51
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
52
|
Kim J, Kwon EJ, Kim YJ, Kim D, Shin YZ, Gil D, Kim JH, Shin HD, Kim LH, Lee MO, Go YH, Cha HJ. Epigenetic repression of CHCHD2 enhances survival from single cell dissociation through attenuated Rho A kinase activity. Cell Mol Life Sci 2024; 81:38. [PMID: 38214772 PMCID: PMC10787008 DOI: 10.1007/s00018-023-05060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024]
Abstract
During in vitro culture, human pluripotent stem cells (hPSCs) often acquire survival advantages characterized by decreased susceptibility to mitochondrial cell death, known as "culture adaptation." This adaptation is associated with genetic and epigenetic abnormalities, including TP53 mutations, copy number variations, trisomy, and methylation changes. Understanding the molecular mechanisms underlying this acquired survival advantage is crucial for safe hPSC-based cell therapies. Through transcriptome and methylome analysis, we discovered that the epigenetic repression of CHCHD2, a mitochondrial protein, is a common occurrence during in vitro culture using enzymatic dissociation. We confirmed this finding through genetic perturbation and reconstitution experiments in normal human embryonic stem cells (hESCs). Loss of CHCHD2 expression conferred resistance to single cell dissociation-induced cell death, a common stress encountered during in vitro culture. Importantly, we found that the downregulation of CHCHD2 significantly attenuates the activity of Rho-associated protein kinase (ROCK), which is responsible for inducing single cell death in hESCs. This suggests that hESCs may survive routine enzyme-based cell dissociation by downregulating CHCHD2 and thereby attenuating ROCK activity. These findings provide insights into the mechanisms by which hPSCs acquire survival advantages and adapt to in vitro culture conditions.
Collapse
Affiliation(s)
- Jumee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yoon-Ze Shin
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dayeon Gil
- Korea National Stem Cell Bank, Osong, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, Osong, Republic of Korea
| | - Jung-Hyun Kim
- Korea National Stem Cell Bank, Osong, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, Osong, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
- Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Young-Hyun Go
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
53
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
54
|
Foltynie T. Scaling up GMP-grade dopaminergic cells for Parkinson's disease. Cell Stem Cell 2024; 31:5-6. [PMID: 38181750 DOI: 10.1016/j.stem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
Stem cell therapy for Parkinson's disease requires demonstration of safety and efficacy of dopaminergic cells derived from a cell line, consideration of dose, and whether this is deliverable at scale. Park et al. demonstrate these requirements for a new hESC line and that their manufacturing methods allow for its scalability.
Collapse
Affiliation(s)
- Thomas Foltynie
- National Hospital for Neurology & Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
55
|
Park S, Park CW, Eom JH, Jo MY, Hur HJ, Choi SK, Lee JS, Nam ST, Jo KS, Oh YW, Lee J, Kim S, Kim DH, Park CY, Kim SJ, Lee HY, Cho MS, Kim DS, Kim DW. Preclinical and dose-ranging assessment of hESC-derived dopaminergic progenitors for a clinical trial on Parkinson's disease. Cell Stem Cell 2024; 31:25-38.e8. [PMID: 38086390 DOI: 10.1016/j.stem.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 01/07/2024]
Abstract
Human embryonic stem cell (hESC)-derived midbrain dopaminergic (mDA) cell transplantation is a promising therapeutic strategy for Parkinson's disease (PD). Here, we present the derivation of high-purity mDA progenitors from clinical-grade hESCs on a large scale under rigorous good manufacturing practice (GMP) conditions. We also assessed the toxicity, biodistribution, and tumorigenicity of these cells in immunodeficient rats in good laboratory practice (GLP)-compliant facilities. Various doses of mDA progenitors were transplanted into hemi-parkinsonian rats, and a significant dose-dependent behavioral improvement was observed with a minimal effective dose range of 5,000-10,000 mDA progenitor cells. These results provided insights into determining a low cell dosage (3.15 million cells) for human clinical trials. Based on these results, approval for a phase 1/2a clinical trial for PD cell therapy was obtained from the Ministry of Food and Drug Safety in Korea, and a clinical trial for treating patients with PD has commenced.
Collapse
Affiliation(s)
- Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chan Wook Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Mi-Young Jo
- S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | - Hye-Jin Hur
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | | | - Jae Souk Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Ki-Sang Jo
- S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | - Young Woo Oh
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea, 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jungil Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea, 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sieun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea, 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Do-Hun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | - Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | - Su Jin Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Gyeonggi-do, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Gyeonggi-do, Republic of Korea
| | - Myung Soo Cho
- S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea
| | - Dae-Sung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Pediatrics, Korea University College of Medicine, Guro Hospital, Seoul 08308, Republic of Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; S. Biomedics Co., Ltd., Seoul 04797, Republic of Korea; Brain Korea, 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
56
|
Widner H. Immunology of cell and gene therapy approaches for neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:135-144. [PMID: 39341650 DOI: 10.1016/b978-0-323-90120-8.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Repair and replacement strategies using cell replacement or viral gene transfer for neurologic diseases are becoming increasingly efficacious with clinically meaningful benefits in several conditions. An increased understanding of disease processes opens up opportunities for genetic therapies and precision medicine methods aiming at disease modification or repair of lesioned neurologic structures. However, such therapeutic effects may be limited or rendered ineffective by immune responses against gene products or cells used for the intended treatments. When introducing therapeutic agents into the nervous system, a set of biologic responses are inevitably triggered, which may lead to host responses that limit the intended therapeutic goals. Factors of importance include the type of vector used and origin of cells, the mode of introduction, the degree of host immunization, and any prior exposure to the agents used. It is possible to apply specific treatments that interfere with many of these steps and factors in order to limit host immunization and to reduce or eliminate host effector reactions against the therapeutic agents. This includes immune-evading design measures of the advanced therapeutic medicinal products and various immunosuppressive processes. Limited duration of specific immune modulations may be possible under carefully monitored programs.
