51
|
Ziros PG, Chartoumpekis DV, Georgakopoulos-Soares I, Psarias G, Sykiotis GP. Transcriptomic profiling of the response to excess iodide in Keap1 hypomorphic mice reveals new gene-environment interactions in thyroid homeostasis. Redox Biol 2024; 69:102978. [PMID: 38048653 PMCID: PMC10746517 DOI: 10.1016/j.redox.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Iodide plays a pivotal role in thyroid homeostasis due to its crucial involvement in thyroid hormone biosynthesis. Exposure to pharmacological doses of iodide elicits in the thyroid an autoregulatory response to preserve thyroid function, as well as an antioxidant response that is mediated by the Keap1/Nrf2 signaling pathway. The objective of the present study was to investigate the transcriptional response of the thyroid to excess iodide in a background of enhanced Nrf2 signaling. Keap1 knockdown (Keap1KD) mice that have activated Nrf2 signaling were exposed or not to excess iodide in their drinking water for seven days and compared to respective wild-type mice. RNA-sequencing of individual mouse thyroids identified distinct transcriptomic patterns in response to iodide, with Keap1KD mice showing an attenuated inflammatory response, altered thyroidal autoregulation, and enhanced cell growth/proliferative signaling, as confirmed also by Western blotting for key proteins involved in antioxidant, autoregulatory and proliferative responses. These findings underscore novel gene-environment interactions between the activation status of the Keap1/Nrf2 antioxidant response system and the dietary iodide intake, which may have implications not only for the goiter phenotype of Keap1KD mice but also for humans harboring genetic variations in KEAP1 or NFE2L2 or treated with Nrf2-modulating drugs.
Collapse
Affiliation(s)
- Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | | | - Georgios Psarias
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
52
|
Horby PW, Peto L, Staplin N, Campbell M, Pessoa-Amorim G, Mafham M, Emberson JR, Stewart R, Prudon B, Uriel A, Green CA, Dhasmana DJ, Malein F, Majumdar J, Collini P, Shurmer J, Yates B, Baillie JK, Buch MH, Day J, Faust SN, Jaki T, Jeffery K, Juszczak E, Knight M, Lim WS, Montgomery A, Mumford A, Rowan K, Thwaites G, Haynes R, Landray MJ. Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Nat Commun 2024; 15:924. [PMID: 38296965 PMCID: PMC10831058 DOI: 10.1038/s41467-023-43644-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 02/02/2024] Open
Abstract
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome.
Collapse
Affiliation(s)
- Peter W Horby
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC), University of Oxford, Oxford, UK.
| | - Leon Peto
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natalie Staplin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Mark Campbell
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Marion Mafham
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan R Emberson
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Richard Stewart
- Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK
| | - Benjamin Prudon
- North Tees and Hartlepool NHS Foundation Trust, Stockton-on-Tees, UK
| | - Alison Uriel
- Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Devesh J Dhasmana
- Victoria Hospital Kirkcaldy, NHS Fife, Kirkcaldy, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Flora Malein
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Paul Collini
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Bryan Yates
- Northumbria Healthcare NHS Foundation Trust, Northumberland, UK
| | | | - Maya H Buch
- Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Jeremy Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Thomas Jaki
- University of Regensburg, Regensburg, Germany
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edmund Juszczak
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Marian Knight
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK
| | - Wei Shen Lim
- School of Medicine, University of Nottingham, Nottingham, UK
- Respiratory Medicine Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alan Montgomery
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathryn Rowan
- Intensive Care National Audit & Research Centre, London, UK
| | - Guy Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Richard Haynes
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Martin J Landray
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
53
|
Zhang X, Jing J, Wang A, Xie X, Johnston SC, Li H, Bath PM, Xu Q, Lin J, Wang Y, Zhao X, Li Z, Jiang Y, Liu L, Chen W, Gong X, Li J, Han X, Meng X, Wang Y. Efficacy and safety of dual antiplatelet therapy in the elderly for stroke prevention: a subgroup analysis of the CHANCE-2 trial. Stroke Vasc Neurol 2024:svn-2023-002450. [PMID: 38286485 DOI: 10.1136/svn-2023-002450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/16/2023] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVES Evidence of the optimal antiplatelet therapy for elderly patients who had a stroke is limited, especially those elder than 80 years. This study aimed to explore the efficacy and safety of dual antiplatelet therapy (DAPT) in old-old patients compared with younger patients in the ticagrelor or Clopidogrel with aspirin in High-risk patients with Acute Non-disabling Cerebrovascular Events-II (CHANCE-2) trial. METHODS CHANCE-2 was a randomised, double-blind, placebo-controlled trial in China involving patients with high-risk transient ischaemic attack or minor stroke with CYP2C19 loss-of-function alleles. In our substudy, all enrolled patients were stratified by age: old-old (≥80 years), young-old (65-80 years) and younger (<65 years). The primary outcomes were stroke recurrence and moderate to severe bleeding within 90 days, respectively. RESULTS Of all the 6412 patients, 406 (6.3%) were old-old, 2755 (43.0%) were young-old and 3251 (50.7%) were younger. Old-old patients were associated with higher composite vascular events (HR 1.41, 95% CI 1.00 to 1.98, p=0.048), disabling stroke (OR 2.43, 95% CI 1.52 to 3.88, p=0.0002), severe or moderate bleeding (HR 8.40, 95% CI 1.95 to 36.21, p=0.004) and mortality (HR 7.56, 95% CI 2.23 to 25.70, p=0.001) within 90 days. Ticagrelor-aspirin group was associated with lower risks of stroke recurrence within 90 days in younger patients (HR 0.68, 95% CI 0.51 to 0.91, p=0.008), which was no differences in old-old patients. CONCLUSION Elderly patients aged over 80 in CHANCE-2 trial had higher risks of composite vascular events, disabling stroke, severe or moderate bleeding and mortality within 90 days. Genotype-guided DAPT might not be as effective in old-old patients as in younger ones. TRIAL REGISTRATION NUMBER NCT04078737.
Collapse
Affiliation(s)
- Xinmiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuewei Xie
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Philip M Bath
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weifeng Chen
- Department of Neurology, Xingyang People's Hospital, Henan, China
| | - Xuhai Gong
- Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jianhua Li
- The First Hospital of Fangshan District, Beijing, China
| | | | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
54
|
Lee CY, Chan KH. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024; 16:120. [PMID: 38258130 PMCID: PMC10820407 DOI: 10.3390/pharmaceutics16010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple sclerosis is an important neurological disease affecting millions of young patients globally. It is encouraging that more than ten disease-modifying drugs became available for use in the past two decades. These disease-modifying therapies (DMTs) have different levels of efficacy, routes of administration, adverse effect profiles and concerns for pregnancy. Much knowledge and caution are needed for their appropriate use in MS patients who are heterogeneous in clinical features and severity, lesion load on magnetic resonance imaging and response to DMT. We aim for an updated review of the concept of personalization in the use of DMT for relapsing MS patients. Shared decision making with consideration for the preference and expectation of patients who understand the potential efficacy/benefits and risks of DMT is advocated.
Collapse
Affiliation(s)
- Chi-Yan Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 405B, 4/F, Professorial Block, 102 Pokfulam Road, Hong Kong
- Neuroimmunology and Neuroinflammation Research Laboratory, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
55
|
Edinger A, Habibi M. The evolution of multiple sclerosis disease-modifying therapies: An update for pharmacists. Am J Health Syst Pharm 2024; 81:37-55. [PMID: 37777869 DOI: 10.1093/ajhp/zxad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 10/02/2023] Open
Abstract
PURPOSE Multiple sclerosis (MS) and the evolution of disease-modifying therapies (DMTs) and their indications, mechanisms of action, efficacy, pregnancy class, and cost are discussed. SUMMARY MS is an immune-mediated, demyelinating, and progressive neurological disorder that can cause both motor and cognitive deficits. Onset of MS typically occurs between the ages of 20 and 40 years, and the disease can result in significant disability over time. Since the introduction of the first DMT for the treatment of MS in 1993, significant progress has been made in the development of new classes of DMTs with different mechanisms of action, higher efficacy, and simpler administration schedules, offering patients better alternatives. However, drawbacks with the use of DMTs include their increasing cost and formulary restrictions. CONCLUSION The treatment landscape of MS has significantly changed over the past 2 decades, and the introduction of newer classes of DMTs provides an opportunity for pharmacists to play an important role in the management of this patient population.
Collapse
Affiliation(s)
| | - Mitra Habibi
- Department of Pharmacy Practice and Department of Neurology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
56
|
Gonzalez-Lorenzo M, Ridley B, Minozzi S, Del Giovane C, Peryer G, Piggott T, Foschi M, Filippini G, Tramacere I, Baldin E, Nonino F. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2024; 1:CD011381. [PMID: 38174776 PMCID: PMC10765473 DOI: 10.1002/14651858.cd011381.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Different therapeutic strategies are available for the treatment of people with relapsing-remitting multiple sclerosis (RRMS), including immunomodulators, immunosuppressants and biological agents. Although each one of these therapies reduces relapse frequency and slows disability accumulation compared to no treatment, their relative benefit remains unclear. This is an update of a Cochrane review published in 2015. OBJECTIVES To compare the efficacy and safety, through network meta-analysis, of interferon beta-1b, interferon beta-1a, glatiramer acetate, natalizumab, mitoxantrone, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, pegylated interferon beta-1a, daclizumab, laquinimod, azathioprine, immunoglobulins, cladribine, cyclophosphamide, diroximel fumarate, fludarabine, interferon beta 1-a and beta 1-b, leflunomide, methotrexate, minocycline, mycophenolate mofetil, ofatumumab, ozanimod, ponesimod, rituximab, siponimod and steroids for the treatment of people with RRMS. SEARCH METHODS CENTRAL, MEDLINE, Embase, and two trials registers were searched on 21 September 2021 together with reference checking, citation searching and contact with study authors to identify additional studies. A top-up search was conducted on 8 August 2022. SELECTION CRITERIA Randomised controlled trials (RCTs) that studied one or more of the available immunomodulators and immunosuppressants as monotherapy in comparison to placebo or to another active agent, in adults with RRMS. DATA COLLECTION AND ANALYSIS Two authors independently selected studies and extracted data. We considered both direct and indirect evidence and performed data synthesis by pairwise and network meta-analysis. Certainty of the evidence was assessed by the GRADE approach. MAIN RESULTS We included 50 studies involving 36,541 participants (68.6% female and 31.4% male). Median treatment duration was 24 months, and 25 (50%) studies were placebo-controlled. Considering the risk of bias, the most frequent concern was related to the role of the sponsor in the authorship of the study report or in data management and analysis, for which we judged 68% of the studies were at high risk of other bias. The other frequent concerns were performance bias (34% judged as having high risk) and attrition bias (32% judged as having high risk). Placebo was used as the common comparator for network analysis. Relapses over 12 months: data were provided in 18 studies (9310 participants). Natalizumab results in a large reduction of people with relapses at 12 months (RR 0.52, 95% CI 0.43 to 0.63; high-certainty evidence). Fingolimod (RR 0.48, 95% CI 0.39 to 0.57; moderate-certainty evidence), daclizumab (RR 0.55, 95% CI 0.42 to 0.73; moderate-certainty evidence), and immunoglobulins (RR 0.60, 95% CI 0.47 to 0.79; moderate-certainty evidence) probably result in a large reduction of people with relapses at 12 months. Relapses over 24 months: data were reported in 28 studies (19,869 participants). Cladribine (RR 0.53, 95% CI 0.44 to 0.64; high-certainty evidence), alemtuzumab (RR 0.57, 95% CI 0.47 to 0.68; high-certainty evidence) and natalizumab (RR 0.56, 95% CI 0.48 to 0.65; high-certainty evidence) result in a large decrease of people with relapses at 24 months. Fingolimod (RR 0.54, 95% CI 0.48 to 0.60; moderate-certainty evidence), dimethyl fumarate (RR 0.62, 95% CI 0.55 to 0.70; moderate-certainty evidence), and ponesimod (RR 0.58, 95% CI 0.48 to 0.70; moderate-certainty evidence) probably result in a large decrease of people with relapses at 24 months. Glatiramer acetate (RR 0.84, 95%, CI 0.76 to 0.93; moderate-certainty evidence) and interferon beta-1a (Avonex, Rebif) (RR 0.84, 95% CI 0.78 to 0.91; moderate-certainty evidence) probably moderately decrease people with relapses at 24 months. Relapses over 36 months findings were available from five studies (3087 participants). None of the treatments assessed showed moderate- or high-certainty evidence compared to placebo. Disability worsening over 24 months was assessed in 31 studies (24,303 participants). Natalizumab probably results in a large reduction of disability worsening (RR 0.59, 95% CI 0.46 to 0.75; moderate-certainty evidence) at 24 months. Disability worsening over 36 months was assessed in three studies (2684 participants) but none of the studies used placebo as the comparator. Treatment discontinuation due to adverse events data were available from 43 studies (35,410 participants). Alemtuzumab probably results in a slight reduction of treatment discontinuation due to adverse events (OR 0.39, 95% CI 0.19 to 0.79; moderate-certainty evidence). Daclizumab (OR 2.55, 95% CI 1.40 to 4.63; moderate-certainty evidence), fingolimod (OR 1.84, 95% CI 1.31 to 2.57; moderate-certainty evidence), teriflunomide (OR 1.82, 95% CI 1.19 to 2.79; moderate-certainty evidence), interferon beta-1a (OR 1.48, 95% CI 0.99 to 2.20; moderate-certainty evidence), laquinimod (OR 1.49, 95 % CI 1.00 to 2.15; moderate-certainty evidence), natalizumab (OR 1.57, 95% CI 0.81 to 3.05), and glatiramer acetate (OR 1.48, 95% CI 1.01 to 2.14; moderate-certainty evidence) probably result in a slight increase in the number of people who discontinue treatment due to adverse events. Serious adverse events (SAEs) were reported in 35 studies (33,998 participants). There was probably a trivial reduction in SAEs amongst people with RRMS treated with interferon beta-1b as compared to placebo (OR 0.92, 95% CI 0.55 to 1.54; moderate-certainty evidence). AUTHORS' CONCLUSIONS We are highly confident that, compared to placebo, two-year treatment with natalizumab, cladribine, or alemtuzumab decreases relapses more than with other DMTs. We are moderately confident that a two-year treatment with natalizumab may slow disability progression. Compared to those on placebo, people with RRMS treated with most of the assessed DMTs showed a higher frequency of treatment discontinuation due to AEs: we are moderately confident that this could happen with fingolimod, teriflunomide, interferon beta-1a, laquinimod, natalizumab and daclizumab, while our certainty with other DMTs is lower. We are also moderately certain that treatment with alemtuzumab is associated with fewer discontinuations due to adverse events than placebo, and moderately certain that interferon beta-1b probably results in a slight reduction in people who experience serious adverse events, but our certainty with regard to other DMTs is lower. Insufficient evidence is available to evaluate the efficacy and safety of DMTs in a longer term than two years, and this is a relevant issue for a chronic condition like MS that develops over decades. More than half of the included studies were sponsored by pharmaceutical companies and this may have influenced their results. Further studies should focus on direct comparison between active agents, with follow-up of at least three years, and assess other patient-relevant outcomes, such as quality of life and cognitive status, with particular focus on the impact of sex/gender on treatment effects.
