disease (CAD) is a complex, multifactorial disease caused, in particular, by inflammation and cholesterol metabolism. At the molecular level, the role of tissue-specific signaling pathways leading to CAD is still largely unexplored. This study relied on two main resources: (1) genes with impact on atherosclerosis/CAD, and (2) liver-specific transcriptome analyses from human and mouse studies. The transcription factor activating transcription factor 3 (ATF3) was identified as a key regulator of a liver network relevant to atherosclerosis and linked to inflammation and cholesterol metabolism. ATF3 was predicted to be a direct and indirect (via MAF BZIP Transcription Factor F (MAFF)) regulator of low-density lipoprotein receptor (LDLR). Chromatin immunoprecipitation DNA sequencing (ChIP-seq) data from human liver cells revealed an ATF3 binding motif in the promoter regions of MAFF and LDLR. siRNA knockdown of ATF3 in human Hep3B liver cells significantly upregulated LDLR expression (p < 0.01). Inflammation induced by lipopolysaccharide (LPS) stimulation resulted in significant upregulation of ATF3 (p < 0.01) and subsequent downregulation of LDLR (p < 0.001). Liver-specific expression data from human CAD patients undergoing coronary artery bypass grafting (CABG) surgery (STARNET) and mouse models (HMDP) confirmed the regulatory role of ATF3 in the homeostasis of cholesterol metabolism. This study suggests that ATF3 might be a promising treatment candidate for lowering LDL cholesterol and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sabine Bauer
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Jana Eigenmann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Julia Fleig
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Calvin Pan
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, 171 77 Stockholm, Sweden
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
76
|
Tian W, Zhang T, Wang X, Zhang J, Ju J, Xu H. Research Landscape on Atherosclerotic Cardiovascular Disease and Inflammation: A Bibliometric and Visualized Study. Rev Cardiovasc Med 2022; 23:317. [PMID: 39077721 PMCID: PMC11262408 DOI: 10.31083/j.rcm2309317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 07/31/2024] Open
Abstract
Background The atherosclerotic cardiovascular disease (ASCVD) is a major killer and health care burden worldwide. Atherosclerosis, the common pathological foundation, has been associated with inflammation over the past few years. Some promising results also have emerged suggesting the role of targeting inflammation as a potential therapeutic option to reduce cardiovascular events. In light of the pathogenic role that inflammation plays in ASCVD, we propose to evaluate the worldwide research architecture for ASCVD and inflammation using bibliometric analysis. Methods A search of the Web of Science Core Collection of Clarivate Analytics was performed for articles in the field published between 2012 and 2022. The number of publications per year has been visualized using GraphPad Prism through time. CiteSpace and VOSviewer were used to generate knowledge maps about the collaboration of countries, institutions, and authors, and to represent the landscape on ASCVD and inflammation research as well as to reveal current foci. Results There were a total of 19,053 publications examined in this study. The most publications came from China (6232, 32.71%). Capital Med Univ was the most productive institution (410, 2.15%). Christian Weber published the greatest number of articles (75, 0.39%). PloS one was identified as the most prolific journal (706, 3.71%). Circulation was the most co-cited journal (13276, 2.81%). Keywords with the ongoing strong citation bursts were "nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome", "intestinal microbiota", "exosome", "lncRNAs", etc. Conclusions It can be shown that ASCVD and inflammation research benefited from manuscripts that had a high impact on the scientific community. Asian, European and North American countries dominated in the field in terms of quantitative, qualitative and collaborative parameters. The NLRP3 inflammasome, gut microbiota and trimethylamine N-oxide, autophagy, lncRNAs, exosomes, and nuclear factor erythroid 2-related factor 2 were described to be hot themes in the field.
Collapse
Affiliation(s)
- Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, 100700 Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
| | - Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, 100700 Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
| | - Xinyi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, 100700 Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
| | - Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- Graduate School, Beijing University of Chinese Medicine, 100029 Beijing, China
| | - Jianqing Ju
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091 Beijing, China
| |
Collapse
|
77
|
Dikilitas O, Schaid DJ, Tcheandjieu C, Clarke SL, Assimes TL, Kullo IJ. Use of Polygenic Risk Scores for Coronary Heart Disease in Ancestrally Diverse Populations. Curr Cardiol Rep 2022; 24:1169-1177. [PMID: 35796859 PMCID: PMC9645134 DOI: 10.1007/s11886-022-01734-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally distributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel population and statistical genetics approaches. RECENT FINDINGS PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed individuals. PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodological approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic medicine.