Collapse
Affiliation(s)
- Håkan Widner
- Department of Neurology, Skåne University Hospital, Lund, Sweden; Section for Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
57
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
58
|
Lindvall O. History of cellular grafting for central nervous system repair-A clinical perspective. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:15-40. [PMID: 39341652 DOI: 10.1016/b978-0-323-90120-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As late as in the 1970s, the evidence supporting that brain function might be restored by replacing dead cells by transplantation of new healthy cells was scarce in experimental animals and lacking in humans. Repairing the human brain was regarded as completely unrealistic by clinicians. Fifty years later, the situation is very different, and cellular grafting has reached patient application in several conditions affecting the CNS. The clinical studies performed so far have shown that cellular grafts can survive, grow, and function also in the diseased adult human brain. However, no proven treatment based on cell transplantation is currently available for any brain disorder. Here, the history of cellular grafting is described from a clinical perspective, including some of the preclinical work that has formed the basis for its translation to patient application. The focus is on cell transplantation for Parkinson disease, which in many ways is paving the way for this field of research. The chapter gives an account of the scientific milestones, the ups and downs, as well as the positive and negative reactions from the scientific and clinical community, and how this research field despite many obstacles has continued to move forward over more than four decades.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
59
|
Shi JX, Zhang KZ. Advancements in Autologous Stem Cell Transplantation for Parkinson's Disease. Curr Stem Cell Res Ther 2024; 19:1321-1327. [PMID: 37691194 DOI: 10.2174/1574888x19666230907112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation (DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
60
|
Chandrababu K, Radhakrishnan V, Anjana AS, Rajan R, Sivan U, Krishnan S, Baby Chakrapani PS. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies. Exp Brain Res 2024; 242:1-23. [PMID: 38015243 DOI: 10.1007/s00221-023-06735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.
Collapse
Affiliation(s)
- Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - A S Anjana
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Rahul Rajan
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India
| | - Unnikrishnan Sivan
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University for Science and Technology, Kochi, Kerala, 682 022, India.
- Centre for Excellence in Neurodegeneration and Brain Health (CENBH), Kochi, Kerala, India.
| |
Collapse
|
61
|
Nasrolahi A, Shabani Z, Sadigh-Eteghad S, Salehi-Pourmehr H, Mahmoudi J. Stem Cell Therapy for the Treatment of Parkinson's Disease: What Promise Does it Hold? Curr Stem Cell Res Ther 2024; 19:185-199. [PMID: 36815638 DOI: 10.2174/1574888x18666230222144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by substantia nigra dopamine cell death and a varied clinical picture that affects older people. Although more than two centuries have passed since the earliest attempts to find a cure for PD, it remains an unresolved problem. With this in mind, cell replacement therapy is a new strategy for treating PD. This novel approach aims to replace degenerated dopaminergic (DAergic) neurons with new ones or provide a new source of cells that can differentiate into DAergic neurons. Induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and embryonic stem cells (ESCs) are among the cells considered for transplantation therapies. Recently disease-modifying strategies like cell replacement therapies combined with other therapeutic approaches, such as utilizing natural compounds or biomaterials, are proposed to modify the underlying neurodegeneration. In the present review, we discuss the current advances in cell replacement therapy for PD and summarize the existing experimental and clinical evidence supporting this approach.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabani
- Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
62
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
63
|
Knöbel S, Bosio A. Scaling of cell and gene therapies to population. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:145-154. [PMID: 39341651 DOI: 10.1016/b978-0-323-90120-8.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.
Collapse
Affiliation(s)
- Sebastian Knöbel
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
64
|
Emborg ME, Gambardella JC, Zhang A, Federoff HJ. Autologous vs heterologous cell replacement strategies for Parkinson disease and other neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:41-56. [PMID: 39341662 DOI: 10.1016/b978-0-323-90120-8.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Successful cell replacement strategies for brain repair depend on graft integration into the neural network, which is affected by the immune response to the grafted cells. Using Parkinson disease as an example, in this chapter, we consider the immune system interaction and its role in autologous vs heterologous graft survival and integration, as well as past and emerging strategies to overcome the immunologic response. We also reflect on the role of nonhuman primate research to assess novel approaches and consider the role of different stakeholders on advancing the most promising new approaches into the clinic.
Collapse
Affiliation(s)
- Marina E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States.
| | - Julia C Gambardella
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Ai Zhang
- Aspen Neuroscience, San Diego, CA, United States
| | - Howard J Federoff
- Kenai Therapeutics, San Diego, CA, United States; Georgetown University Medical Center, Georgetown, Washington, DC, United States
| |
Collapse
|
65
|
Song XY, Fan CX, Atta-ur-Rahman FRS, Choudhary MI, Wang XP. Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward. Curr Neuropharmacol 2024; 22:2272-2283. [PMID: 38939990 PMCID: PMC11451317 DOI: 10.2174/1570159x22666240509092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024] Open
Abstract
The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.