Collapse
Affiliation(s)
- Marien Gonzalez-Lorenzo
- Laboratorio di Metodologia delle revisioni sistematiche e produzione di Linee Guida, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ben Ridley
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- Cochrane Italy, Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Guy Peryer
- School of Health Sciences, University of East Anglia (UEA), Norwich, UK
| | - Thomas Piggott
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Family Medicine, Queens University, Kingston, Ontario, Canada
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
57
|
Wandall-Holm MF, Holm RP, Heick A, Langkilde AR, Magyari M. Risk of T 2 lesions when discontinuing fingolimod: a nationwide predictive and comparative study. Brain Commun 2024; 6:fcad358. [PMID: 38214014 PMCID: PMC10783644 DOI: 10.1093/braincomms/fcad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Fingolimod is a frequently used disease-modifying therapy in relapsing-remitting multiple sclerosis. However, case reports and small observational studies indicate a highly increased risk of disease reactivation after discontinuation. We aimed to investigate the risk of radiological disease reactivation in patients discontinuing fingolimod. We performed a nationwide cohort study in Denmark, including patients who discontinued fingolimod between January 2014 and January 2023. Eligibility was a diagnosis with relapsing-remitting multiple sclerosis and two MRIs performed respectively within 1 year before and after discontinuing fingolimod. The included patients were compared with those discontinuing dimethyl fumarate with the same eligibility criteria in an unadjusted and matched propensity score analysis. Matching was done on age, sex, Expanded Disability Status Scale, MRI data, cause for treatment discontinuation, treatment duration and relapse rate. The main outcome was the presence of new T2 lesions on the first MRI after treatment discontinuation. To identify high-risk patients among those discontinuing fingolimod, we made a predictive model assessing risk factors for obtaining new T2 lesions. Of 1324 patients discontinuing fingolimod in the study period, 752 were eligible for inclusion [mean age (standard deviation), years, 41 (10); 552 females (73%); median Expanded Disability Status Scale (Q1-Q3), 2.5 (2.0-3.5); mean disease duration (standard deviation), years, 12 (8)]. Of 2044 patients discontinuing dimethyl fumarate in the study period, 957 were eligible for inclusion, presenting similar baseline characteristics. Among patients discontinuing fingolimod, 127 (17%) had 1-2 new T2 lesions, and 124 (17%) had ≥3 new T2 lesions compared with 114 (12%) and 45 (5%), respectively, for those discontinuing dimethyl fumarate, corresponding to odds ratios (95% confidence interval) of 1.8 (1.3-2.3) and 4.4 (3.1-6.3). The predictive model, including 509 of the 752 patients discontinuing fingolimod, showed a highly increased risk of new T2 lesions among those with disease activity during fingolimod treatment and among females under 40 years. This nationwide study suggests that discontinuing fingolimod in some cases carries a risk of developing new T2 lesions, emphasizing the importance of clinical awareness. If feasible, clinicians should prioritize the prompt initiation of new disease-modifying therapies, particularly among young females.
Collapse
Affiliation(s)
- Malthe Faurschou Wandall-Holm
- Department of Neurology, Danish Multiple Sclerosis Registry, Copenhagen University Hospital—Rigshospitalet, Glostrup DK-2600, Denmark
| | - Rolf Pringler Holm
- Department of Neurology, Danish Multiple Sclerosis Registry, Copenhagen University Hospital—Rigshospitalet, Glostrup DK-2600, Denmark
| | - Alex Heick
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital—Rigshospitalet, Glostrup DK-2600, Denmark
| | - Annika Reynberg Langkilde
- Department of Radiology, Diagnostic Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Melinda Magyari
- Department of Neurology, Danish Multiple Sclerosis Registry, Copenhagen University Hospital—Rigshospitalet, Glostrup DK-2600, Denmark
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital—Rigshospitalet, Glostrup DK-2600, Denmark
| |
Collapse
|
58
|
Inojosa H, Ziemssen T. [Current and innovative Approaches to Multiple Sclerosis Therapy]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:41-60. [PMID: 38272020 DOI: 10.1055/a-2167-1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The landscape of immunotherapies in the management of Multiple Sclerosis (MS) is currently particularly dynamic. Over 21 immunotherapeutic options are approved by the European Meidcines Agency (EMA), Food and Drug Administration (FDA) and newer approaches are ongoing in clinical trials. With advancements in the understanding of MS pathophysiology and further development of diagnosis criteria, newer and more specific disease-modifying therapies (DMTs) have emerged in recent years. The selection and timing of proper therapeutic approaches is increasingly complex. We provide an overview of the available immunotherapies for a personalized MS treatment and discuss practical insights into their application. The importance of early intervention, distinction between escalation and induction approaches, and consideration of high-efficacy treatments for specific patient groups are in discussed. We emphasize the significance of a patient-centered approach, taking into account various factors such as comorbidities, family planning, administration preferences and potential side effects in treatment decision-making.
Collapse
|
59
|
Kuribayashi S, Fukuhara S, Kitakaze H, Tsujimura G, Imanaka T, Okada K, Ueda N, Takezawa K, Katayama K, Yamaguchi R, Matsuda K, Nonomura N. KEAP1-NRF2 system regulates age-related spermatogenesis dysfunction. Reprod Med Biol 2024; 23:e12595. [PMID: 38915913 PMCID: PMC11194679 DOI: 10.1002/rmb2.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose The average fatherhood age has been consistently increasing in developed countries. Aging has been identified as a risk factor for male infertility. However, its impact on various mechanisms remains unclear. This study focused on the KEAP1-NRF2 oxidative stress response system, by investigating the relationship between the KEAP1-NRF2 system and age-related changes in spermatogenesis. Methods For examination of age-related changes, we used 10-, 30-, 60-, and 90-week-old mice to compare sperm count, sperm motility, and protein expression. For assessment of Keap1 inhibition, 85-week-old C57BL/6J mice were randomly assigned to the following groups: control and bardoxolone methyl (KEAP1 inhibitor). Whole-exome sequencing of a Japanese cohort of patients with non-obstructive azoospermia was performed for evaluating. Results Sperm count decreased significantly with aging. Oxidative stress and KEAP1 expression in the testes were elevated. Inhibition of KEAP1 in aging mice significantly increased sperm count compared with that in the control group. In the human study, the frequency of a missense-type SNP (rs181294188) causing changes in NFE2L2 (NRF2) activity was significantly higher in patients with non-obstructive azoospermia than in healthy control group. Conclusions The KEAP1-NRF2 system, an oxidative stress response system, is associated with age-related spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Sohei Kuribayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | | | - Hiroaki Kitakaze
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Go Tsujimura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takahiro Imanaka
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Okada
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Norichika Ueda
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kentaro Takezawa
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kotoe Katayama
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Rui Yamaguchi
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
60
|
Bellanca CM, Augello E, Mariottini A, Bonaventura G, La Cognata V, Di Benedetto G, Cantone AF, Attaguile G, Di Mauro R, Cantarella G, Massacesi L, Bernardini R. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability? Curr Neuropharmacol 2024; 22:1286-1326. [PMID: 38275058 PMCID: PMC11092922 DOI: 10.2174/1570159x22666240124114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 01/27/2024] Open
Abstract
Multiple sclerosis (MS) is the most prevalent chronic autoimmune inflammatory- demyelinating disorder of the central nervous system (CNS). It usually begins in young adulthood, mainly between the second and fourth decades of life. Usually, the clinical course is characterized by the involvement of multiple CNS functional systems and by different, often overlapping phenotypes. In the last decades, remarkable results have been achieved in the treatment of MS, particularly in the relapsing- remitting (RRMS) form, thus improving the long-term outcome for many patients. As deeper knowledge of MS pathogenesis and respective molecular targets keeps growing, nowadays, several lines of disease-modifying treatments (DMT) are available, an impressive change compared to the relative poverty of options available in the past. Current MS management by DMTs is aimed at reducing relapse frequency, ameliorating symptoms, and preventing clinical disability and progression. Notwithstanding the relevant increase in pharmacological options for the management of RRMS, research is now increasingly pointing to identify new molecules with high efficacy, particularly in progressive forms. Hence, future efforts should be concentrated on achieving a more extensive, if not exhaustive, understanding of the pathogenetic mechanisms underlying this phase of the disease in order to characterize novel molecules for therapeutic intervention. The purpose of this review is to provide a compact overview of the numerous currently approved treatments and future innovative approaches, including neuroprotective treatments as anti-LINGO-1 monoclonal antibody and cell therapies, for effective and safe management of MS, potentially leading to a cure for this disease.
Collapse
Affiliation(s)
- Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Alice Mariottini
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Gabriele Bonaventura
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation (IRIB), Italian National Research Council, 95126 Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Attaguile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
61
|
Pfefferlé M, Vallelian F. Transcription Factor NRF2 in Shaping Myeloid Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:159-195. [PMID: 39017844 DOI: 10.1007/978-3-031-62731-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
NFE2-related factor 2 (NRF2) is a master transcription factor (TF) that coordinates key cellular homeostatic processes including antioxidative responses, autophagy, proteostasis, and metabolism. The emerging evidence underscores its significant role in modulating inflammatory and immune processes. This chapter delves into the role of NRF2 in myeloid cell differentiation and function and its implication in myeloid cell-driven diseases. In macrophages, NRF2 modulates cytokine production, phagocytosis, pathogen clearance, and metabolic adaptations. In dendritic cells (DCs), it affects maturation, cytokine production, and antigen presentation capabilities, while in neutrophils, NRF2 is involved in activation, migration, cytokine production, and NETosis. The discussion extends to how NRF2's regulatory actions pertain to a wide array of diseases, such as sepsis, various infectious diseases, cancer, wound healing, atherosclerosis, hemolytic conditions, pulmonary disorders, hemorrhagic events, and autoimmune diseases. The activation of NRF2 typically reduces inflammation, thereby modifying disease outcomes. This highlights the therapeutic potential of NRF2 modulation in treating myeloid cell-driven pathologies.
Collapse
Affiliation(s)
- Marc Pfefferlé
- Department of Internal Medicine, Spital Limmattal, Schlieren, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
62
|
Kusnirikova ZK, Kacirova I, Pesakova V, Hradilek P, Brozmanova H, Grundmann M. Analysis of Concentrations of Monomethyl Fumarate in Patients with Multiple Sclerosis: Result from Routine Health Care. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1516 - 1523. [PMID: 38840397 DOI: 10.2174/0118715273302279240529104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Dimethyl fumarate is used to treat patients with relapsing-remitting multiple sclerosis. After ingestion, it is rapidly hydrolyzed to the active primary metabolite monomethyl fumarate. OBJECTIVE The main objective of our study was to analyze serum concentrations of monomethyl fumarate during routine health care in patients with multiple sclerosis treated with a fixed dose of dimethyl fumarate. METHODS In the pilot cross-sectional study, data from 42 patients treated with dimethyl fumarate at a dose of 240 mg twice daily were collected. Concentrations of the active metabolite monomethyl fumarate were determined at 1-8 h (median, 3 h) or 10-14 h (median, 13 h) after taking the dose. The relationship between monomethyl fumarate concentrations and absolute lymphocyte count was evaluated. RESULTS Concentrations of monomethyl fumarate ranged from 2.5-3177.9 μg/L, with most concentrations being undetectable approximately 10 hours after administration. In the 1-8 h (median, 3 h) post-dose subgroup, the concentration/dose ratio ranged widely from 0.04-6.62. The median concentration of monomethyl fumarate in the group with the absolute lymphocyte count <0.8 x 10^9/l was more than four times higher than in the group with the absolute lymphocyte count ≥0.8 x 10^9/l (median 440.1 μg/L versus 98.4 μg/L). CONCLUSION The wide interindividual variability in monomethyl fumarate pharmacokinetics could contribute to the differential response to dimethyl fumarate in multiple sclerosis patients. A nonsignificant but noticeable trend was observed in the relationship of higher serum monomethyl fumarate concentrations to absolute lymphocyte counts.