Collapse
Affiliation(s)
- Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shoa L. Clarke
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Gonda Vascular Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
78
|
Chew NW, Chong B, Ng CH, Kong G, Chin YH, Xiao W, Lee M, Dan YY, Muthiah MD, Foo R. The genetic interactions between non-alcoholic fatty liver disease and cardiovascular diseases. Front Genet 2022; 13:971484. [PMID: 36035124 PMCID: PMC9399730 DOI: 10.3389/fgene.2022.971484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the development of cardiovascular disease (CVD) has sparked interests in understanding the common mediators between the two biologically distinct entities. This comprehensive review identifies and curates genetic studies of NAFLD overlapping with CVD, and describes the colinear as well as opposing correlations between genetic associations for the two diseases. Here, CVD described in relation to NAFLD are coronary artery disease, cardiomyopathy and atrial fibrillation. Unique findings of this review included certain NAFLD susceptibility genes that possessed cardioprotective properties. Moreover, the complex interactions of genetic and environmental risk factors shed light on the disparity in genetic influence on NAFLD and its incident CVD. This serves to unravel NAFLD-mediated pathways in order to reduce CVD events, and helps identify targeted treatment strategies, develop polygenic risk scores to improve risk prediction and personalise disease prevention.
Collapse
Affiliation(s)
- Nicholas W.S. Chew
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Gwyneth Kong
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Wang Xiao
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D. Muthiah
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Roger Foo
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Translational Research Programme, National University Health Systems, Singapore, Singapore
- Genome Institute of Singapore, Agency of Science Technology and Research, Bipolis way, Singapore
- *Correspondence: Nicholas W.S. Chew, ; Roger Foo,
| |
Collapse
|
79
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
80
|
Tejada Moreno JA, Villegas Lanau A, Madrigal Zapata L, Baena Pineda AY, Velez Hernandez J, Campo Nieto O, Soto Ospina A, Araque Marín P, Rishishwar L, Norris ET, Chande AT, Jordan IK, Bedoya Berrio G. Mutations in SORL1 and MTHFDL1 possibly contribute to the development of Alzheimer's disease in a multigenerational Colombian Family. PLoS One 2022; 17:e0269955. [PMID: 35905044 PMCID: PMC9337667 DOI: 10.1371/journal.pone.0269955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 50 million people worldwide in 2020 and this number will triple to 152 million by 2050. Much of the increase will be in developing countries like Colombia. In familial forms, highly penetrant mutations have been identified in three genes, APP, PSEN1, and PSEN2, supporting a role for amyloid-β peptide. In sporadic forms, more than 30 risk genes involved in the lipid metabolism, the immune system, and synaptic functioning mechanisms. We used whole-exome sequencing (WES) to evaluate a family of 97 members, spanning three generations, with a familiar AD, and without mutations in APP, PSEN1, or PSEN2. We sequenced two affected and one unaffected member with the aim of identifying genetic variants that could explain the presence of the disease in the family and the candidate variants were validated in eleven members. We also built a structural model to try to determine the effect on protein function. WES analysis identified two rare variants in SORL1 and MTHFD1L genes segregating in the family with other potential risk variants in APOE, ABCA7, and CHAT, suggesting an oligogenic inheritance. Additionally, the structural 3D models of SORL1 and MTHFD1L variants shows that these variants produce polarity changes that favor hydrophobic interactions, resulting in local structural changes that could affect the protein function and may contribute to the development of the disease in this family.