Collapse
Affiliation(s)
- Xiao-Yan Song
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Cun-Xiu Fan
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Atta-ur-Rahman FRS
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xiao-Ping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
67
|
Rosalia M, Giacomini M, Tottoli EM, Dorati R, Bruni G, Genta I, Chiesa E, Pisani S, Sampaolesi M, Conti B. Investigation on Electrospun and Solvent-Casted PCL-PLGA Blends Scaffolds Embedded with Induced Pluripotent Stem Cells for Tissue Engineering. Pharmaceutics 2023; 15:2736. [PMID: 38140077 PMCID: PMC10747843 DOI: 10.3390/pharmaceutics15122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a "bubble-like" topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds.
Collapse
Affiliation(s)
- Mariella Rosalia
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Martina Giacomini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Erika Maria Tottoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Giovanna Bruni
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (C.S.G.I.), Department of Chemistry, Physical Chemistry Section, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Head Unit of Stem Cell and Developmental Biology (SCDB), Head Department of Development and Regeneration, KU Leuven, ON4 Herestraat 49, Box 804, 3000 Leuven, Belgium;
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.R.); (M.G.); (E.M.T.); (R.D.); (I.G.); (E.C.); (S.P.)
| |
Collapse
|
68
|
Williams K, Foliaki ST, Race B, Smith A, Thomas T, Groveman BR, Haigh CL. Neural cell engraftment therapy for sporadic Creutzfeldt-Jakob disease restores neuroelectrophysiological parameters in a cerebral organoid model. Stem Cell Res Ther 2023; 14:348. [PMID: 38049877 PMCID: PMC10696693 DOI: 10.1186/s13287-023-03591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is a fatal neurodegenerative disease with currently no treatment options. Stem cell therapy for neurodegenerative diseases is emerging as a possible treatment option. However, while there are a few clinical trials for other neurodegenerative disorders such as Parkinson's disease, prion disease cell therapy research has so far been confined to animal models. METHODS Here, we use a novel approach to study cell therapies in sCJD using a human cerebral organoid model. Cerebral organoids can be infected with sCJD prions allowing us to assess how neural precursor cell (NPC) therapy impacts the progression of sCJD. After 90 days of sCJD or mock infection, organoids were either seeded with NPCs or left unseeded and monitored for cellular composition changes, prion infection parameters and neuroelectrophysiological function at 180 days post-infection. RESULTS Our results showed NPCs integrated into organoids leading to an increase in neuronal markers and changes in cell signaling irrespective of sCJD infection. Although a small, but significant, decrease in protease-resistant PrP deposition was observed in the CJD-infected organoids that received the NPCs, other disease-associated parameters showed minimal changes. However, the NPCs had a beneficial impact on organoid function following infection. sCJD infection caused reduction in neuronal spike rate and mean burst spike rate, indicative of reduced action potentials. NPC seeding restored these electrophysiological parameters to the uninfected control level. CONCLUSIONS Together with the previous animal studies, our results support that cell therapy may have some functional benefit for the treatment of human prion diseases.
Collapse
Affiliation(s)
- Katie Williams
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Simote T Foliaki
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Anna Smith
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Bradley R Groveman
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA
| | - Cathryn L Haigh
- Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, 903 South 4Th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
69
|
Jimenez-Vergara AC, Avina J, Block TJ, Sheldrake A, Koch C, Gonzalez A, Steele J, Díaz-Lasprilla AM, Munoz-Pinto DJ. A Bioinspired Astrocyte-Derived Coating Promotes the In Vitro Proliferation of Human Neural Stem Cells While Maintaining Their Stemness. Biomimetics (Basel) 2023; 8:589. [PMID: 38132528 PMCID: PMC10741944 DOI: 10.3390/biomimetics8080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The repair of neuronal tissue is a challenging process due to the limited proliferative capacity of neurons. Neural stem cells (NSCs) can aid in the regeneration process of neural tissue due to their high proliferation potential and capacity to differentiate into neurons. The therapeutic potential of these cells can only be achieved if sufficient cells are obtained without losing their differentiation potential. Toward this end, an astrocyte-derived coating (HAc) was evaluated as a promising substrate to promote the proliferation of NSCs. Mass spectroscopy and scanning electron microscopy were used to characterize the HAc. The proliferation rate and the expression of stemness and differentiation markers in NSCs cultured on the HAc were evaluated and compared to the responses of these cells to commonly used coating materials including Poly-L-Ornithine (PLO), and a Human Induced Pluripotent Stem Cell (HiPSC)-based coating. The use of the HAc promotes the in vitro cell growth of NSCs. The expression of the stemness markers Sox2 and Nestin, and the differentiation marker DCX in the HAc group was akin to the expression of these markers in the controls. In summary, HAc supported the proliferation of NSCs while maintaining their stemness and neural differentiation potential.
Collapse
Affiliation(s)
- Andrea C. Jimenez-Vergara
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jacob Avina
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | | | - Anne Sheldrake
- StemBioSys, San Antonio, TX 78229, USA; (T.J.B.); (A.S.)
| | - Carson Koch
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| | - Anna Gonzalez
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Jennifer Steele
- Physics and Astronomy Department, Trinity University, San Antonio, TX 78212, USA;
| | - Ana M. Díaz-Lasprilla
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
| | - Dany J. Munoz-Pinto
- Engineering Science Department, Trinity University, San Antonio, TX 78212, USA; (A.C.J.-V.); (J.A.); (A.G.); (A.M.D.-L.)