Collapse
Affiliation(s)
- Zuzana Krska Kusnirikova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Children Neurology, Department of Neurology, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
| | - Ivana Kacirova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
| | - Veronika Pesakova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
| | - Pavel Hradilek
- Department of Neurology, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Hana Brozmanova
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
| | - Milan Grundmann
- Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17, Listopadu 1790/5, 70852 Ostrava, Czech Republic
| |
Collapse
|
63
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
64
|
Müller J, Schädelin S, Lorscheider J, Benkert P, Hänni P, Schmid J, Kuhle J, Derfuss T, Granziera C, Yaldizli Ö. Comparative analysis of dimethyl fumarate and teriflunomide in relapsing-remitting multiple sclerosis. Eur J Neurol 2023; 30:3809-3818. [PMID: 37578431 DOI: 10.1111/ene.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE In relapsing-remitting multiple sclerosis (RRMS), analyses from observational studies comparing dimethyl fumarate (DMF) and teriflunomide showed conflicting results. We aimed to compare the effectiveness of DMF and teriflunomide in a real-world setting, where both drugs are licensed as first-line therapies for RRMS. METHODS We included all patients who initiated DMF or teriflunomide between 2013 and 2022, listed in the Swiss National Treatment Registry. Coarsened exact matching was applied using age, gender, disease duration, baseline Expanded Disability Status Scale (EDSS) score, time since last relapse, and relapse rate in the previous year as matching variables. Time to relapse and time to 12-month confirmed EDSS worsening were compared using Cox proportional hazard models. RESULTS In total, 2028 patients were included in this study, of whom 1498 were matched (DMF: n = 1090, 69.6% female, mean age 45.1 years, median EDSS score 2.0; teriflunomide: n = 408, 68.9% female, mean age 45.1 years, median EDSS score 2.0). Time to relapse and time to EDSS worsening was longer in the DMF than the teriflunomide group (hazard ratio 0.734, p = 0.026 and hazard ratio 0.576, p = 0.003, respectively). CONCLUSION Analysis of real-world data showed that DMF treatment was associated with more favorable outcomes than teriflunomide treatment.
Collapse
Affiliation(s)
- Jannis Müller
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, Basel, Switzerland
| | - Johannes Lorscheider
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, Basel, Switzerland
| | - Peter Hänni
- Swiss Federation for Common Tasks of Health Insurances (SVK), Solothurn, Switzerland
| | - Jürg Schmid
- Swiss Federation for Common Tasks of Health Insurances (SVK), Solothurn, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Özgür Yaldizli
- Neurology Clinic and Policlinic, Department of Head, Spine and Neuromedicine, MS Center and Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
65
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
66
|
Singer BA, Arnold DL, Drulovic J, Freedman MS, Gold R, Gudesblatt M, Jasinska E, LaGanke CC, Naismith RT, Negroski D, Oh J, Hernandez Perez MA, Selmaj K, Then Bergh F, Wundes A, Ziemssen T, Castro-Borrero W, Chen H, Levin S, Scaramozza M, Shankar SL, Wang T, Wray S. Diroximel fumarate in patients with relapsing-remitting multiple sclerosis: Final safety and efficacy results from the phase 3 EVOLVE-MS-1 study. Mult Scler 2023; 29:1795-1807. [PMID: 37905526 PMCID: PMC10687803 DOI: 10.1177/13524585231205708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Diroximel fumarate (DRF) is approved for adults with relapsing-remitting multiple sclerosis (RRMS) in Europe and for relapsing forms of MS in the United States. DRF and dimethyl fumarate (DMF) yield bioequivalent exposure of the active metabolite monomethyl fumarate. Prior studies indicated fewer gastrointestinal (GI)-related adverse events (AEs) with DRF compared with DMF. OBJECTIVE To report final outcomes from EVOLVE-MS-1. METHODS EVOLVE-MS-1 was an open-label, 96-week, phase 3 study assessing DRF safety, tolerability, and efficacy in patients with RRMS. The primary endpoint was safety and tolerability; efficacy endpoints were exploratory. RESULTS Overall, 75.7% (800/1057) of patients completed the study; median exposure was 1.8 (range: 0.0-2.0) years. AEs occurred in 938 (88.7%) patients, mostly of mild (28.9%) or moderate (50.3%) severity. DRF was discontinued due to AEs in 85 (8.0%) patients, with < 2% discontinuing due to GI or flushing/flushing-related AEs. At Week 96, mean number of gadolinium-enhancing lesions was significantly reduced from baseline (72.7%; p < 0.0001); adjusted annualized relapse rate was 0.13 (95% confidence interval: 0.11-0.15). CONCLUSION DRF was generally well tolerated over 2 years, with few discontinuations due to AEs; radiological measures indicated decreased disease activity from baseline. These outcomes support DRF as a treatment option in patients with RRMS.
Collapse
Affiliation(s)
- Barry A Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, St Louis, MO, USA
| | - Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- NeuroRx Research Inc., Montreal, QC, Canada
| | - Jelena Drulovic
- Clinic of Neurology, University of Belgrade, Belgrade, Serbia
| | - Mark S Freedman
- University of Ottawa and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ralf Gold
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Mark Gudesblatt
- NYU Langone South Shore Neurologic Associates, Patchogue, NY, USA
| | - Elzbieta Jasinska
- Collegium Medicum UJK, and Clinical Center, RESMEDICA, Kielce, Poland
| | | | | | | | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Krzysztof Selmaj
- Center of Neurology, Lodz, Poland
- Department of Neurology, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Annette Wundes
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Carl Gustav Carus University Hospital, Dresden, Germany
| | | | | | | | | | | | | | - Sibyl Wray
- Hope Neurology MS Center, Knoxville, TN, USA
| |
Collapse
|
67
|
Colato E, Prados F, Stutters J, Bianchi A, Narayanan S, Arnold DL, Wheeler-Kingshott C, Barkhof F, Ciccarelli O, Chard DT, Eshaghi A. Networks of microstructural damage predict disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:992-1003. [PMID: 37468305 DOI: 10.1136/jnnp-2022-330203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Network-based measures are emerging MRI markers in multiple sclerosis (MS). We aimed to identify networks of white (WM) and grey matter (GM) damage that predict disability progression and cognitive worsening using data-driven methods. METHODS We analysed data from 1836 participants with different MS phenotypes (843 in a discovery cohort and 842 in a replication cohort). We calculated standardised T1-weighted/T2-weighted (sT1w/T2w) ratio maps in brain GM and WM, and applied spatial independent component analysis to identify networks of covarying microstructural damage. Clinical outcomes were Expanded Disability Status Scale worsening confirmed at 24 weeks (24-week confirmed disability progression (CDP)) and time to cognitive worsening assessed by the Symbol Digit Modalities Test (SDMT). We used Cox proportional hazard models to calculate predictive value of network measures. RESULTS We identified 8 WM and 7 GM sT1w/T2w networks (of regional covariation in sT1w/T2w measures) in both cohorts. Network loading represents the degree of covariation in regional T1/T2 ratio within a given network. The loading factor in the anterior corona radiata and temporo-parieto-frontal components were associated with higher risks of developing CDP both in the discovery (HR=0.85, p<0.05 and HR=0.83, p<0.05, respectively) and replication cohorts (HR=0.84, p<0.05 and HR=0.80, p<0.005, respectively). The decreasing or increasing loading factor in the arcuate fasciculus, corpus callosum, deep GM, cortico-cerebellar patterns and lesion load were associated with a higher risk of developing SDMT worsening both in the discovery (HR=0.82, p<0.01; HR=0.87, p<0.05; HR=0.75, p<0.001; HR=0.86, p<0.05 and HR=1.27, p<0.0001) and replication cohorts (HR=0.82, p<0.005; HR=0.73, p<0.0001; HR=0.80, p<0.005; HR=0.85, p<0.01 and HR=1.26, p<0.0001). CONCLUSIONS GM and WM networks of microstructural changes predict disability and cognitive worsening in MS. Our approach may be used to identify patients at greater risk of disability worsening and stratify cohorts in treatment trials.
Collapse
Affiliation(s)
- Elisa Colato
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Jonathan Stutters
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alessia Bianchi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Claudia Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Vrije Universiteit, Amsterdam, Netherlands
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Declan T Chard
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Institute for Health Research (NIHR), University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK
| | - Arman Eshaghi
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
68
|
Tramacere I, Virgili G, Perduca V, Lucenteforte E, Benedetti MD, Capobussi M, Castellini G, Frau S, Gonzalez-Lorenzo M, Featherstone R, Filippini G. Adverse effects of immunotherapies for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2023; 11:CD012186. [PMID: 38032059 PMCID: PMC10687854 DOI: 10.1002/14651858.cd012186.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects mainly young adults (two to three times more frequently in women than in men) and causes significant disability after onset. Although it is accepted that immunotherapies for people with MS decrease disease activity, uncertainty regarding their relative safety remains. OBJECTIVES To compare adverse effects of immunotherapies for people with MS or clinically isolated syndrome (CIS), and to rank these treatments according to their relative risks of adverse effects through network meta-analyses (NMAs). SEARCH METHODS We searched CENTRAL, PubMed, Embase, two other databases and trials registers up to March 2022, together with reference checking and citation searching to identify additional studies. SELECTION CRITERIA We included participants 18 years of age or older with a diagnosis of MS or CIS, according to any accepted diagnostic criteria, who were included in randomized controlled trials (RCTs) that examined one or more of the agents used in MS or CIS, and compared them versus placebo or another active agent. We excluded RCTs in which a drug regimen was compared with a different regimen of the same drug without another active agent or placebo as a control arm. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods for data extraction and pairwise meta-analyses. For NMAs, we used the netmeta suite of commands in R to fit random-effects NMAs assuming a common between-study variance. We used the CINeMA platform to GRADE the certainty of the body of evidence in NMAs. We considered a relative risk (RR) of 1.5 as a non-inferiority safety threshold compared to placebo. We assessed the certainty of evidence for primary outcomes within the NMA according to GRADE, as very low, low, moderate or high. MAIN RESULTS This NMA included 123 trials with 57,682 participants. Serious adverse events (SAEs) Reporting of SAEs was available from 84 studies including 5696 (11%) events in 51,833 (89.9%) participants out of 57,682 participants in all studies. Based on the absolute frequency of SAEs, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 18 additional people would have a SAE compared to placebo. Low-certainty evidence suggested that three drugs may decrease SAEs compared to placebo (relative risk [RR], 95% confidence interval [CI]): interferon beta-1a (Avonex) (0.78, 0.66 to 0.94); dimethyl fumarate (0.79, 0.67 to 0.93), and glatiramer acetate (0.84, 0.72 to 0.98). Several drugs met our non-inferiority criterion versus placebo: moderate-certainty evidence for teriflunomide (1.08, 0.88 to 1.31); low-certainty evidence for ocrelizumab (0.85, 0.67 to 1.07), ozanimod (0.88, 0.59 to 1.33), interferon beta-1b (0.94, 0.78 to 1.12), interferon beta-1a (Rebif) (0.96, 0.80 to 1.15), natalizumab (0.97, 0.79 to 1.19), fingolimod (1.05, 0.92 to 1.20) and laquinimod (1.06, 0.83 to 1.34); very low-certainty evidence for daclizumab (0.83, 0.68 to 1.02). Non-inferiority with placebo was not met due to imprecision for the other drugs: low-certainty evidence for cladribine (1.10, 0.79 to 1.52), siponimod (1.20, 0.95 to 1.51), ofatumumab (1.26, 0.88 to 1.79) and rituximab (1.01, 0.67 to 1.52); very low-certainty evidence for immunoglobulins (1.05, 0.33 to 3.32), diroximel fumarate (1.05, 0.23 to 4.69), peg-interferon beta-1a (1.07, 0.66 to 1.74), alemtuzumab (1.16, 0.85 to 1.60), interferons (1.62, 0.21 to 12.72) and azathioprine (3.62, 0.76 to 17.19). Withdrawals due to adverse events Reporting of withdrawals due to AEs was available from 105 studies (85.4%) including 3537 (6.39%) events in 55,320 (95.9%) patients out of 57,682 patients in all studies. Based on the absolute frequency of withdrawals, our non-inferiority threshold (up to a 50% increased risk) meant that no more than 1 in 31 additional people would withdraw compared to placebo. No drug reduced withdrawals due to adverse events when compared with placebo. There was very low-certainty evidence (meaning that estimates are not reliable) that two drugs met our non-inferiority criterion versus placebo, assuming an upper 95% CI RR limit of 1.5: diroximel fumarate (0.38, 0.11 to 1.27) and alemtuzumab (0.63, 0.33 to 1.19). Non-inferiority with placebo was not met due to imprecision for the following drugs: low-certainty evidence for ofatumumab (1.50, 0.87 to 2.59); very low-certainty evidence for methotrexate (0.94, 0.02 to 46.70), corticosteroids (1.05, 0.16 to 7.14), ozanimod (1.06, 0.58 to 1.93), natalizumab (1.20, 0.77 to 1.85), ocrelizumab (1.32, 0.81 to 2.14), dimethyl fumarate (1.34, 0.96 to 1.86), siponimod (1.63, 0.96 to 2.79), rituximab (1.63, 0.53 to 5.00), cladribine (1.80, 0.89 to 3.62), mitoxantrone (2.11, 0.50 to 8.87), interferons (3.47, 0.95 to 12.72), and cyclophosphamide (3.86, 0.45 to 33.50). Eleven drugs may have increased withdrawals due to adverse events compared with placebo: low-certainty evidence for teriflunomide (1.37, 1.01 to 1.85), glatiramer acetate (1.76, 1.36 to 2.26), fingolimod (1.79, 1.40 to 2.28), interferon beta-1a (Rebif) (2.15, 1.58 to 2.93), daclizumab (2.19, 1.31 to 3.65) and interferon beta-1b (2.59, 1.87 to 3.77); very low-certainty evidence for laquinimod (1.42, 1.01 to 2.00), interferon beta-1a (Avonex) (1.54, 1.13 to 2.10), immunoglobulins (1.87, 1.01 to 3.45), peg-interferon beta-1a (3.46, 1.44 to 8.33) and azathioprine (6.95, 2.57 to 18.78); however, very low-certainty evidence is unreliable. Sensitivity analyses including only studies with low attrition bias, drug dose above the group median, or only patients with relapsing remitting MS or CIS, and subgroup analyses by prior disease-modifying treatments did not change these figures. Rankings No drug yielded consistent P scores in the upper quartile of the probability of being better than others for primary and secondary outcomes. AUTHORS' CONCLUSIONS We found mostly low and very low-certainty evidence that drugs used to treat MS may not increase SAEs, but may increase withdrawals compared with placebo. The results suggest that there is no important difference in the occurrence of SAEs between first- and second-line drugs and between oral, injectable, or infused drugs, compared with placebo. Our review, along with other work in the literature, confirms poor-quality reporting of adverse events from RCTs of interventions. At the least, future studies should follow the CONSORT recommendations about reporting harm-related issues. To address adverse effects, future systematic reviews should also include non-randomized studies.