Collapse
Affiliation(s)
| | | | | | | | | | - Omer Campo Nieto
- Molecular Genetics Research Group, University of Antioquia, Medellin, Colombia
| | | | - Pedronel Araque Marín
- Research and Innovation Group in Chemical Formulations, EIA University, Medellin, Colombia
| | - Lavanya Rishishwar
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Emily T. Norris
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Aroon T. Chande
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - I. King Jordan
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | |
Collapse
|
81
|
Sagris M, Antonopoulos AS, Theofilis P, Oikonomou E, Siasos G, Tsalamandris S, Antoniades C, Brilakis ES, Kaski JC, Tousoulis D. Risk factors profile of young and older patients with myocardial infarction. Cardiovasc Res 2022; 118:2281-2292. [PMID: 34358302 DOI: 10.1093/cvr/cvab264] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/03/2021] [Indexed: 12/18/2022] Open
Abstract
Myocardial infarction (MI) among young adults (<45 years) represents a considerable proportion of the total heart attack incidents. The underlying pathophysiologic characteristics, atherosclerotic plaque features, and risk factors profile differ between young and older patients with MI. This review article discusses the main differences between the younger and elderly MI patients as well as the different pathogenic mechanisms underlying the development of MI in the younger. Young patients with MI often have eccentric atherosclerotic plaques with inflammatory features but fewer lesions, and are more likely to be smokers, obese, and have poor lifestyle, such as inactivity and alcohol intake. Compared to older MI patients, younger are more likely to be men, have familial-combined hyperlipidaemia and increased levels of lipoprotein-a. In addition, MI in younger patients may be related to use of cannabis, cocaine use, and androgenic anabolic steroids. Genomic differences especially in the pathways of coagulation and lipid metabolism have also been identified between young and older patients with MI. Better understanding of the risk factors and the anatomic and pathophysiologic processes in young adults can improve MI prevention and treatment strategies in this patient group. Awareness could help identify young subjects at increased risk and guide primary prevention strategies. Additional studies focusing on gene pathways related to lipid metabolism, inflammation, and coagulation are needed.
Collapse
Affiliation(s)
- Marios Sagris
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Panagiotis Theofilis
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
| | - Evangelos Oikonomou
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
| | - Gerasimos Siasos
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sotirios Tsalamandris
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Oxford Centre of Research Excellence, British Heart Foundation, Oxford, OX3 9DU, UK
- Division of Cardiovascular Medicine, Oxford Biomedical Research Centre, National Institute of Health Research, Oxford, OX3 9DU, UK
| | - Emmanouil S Brilakis
- Division of Cardiovascular Medicine, Center for Coronary Artery Disease, Minneapolis Heart Institute and Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN 55407, USA
| | - Juan C Kaski
- Division of Cardiovascular Medicine, Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK
| | - Dimitris Tousoulis
- Division of Cardiovascular Medicine, 1st Cardiology Clinic, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens 115 27, Greece
| |
Collapse
|
82
|
Pietrantoni D, Mayrovitz HN. The Impacts of Sugar-Sweetened Beverages (SSB) on Cardiovascular Health. Cureus 2022; 14:e26908. [PMID: 35983382 PMCID: PMC9376212 DOI: 10.7759/cureus.26908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular disease (CVD) has been a prominent global health challenge in the last decade, and many risk factors and outcomes of CVD have been studied in that timeframe. Recent research has explored the association between sugar-sweetened beverage (SSB) consumption and CVD; however, there is a lack of updated reviews regarding SSB consumption impacts on CVD outcomes and the possible mechanisms affecting the disease state. In turn, this review aims to summarize the relevant published research from the last decade regarding linkages between SSB consumption and CVD outcomes and the potential underlying mechanisms, as well as to highlight opportunities for future exploration with respect to those outcomes and mechanisms. In this review, we searched PubMed, Embase, and Web of Science for peer-reviewed articles published from January 2012 to March 2022 regarding SSB consumption and its association with CVD. The results of our search reveal strong evidence that the consumption of SSB is positively associated with increased risks of CVD and that the magnitude of that risk is increased in a dose-dependent manner. These increased risks range from elevated triglyceride levels to inclined risk of CVD-related mortality. Although the depth of the mechanisms responsible for these increased risks have been less explored thus far, there is some evidence supporting SSB implications in cardiovascular factors, including vascular function, coronary artery calcification, triglyceride levels, inflammatory processes, arterial stiffness, and genetic polymorphisms.
Collapse
|
83
|
Bhat KG, Guleria VS, J RK, Rastogi G, Sharma V, Sharma A. Preliminary genome wide screening identifies new variants associated with coronary artery disease in Indian population. Am J Transl Res 2022; 14:5124-5131. [PMID: 35958505 PMCID: PMC9360888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
AIM Coronary artery disease (CAD) is a major health problem in developed and developing nations. Development of CAD involves a complex interaction between genetics and lifestyle factors. Individuals with high-risk genetic predisposition along with poor lifestyle are more inclined to the development of CAD. Advancement in genotyping technologies and increase in genome wide studies has provided a platform to identify new risk factors associated with CAD and associated complexities. METHODOLOGY In this study we performed genome wide screening in 76 well-defined CAD cases and 77 control samples in Indian population. Interestingly, new variants are identified in three genes viz, VLDLR, IFITM2 and C2CD4C. RESULTS The odds ratios observed for variant rs1869592 (VLDLR), rs1059091 (IFITMI) and rs7247159 (C2CD4C) were 2.6 (1.4-4.8 95% CI), 1.9 (95% CI 1.2-3.1) and 2.1 (1.2-3.7 95% CI), respectively with significant P value <0.01. These variants that are associated with pathogenesis of CAD were not previously reported in literature. Moreover, we anticipate that these variants will be further validated using a larger sample size.