- Neuroscience Program, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
70
|
Cho YW, Park JH, Kang MJ, Lee JH, Kim YK, Luo Z, Kim TH. Electrochemical Detection of Dopamine Release from Living Neurons Using Graphene Oxide-Incorporated Polypyrrole/Gold Nanocluster Hybrid Nanopattern Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304271. [PMID: 37649209 DOI: 10.1002/smll.202304271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Indexed: 09/01/2023]
Abstract
Stem-cell-based therapeutics have shown immense potential in treating various diseases that are currently incurable. In particular, partial recovery of Parkinson's disease, which occurs due to massive loss or abnormal functionality of dopaminergic (DAnergic) neurons, through the engraftment of stem-cell-derived neurons ex vivo is reported. However, precise assessment of the functionality and maturity of DAnergic neurons is still challenging for their enhanced clinical efficacy. Here, a novel conductive cell cultivation platform, a graphene oxide (GO)-incorporated metallic polymer nanopillar array (GOMPON), that can electrochemically detect dopamine (DA) exocytosis from living DAnergic neurons, is reported. In the cell-free configuration, the linear range is 0.5-100 µm, with a limit of detection of 33.4 nm. Owing to its excellent biocompatibility, a model DAnergic neuron (SH-SY5Y cell) can be cultivated and differentiated on the platform while their DA release can be quantitatively measured in a real-time and nondestructive manner. Finally, it is showed that the functionality of the DAnergic neurons derived from stem cells can be precisely assessed via electrochemical detection of their DA exocytosis. The developed GOMPON is highly promising for a wide range of applications, including real-time monitoring of stem cell differentiation into neuronal lineages, evaluating differentiation protocols, and finding practical stem cell therapies.
Collapse
Affiliation(s)
- Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Dongjak-gu, 84 Heukseuk-ro, Republic of Korea
| | - Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Dongjak-gu, 84 Heukseuk-ro, Republic of Korea
| | - Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Dongjak-gu, 84 Heukseuk-ro, Republic of Korea
| | - Jung-Hyeon Lee
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Dongjak-gu, 84 Heukseuk-ro, Republic of Korea
| | - Yong Kyun Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, 16247, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, Kowloon, Clear Water Bay, China
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Dongjak-gu, 84 Heukseuk-ro, Republic of Korea
| |
Collapse
|
71
|
Xiao B, Tan EK. Cell replacement for Parkinson's disease: advances and challenges. Neural Regen Res 2023; 18:2693-2694. [PMID: 37449626 DOI: 10.4103/1673-5374.373710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
72
|
Marzi SJ, Schilder BM, Nott A, Frigerio CS, Willaime-Morawek S, Bucholc M, Hanger DP, James C, Lewis PA, Lourida I, Noble W, Rodriguez-Algarra F, Sharif JA, Tsalenchuk M, Winchester LM, Yaman Ü, Yao Z, Ranson JM, Llewellyn DJ. Artificial intelligence for neurodegenerative experimental models. Alzheimers Dement 2023; 19:5970-5987. [PMID: 37768001 DOI: 10.1002/alz.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Experimental models are essential tools in neurodegenerative disease research. However, the translation of insights and drugs discovered in model systems has proven immensely challenging, marred by high failure rates in human clinical trials. METHODS Here we review the application of artificial intelligence (AI) and machine learning (ML) in experimental medicine for dementia research. RESULTS Considering the specific challenges of reproducibility and translation between other species or model systems and human biology in preclinical dementia research, we highlight best practices and resources that can be leveraged to quantify and evaluate translatability. We then evaluate how AI and ML approaches could be applied to enhance both cross-model reproducibility and translation to human biology, while sustaining biological interpretability. DISCUSSION AI and ML approaches in experimental medicine remain in their infancy. However, they have great potential to strengthen preclinical research and translation if based upon adequate, robust, and reproducible experimental data. HIGHLIGHTS There are increasing applications of AI in experimental medicine. We identified issues in reproducibility, cross-species translation, and data curation in the field. Our review highlights data resources and AI approaches as solutions. Multi-omics analysis with AI offers exciting future possibilities in drug discovery.
Collapse
Affiliation(s)
- Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Brian M Schilder
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | | | - Magda Bucholc
- School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
| | - Diane P Hanger
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Patrick A Lewis
- Royal Veterinary College, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Wendy Noble
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Jalil-Ahmad Sharif
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Ümran Yaman
- UK Dementia Research Institute at UCL, London, UK
| | | | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| |
Collapse
|
73
|
López-Ornelas A, Escobedo-Avila I, Ramírez-García G, Lara-Rodarte R, Meléndez-Ramírez C, Urrieta-Chávez B, Barrios-García T, Cáceres-Chávez VA, Flores-Ponce X, Carmona F, Reynoso CA, Aguilar C, Kerik NE, Rocha L, Verdugo-Díaz L, Treviño V, Bargas J, Ramos-Mejía V, Fernández-Ruiz J, Campos-Romo A, Velasco I. Human Embryonic Stem Cell-Derived Immature Midbrain Dopaminergic Neurons Transplanted in Parkinsonian Monkeys. Cells 2023; 12:2738. [PMID: 38067166 PMCID: PMC10706241 DOI: 10.3390/cells12232738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Gabriel Ramírez-García
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Beetsi Urrieta-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Tonatiuh Barrios-García
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - Verónica A. Cáceres-Chávez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Xóchitl Flores-Ponce
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Carlos Alberto Reynoso
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Carlos Aguilar
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Nora E. Kerik
- Molecular Imaging PET-CT Unit, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.R.); (C.A.); (N.E.K.)
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Mexico City 07360, Mexico; (F.C.); (L.R.)
| | - Leticia Verdugo-Díaz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey 64710, Mexico; (T.B.-G.); (V.T.)
| | - José Bargas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
| | - Verónica Ramos-Mejía
- Gene Regulation, Stem Cells, and Development Group, GENYO-Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016 Granada, Spain;
| | - Juan Fernández-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
| | - Aurelio Campos-Romo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.V.-D.); (J.F.-R.)