Collapse
Affiliation(s)
- Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Vittorio Perduca
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, 94805, Villejuif, France
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Maria Donata Benedetti
- UOC Neurologia B - Policlinico Borgo Roma, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Capobussi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Greta Castellini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Marien Gonzalez-Lorenzo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Oncology, Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| |
Collapse
|
69
|
Hartung HP, Cree BA, Barnett M, Meuth SG, Bar-Or A, Steinman L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front Immunol 2023; 14:1290666. [PMID: 38162670 PMCID: PMC10755740 DOI: 10.3389/fimmu.2023.1290666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacký University Olomouc, Olomouc, Czechia
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
70
|
Sormani MP, Schiavetti I, Ponzano M, Colato E, De Stefano N. Treatment Effect on Brain Atrophy Correlates with Treatment Effect on Cognition in Multiple Sclerosis. Ann Neurol 2023; 94:925-932. [PMID: 37496368 DOI: 10.1002/ana.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the extent to which treatment effect on magnetic resonance imaging (MRI)-derived measures of brain atrophy and focal lesions can mediate, at the trial level, the treatment effect on cognitive outcomes in multiple sclerosis (MS). METHODS We collected all published randomized clinical trials in MS lasting at least 2 years and including as end points: active MRI lesions (defined as new/enlarging T2 lesions), brain atrophy (defined as a change in brain volume between month 12 and month 24), and change in cognitive performance (assessed by the Paced Auditory Serial Addition Test [PASAT]). Relative reductions were used to quantify the treatment effect on MRI markers (lesions and atrophy), whereas the standardized mean difference (Hedges g) between baseline and follow-up cognitive assessment was used to quantify the treatment effects on cognition. A linear regression, weighted for trial size, was used to assess the relationship between the treatment effects on MRI markers and cognition. RESULTS Fourteen trials including more than 8,813 patients with MS were included in the meta-regression. Treatment effect on cognition was strongly associated with the treatment effect on brain atrophy (R2 = 0.79, p < 0.001), but was not correlated with the treatment effect on active MRI lesions (R2 = 0.16, p = 0.14). INTERPRETATION Results reported here suggest that brain atrophy, a well-established MRI marker in MS clinical trials, can be used as a main outcome for clinical trials with drugs targeting cognitive impairment and neurodegeneration. ANN NEUROL 2023;94:925-932.
Collapse
Affiliation(s)
- Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Schiavetti
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Marta Ponzano
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Elisa Colato
- Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicola De Stefano
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
71
|
Kalkowski L, Walczak P, Mycko MP, Malysz-Cymborska I. Reconsidering the route of drug delivery in refractory multiple sclerosis: Toward a more effective drug accumulation in the central nervous system. Med Res Rev 2023; 43:2237-2259. [PMID: 37203228 DOI: 10.1002/med.21973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
Multiple sclerosis is a chronic demyelinating disease with different disease phenotypes. The current FDA-approved disease-modifying therapeutics (DMTs) cannot cure the disease, but only alleviate the disease progression. While the majority of patients respond well to treatment, some of them are suffering from rapid progression. Current drug delivery strategies include the oral, intravenous, subdermal, and intramuscular routes, so these drugs are delivered systemically, which is appropriate when the therapeutic targets are peripheral. However, the potential benefits may be diminished when these targets sequester behind the barriers of the central nervous system. Moreover, systemic drug administration is plagued with adverse effects, sometimes severe. In this context, it is prudent to consider other drug delivery strategies improving their accumulation in the brain, thus providing better prospects for patients with rapidly progressing disease course. These targeted drug delivery strategies may also reduce the severity of systemic adverse effects. Here, we discuss the possibilities and indications for reconsideration of drug delivery routes (especially for those "non-responding" patients) and the search for alternative drug delivery strategies. More targeted drug delivery strategies sometimes require quite invasive procedures, but the potential therapeutic benefits and reduction of adverse effects could outweigh the risks. We characterized the major FDA-approved DMTs focusing on their therapeutic mechanism and the potential benefits of improving the accumulation of these drugs in the brain.
Collapse
Affiliation(s)
- Lukasz Kalkowski
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcin P Mycko
- Medical Division, Department of Neurology, Laboratory of Neuroimmunology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
72
|
Jožef M, Locatelli I, Brecl Jakob G, Kos M, Rot U. Medication persistence among people with multiple sclerosis in Slovenia treated with dimethyl fumarate. Curr Med Res Opin 2023; 39:1489-1496. [PMID: 37772491 DOI: 10.1080/03007995.2023.2265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE Multiple sclerosis is a chronic, demyelinating inflammatory disease of the central nervous system. Medication persistence is defined as an interval between the initiation and last dose of the applied medication and presents a useful surrogate marker of a stable disease course. This observational study aimed to evaluate medication persistence and discontinuation reasons in Slovenian people with multiple sclerosis treated with dimethyl fumarate. METHODS Our retrospective cohort study evaluated people with relapsing-remitting multiple sclerosis treated with dimethyl fumarate as an initial monotherapy or switched from injectable disease-modifying therapy medication between 2014 and 2021. Medication dispenses were extracted from the Slovenian National Institute of Public Health Outpatient Medication Database. The medication persistence criterion was based on the treatment gap. Patients exceeding a 60-day gap were considered nonpersistent. The median time to discontinuation was assessed using survival analyses. Considering discontinuation reasons, patients were further divided into safety and inefficacy groups. Due to the high probability of adverse effects, patients exceeding a 60-day gap were included in the safety group, but definite discontinuation reason remains unknown. The impact of covariates was evaluated by Cox regression. RESULTS A total of 269 patients were included (183 women, mean age 37 years). During the 7-year follow-up period, 123 (45.7%) patients discontinued treatment. The median time to discontinuation was 5.6 years. After 1, 2, and 5 years of treatment, 84%, 77%, and 57% of patients were found to be persistent, respectively. All patients older than 30 years (p = 0.0013) and among them, those in the inefficacy group (p = 0.037) were more likely to be persistent. CONCLUSIONS The results of our study proved a high persistence rate among our patients. The most frequent discontinuation reason was gastrointestinal adverse effects. Medication persistence requires interventions in younger patients with an unstable disease course.
Collapse
Affiliation(s)
- Maj Jožef
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Igor Locatelli
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Brecl Jakob
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mitja Kos
- Department of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Rot
- Division of Neurology, Multiple Sclerosis Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
73
|
Alping P. Disease-modifying therapies in multiple sclerosis: A focused review of rituximab. Basic Clin Pharmacol Toxicol 2023; 133:550-564. [PMID: 37563891 DOI: 10.1111/bcpt.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Treatment for multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system, has changed drastically in the last 30 years. Several different disease-modifying therapies are now available, with off-label use of the B-cell-depleting antibody rituximab becoming an increasingly popular choice, as more and more studies report on its effectiveness. OBJECTIVES The objective of this study was to summarize the current state of evidence for rituximab as a treatment for relapsing-remitting MS (RRMS). METHODS A structured literature search was conducted in PubMed, focusing on peer-reviewed studies of adult populations with RRMS. Ongoing trials with rituximab in MS were identified through Clinicaltrials.gov and additional references were identified through review articles. FINDINGS Despite promising results for rituximab as a treatment of MS, the market-authorization holder switched focus from rituximab and discontinued the industry-sponsored trials programme. However, several observational studies, smaller clinical trials and one large investigator-initiated randomized-controlled trial have continued to report fewer clinical relapses, fewer contrast-enhancing lesions on magnetic resonance imaging and better drug survival with rituximab, compared with MS-approved alternatives. CONCLUSIONS Rituximab should be considered as both a first- and second-line therapy option for most MS patients with active, non-progressive disease. However, as an off-label therapy for MS, regulatory approval remains a barrier for wider adoption in many countries.
Collapse
Affiliation(s)
- Peter Alping
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
74
|
Zhou B, Abbott DW. Chemical modulation of gasdermin D activity: Therapeutic implications and consequences. Semin Immunol 2023; 70:101845. [PMID: 37806032 PMCID: PMC10841450 DOI: 10.1016/j.smim.2023.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
The gasdermin family of proteins are central effectors of the inflammatory, lytic cell death modality known as pyroptosis. Characterized in 2015, the most well-studied member gasdermin D can be proteolyzed, typically by caspases, to generate an active pore-forming N-terminal domain. At least well-studied three pharmacological inhibitors (necrosulfonamide, disulfiram, dimethyl fumarate) since 2018 have been shown to affect gasdermin D activity either through modulation of processing or interference with pore formation. A multitude of murine in vivo studies have since followed. Here, we discuss the current state of research surrounding these three inhibitors, caveats to their use, and a set of guiding principles that researchers should consider when pursuing further studies of gasdermin D inhibition.
Collapse
Affiliation(s)
- Bowen Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
75
|
Schuhmann MK, Langhauser F, Zimmermann L, Bellut M, Kleinschnitz C, Fluri F. Dimethyl Fumarate Attenuates Lymphocyte Infiltration and Reduces Infarct Size in Experimental Stroke. Int J Mol Sci 2023; 24:15540. [PMID: 37958527 PMCID: PMC10648192 DOI: 10.3390/ijms242115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.
Collapse
Affiliation(s)
- Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Lena Zimmermann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Maximilian Bellut
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| |
Collapse
|
76
|
Thakolwiboon S, Mills EA, Yang J, Doty J, Belkin MI, Cho T, Schultz C, Mao-Draayer Y. Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. FRONTIERS IN AGING 2023; 4:1234572. [PMID: 37900152 PMCID: PMC10603254 DOI: 10.3389/fragi.2023.1234572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Aging is associated with a progressive decline of innate and adaptive immune responses, called immunosenescence. This phenomenon links to different multiple sclerosis (MS) disease courses among different age groups. While clinical relapse and active demyelination are mainly related to the altered adaptive immunity, including invasion of T- and B-lymphocytes, impairment of innate immune cell (e.g., microglia, astrocyte) function is the main contributor to disability progression and neurodegeneration. Most patients with MS manifest the relapsing-remitting phenotype at a younger age, while progressive phenotypes are mainly seen in older patients. Current disease-modifying therapies (DMTs) primarily targeting adaptive immunity are less efficacious in older patients, suggesting that immunosenescence plays a role in treatment response. This review summarizes the recent immune mechanistic studies regarding immunosenescence in patients with MS and discusses the clinical implications of these findings.
Collapse
Affiliation(s)
| | - Elizabeth A. Mills
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Doty
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Martin I. Belkin
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
| | - Thomas Cho
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Charles Schultz
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Neurological Disorders, Farmington Hills, MI, United States
- Autoimmune Center of Excellence, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
77
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA. Is it ethical to use teriflunomide as an active comparator in phase 3 trials? Mult Scler Relat Disord 2023; 78:104911. [PMID: 37582327 DOI: 10.1016/j.msard.2023.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Ethical concerns have been raised about the practice of using teriflunomide, an oral licensed disease-modifying therapy, as an active comparator in phase 3 multiple sclerosis (MS) trials. The assumption is based on the perceived low efficacy of teriflunomide as judged by its effect on relapses and focal MRI activity. However, when you look beyond focal inflammation, teriflunomide has a robust impact on disability progression and a similar effect to the anti-CD20 monoclonal antibody therapies on slowing down the accelerated brain volume loss associated with MS. Teriflunomide is also more effective when used second or third line. The other classes of disease-modifying therapies have problems with their use as active comparators in clinical trials. Using a non-inferiority or equivalence trial design has its own unique set of regulatory and ethical challenges and is not necessarily a solution. There are also economic, altruistic and pragmatic reasons for continuing to use teriflunomide as an active comparator in MS clinical trials. An online survey indicates that the majority of the MS community feels it is still ethical to randomise subjects to teriflunomide and that procedures can be put in place to protect trial subjects randomised to teriflunomide. Therefore, we still have equipoise, and teriflunomide comparator trials are ethical.