Collapse
Affiliation(s)
| | | | - Ratheesh Kumar J
- Department of Cardiology, Army Hospital (R&R)New Delhi-110010, India
| | - Garima Rastogi
- NMC Genetics India Pvt. Ltd.Gurugram 122001, Haryana, India
| | - Varun Sharma
- NMC Genetics India Pvt. Ltd.Gurugram 122001, Haryana, India
| | - Anuka Sharma
- NMC Genetics India Pvt. Ltd.Gurugram 122001, Haryana, India
| |
Collapse
|
84
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
85
|
Rayat S, Ramezanidoraki N, Kazemi N, Modarressi MH, Falah M, Zardadi S, Morovvati S. Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovasc Disord 2022; 22:298. [PMID: 35768776 PMCID: PMC9245199 DOI: 10.1186/s12872-022-02695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Coronary artery disease (CAD) is the most common heart disease. Several studies have shown association between some polymorphism in different genes with CAD. Finding this association can be used in order to early diagnosis and prevention of CAD. Method 101 CAD patients with ≥ 50% luminal stenosis of any coronary vessel as case group and 111 healthy individuals as control group were selected. the polymorphisms were evaluated by ARMS-PCR and RFLP-PCR methods. Result The results of this study show that there is no significant association between rs17228212, rs17465637, and rs708272 and risk of CAD. But there is significant association between risk of CAD and rs5355 (p-value = 0.022) and rs3917406 (p-value = 0.006) in total cases, and rs5882 (p-value = 0.001) in male cases. Conclusions Our findings revealed a significant interaction between CETP SNPs and CETP activity for affecting HDL-C levels. The SELE gene is a known cell adhesion molecule with a significant role in inflammation. Studies about possible linkage between SELE gene polymorphisms and the development of CAD are conflicting. We have found a significant association between polymorphisms of SELE gene and risk of CAD.
Collapse
Affiliation(s)
- Sima Rayat
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Ramezanidoraki
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Kazemi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad H Modarressi
- Department of Medical Genetics, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safoura Zardadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
86
|
Hu X, Wang D, Cui C, Wu Q. Association of Single-Nucleotide Polymorphisms of rs2383206, rs2383207, and rs10757278 With Stroke Risk in the Chinese Population: A Meta-analysis. Front Genet 2022; 13:905619. [PMID: 35860475 PMCID: PMC9291403 DOI: 10.3389/fgene.2022.905619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have reported that chromosome 9p21 is significantly associated with ischemic stroke (IS) risk, with the G allele associated with increased risk. However, controversial results have been reported in the literature. We systematically assessed the relationship between stroke and three 9p21 loci (rs2303206, rs2383207, and rs10757278) in this meta-analysis. First, we searched the PubMed and Embase databases for relevant studies. We then calculated odds ratios using the chi-squared test. The evaluation of experimental data was performed using bias tests and sensitivity analyses. We analyzed data from 16 studies involving 18,584 individuals of Chinese ancestry, including 14,033 cases and 14,656 controls. Our results indicated that chromosome 9p21 is significantly associated with IS (odds ratio: 1.15, 95% confidence interval: 1.1-1.20, p < 0.0001). Because the three single-nucleotide polymorphisms (rs2383206, rs2383207, and 10757278) have a linkage disequilibrium relationship, all three may increase the risk of IS.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Chunying Cui
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| |
Collapse
|
87
|
Butnariu LI, Florea L, Badescu MC, Țarcă E, Costache II, Gorduza EV. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? LIFE (BASEL, SWITZERLAND) 2022; 12:life12060865. [PMID: 35743896 PMCID: PMC9225091 DOI: 10.3390/life12060865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