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.L.-O.); (I.E.-A.); (R.L.-R.); (C.M.-R.); (B.U.-C.); (V.A.C.-C.); (X.F.-P.); (J.B.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
74
|
Chen Z, Zhao G. First-in-human transplantation of autologous induced neural stem cell-derived dopaminergic precursors to treat Parkinson's disease. Sci Bull (Beijing) 2023; 68:2700-2703. [PMID: 37919161 DOI: 10.1016/j.scib.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Affiliation(s)
- Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, and Key Laboratory of Neurodegenerative Diseases (Ministry of Education), Beijing 100053, China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Clinical Research Center for Epilepsy Capital Medical University, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
75
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
76
|
Shastry S, Hu J, Ying M, Mao X. Cell Therapy for Parkinson's Disease. Pharmaceutics 2023; 15:2656. [PMID: 38139997 PMCID: PMC10747991 DOI: 10.3390/pharmaceutics15122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction in dopamine concentration in the striatum. It is a substantial loss of dopaminergic neurons that is responsible for the classic triad of PD symptoms, i.e., resting tremor, muscular rigidity, and bradykinesia. Several current therapies for PD may only offer symptomatic relief and do not address the underlying neurodegeneration of PD. The recent developments in cellular reprogramming have enabled the development of previously unachievable cell therapies and patient-specific modeling of PD through Induced Pluripotent Stem Cells (iPSCs). iPSCs possess the inherent capacity for pluripotency, allowing for their directed differentiation into diverse cell lineages, such as dopaminergic neurons, thus offering a promising avenue for addressing the issue of neurodegeneration within the context of PD. This narrative review provides a comprehensive overview of the effects of dopamine on PD patients, illustrates the versatility of iPSCs and their regenerative abilities, and examines the benefits of using iPSC treatment for PD as opposed to current therapeutic measures. In means of providing a treatment approach that reinforces the long-term survival of the transplanted neurons, the review covers three supplementary avenues to reinforce the potential of iPSCs.
Collapse
Affiliation(s)
- Surabhi Shastry
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junkai Hu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.S.); (J.H.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
77
|
Yu M, Sun P, Sun C, Jin WL. Bioelectronic medicine potentiates endogenous NSCs for neurodegenerative diseases. Trends Mol Med 2023; 29:886-896. [PMID: 37735022 DOI: 10.1016/j.molmed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Neurodegenerative diseases (NDs) are commonly observed and while no therapy is universally applicable, cell-based therapies are promising. Stem cell transplantation has been investigated, but endogenous neural stem cells (eNSCs), despite their potential, especially with the development of bioelectronic medicine and biomaterials, remain understudied. Here, we compare stem cell transplantation therapy with eNSC-based therapy and summarize the combined use of eNSCs and developing technologies. The rapid development of implantable biomaterials has resulted in electronic stimulation becoming increasingly effective and decreasingly invasive. Thus, the combination of bioelectronic medicine and eNSCs has substantial potential for the treatment of NDs.
Collapse
Affiliation(s)
- Maifu Yu
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Pin Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Changkai Sun
- Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
78
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
79
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
80
|
Kirkeby A, Nelander J, Hoban DB, Rogelius N, Bjartmarz H, Storm P, Fiorenzano A, Adler AF, Vale S, Mudannayake J, Zhang Y, Cardoso T, Mattsson B, Landau AM, Glud AN, Sørensen JC, Lillethorup TP, Lowdell M, Carvalho C, Bain O, van Vliet T, Lindvall O, Björklund A, Harry B, Cutting E, Widner H, Paul G, Barker RA, Parmar M. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson's disease, STEM-PD. Cell Stem Cell 2023; 30:1299-1314.e9. [PMID: 37802036 DOI: 10.1016/j.stem.2023.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements. Importantly, no adverse effects were observed upon testing of the product in a 39-week rat GLP safety study for toxicity, tumorigenicity, and biodistribution, and a non-GLP efficacy study confirmed that the transplanted cells mediated full functional recovery in a pre-clinical rat model of PD. We further observed highly comparable efficacy results between two different GMP batches, verifying that the product can be serially manufactured. A fully in vivo-tested batch of STEM-PD is now being used in a clinical trial of 8 patients with moderate PD, initiated in 2022.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Jenny Nelander
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Deirdre B Hoban
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Nina Rogelius
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Hjálmar Bjartmarz
- Department of Neurosurgery, Skåne University Hospital, 221 85 Lund, Sweden
| | - Petter Storm
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Alessandro Fiorenzano
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andrew F Adler
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Shelby Vale
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Janitha Mudannayake
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Yu Zhang
- Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Bengt Mattsson
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Anne M Landau
- Department of Nuclear Medicine & PET-Center and Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jens C Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine & PET-Center and Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Mark Lowdell
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | - Carla Carvalho
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | - Owen Bain
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | | | - Olle Lindvall
- Lund Stem Cell Center and Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Anders Björklund
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Bronwen Harry
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Emma Cutting
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Håkan Widner
- Department of Neurology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Gesine Paul
- Department of Neurology, Skåne University Hospital, 221 85 Lund, Sweden; Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Malin Parmar
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
81
|
Barbero JA, Unadkat P, Choi YY, Eidelberg D. Functional Brain Networks to Evaluate Treatment Responses in Parkinson's Disease. Neurotherapeutics 2023; 20:1653-1668. [PMID: 37684533 PMCID: PMC10684458 DOI: 10.1007/s13311-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Network analysis of functional brain scans acquired with [18F]-fluorodeoxyglucose positron emission tomography (FDG PET, to map cerebral glucose metabolism), or resting-state functional magnetic resonance imaging (rs-fMRI, to map blood oxygen level-dependent brain activity) has increasingly been used to identify and validate reproducible circuit abnormalities associated with neurodegenerative disorders such as Parkinson's disease (PD). In addition to serving as imaging markers of the underlying disease process, these networks can be used singly or in combination as an adjunct to clinical diagnosis and as a screening tool for therapeutics trials. Disease networks can also be used to measure rates of progression in natural history studies and to assess treatment responses in individual subjects. Recent imaging studies in PD subjects scanned before and after treatment have revealed therapeutic effects beyond the modulation of established disease networks. Rather, other mechanisms of action may be at play, such as the induction of novel functional brain networks directly by treatment. To date, specific treatment-induced networks have been described in association with novel interventions for PD such as subthalamic adeno-associated virus glutamic acid decarboxylase (AAV2-GAD) gene therapy, as well as sham surgery or oral placebo under blinded conditions. Indeed, changes in the expression of these networks with treatment have been found to correlate consistently with clinical outcome. In aggregate, these attributes suggest a role for functional brain networks as biomarkers in future clinical trials.