Collapse
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Michael Levy
- Massachusetts General Hospital and Harvard Medical School, MA, USA
| | - E Ann Yeh
- Department of Paediatrics, Dalla Lana School of Public Health, University of Toronto, Canada
| |
Collapse
|
78
|
Balshi A, Saart E, Pandeya S, Dempsey J, Baber U, Sloane JA. High CD4+:CD8+ ratios with herpes zoster infections in patients with multiple sclerosis on dimethyl fumarate. Mult Scler 2023; 29:1465-1470. [PMID: 37572049 DOI: 10.1177/13524585231189641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) depletes CD8+ and CD4+ T cells, and cases of herpes zoster (HZ) in patients with multiple sclerosis (MS) on DMF have been documented. OBJECTIVES To evaluate lymphocyte subsets in patients with MS who developed HZ on DMF (Tecfidera) compared to matched controls who did not develop HZ. METHODS We used linear mixed-effects models to test for differences in white blood cell count, lymphocyte percentage, absolute lymphocyte count, CD3+ percentage, absolute CD3+ count, CD4+ percentage, absolute CD4+ count, CD8+ percentage, absolute CD8+ count, and CD4+:CD8+ ratio over time in HZ and non-HZ groups. RESULTS Eighteen patients developed HZ while on DMF. The linear mixed-effects model for CD4+:CD8+ ratio showed a significant difference between the HZ and non-HZ groups (p = 0.033). CD4+:CD8+ ratio decreased over time in the HZ group and increased over time in the non-HZ group. CONCLUSION Patients with MS who develop HZ while on DMF have high CD4+:CD8+ ratios, suggesting an imbalance of CD4+ and CD8+ cells that may put a patient at risk for developing HZ while on DMF. This result emphasizes the need for lymphocyte subset monitoring (including CD4+:CD8+ ratios) on DMF, as well as vaccination prior to DMF initiation.
Collapse
Affiliation(s)
- Alexandra Balshi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emma Saart
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Sarbesh Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Dempsey
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ursela Baber
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
79
|
Panthagani J, O'Donovan C, Aiyegbusi OL, Liu X, Bayliss S, Calvert M, Pesudovs K, Denniston AK, Moore DJ, Braithwaite T. Evaluating patient-reported outcome measures (PROMs) for future clinical trials in adult patients with optic neuritis. Eye (Lond) 2023; 37:3097-3107. [PMID: 36932161 PMCID: PMC10022552 DOI: 10.1038/s41433-023-02478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVE To search for and critically appraise the psychometric quality of patient-reported outcome measures (PROMs) developed or validated in optic neuritis, in order to support high-quality research and care. METHODS We systematically searched MEDLINE(Ovid), Embase(Ovid), PsycINFO(Ovid) and CINAHLPlus(EBSCO), and additional grey literature to November 2021, to identify PROM development or validation studies applicable to optic neuritis associated with any systemic or neurologic disease in adults. We included instruments developed using classic test theory or Rasch analysis approaches. We used established quality criteria to assess content development, validity, reliability, and responsiveness, grading multiple domains from A (high quality) to C (low quality). RESULTS From 3142 screened abstracts we identified five PROM instruments potentially applicable to optic neuritis: three differing versions of the National Eye Institute (NEI)-Visual Function Questionnaire (VFQ): the 51-item VFQ; the 25-item VFQ and a 10-item neuro-ophthalmology supplement; and the Impact of Visual Impairment Scale (IVIS), a constituent of the Multiple Sclerosis Quality of Life Inventory (MSQLI) handbook, derived from the Functional Assessment of Multiple Sclerosis (FAMS). Psychometric appraisal revealed the NEI-VFQ-51 and 10-item neuro module had some relevant content development but weak psychometric development, and the FAMS had stronger psychometric development using Rasch Analysis, but was only somewhat relevant to optic neuritis. We identified no content or psychometric development for IVIS. CONCLUSION There is unmet need for a PROM with strong content and psychometric development applicable to optic neuritis for use in virtual care pathways and clinical trials to support drug marketing authorisation.
Collapse
Affiliation(s)
| | - Charles O'Donovan
- School of Immunology and Microbiology, King's College London, London, UK.
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, Birmingham Health Partners for Regulatory Science and Innovation, NIHR Birmingham Biomedical Research Centre, NIHR Applied Research Collaboration West Midlands, and NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, University of Birmingham, University Hospitals Birmingham, Health Data Research UK, London, UK
| | - Susan Bayliss
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, Birmingham Health Partners for Regulatory Science and Innovation, NIHR, Birmingham Biomedical Research Centre, NIHR Surgical Reconstruction and Microbiology Centre, NIHR Applied Research Collaboration West Midlands, and NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Alastair K Denniston
- Institute of Inflammation and Ageing, and Centre for Patient Reported Outcomes Research (CPROR), Institute of Applied Health Research, Birmingham Health Partners for Regulatory Science and Innovation, NIHR Birmingham-Oxford Blood and Transplant Research Unit (BTRU) in Precision Transplant and Cellular Therapeutics, University of Birmingham, University Hospitals Birmingham, Health Data Research UK, London, UK
| | - David J Moore
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Tasanee Braithwaite
- School of Immunology and Microbiology, King's College London, and The Medical Eye Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
80
|
Lebrun-Frénay C, Siva A, Sormani MP, Landes-Chateau C, Mondot L, Bovis F, Vermersch P, Papeix C, Thouvenot E, Labauge P, Durand-Dubief F, Efendi H, Le Page E, Terzi M, Derache N, Bourre B, Hoepner R, Karabudak R, De Seze J, Ciron J, Clavelou P, Wiertlewski S, Turan OF, Yucear N, Cohen M, Azevedo C, Kantarci OH, Okuda DT, Pelletier D. Teriflunomide and Time to Clinical Multiple Sclerosis in Patients With Radiologically Isolated Syndrome: The TERIS Randomized Clinical Trial. JAMA Neurol 2023; 80:1080-1088. [PMID: 37603328 PMCID: PMC10442780 DOI: 10.1001/jamaneurol.2023.2815] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023]
Abstract
Importance Radiologically isolated syndrome (RIS) represents the earliest detectable preclinical phase of multiple sclerosis (MS) punctuated by incidental magnetic resonance imaging (MRI) white matter anomalies within the central nervous system. Objective To determine the time to onset of symptoms consistent with MS. Design, Setting, and Participants From September 2017 to October 2022, this multicenter, double-blind, phase 3, randomized clinical trial investigated the efficacy of teriflunomide in delaying MS in individuals with RIS, with a 3-year follow-up. The setting included referral centers in France, Switzerland, and Turkey. Participants older than 18 years meeting 2009 RIS criteria were randomly assigned (1:1) to oral teriflunomide, 14 mg daily, or placebo up to week 96 or, optionally, to week 144. Interventions Clinical, MRI, and patient-reported outcomes (PROs) were collected at baseline and yearly until week 96, with an optional third year in the allocated arm if no symptoms have occurred. Main outcomes Primary analysis was performed in the intention-to-treat population, and safety was assessed accordingly. Secondary end points included MRI outcomes and PROs. Results Among 124 individuals assessed for eligibility, 35 were excluded for declining to participate, not meeting inclusion criteria, or loss of follow-up. Eighty-nine participants (mean [SD] age, 37.8 [12.1] years; 63 female [70.8%]) were enrolled (placebo, 45 [50.6%]; teriflunomide, 44 [49.4%]). Eighteen participants (placebo, 9 [50.0%]; teriflunomide, 9 [50.0%]) discontinued the study, resulting in a dropout rate of 20% for adverse events (3 [16.7%]), consent withdrawal (4 [22.2%]), loss to follow-up (5 [27.8%]), voluntary withdrawal (4 [22.2%]), pregnancy (1 [5.6%]), and study termination (1 [5.6%]). The time to the first clinical event was significantly extended in the teriflunomide arm compared with placebo, in both the unadjusted (hazard ratio [HR], 0.37; 95% CI, 0.16-0.84; P = .02) and adjusted (HR, 0.28; 95% CI, 0.11-0.71; P = .007) analysis. Secondary imaging end point outcomes including the comparison of the cumulative number of new or newly enlarging T2 lesions (rate ratio [RR], 0.57; 95% CI, 0.27-1.20; P = .14), new gadolinium-enhancing lesions (RR, 0.33; 95% CI, 0.09-1.17; P = .09), and the proportion of participants with new lesions (odds ratio, 0.72; 95% CI, 0.25-2.06; P = .54) were not significant. Conclusion and Relevance Treatment with teriflunomide resulted in an unadjusted risk reduction of 63% and an adjusted risk reduction of 72%, relative to placebo, in preventing a first clinical demyelinating event. These data suggest a benefit to early treatment in the MS disease spectrum. Trial Registration ClinicalTrials.gov Identifier: NCT03122652.
Collapse
Affiliation(s)
- Christine Lebrun-Frénay
- Centre de Ressources et de Compétences Sclerose En Plaques, Neurologie Pasteur 2, CHU de Nice, Université Cote d’Azur, UMR2CA-URRIS, Nice, France
| | - Aksel Siva
- Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkiye
| | - Maria Pia Sormani
- University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino Instituti di Ricovero e Cura a Carattere Scientifico, Genoa, Italy
| | - Cassandre Landes-Chateau
- Centre de Ressources et de Compétences Sclerose En Plaques, Neurologie Pasteur 2, CHU de Nice, Université Cote d’Azur, UMR2CA-URRIS, Nice, France
| | - Lydiane Mondot
- Centre de Ressources et de Compétences Sclerose En Plaques, Neurologie Pasteur 2, CHU de Nice, Université Cote d’Azur, UMR2CA-URRIS, Nice, France
| | | | - Patrick Vermersch
- Université de Lille, Inserm, Unit 1172, LilNCog, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precise, Lille, France
| | - Caroline Papeix
- Assistance Publique des Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Thouvenot
- Multiple Sclerosis Clinic, Nîmes University Hospital, Nîmes, France
| | - Pierre Labauge
- Multiple Sclerosis Clinic, Montpellier University Hospital, Montpellier, France
| | | | - Husnu Efendi
- Neurology, Kocaeli University Faculty of Medicine, Kocaeli, Turkiye
| | - Emmanuelle Le Page
- Multiple Sclerosis Clinic, Rennes University Hospital, Inserm, CIC1414, Rennes, France
| | - Murat Terzi
- School of Medicine, Neurology, Ondokuz Mayis University, Samsun, Turkiye
| | - Nathalie Derache
- Multiple Sclerosis Clinic, Caen University Hospital, Caen, France
| | - Bertrand Bourre
- Multiple Sclerosis Clinic, Rouen University Hospital, Rouen, France
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Rana Karabudak
- Hacettepe University Medical Faculty, School of Medicine, Ankara, Turkiye
| | - Jérôme De Seze
- Strasbourg University Hospital, Clinical Investigation Center, INBSRM 1434, Strasbourg, France
| | - Jonathan Ciron
- Toulouse University Hospital, Centre de Ressources et de Compétences Sclérose en Plaques, Department of Neurology, Université Toulouse III, Infinity, Inserm UMR1291, CNRS UMR5051, Toulouse, France
| | - Pierre Clavelou
- Multiple Sclerosis Clinic, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Sandrine Wiertlewski
- Centre de Ressources et de Compétences Sclérose en Plaques and Clinical Investigation Center, Inserm, Nantes University Hospital, France
- Transplantation and Immunology Transplantation Center, Inserm, Nantes, France
| | | | - Nur Yucear
- Ege University Medical Faculty, Bornova, Izmir, Turkiye
| | - Mikael Cohen
- Centre de Ressources et de Compétences Sclerose En Plaques, Neurologie Pasteur 2, CHU de Nice, Université Cote d’Azur, UMR2CA-URRIS, Nice, France
| | | | | | - Darin T. Okuda
- The University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
81
|
Williams MJ, Amezcua L, Chinea A, Cohan S, Okai A, Okuda DT, Vargas W, Belviso N, Božin I, Jiang X, Lewin JB, Lyons J, Shen C, England SM, Grimes N. Real-World Safety and Effectiveness After 5 Years of Dimethyl Fumarate Treatment in Black and Hispanic Patients with Multiple Sclerosis in ESTEEM. Neurol Ther 2023; 12:1669-1682. [PMID: 37354276 PMCID: PMC10444730 DOI: 10.1007/s40120-023-00517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) clinical trials have included low numbers of patients from racial and ethnic minority populations; therefore, it is uncertain whether differences exist in response to disease-modifying therapies. We evaluated the real-world safety and effectiveness of dimethyl fumarate (DMF) treatment over 5 years in four patient cohorts: Black, non-Black, Hispanic, and non-Hispanic people with relapsing-remitting MS. METHODS ESTEEM is an ongoing, 5-year, multinational, prospective study evaluating the long-term safety and effectiveness of DMF in people with MS. The analysis included patients newly prescribed DMF in routine practice at 393 sites globally. RESULTS Overall, 5251 patients were analyzed (220 Black, 5031 non-Black; 105 Hispanic, 5146 non-Hispanic). Median (min-max) months of follow-up was 32 (0-72) for Black, 29 (1-77) for Hispanic, and 41 (0-85) for both the non-Black and non-Hispanic populations. In total, 39 (18%) Black and 29 (28%) Hispanic patients reported adverse events leading to treatment discontinuation versus 1126 (22%) non-Black and 1136 (22%) non-Hispanic patients; gastrointestinal disorders were the most common in all subgroups. Median lymphocyte counts decreased by 37% in Black, 40% in non-Black, 10% in Hispanic, and 39% in non-Hispanic patients in the first year, then remained stable and above the lower limit of normal in most patients. Annualized relapse rates (ARRs) (95% confidence intervals) up to 5 years were 0.054 (0.038-0.078) for Black, 0.077 (0.072-0.081) for non-Black, 0.069 (0.043-0.112) for Hispanic, and 0.076 (0.072-0.081) for non-Hispanic populations, representing reductions of 91-92% compared with ARR 12 months before study entry (all p < 0.0001). CONCLUSION The safety profile of DMF in these subgroups was consistent with the overall ESTEEM population. Relapse rates remained low in Black and Hispanic patients, and consistent with non-Black and non-Hispanic patients. These data demonstrate a comparable real-world treatment benefit of DMF in Black and Hispanic patients. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02047097.