In the modern era, coronary artery disease (CAD) has become the most common form of heart disease and, due to the severity of its clinical manifestations and its acute complications, is a major cause of morbidity and mortality worldwide. The phenotypic variability of CAD is correlated with the complex etiology, multifactorial (caused by the interaction of genetic and environmental factors) but also monogenic. The purpose of this review is to present the genetic factors involved in the etiology of CAD and their relationship to the pathogenic mechanisms of the disease. Method: we analyzed data from the literature, starting with candidate gene-based association studies, then continuing with extensive association studies such as Genome-Wide Association Studies (GWAS) and Whole Exome Sequencing (WES). The results of these studies revealed that the number of genetic factors involved in CAD etiology is impressive. The identification of new genetic factors through GWASs offers new perspectives on understanding the complex pathophysiological mechanisms that determine CAD. In conclusion, deciphering the genetic architecture of CAD by extended genomic analysis (GWAS/WES) will establish new therapeutic targets and lead to the development of new treatments. The identification of individuals at high risk for CAD using polygenic risk scores (PRS) will allow early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| | - Laura Florea
- Department of Nefrology—Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania;
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| |
Collapse
|
88
|
Deficiency of proline/serine-rich coiled-coil protein 1 (PSRC1) accelerates trimethylamine N-oxide-induced atherosclerosis in ApoE -/- mice. J Mol Cell Cardiol 2022; 170:60-74. [PMID: 35690006 DOI: 10.1016/j.yjmcc.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023]
Abstract
AIMS The main therapeutic strategies for coronary artery disease (CAD) are mainly based on the correction of abnormal cholesterol levels; however, residual risks remain. The newly proven gut microbial metabolite trimethylamine N-oxide (TMAO) linked with CAD has broadened our horizons. In this study, we determined the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in TMAO-driven atherosclerosis. METHODS AND RESULTS We first analyzed the levels of TMAO and PSRC1 in patients with or without atherosclerosis with a target LDL-C < 1.8 mmol/L. Plasma TMAO levels were increased and negatively associated with decreased PSRC1 in peripheral blood mononuclear cells. Animals and in vitro studies showed that TMAO inhibited macrophage PSRC1 expression due to DNA hypermethylation of CpG islands. ApoE-/- mice fed a choline-supplemented diet exhibited reduced PSRC1 expression accompanied by increased atherosclerotic lesions and plasma TMAO levels. We further deleted PSRC1 in apoE-/- mice and PSRC1 deficiency significantly accelerated choline-induced atherogenesis, characterized by increased macrophage infiltration, foam cell formation and M1 macrophage polarization. Mechanistically, we overexpressed and knocked out PSRC1 in cultured macrophages to explore the mechanisms underlying TMAO-induced cholesterol accumulation and inflammation. PSRC1 deletion impaired reverse cholesterol transport and enhanced cholesterol uptake and inflammation, while PSRC1 overexpression rescued the proatherogenic phenotype observed in TMAO-stimulated macrophages, which was partially attributed to sulfotransferase 2B1b (SULT2B1b) inhibition. CONCLUSIONS Herein, clinical data provide evidence that TMAO may participate in the development of CAD beyond well-controlled LDL-C levels. Our work also suggests that PSRC1 is a negative regulator mediating the unfavorable effects of TMAO-containing diets. Therefore, PSRC1 overexpression and reduced choline consumption may further alleviate atherosclerosis.
Collapse
|
89
|
Liang S, Xv W, Li C, Huang Y, Qian G, Yan Y, Zou H, Li Y. Os LncRNAs Estão Envolvidos no Processo de Aterosclerose em Diversos Níveis. Arq Bras Cardiol 2022; 118:1134-1140. [PMID: 35703653 PMCID: PMC9345145 DOI: 10.36660/abc.20201383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
A aterosclerose é a causa mais comum de doença cardiovascular em todo o mundo, ela está associada a uma alta incidência de eventos clínicos. O acúmulo de evidências elucidou que os RNAs longos não codificantes (LncRNAs) são uma nova classe de transcritos com papéis críticos nos processos fisiopatológicos da aterosclerose. Nesta revisão, resumimos o progresso recente dos LncRNAs no desenvolvimento da aterosclerose. Descrevemos principalmente os diversos mecanismos regulatórios dos LncRNAs nos níveis transcricionais e pós-transcricionais. Este estudo pode fornecer informações úteis sobre os LncRNAs como alvos terapêuticos ou biomarcadores para o tratamento da aterosclerose.