Collapse
Affiliation(s)
- János A Barbero
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Prashin Unadkat
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
| | - Yoon Young Choi
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
82
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
83
|
Colvett I, Gilmore A, Guzman S, Ledreux A, Quintero JE, Ginjupally DR, Gurwell JA, Slevin JT, Guduru Z, Gerhardt GA, van Horne CG, Granholm AC. Recipient Reaction and Composition of Autologous Sural Nerve Tissue Grafts into the Human Brain. J Clin Med 2023; 12:6121. [PMID: 37834764 PMCID: PMC10573749 DOI: 10.3390/jcm12196121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.
Collapse
Affiliation(s)
- Isaac Colvett
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Samuel Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Aurélie Ledreux
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| | - Jorge E. Quintero
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Dhanunjaya Rao Ginjupally
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad 500003, Telangana, India
| | - Julie A. Gurwell
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - John T. Slevin
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Zain Guduru
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Craig G. van Horne
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA; (J.E.Q.); (J.A.G.); (J.T.S.); (G.A.G.); (C.G.v.H.)
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA;
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (I.C.); (A.G.); (A.L.)
| |
Collapse
|
84
|
Naderi S, Shiri Z, Zarei-Kheirabadi M, Mollamohammadi S, Hosseini P, Rahimi G, Moradmand A, Samadian A, Shojaei A, Yeganeh M, Mousavi SA, Badri M, Taei A, Hassani SN, Baharvand H. Cryopreserved clinical-grade human embryonic stem cell-derived dopaminergic progenitors function in Parkinson's disease models. Life Sci 2023; 329:121990. [PMID: 37524159 DOI: 10.1016/j.lfs.2023.121990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
AIM Parkinson's Disease (PD) is a common age-related neurodegenerative disorder with a rising prevalence. Human pluripotent stem cells have emerged as the most promising source of cells for midbrain dopaminergic (mDA) neuron replacement in PD. This study aimed to generate transplantable mDA progenitors for treatment of PD. MATERIALS AND METHODS Here, we optimized and fine-tuned a differentiation protocol using a combination of small molecules and growth factors to induce mDA progenitors to comply with good manufacturing practice (GMP) guidelines based on our clinical-grade human embryonic stem cell (hESC) line. KEY FINDINGS The resulting mDA progenitors demonstrated robust differentiation and functional properties in vitro. Moreover, cryopreserved mDA progenitors were transplanted into 6-hydroxydopamine-lesioned rats, leading to functional recovery. SIGNIFICANCE We demonstrate that our optimized protocol using a clinical hESC line is suitable for generating clinical-grade mDA progenitors and provides the ground work for future translational applications.
Collapse
Affiliation(s)
- Somayeh Naderi
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Zarei-Kheirabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parastoo Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meghdad Yeganeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahare Badri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
85
|
Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, Na CL, Ma L, Montminy MM, Bawa P, Villacorta-Martin C, Mehta P, Kotton DN. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 2023; 30:1217-1234.e7. [PMID: 37625412 PMCID: PMC10529386 DOI: 10.1016/j.stem.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells. After months in vivo, donor-derived cells retain their mature phenotypes, as characterized by single-cell RNA sequencing (scRNA-seq), histologic profiling, and functional assessment that demonstrates continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung's facultative progenitor and differentiated epithelial cell compartments with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy that can be utilized to better understand the mechanisms and utility of engraftment.