Collapse
Affiliation(s)
| | - Lilyana Amezcua
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Stanley Cohan
- Providence Portland Medical Center, Portland, OR, USA
| | - Annette Okai
- North Texas Institute of Neurology and Headache, Plano, TX, USA
| | - Darin T Okuda
- Neuroinnovation Program, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wendy Vargas
- Columbia University Medical Center, New York City, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Sharma T, Zhang Y, Zigrossi A, Cravatt BF, Kastrati I. Dimethyl fumarate inhibits ZNF217 and can be beneficial in a subset of estrogen receptor positive breast cancers. Breast Cancer Res Treat 2023; 201:561-570. [PMID: 37477798 DOI: 10.1007/s10549-023-07037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE The oncogenic factor ZNF217 promotes aggressive estrogen receptor (ER)+breast cancer disease suggesting that its inhibition may be useful in the clinic. Unfortunately, no direct pharmacological inhibitor is available. Dimethyl fumarate (DMF) exhibits anti-breast cancer activities, in vitro and in pre-clinical in vivo models. Its therapeutic benefits stem from covalent modification of cellular thiols such as protein cysteines, but the full profile of molecular targets mediating its anti-breast cancer effects remains to be determined. METHODS ER+breast cancer cells were treated with DMF followed by cysteine-directed proteomics. Cells with modulated ZNF217 levels were used to probe the efficacy of DMF. RESULTS Covalent modification of ZNF217 by DMF identified by proteomics was confirmed by using a DMF-chemical probe. Inhibition of ZNF217's transcriptional activity by DMF was evident on reported ZNF217-target genes. ZNF217 as an oncogene has been shown to enhance stem-like properties, survival, proliferation, and invasion. Consistent with ZNF217 inhibition, DMF was more effective at blocking these ZNF217-driven phenotypes in cells with elevated ZNF217 expression. Furthermore, partial knockdown of ZNF217 led to a reduction in DMF's efficacy. DMF's in vivo activity was evaluated in a xenograft model of MCF-7 HER2 cells that have elevated expression of ZNF217 and DMF treatment resulted in significant inhibition of tumor growth. CONCLUSION These data indicate that DMF's anti-breast cancer activities in the ER+HER2+models, at least in part, are due to inhibition of ZNF217. DMF is identified as a new covalent inhibitor of ZNF217.
Collapse
Affiliation(s)
- Tanu Sharma
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA
| | - Yuanjin Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alexandra Zigrossi
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Irida Kastrati
- The Department of Cancer Biology, Loyola University Chicago, 2160 S 1St Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
83
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
84
|
Pane C, Marra AM, Aliberti L, Campanile M, Coscetta F, Crisci G, D'Assante R, Marsili A, Puorro G, Salzano A, Cittadini A, Saccà F. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201). Front Neurosci 2023; 17:1260977. [PMID: 37746147 PMCID: PMC10513368 DOI: 10.3389/fnins.2023.1260977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Friedreich Ataxia (FRDA) is an autosomal recessive neurodegenerative disorder that causes gait and limb ataxia, dysarthria, and impaired vibratory sense, with cardiomyopathy being the predominant cause of death. There is no approved therapy, which results in the use of symptomatic treatments and the chronic support of physiotherapy. Dimethyl fumarate (DMF) is a fumaric acid ester used for the treatment of psoriasis and Multiple Sclerosis (MS). It induces Nrf2 in vitro and in vivo, and it increases frataxin in FRDA patient lymphoblasts, in mouse models, and in MS treated patients. Methods The aim of our study is to investigate if DMF can increase the expression of the FXN gene and frataxin protein and ameliorate in-vivo detectable measures of mitochondrial dysfunction in FRDA. The study is composed of a screening visit and two sequential 12-week phases: a core phase and an extension phase. During the first phase (core), patients will be randomly assigned to either the DMF or a placebo group in a 1:1 ratio. During the first week, patients will receive a total daily dose of 240 mg of DMF or placebo; from the second week of treatment, the dose will be increased to two 120 mg tablets BID for a total daily dose of 480 mg. During the second phase (extension), all patients will be treated with DMF. EudraCT number 2021-006274-23. Endpoints The primary endpoint will be a change in FXN gene expression level after 12 weeks of treatment. Secondary endpoints will be frataxin protein level, cardiopulmonary exercise test outputs, echocardiographic measures, Nrf2 pathway and mitochondrial biogenesis gene expression, safety, clinical scales, and quality of life scales. Conclusions This is the first study aimed at exploring the ability of DMF, an already available treatment for MS and psoriasis, to correct the biological deficits of FRDA and potentially improve mitochondrial respiration in-vivo.
Collapse
Affiliation(s)
- Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Alberto Maria Marra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Ludovica Aliberti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Campanile
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Federica Coscetta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Angela Marsili
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giorgia Puorro
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
85
|
Jiang X, Shen C, Caba B, Arnold DL, Elliott C, Zhu B, Fisher E, Belachew S, Gafson AR. Assessing the utility of magnetic resonance imaging-based "SuStaIn" disease subtyping for precision medicine in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler Relat Disord 2023; 77:104869. [PMID: 37459715 DOI: 10.1016/j.msard.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Patient stratification and individualized treatment decisions based on multiple sclerosis (MS) clinical phenotypes are arbitrary. Subtype and Staging Inference (SuStaIn), a published machine learning algorithm, was developed to identify data-driven disease subtypes with distinct temporal progression patterns using brain magnetic resonance imaging; its clinical utility has not been assessed. The objective of this study was to explore the prognostic capability of SuStaIn subtyping and whether it is a useful personalized predictor of treatment effects of natalizumab and dimethyl fumarate. METHODS Subtypes were available from the trained SuStaIn model for 3 phase 3 clinical trials in relapsing-remitting and secondary progressive MS. Regression models were used to determine whether baseline SuStaIn subtypes could predict on-study clinical and radiological disease activity and progression. Differences in treatment responses relative to placebo between subtypes were determined using interaction terms between treatment and subtype. RESULTS Natalizumab and dimethyl fumarate reduced inflammatory disease activity in all SuStaIn subtypes (all p < 0.001). SuStaIn MS subtyping alone did not discriminate responder heterogeneity based on new lesion formation and disease progression (p > 0.05 across subtypes). CONCLUSION SuStaIn subtypes correlated with disease severity and functional impairment at baseline but were not predictive of disability progression and could not discriminate treatment response heterogeneity.
Collapse
Affiliation(s)
| | - Changyu Shen
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Bastien Caba
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | - Douglas L Arnold
- NeuroRx Research, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | | | - Bing Zhu
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
86
|
Vasileiou ES, Fitzgerald KC. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr Allergy Asthma Rep 2023; 23:481-496. [PMID: 37402064 DOI: 10.1007/s11882-023-01102-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive update on current scientific advances and emerging therapeutic approaches in the field of multiple sclerosis. RECENT FINDINGS Multiple sclerosis (MS) is a common disorder characterized by inflammation and degeneration within the central nervous system (CNS). MS is the leading cause of non-traumatic disability in the young adult population. Through ongoing research, an improved understanding of the disease underlying mechanisms and contributing factors has been achieved. As a result, therapeutic advancements and interventions have been developed specifically targeting the inflammatory components that influence disease outcome. Recently, a new type of immunomodulatory treatment, known as Bruton tyrosine kinase (BTK) inhibitors, has surfaced as a promising tool to combat disease outcomes. Additionally, there is a renewed interested in Epstein-Barr virus (EBV) as a major potentiator of MS. Current research efforts are focused on addressing the gaps in our understanding of the pathogenesis of MS, particularly with respect to non-inflammatory drivers. Significant and compelling evidence suggests that the pathogenesis of MS is complex and requires a comprehensive, multilevel intervention strategy. This review aims to provide an overview of MS pathophysiology and highlights the most recent advances in disease-modifying therapies and other therapeutic interventions.
Collapse
Affiliation(s)
- Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
87
|
Silva BA, Carnero Contentti E, Becker J, Carranza JI, Correa-Díaz PE, Galleguillos Goiry L, Garcea O, Gracia F, Hamuy F, Macías MA, Navas C, Nuñez S, Rojas JI, Farez MF, Alonso R, López P. Latin American consensus recommendations on the risk of infections in people with multiple sclerosis treated with disease modifying drugs. Mult Scler Relat Disord 2023; 77:104840. [PMID: 37399673 DOI: 10.1016/j.msard.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION The emergence of several therapeutic options in multiple sclerosis (MS), which significantly modify the immune system functioning, has led to the need for the consideration of additional factors, such as risk of infections, in the decision-making process. The aim of these consensus recommendations was to discuss and perform a practical guide to Latin American neurologists on the risk of infections at diagnosis, follow-up and prior to initiation of DMDs. METHODS A panel of Latin American neurologists, experts in demyelinating diseases and dedicated to management and care of MS patients, gathered during 2021 and 2022 to make consensus recommendations on the risk of infections in PwMS treated with DMDs in Latin America. The RAND/UCLA methodology was developed to synthesize the scientific evidence and expert opinions on health care topics and was used for reaching a formal agreement. RESULTS Recommendations were established based on relevant published evidence and expert opinion, focusing on: 1- baseline infection disease and vaccination status; 2- opportunistic infections; 3- progressive multifocal leukoencephalopathy; 4- genitourinary system infections; 5- respiratory tract infections; 6- digestive system infections, 7-others local infections and 8- COVID-19. CONCLUSION The recommendations of this consensus seek to optimize the care, management and treatment of PwMS in Latin America. The standardized evidence-based care of pwMS infections will allow better outcomes.
Collapse
Affiliation(s)
- Berenice A Silva
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina; Sección Enfermedades Desmielinizantes, Hospital Italiano de Buenos Aires, Argentina.
| | - Edgar Carnero Contentti
- Unidad de Neuroinmunología, Departamento de Neurociencias, Hospital Alemán de Buenos Aires, Argentina
| | - Jefferson Becker
- Hospital São Lucas - Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - José I Carranza
- Sección Zoopatología y Parasitología Médica, Hospital Muñiz, Buenos Aires, Argentina
| | | | | | - Orlando Garcea
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | | | - Fernando Hamuy
- Departamento de Neurología, Hospital IMT, Paraguay; Departamento de Neurología de Diagnostico, Codas Thompson, Paraguay
| | | | - Carlos Navas
- Clínica Enfermedad Desmielinizantes, Clinica Universitaria Colombia, Colombia
| | - Sebastián Nuñez
- Servicio de Infectología, Sanatorio Güemes, Buenos Aires, Argentina
| | - Juan I Rojas
- Service of Neurology, Hospital Universitario CEMIC, Buenos Aires, Argentina; Centro de Esclerosis Múltiple de Buenos Aires (CEMBA), Buenos Aires, Argentina
| | | | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital JM Ramos Mejía, Buenos Aires, Argentina; Servicio de Neurología, Sanatorio Güemes, Buenos Aires, Argentina
| | - Pablo López
- Unidad de Neuroinmunología, Departamento de Neurociencias, Hospital Alemán de Buenos Aires, Argentina
| |
Collapse
|
88
|
Odaka M, Magnin M, Inoue K. Gene network inference from single-cell omics data and domain knowledge for constructing COVID-19-specific ICAM1-associated pathways. Front Genet 2023; 14:1250545. [PMID: 37719701 PMCID: PMC10501835 DOI: 10.3389/fgene.2023.1250545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Intercellular adhesion molecule 1 (ICAM-1) is a critical molecule responsible for interactions between cells. Previous studies have suggested that ICAM-1 triggers cell-to-cell transmission of HIV-1 or HTLV-1, that SARS-CoV-2 shares several features with these viruses via interactions between cells, and that SARS-CoV-2 cell-to-cell transmission is associated with COVID-19 severity. From these previous arguments, it is assumed that ICAM-1 can be related to SARS-CoV-2 cell-to-cell transmission in COVID-19 patients. Indeed, the time-dependent change of the ICAM-1 expression level has been detected in COVID-19 patients. However, signaling pathways that consist of ICAM-1 and other molecules interacting with ICAM-1 are not identified in COVID-19. For example, the current COVID-19 Disease Map has no entry for those pathways. Therefore, discovering unknown ICAM1-associated pathways will be indispensable for clarifying the mechanism of COVID-19. Materials and methods: This study builds ICAM1-associated pathways by gene network inference from single-cell omics data and multiple knowledge bases. First, single-cell omics data analysis extracts coexpressed genes with significant differences in expression levels with spurious correlations removed. Second, knowledge bases validate the models. Finally, mapping the models onto existing pathways identifies new ICAM1-associated pathways. Results: Comparison of the obtained pathways between different cell types and time points reproduces the known pathways and indicates the following two unknown pathways: (1) upstream pathway that includes proteins in the non-canonical NF-κB pathway and (2) downstream pathway that contains integrins and cytoskeleton or motor proteins for cell transformation. Discussion: In this way, data-driven and knowledge-based approaches are integrated into gene network inference for ICAM1-associated pathway construction. The results can contribute to repairing and completing the COVID-19 Disease Map, thereby improving our understanding of the mechanism of COVID-19.