Collapse
|
90
|
Luo T, Guo Z, Liu D, Guo Z, Wu Q, Li Q, Lin R, Chen P, Ou C, Chen M. Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3. Gut Microbes 2022; 14:2077602. [PMID: 35613310 PMCID: PMC9135421 DOI: 10.1080/19490976.2022.2077602] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maladaptive inflammatory and immune responses are responsible for intestinal barrier integrity and function dysregulation. Proline/serine-rich coiled-coil protein 1 (PSRC1) critically contributes to the immune system, but direct data on the gut microbiota and the microbial metabolite trimethylamine N-oxide (TMAO) are lacking. Here, we investigated the impact of PSRC1 deletion on TMAO generation and atherosclerosis. We first found that PSRC1 deletion in apoE-/- mice accelerated atherosclerotic plaque formation, and then the gut microbiota and metabolites were detected using metagenomics and untargeted metabolomics. Our results showed that PSRC1 deficiency enriched trimethylamine (TMA)-producing bacteria and functional potential for TMA synthesis and accordingly enhanced plasma betaine and TMAO production. Furthermore, PSRC1 deficiency resulted in a proinflammatory colonic phenotype that was significantly associated with the dysregulated bacteria. Unexpectedly, hepatic RNA-seq indicated upregulated flavin monooxygenase 3 (FMO3) expression following PSRC1 knockout. Mechanistically, PSRC1 overexpression inhibited FMO3 expression in vitro, while an ERα inhibitor rescued the downregulation. Consistently, PSRC1-knockout mice exhibited higher plasma TMAO levels with a choline-supplemented diet, which was gut microbiota dependent, as evidenced by antibiotic treatment. To investigate the role of dysbiosis induced by PSRC1 deletion in atherogenesis, apoE-/- mice were transplanted with the fecal microbiota from either apoE-/- or PSRC1-/-apoE-/- donor mice. Mice that received PSRC1-knockout mouse feces showed an elevation in TMAO levels, as well as plaque lipid deposition and macrophage accumulation, which were accompanied by increased plasma lipid levels and impaired hepatic cholesterol transport. Overall, we identified PSRC1 as an atherosclerosis-protective factor, at least in part, attributable to its regulation of TMAO generation via a multistep pathway. Thus, PSRC1 holds great potential for manipulating the gut microbiome and alleviating atherosclerosis.
Collapse
Affiliation(s)
- Tiantian Luo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China,Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongzhou Guo
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinxian Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongzhan Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peier Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China,CONTACT Caiwen Ou Dongguan Hospital of Southern Medical University, Southern Medical University, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China,Minsheng Chen Laboratory of Heart Center and Department of Cardiology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510260, P.R. China
| |
Collapse
|
91
|
Al-Lamee R, Aubiniere-Robb L, Berry C. The British Cardiovascular Society and clinical studies in ischaemic heart disease: from RITA to ORBITA, and beyond. BRITISH HEART JOURNAL 2022; 108:800-806. [PMID: 35459731 DOI: 10.1136/heartjnl-2021-320150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/28/2022] [Indexed: 01/10/2023]
Abstract
In this article, we provide a historical view of key aspects of British Cardiovascular Society (BCS) influence in clinical trials of ischaemic heart disease (IHD) followed by key research and developments, notable publications and future perspectives. We discuss the role of the BCS and its members. The scope of this article covers clinical trials in stable IHD and acute coronary syndromes, including interventions relating to diagnosis, treatment and management. We discuss the role of the BCS in supporting the original RITA trials. We highlight the changing face of angina and its management providing contemporary and future insights into microvascular disease, ischaemic symptoms with no obstructive coronary arteries and, relatedly, myocardial infarction with no obstructive coronary arteries. The article is presented as a brief overview of the BCS in IHD research, relationships with stakeholders, patient and public involvement and clinical trials from the perspective of past, present and future possibilities.