Collapse
Affiliation(s)
- Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - McKenna M Montminy
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
86
|
Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, Li S. Cell-therapy for Parkinson's disease: a systematic review and meta-analysis. J Transl Med 2023; 21:601. [PMID: 37679754 PMCID: PMC10483810 DOI: 10.1186/s12967-023-04484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengwu Sun
- Department of Clinical Pharmacy, Central Hospital of Dalian University of Technology, Dalian, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shikha Gianchandani
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Beijing, 100038, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
87
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
88
|
Barker RA, Carpenter M, Jamieson CHM, Murry CE, Pellegrini G, Rao RC, Song J. Lessons learnt, and still to learn, in first in human stem cell trials. Stem Cell Reports 2023; 18:1599-1609. [PMID: 36563687 PMCID: PMC10444539 DOI: 10.1016/j.stemcr.2022.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Developing cellular therapies is not straightforward. This Perspective summarizes the experience of a group of academic stem cell investigators working in different clinical areas and aims to share insight into what we wished we knew before starting. These include (1) choosing the stem cell line and assessing the genome of both the starting and final product, (2) familiarity with GMP manufacturing, reagent validation, and supply chain management, (3) product delivery issues and the additional regulatory challenges, (4) the relationship between clinical trial design and preclinical studies, and (5) the market approval requirements, pathways, and partnerships needed.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Institute, John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0QQ, UK.
| | | | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Clinical Center, University of California San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive #0695, La Jolla, CA 92037-0695, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, Center for Cardiovascular Biology; Departments of Laboratory Medicine & Pathology, Bioengineering, and Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rajesh C Rao
- Departments of Ophthalmology & Visual Sciences, Pathology, and Human Genetics, University of Michigan, Surgery Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Jihwan Song
- Jihwan Song, Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea; iPS Bio, Inc., 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
89
|
Feng L, Chao J, Ye P, Luong Q, Sun G, Liu W, Cui Q, Flores S, Jackson N, Shayento ANH, Sun G, Liu Z, Hu W, Shi Y. Developing Hypoimmunogenic Human iPSC-Derived Oligodendrocyte Progenitor Cells as an Off-The-Shelf Cell Therapy for Myelin Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206910. [PMID: 37271923 PMCID: PMC10427412 DOI: 10.1002/advs.202206910] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Demyelinating disorders are among the most common and debilitating diseases in neurology. Canavan disease (CD) is a lethal demyelinating disease caused by mutation of the aspartoacylase (ASPA) gene, which leads to the accumulation of its substrate N-acetyl-l-aspartate (NAA), and consequently demyelination and vacuolation in the brain. In this study, hypoimmunogenic human induced pluripotent stem cell (iPSC)-derived oligodendrocyte progenitor cells (OPC) are developed from a healthy donor as an "off-the-shelf" cell therapy. Hypoimmunogenic iPSCs are generated through CRISPR/Cas9 editing of the human leukocyte antigen (HLA) molecules in healthy donor-derived iPSCs and differentiated into OPCs. The OPCs are engrafted into the brains of CD (nur7) mice and exhibit widespread distribution in the brain. The engrafted OPCs mature into oligodendrocytes that express the endogenous wildtype ASPA gene. Consequently, the transplanted mice exhibit elevated human ASPA expression and enzymatic activity and reduced NAA level in the brain. The transplanted OPCs are able to rescue major pathological features of CD, including defective myelination, extensive vacuolation, and motor function deficits. Moreover, the hypoimmunogenic OPCs exhibit low immunogenicity both in vitro and in vivo. The hypoimmunogenic OPCs can be used as "off-the-shelf" universal donor cells to treat various CD patients and many other demyelinating disorders, especially autoimmune demyelinating diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qui Luong
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guoqiang Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Sergio Flores
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Natasha Jackson
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Afm Nazmul Hoque Shayento
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Zhenqing Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Department of Immunology and TheranosticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
90
|
Nakamura R, Nonaka R, Oyama G, Jo T, Kamo H, Nuermaimaiti M, Akamatsu W, Ishikawa KI, Hattori N. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson's disease. Front Neurosci 2023; 17:1202027. [PMID: 37502682 PMCID: PMC10368972 DOI: 10.3389/fnins.2023.1202027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor functions; it is caused by the loss of midbrain dopaminergic (mDA) neurons. The therapeutic effects of transplanting human-induced pluripotent stem cell (iPSC)-derived mDA neural progenitor cells in animal PD models are known and are being evaluated in an ongoing clinical trial. However, However, improvements in the safety and efficiency of differentiation-inducing methods are crucial for providing a larger scale of cell therapy studies. This study aimed to investigate the usefulness of dopaminergic progenitor cells derived from human iPSCs by our previously reported method, which promotes differentiation and neuronal maturation by treating iPSCs with three inhibitors at the start of induction. Methods Healthy subject-derived iPS cells were induced into mDA progenitor cells by the CTraS-mediated method we previously reported, and their proprieties and dopaminergic differentiation efficiency were examined in vitro. Then, the induced mDA progenitors were transplanted into 6-hydroxydopamine-lesioned PD model mice, and their efficacy in improving motor function, cell viability, and differentiation ability in vivo was evaluated for 16 weeks. Results Approximately ≥80% of cells induced by this method without sorting expressed mDA progenitor markers and differentiated primarily into A9 dopaminergic neurons in vitro. After transplantation in 6-hydroxydopamine-lesioned PD model mice, more than 90% of the engrafted cells differentiated into the lineage of mDA neurons, and approximately 15% developed into mature mDA neurons without tumour formation. The grafted PD model mice also demonstrated significantly improved motor functions. Conclusion This study suggests that the differentiation protocol for the preparation of mDA progenitors is a promising option for cell therapy in patients with PD.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Risa Nonaka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Maierdanjiang Nuermaimaiti