Collapse
Affiliation(s)
- Mitsuhiro Odaka
- The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
- Laboratoire des Sciences du Numérique de Nantes, École Centrale de Nantes, Nantes Université, UMR 6004, Nantes, France
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Morgan Magnin
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
- Laboratoire des Sciences du Numérique de Nantes, École Centrale de Nantes, Nantes Université, UMR 6004, Nantes, France
| | - Katsumi Inoue
- The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
- Laboratoire des Sciences du Numérique de Nantes, École Centrale de Nantes, Nantes Université, UMR 6004, Nantes, France
| |
Collapse
|
89
|
Juchem C, Swanberg KM, Prinsen H, Pelletier D. In vivo cortical glutathione response to oral fumarate therapy in relapsing-remitting multiple sclerosis: A single-arm open-label phase IV trial using 7-Tesla 1H MRS. Neuroimage Clin 2023; 39:103495. [PMID: 37651844 PMCID: PMC10480324 DOI: 10.1016/j.nicl.2023.103495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND This is an open-label, single-arm, single-center pilot study using 7-Tesla in vivo proton magnetic resonance spectroscopy (1H MRS) to measure brain cortical glutathione concentration at baseline before and during the use of oral fumarates as a disease-modifying therapy for multiple sclerosis. The primary endpoint of this research was the change in prefrontal cortex glutathione concentration relative to a therapy-naïve baseline after one year of oral fumarate therapy. METHODS Brain glutathione concentrations were examined by 1H MRS in single prefrontal and occipital cortex cubic voxels (2.5 × 2.5 × 2.5 cm3) before and during initiation of oral fumarate therapy (120 mg b.i.d. for 7 days and 240 mg b.i.d. thereafter). Additional measurements of related metabolites glutamate, glutamine, myoinositol, total N-acetyl aspartate, and total choline were also acquired in voxels centered on the same regions. Seven relapsing-remitting multiple sclerosis patients (4 f / 3 m, age range 28-50 years, mean age 40 years) naïve to fumarate therapy were scanned at pre-therapy baseline and after 1, 3, 6 and 12 months of therapy. A group of 8 healthy volunteers (4 f / 4 m, age range 33-48 years, mean age 41 years) was also scanned at baseline and Month 6 to characterize 1H-MRS measurement reproducibility over a comparable time frame. RESULTS In the multiple sclerosis cohort, general linear models demonstrated a significant positive linear relationship between prefrontal glutathione and time either linearly across all time points (+0.05 ± 0.02 mM/month, t(27) = 2.6, p = 0.02) or specifically for factor variable Month 12 (+0.6 ± 0.3 mM/12 months, t(24) = 2.2, p = 0.04) relative to baseline. No such effects of time on glutathione concentration were demonstrated in the occipital cortex or in the healthy volunteer group. Changes in occipital total choline were further observed in the multiple sclerosis cohort as well as prefrontal total choline and occipital glutamine and myoinositol in the control cohort throughout the study duration. CONCLUSIONS While the open-label single-arm pilot study design and abbreviated control series cannot support firm conclusions about the influence of oral fumarate therapy independent of test-retest factors or normal biological variation in a state of either health or disease, these results do justify further investigation at a larger scale into the potential relationship between prefrontal cortex glutathione increases and oral fumarate therapy in relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Christoph Juchem
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Columbia University Fu Foundation, School of Engineering and Applied Science, New York, NY, United States; Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| | - Kelley M Swanberg
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Columbia University Fu Foundation, School of Engineering and Applied Science, New York, NY, United States
| | - Hetty Prinsen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Pelletier
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
90
|
Elkjaer ML, Lohse RM, Burton M, Mendoza JP, Thomassen M, Sejbaek T, Illes Z. Whole blood miRNAs in relapsing MS patients treated with dimethyl fumarate in the phase 4 TREMEND trial. J Neuroimmunol 2023; 381:578145. [PMID: 37393851 DOI: 10.1016/j.jneuroim.2023.578145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
We investigated the impact of dimethyl fumarate (DMF), an oral therapy for relapsing multiple sclerosis (MS), on blood microRNA (miRNA) signatures and neurofilament light (NFL) levels. DMF normalized miR-660-5p and modulated various miRNAs associated with the NF-kB pathway. These alterations reached a peak 4-7 months after treatment. Notably, particular miRNAs correlated with high or low NFL levels, implying their potential role as markers of treatment efficacy. Our findings broaden the understanding of DMF's immunomodulatory effects and may aid in predicting treatment responses.
Collapse
Affiliation(s)
- Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Rikke M Lohse
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Clinical Genome Center, University of Southern Denmark & Region of Southern Denmark, Odense, Denmark; Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Mads Thomassen
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Clinical Genome Center, University of Southern Denmark & Region of Southern Denmark, Odense, Denmark; Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tobias Sejbaek
- Department of Neurology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark; Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
91
|
Patrick MT, Nair RP, He K, Stuart PE, Billi AC, Zhou X, Gudjonsson JE, Oksenberg JR, Elder JT, Tsoi LC. Shared Genetic Risk Factors for Multiple Sclerosis/Psoriasis Suggest Involvement of Interleukin-17 and Janus Kinase-Signal Transducers and Activators of Transcription Signaling. Ann Neurol 2023; 94:384-397. [PMID: 37127916 PMCID: PMC10524664 DOI: 10.1002/ana.26672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Psoriasis and multiple sclerosis (MS) are complex immune diseases that are mediated by T cells and share multiple comorbidities. Previous studies have suggested psoriatic patients are at higher risk of MS; however, causal relationships between the two conditions remain unclear. Through epidemiology and genetics, we provide a comprehensive understanding of the relationship, and share molecular factors between psoriasis and MS. METHODS We used logistic regression, trans-disease meta-analysis and Mendelian randomization. Medical claims data were included from 30 million patients, including 141,544 with MS and 742,919 with psoriasis. We used genome-wide association study summary statistics from 11,024 psoriatic, 14,802 MS cases, and 43,039 controls for trans-disease meta-analysis, with additional summary statistics from 5 million individuals for Mendelian randomization. RESULTS Psoriatic patients have a significantly higher risk of MS (4,637 patients with both diseases; odds ratio [OR] 1.07, p = 1.2 × 10-5 ) after controlling for potential confounders. Using inverse variance and equally weighted trans-disease meta-analysis, we revealed >20 shared and opposing (direction of effect) genetic loci outside the major histocompatibility complex that showed significant genetic colocalization (in COLOC and COLOC-SuSiE v5.1.0). Co-expression analysis of genes from these loci further identified distinct clusters that were enriched among pathways for interleukin-17/tumor necrosis factor-α (OR >39, p < 1.6 × 10-3 ) and Janus kinase-signal transducers and activators of transcription (OR 35, p = 1.1 × 10-5 ), including genes, such as TNFAIP3, TYK2, and TNFRSF1A. Mendelian randomization found psoriasis as an exposure has a significant causal effect on MS (OR 1.04, p = 5.8 × 10-3 ), independent of type 1 diabetes (OR 1.05, p = 4.3 × 10-7 ), type 2 diabetes (OR 1.08, p = 2.3 × 10-3 ), inflammatory bowel disease (OR 1.11, p = 1.6 × 10-11 ), and vitamin D level (OR 0.75, p = 9.4 × 10-3 ). INTERPRETATION By investigating the shared genetics of psoriasis and MS, along with their modifiable risk factors, our findings will advance innovations in treatment for patients suffering from comorbidities. ANN NEUROL 2023;94:384-397.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Xiang Zhou
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - James T. Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
92
|
Velișcu EM, Liguori V, Anatriello A, Maniscalco GT, Cantone A, Di Costanzo L, Stefanelli P, Scavone C, Capuano A. Hepatobiliary Adverse Reactions during Treatment with Cladribine: Analysis of Data from the European Spontaneous Reporting System. Pharmaceuticals (Basel) 2023; 16:1071. [PMID: 37630986 PMCID: PMC10459297 DOI: 10.3390/ph16081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cladribine belongs to the group of disease-modifying therapies (DMTs) used to treat multiple sclerosis (MS). According to the highlights of a meeting held by the Pharmacovigilance Risk Assessment Committee (PRAC) on 14 January 2022, cladribine may be associated with the occurrence of liver injury, and thus liver function monitoring is recommended. OBJECTIVES AND METHODS Using data from the European spontaneous reporting database (EudraVigilance-EV), we aimed to describe the main characteristics of Individual Case Safety Reports (ICSRs) reporting cases of hepatobiliary disorders related to cladribine. The reporting odds ratio (ROR) was calculated to provide the probability of reporting hepatobiliary ICSRs among DMTs used to treat MS. RESULTS Overall, 118 ICSRs described the occurrence of cladribine-induced hepatobiliary ADRs. The majority of the ICSRs reported ADRs that were classified as serious (93%), and the outcome was mostly reported as "unknown" (50.8%). The most reported hepatobiliary disorders were drug-induced liver injury, abnormal hepatic function, ALT increases, liver disorders, hepatic failure, jaundice, lymphocyte count decreases, hepatotoxicity and hypertransaminasemia. The majority of cladribine-induced hepatic ADRs occurred in female patients belonging to the age group of 18-65 years. CONCLUSION Considering the seriousness of cladribine-induced hepatic ADRs, a close monitoring of patients receiving this drug is highly recommended. In this context, further pharmacovigilance studies evaluating the hepatic safety profile of cladribine are strongly needed.
Collapse
Affiliation(s)
| | - Valerio Liguori
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy
| | - Antonietta Anatriello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy
| | - Giorgia Teresa Maniscalco
- Multiple Sclerosis Regional Center, “A. Cardarelli” Hospital, 80131 Naples, Italy
- Neurological Clinic and Stroke Unit, “A. Cardarelli” Hospital, 80131 Naples, Italy
| | - Andrea Cantone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy
| | - Luigi Di Costanzo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
| | - Pasquale Stefanelli
- Dipartimento Farmaceutico, UOC Farmaceutica Convenzionata e Territoriale, ASL Napoli 1 Centro, 80131 Naples, Italy;
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.L.); (A.C.); (L.D.C.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy
| |
Collapse
|
93
|
Abolfazli R, Sahraian MA, Tayebi A, Kafi H, Samadzadeh S. Safety and Discontinuation Rate of Dimethyl Fumarate (Zadiva ®) in Patients with Multiple Sclerosis: An Observational Retrospective Study. J Clin Med 2023; 12:4937. [PMID: 37568338 PMCID: PMC10419910 DOI: 10.3390/jcm12154937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND This study evaluates the real-world safety and discontinuation rate of Zadiva® (generic product of dimethyl fumarate (DMF)) in Iranian patients with relapsing-remitting multiple sclerosis (RRMS), supplementing existing clinical evidence from randomized controlled trials. METHODS This retrospective observational study evaluated the real-world safety and discontinuation rate of DMF in RRMS patients from Amir A'lam referral hospital's neurology clinic. Data on safety, discontinuation rate, and clinical disease activity were collected retrospectively. The study aimed to assess the discontinuation rate, safety, and reasons for discontinuation, as well as the number of patients experiencing a relapse, MRI activity, and EDSS scores. RESULTS In total, 142 RRMS patients receiving DMF were included in the study, with 15 discontinuing treatment due to adverse events, lack of efficacy, or pregnancy. Notably, a significant reduction in relapse rates was observed, with 90.8% of patients remaining relapse-free throughout the study period. After 1 year of treatment with Zadiva®, only 17.6% of patients experienced MRI activity, whereas the EDSS score remained stable. CONCLUSIONS This study provides important real-world data on the safety and tolerability of Zadiva® in RRMS patients. The results indicate that Zadiva® is generally well tolerated and safe, with a low discontinuation rate due to adverse events or lack of efficacy. These findings suggest that Zadiva® is an effective and safe treatment option for RRMS patients in real-world practice.