Collapse
Affiliation(s)
- Rasha Al-Lamee
- Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Colin Berry
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Cardiology, Golden Jubilee National Hospital, Clydebank, UK
| |
Collapse
|
92
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
93
|
Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O, Krūmiņa A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front Microbiol 2022; 13:627892. [PMID: 35479632 PMCID: PMC9036178 DOI: 10.3389/fmicb.2022.627892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the “one-size-fits-all” approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Riga Stradins University, Riga, Latvia
- COST Action CA18131 - Statistical and Machine Learning Techniques in Human Microbiome Studies, Brussels, Belgium
- *Correspondence: Baiba Vilne
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Inese Siksna
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Ilva Lazda
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Angelika Krūmiņa
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
94
|
Zeng L, Moser S, Mirza-Schreiber N, Lamina C, Coassin S, Nelson CP, Annilo T, Franzén O, Kleber ME, Mack S, Andlauer TFM, Jiang B, Stiller B, Li L, Willenborg C, Munz M, Kessler T, Kastrati A, Laugwitz KL, Erdmann J, Moebus S, Nöthen MM, Peters A, Strauch K, Müller-Nurasyid M, Gieger C, Meitinger T, Steinhagen-Thiessen E, März W, Metspalu A, Björkegren JLM, Samani NJ, Kronenberg F, Müller-Myhsok B, Schunkert H. Cis-epistasis at the LPA locus and risk of cardiovascular diseases. Cardiovasc Res 2022; 118:1088-1102. [PMID: 33878186 PMCID: PMC8930071 DOI: 10.1093/cvr/cvab136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic effects might be responsible for part of the unaccounted genetic variance. Here, we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. METHODS AND RESULTS We tested for epistatic interactions in 10 CAD case-control studies and UK Biobank with focus on 8068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD [odds ratio (OR) = 1.37, P = 1.07 × 10-11], peripheral arterial disease (OR = 1.22, P = 2.32 × 10-4), aortic stenosis (OR = 1.47, P = 6.95 × 10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, P = 1.41 × 10-8), and Lp(a) serum levels (beta = 0.58, P = 8.7 × 10-32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, P = 9.97 × 10-32) and individuals homozygous for the minor allele (relative OR = 1.77, P = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. CONCLUSIONS These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases.
Collapse
Affiliation(s)
- Lingyao Zeng
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
| | - Sylvain Moser
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich 80804, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Rd, Leicester LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Tarmo Annilo
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Oscar Franzén
- Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, 14186 Stockholm, Sweden
| | - Marcus E Kleber
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Salome Mack
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Beibei Jiang
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Barbara Stiller
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
| | - Ling Li
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
| | - Christina Willenborg
- Institute for Cardiogenetics and University Heart Center Luebeck, University of Lübeck, 23562 Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics and University Heart Center Luebeck, University of Lübeck, 23562 Lübeck, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Department of Periodontology and Synoptic Dentistry, 14197 Berlin, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Karl-Ludwig Laugwitz
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics and University Heart Center Luebeck, University of Lübeck, 23562 Lübeck, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
- Centre for Urbane Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, 53012 Bonn, Germany
| | - Annette Peters
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101 Mainz, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101 Mainz, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, 69120 Heidelberg, Germany
- Synlab Akademie, Synlab Holding Deutschland GmbH, Mannheim und Augsburg, 86156 Augsburg, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, 14186 Stockholm, Sweden
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Groby Rd, Leicester LE3 9QP, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Munich Cluster of Systems Biology, SyNergy, 81377 Munich, Germany
- Department of Health Data Science, University of Liverpool, Liverpool L69 3BX, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, 80636 Munich, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
95
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
96
|
Thompson PL, Hui J, Beilby J, Palmer LJ, Watts GF, West MJ, Kirby A, Marschner S, Simes RJ, Sullivan DR, White HD, Stewart R, Tonkin AM. Common genetic variants do not predict recurrent events in coronary heart disease patients. BMC Cardiovasc Disord 2022; 22:96. [PMID: 35264114 PMCID: PMC8908687 DOI: 10.1186/s12872-022-02520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background It is unclear whether genetic variants identified from single nucleotide polymorphisms (SNPs) strongly associated with coronary heart disease (CHD) in genome-wide association studies (GWAS), or a genetic risk score (GRS) derived from them, can help stratify risk of recurrent events in patients with CHD. Methods Study subjects were enrolled at the close-out of the LIPID randomised controlled trial of pravastatin vs placebo. Entry to the trial had required a history of acute coronary syndrome 3–36 months previously, and patients were in the trial for a mean of 36 months. Patients who consented to a blood sample were genotyped with a custom designed array chip with SNPs chosen from known CHD-associated loci identified in previous GWAS. We evaluated outcomes in these patients over the following 10 years. Results Over the 10-year follow-up of the cohort of 4932 patients, 1558 deaths, 898 cardiovascular deaths, 727 CHD deaths and 375 cancer deaths occurred. There were no significant associations between individual SNPs and outcomes before or after adjustment for confounding variables and for multiple testing. A previously validated 27 SNP GRS derived from SNPs with the strongest associations with CHD also did not show any independent association with recurrent major cardiovascular events. Conclusions Genetic variants based on individual single nucleotide polymorphisms strongly associated with coronary heart disease in genome wide association studies or an abbreviated genetic risk score derived from them did not help risk profiling in this well-characterised cohort with 10-year follow-up. Other approaches will be needed to incorporate genetic profiling into clinically relevant stratification of long-term risk of recurrent events in CHD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02520-0.
Collapse
Affiliation(s)
- P L Thompson
- Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Faculty of Health and Medical Sciences, Sir Charles Gairdner Hospital, University of Western Australia, Hospital Ave, Perth, Nedlands, WA, 6009, Australia.
| | - J Hui
- Health Department of Western Australia, PathWest, Perth, Australia.,School of Population and Global Health, University of Western Australia, Perth, Australia
| | - J Beilby
- Health Department of Western Australia, PathWest, Perth, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - L J Palmer
- School of Public Health, University of Adelaide, Adelaide, Australia
| | - G F Watts
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - M J West
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - A Kirby
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - S Marschner
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - R J Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - D R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, Australia
| | - H D White
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - R Stewart
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - A M Tonkin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
97
|
Sadegh-Khorrami M, Hatami H, Bakhshani A, Bagherikashouk S, Sadabadi F, Ghazizadeh H, Amerizadeh F, Esmaeily H, Moohebati M, Heidari-Bakavoli A, Ferns GA, Pasdar A, Ghayour-Mobarhan M, Avan A. The association between a variant of the cyclin-dependent kinase inhibitor 2A/B gene and risk of cardiovascular disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Li L, Chen Z, von Scheidt M, Li S, Steiner A, Güldener U, Koplev S, Ma A, Hao K, Pan C, Lusis AJ, Pang S, Kessler T, Ermel R, Sukhavasi K, Ruusalepp A, Gagneur J, Erdmann J, Kovacic JC, Björkegren JLM, Schunkert H. Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes. Basic Res Cardiol 2022; 117:6. [PMID: 35175464 PMCID: PMC8852935 DOI: 10.1007/s00395-022-00917-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 01/31/2023]
Abstract
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e-6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN, in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
Collapse
Affiliation(s)
- Ling Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Fakultät für Informatik, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhifen Chen
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Shuangyue Li
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Steiner
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ulrich Güldener
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
| | - Calvin Pan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shichao Pang
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raili Ermel
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Arno Ruusalepp
- Department of Cardiac Surgery, The Heart Clinic, Tartu University Hospital, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Julien Gagneur
- Fakultät für Informatik, Technische Universität München, Munich, Germany
| | - Jeanette Erdmann
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029-6574, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA
- Clinical Gene Networks AB, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany.
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
99
|
Blanco S, Alcalá ES, Reyes AA, Flores-Soler J, Mirabal RL, Luti Y, Márquez I, Mestre MTF. 9p21 Locus Polymorphisms: Risk and Severity Factors of Coronary Artery Disease in Venezuelan Patients. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.36660/ijcs.20200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
100
|
Conlon DM, Schneider CV, Ko YA, Rodrigues A, Guo K, Hand NJ, Rader DJ. Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. J Clin Invest 2022; 132:144334. [PMID: 35113816 PMCID: PMC8920325 DOI: 10.1172/jci144334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Genetic variants at the SORT1 locus in humans, which cause increased SORT1 expression in the liver, are significantly associated with reduced plasma levels of LDL cholesterol and apolipoprotein B (apoB). However, the role of hepatic sortilin remains controversial, as genetic deletion of sortilin in mice has resulted in variable and conflicting effects on apoB secretion. Here, we found that Sort1-KO mice on a chow diet and several Sort1-deficient hepatocyte lines displayed no difference in apoB secretion. When these models were challenged with high-fat diet or ER stress, the loss of Sort1 expression resulted in a significant increase in apoB-100 secretion. Sort1-overexpression studies yielded reciprocal results. Importantly, carriers of SORT1 variant with diabetes had larger decreases in plasma apoB, TG, and VLDL and LDL particle number as compared with people without diabetes with the same variants. We conclude that, under basal nonstressed conditions, loss of sortilin has little effect on hepatocyte apoB secretion, whereas, in the setting of lipid loading or ER stress, sortilin deficiency leads to increased apoB secretion. These results are consistent with the directionality of effect in human genetics studies and suggest that, under stress conditions, hepatic sortilin directs apoB toward lysosomal degradation rather than secretion, potentially serving as a quality control step in the apoB secretion pathway in hepatocytes.
Collapse
Affiliation(s)
- Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Carolin V Schneider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Yi-An Ko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Amrith Rodrigues
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Kathy Guo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|