Collapse
Affiliation(s)
- Roya Abolfazli
- Department of Neurology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran 11457-65111, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 19978-66837, Iran;
| | - Atefeh Tayebi
- Food Industry Engineering, Tehran Islamic Azad University of Medical Sciences, Tehran 19395-1495, Iran;
| | - Hamidreza Kafi
- Department of Medical, Orchid Pharmed Company, Tehran 19947-66411, Iran;
| | - Sara Samadzadeh
- Department of Neurology, Amiralam Hospital, Tehran University of Medical Sciences, Tehran 11457-65111, Iran
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Unverstät zu Berlin, Experimental and Clinical Research Center, 13125 Berlin, Germany
- Department of Regional Health Research and Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
94
|
Gold R, Barnett M, Chan A, Feng H, Fujihara K, Giovannoni G, Montalbán X, Shi FD, Tintoré M, Xue Q, Yang C, Zhou H. Clinical use of dimethyl fumarate in multiple sclerosis treatment: an update to include China, using a modified Delphi method. Ther Adv Neurol Disord 2023; 16:17562864231180734. [PMID: 37465201 PMCID: PMC10350766 DOI: 10.1177/17562864231180734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/20/2023] [Indexed: 07/20/2023] Open
Abstract
Dimethyl fumarate (DMF) is a widely used oral disease-modifying therapy for multiple sclerosis (MS). Its efficacy and safety profiles are supported by over a decade of experience. Differences exist between Asia and Europe/United States in the prevalence and characteristics of MS; most data for DMF are derived from populations outside Asia. DMF was recently (2021) approved for use in China. The objectives of this review were to evaluate the evidence for DMF's profile, to provide an update to healthcare providers on current knowledge surrounding its use and to assess the relevance of existing data to use in China. This study used a modified Delphi method based on the insights of a scientific Steering Committee (SC), with a structured literature review conducted to assess the data of DMF. The literature review covered all papers in English (from 01 January 2011 to 21 February 2022) that include 'dimethyl fumarate' and 'multiple sclerosis', and their MeSH terms, on PubMed, supplemented by EMBASE and Citeline searches. Papers were categorized by topic and assessed for relevance and quality, before being used to formulate statements summarizing the literature on each subject. SC members voted on/revised statements, requiring ⩾80% agreement and ⩽10% disagreement for inclusion. Statements not reaching this level were discussed further until agreement was reached or until there was agreement to remove the statement. A total of 1030 papers were retrieved and used to formulate the statements and evidence summaries considered by the SC members. A total of 45 statements were agreed by the SC members. The findings support the positive efficacy and safety profile of DMF in treating patients with MS. Limited Chinese patient data are an ongoing consideration; however, based on current evidence, the statements are considered applicable to both the global and Chinese populations. DMF is a valuable addition to address unmet MS treatment needs in China. Registration: Not applicable.
Collapse
Affiliation(s)
- Ralf Gold
- Department of Neurology, Ruhr University Bochum, Bochum 44791, Germany
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Andrew Chan
- Department of Neurology, Inselspital (Bern University Hospital), University of Bern, Bern, Switzerland
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Gavin Giovannoni
- Department of Neurology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xavier Montalbán
- Neurology Department, Multiple Sclerosis Center of Catalonia (Cemcat), Vall d’Hebron University Hospital, Barcelona, Spain
| | - Fu-Dong Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mar Tintoré
- Neurology Department, Multiple Sclerosis Center of Catalonia (Cemcat), Vall d’Hebron University Hospital, Barcelona, Spain
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
95
|
Macaron G, Larochelle C, Arbour N, Galmard M, Girard JM, Prat A, Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front Neurol 2023; 14:1197212. [PMID: 37483447 PMCID: PMC10361071 DOI: 10.3389/fneur.2023.1197212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/18/2023] [Indexed: 07/25/2023] Open
Abstract
With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.
Collapse
Affiliation(s)
- Gabrielle Macaron
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Catherine Larochelle
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Manon Galmard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Jean Marc Girard
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Pierre Duquette
- Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
96
|
Giunta S, D'Amico AG, Maugeri G, Bucolo C, Romano GL, Rossi S, Eandi CM, Pricoco E, D'Agata V. Drug-Repurposing Strategy for Dimethyl Fumarate. Pharmaceuticals (Basel) 2023; 16:974. [PMID: 37513886 PMCID: PMC10386358 DOI: 10.3390/ph16070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In the area of drug discovery, repurposing strategies represent an approach to discover new uses of approved drugs besides their original indications. We used this approach to investigate the effects of dimethyl fumarate (DMF), a drug approved for relapsing-remitting multiple sclerosis and psoriasis treatment, on early injury associated with diabetic retinopathy (DR). We used an in vivo streptozotocin (STZ)-induced diabetic rat model. Diabetes was induced by a single injection of STZ in rats, and after 1 week, a group of animals was treated with a daily intraperitoneal injection of DMF or a vehicle. Three weeks after diabetes induction, the retinal expression levels of key enzymes involved in DR were evaluated. In particular, the biomarkers COX-2, iNOS, and HO-1 were assessed via Western blot and immunohistochemistry analysis. Diabetic rats showed a significant retinal upregulation of COX-2 and iNOS compared to the retina of normal rats (non-diabetic), and an increase in HO-1 was also observed in the STZ group. This latter result was due to a mechanism of protection elicited by the pathological condition. DMF treatment significantly induced the retinal expression of HO-1 in STZ-induced diabetic animals with a reduction in iNOS and COX-2 retinal levels. Taken together, these results suggested that DMF might be useful to counteract the inflammatory process and the oxidative response in DR. In conclusion, we believe that DMF represents a potential candidate to treat diabetic retinopathy and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80131 Napoli, Italy
| | - Chiara M Eandi
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, 1004 Lausanne, Switzerland
| | - Elisabetta Pricoco
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| |
Collapse
|
97
|
Sánchez-Sanz A, García-Martín S, Sabín-Muñoz J, Moreno-Torres I, Elvira V, Al-Shahrour F, García-Grande A, Ramil E, Rodríguez-De la Fuente O, Brea-Álvarez B, García-Hernández R, García-Merino A, Sánchez-López AJ. Dimethyl fumarate-related immune and transcriptional signature is associated with clinical response in multiple sclerosis-treated patients. Front Immunol 2023; 14:1209923. [PMID: 37483622 PMCID: PMC10360655 DOI: 10.3389/fimmu.2023.1209923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background and objective Dimethyl fumarate (DMF) is an immunomodulatory drug approved for the therapy of multiple sclerosis (MS). The identification of response biomarkers to DMF is a necessity in the clinical practice. With this aim, we studied the immunophenotypic and transcriptomic changes produced by DMF in peripheral blood mononuclear cells (PBMCs) and its association with clinical response. Material and methods PBMCs were obtained from 22 RRMS patients at baseline and 12 months of DMF treatment. Lymphocyte and monocyte subsets, and gene expression were assessed by flow cytometry and next-generation RNA sequencing, respectively. Clinical response was evaluated using the composite measure "no evidence of disease activity" NEDA-3 or "evidence of disease activity" EDA-3 at 2 years, classifying patients into responders (n=15) or non-responders (n=7), respectively. Results In the whole cohort, DMF produced a decrease in effector (TEM) and central (TCM) memory T cells in both the CD4+ and CD8+ compartments, followed by an increase in CD4+ naïve T cells. Responder patients presented a greater decrease in TEM lymphocytes. In addition, responder patients showed an increase in NK cells and were resistant to the decrease in the intermediate monocytes shown by non-responders. Responder patients also presented differences in 3 subpopulations (NK bright, NK dim and CD8 TCM) at baseline and 4 subpopulations (intermediate monocytes, regulatory T cells, CD4 TCM and CD4 TEMRA) at 12 months. DMF induced a mild transcriptional effect, with only 328 differentially expressed genes (DEGs) after 12 months of treatment. The overall effect was a downregulation of pro-inflammatory genes, chemokines, and activators of the NF-kB pathway. At baseline, no DEGs were found between responders and non-responders. During DMF treatment a differential transcriptomic response was observed, with responders presenting a higher number of DEGs (902 genes) compared to non-responders (189 genes). Conclusions Responder patients to DMF exhibit differences in monocyte and lymphocyte subpopulations and a distinguishable transcriptomic response compared to non-responders that should be further studied for the validation of biomarkers of treatment response to DMF.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- PhD Program in Molecular Biosciences, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Julia Sabín-Muñoz
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Irene Moreno-Torres
- Demyelinating Diseases Unit, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Víctor Elvira
- School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aranzazu García-Grande
- Flow Cytometry Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Elvira Ramil
- Sequencing Core Facility, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | | | - Beatriz Brea-Álvarez
- Radiodiagnostic Division, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Antonio José Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
- Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
98
|
Jiang X, Simoneau G. Overall and patient-specific comparative effectiveness of dimethyl fumarate versus teriflunomide: A novel approach to precision medicine applied to the German NeuroTrans Data Multiple Sclerosis Registry. Mult Scler J Exp Transl Clin 2023; 9:20552173231194353. [PMID: 37641619 PMCID: PMC10460475 DOI: 10.1177/20552173231194353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Background Multiple sclerosis (MS) comparative effectiveness research needs to go beyond average treatment effects (ATEs) and post-host subgroup analyses. Objective This retrospective study assessed overall and patient-specific effects of dimethyl fumarate (DMF) versus teriflunomide (TERI) in patients with relapsing-remitting MS. Methods A novel precision medicine (PM) scoring approach leverages advanced machine learning methods and adjusts for imbalances in baseline characteristics between patients receiving different treatments. Using the German NeuroTransData registry, we implemented and internally validated different scoring systems to distinguish patient-specific effects of DMF relative to TERI based on annualized relapse rates, time to first relapse, and time to confirmed disease progression. Results Among 2791 patients, there was superior ATE of DMF versus TERI for the two relapse-related endpoints (p = 0.037 and 0.018). Low to moderate signals of treatment effect heterogeneity were detected according to individualized scores. A MS patient subgroup was identified for whom DMF was more effective than TERI (p = 0.013): older (45 versus 38 years), longer MS duration (110 versus 50 months), not newly diagnosed (74% versus 40%), and no prior glatiramer acetate usage (35% versus 5%). Conclusion The implemented approach can disentangle prognostic differences from treatment effect heterogeneity and provide unbiased patient-specific profiling of comparative effectiveness based on real-world data.
Collapse
|
99
|
Möhle L, Stefan K, Bascuñana P, Brackhan M, Brüning T, Eiriz I, El Menuawy A, van Genderen S, Santos-García I, Górska AM, Villa M, Wu J, Stefan SM, Pahnke J. ABC Transporter C1 Prevents Dimethyl Fumarate from Targeting Alzheimer's Disease. BIOLOGY 2023; 12:932. [PMID: 37508364 PMCID: PMC10376064 DOI: 10.3390/biology12070932] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a growing health issue with very limited treatment options. To meet the need for novel therapeutics, existing drugs with additional preferred pharmacological profiles could be recruited. This strategy is known as 'drug repurposing'. Here, we describe dimethyl fumarate (DMF), a drug approved to treat multiple sclerosis (MS), to be tested as a candidate for other brain diseases. We used an APP-transgenic model (APPtg) of senile β-amyloidosis mice to further investigate the potential of DMF as a novel AD therapeutic. We treated male and female APPtg mice through drinking water at late stages of β-amyloid (Aβ) deposition. We found that DMF treatment did not result in modulating effects on Aβ deposition at this stage. Interestingly, we found that glutathione-modified DMF interacts with the ATP-binding cassette transporter ABCC1, an important gatekeeper at the blood-brain and blood-plexus barriers and a key player for Aβ export from the brain. Our findings suggest that ABCC1 prevents the effects of DMF, which makes DMF unsuitable as a novel therapeutic drug against AD. The discovered effects of ABCC1 also have implications for DMF treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Luisa Möhle
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Mirjam Brackhan
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ivan Eiriz
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Ahmed El Menuawy
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Sylvie van Genderen
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Irene Santos-García
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Anna Maria Górska
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - María Villa
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jingyun Wu
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology/Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Sognsvannsveien 20, 0372 Oslo, Norway
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Rīga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
100
|
Babaei H, Kheirollah A, Ranjbaran M, Cheraghzadeh M, Sarkaki A, Adelipour M. Preconditioning adipose-derived mesenchymal stem cells with dimethyl fumarate promotes their therapeutic efficacy in the brain tissues of rats with Alzheimer's disease. Biochem Biophys Res Commun 2023; 672:120-127. [PMID: 37348174 DOI: 10.1016/j.bbrc.2023.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
AIM Transplantation of mesenchymal stem cell (MSC) has been suggested to be a promising method for treating neurodegenerative conditions, including Alzheimer's disease (AD). However, the poor survival rate of transplanted MSCs has limited their therapeutic application. This study aimed to evaluate whether preconditioning MSCs with dimethyl fumarate (DMF), a Nrf2 inducer, could enhance MSC therapeutic efficacy in an amyloid-β (Aβ1-42)-induced AD rat model. METHODS The survival and antioxidant capacity of MSCs treated with DMF were assessed in vitro. Aβ1-42 intrahippocampal injection was used to create a rat model of AD. Following the transplantation of MSCs preconditioned with DMF and using the Morris blue maze test, spatial learning and memory were assessed. Using RT-qPCR, we evaluated the gene expression related to apoptosis and neurotrophins in the hippocampus region. RESULTS Treatment with DMF enhanced cell survival and Nrf2 protein expression in MSCs in vitro. Preconditioning with DMF also enhanced the efficacy of transplanted MSCs in rescuing learning and spatial memory deficits in Aβ-AD rats. Besides, DMF preconditioning enhanced the neuroprotective effect of transplanted MSCs in the hippocampus of rats treated with Aβ1-42 by decreasing the expression of apoptotic markers (Bax, caspase 3, and cytochrome c), and elevating the expression of the anti-apoptotic marker Bcl2 and neurotrophins, including BDNF and NGF. CONCLUSION Preconditioning MSCs with DMF boosted the therapeutic efficacy of these cells; therefore, it could serve as a targeted strategy for increasing the therapeutic efficacy of MSCs in treating neurodegenerative disorders, including AD.
Collapse
Affiliation(s)
- Hossein Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Medical Plant Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Adelipour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|