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
91
|
Wang Y, Xia Y, Kou L, Yin S, Chi X, Li J, Sun Y, Wu J, Zhou Q, Zou W, Jin Z, Huang J, Xiong N, Wang T. Astrocyte-to-neuron reprogramming and crosstalk in the treatment of Parkinson's disease. Neurobiol Dis 2023:106224. [PMID: 37433411 DOI: 10.1016/j.nbd.2023.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Parkinson's disease (PD) is currently the fastest growing disabling neurological disorder worldwide, with motor and non-motor symptoms being its main clinical manifestations. The primary pathological features include a reduction in the number of dopaminergic neurons in the substantia nigra and decrease in dopamine levels in the nigrostriatal pathway. Existing treatments only alleviate clinical symptoms and do not stop disease progression; slowing down the loss of dopaminergic neurons and stimulating their regeneration are emerging therapies. Preclinical studies have demonstrated that transplantation of dopamine cells generated from human embryonic or induced pluripotent stem cells can restore the loss of dopamine. However, the application of cell transplantation is limited owing to ethical controversies and the restricted source of cells. Until recently, the reprogramming of astrocytes to replenish lost dopaminergic neurons has provided a promising alternative therapy for PD. In addition, repair of mitochondrial perturbations, clearance of damaged mitochondria in astrocytes, and control of astrocyte inflammation may be extensively neuroprotective and beneficial against chronic neuroinflammation in PD. Therefore, this review primarily focuses on the progress and remaining issues in astrocyte reprogramming using transcription factors (TFs) and miRNAs, as well as exploring possible new targets for treating PD by repairing astrocytic mitochondria and reducing astrocytic inflammation.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
92
|
Park TY, Jeon J, Lee N, Kim J, Song B, Kim JH, Lee SK, Liu D, Cha Y, Kim M, Leblanc P, Herrington TM, Carter BS, Schweitzer JS, Kim KS. Co-transplantation of autologous T reg cells in a cell therapy for Parkinson's disease. Nature 2023; 619:606-615. [PMID: 37438521 DOI: 10.1038/s41586-023-06300-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Nayeon Lee
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jisun Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Bin Song
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jung-Ho Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Good T Cells, Inc., Seoul, Republic of Korea
| | - Dongxin Liu
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Minseon Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
93
|
Hills R, Mossman JA, Bratt-Leal AM, Tran H, Williams RM, Stouffer DG, Sokolova IV, Sanna PP, Loring JF, Lelos MJ. Neurite Outgrowth and Gene Expression Profile Correlate with Efficacy of Human Induced Pluripotent Stem Cell-Derived Dopamine Neuron Grafts. Stem Cells Dev 2023; 32:387-397. [PMID: 37166357 PMCID: PMC10398740 DOI: 10.1089/scd.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Transplantation of human induced pluripotent stem cell-derived dopaminergic (iPSC-DA) neurons is a promising therapeutic strategy for Parkinson's disease (PD). To assess optimal cell characteristics and reproducibility, we evaluated the efficacy of iPSC-DA neuron precursors from two individuals with sporadic PD by transplantation into a hemiparkinsonian rat model after differentiation for either 18 (d18) or 25 days (d25). We found similar graft size and dopamine (DA) neuron content in both groups, but only the d18 cells resulted in recovery of motor impairments. In contrast, we report that d25 grafts survived equally as well and produced grafts rich in tyrosine hydroxylase-positive neurons, but were incapable of alleviating any motor deficits. We identified the mechanism of action as the extent of neurite outgrowth into the host brain, with d18 grafts supporting significantly more neurite outgrowth than nonfunctional d25 grafts. RNAseq analysis of the cell preparation suggests that graft efficacy may be enhanced by repression of differentiation-associated genes by REST, defining the optimal predifferentiation state for transplantation. This study demonstrates for the first time that DA neuron grafts can survive well in vivo while completely lacking the capacity to induce recovery from motor dysfunction. In contrast to other recent studies, we demonstrate that neurite outgrowth is the key factor determining graft efficacy and our gene expression profiling revealed characteristics of the cells that may predict their efficacy. These data have implication for the generation of DA neuron grafts for clinical application.
Collapse
Affiliation(s)
- Rachel Hills
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jim A. Mossman
- Independent Bioinformatics Consultant, Del Mar, California, USA
| | - Andres M. Bratt-Leal
- Department of Molecular Medicine, Center for Regenerative Medicine, Scripps Research, La Jolla, California, USA
- Summit for Stem Cell Foundation, San Diego, California, USA
| | - Ha Tran
- Department of Molecular Medicine, Center for Regenerative Medicine, Scripps Research, La Jolla, California, USA
- Summit for Stem Cell Foundation, San Diego, California, USA
| | - Roy M. Williams
- Department of Molecular Medicine, Center for Regenerative Medicine, Scripps Research, La Jolla, California, USA
| | - David G. Stouffer
- Department of Molecular Medicine, Center for Regenerative Medicine, Scripps Research, La Jolla, California, USA
| | - Irina V. Sokolova
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Pietro P. Sanna
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Jeanne F. Loring
- Department of Molecular Medicine, Center for Regenerative Medicine, Scripps Research, La Jolla, California, USA
| | - Mariah J. Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
94
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
95
|
Ito E, Kawamura A, Kawamura T, Takeda M, Harada A, Mochizuki-Oda N, Sawa Y, Miyagawa S. Establishment of a protocol to administer immunosuppressive drugs for iPS cell-derived cardiomyocyte patch transplantation in a rat myocardial infarction model. Sci Rep 2023; 13:10530. [PMID: 37385993 PMCID: PMC10310705 DOI: 10.1038/s41598-023-37235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
Transplantation of human allogeneic induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a new, promising treatment for severe heart failure. However, immunorejection is a significant concern in allogeneic hiPSC-CM transplantation, requiring the administration of several immunosuppressive agents. An appropriate protocol for the administration of immunosuppressants may substantially affect the efficacy of hiPSC-CM transplantation in case of heart failure owing to allogeneic transplantation. In this study, we investigated the effect of immunosuppressant administration duration on the efficacy and safety of allogenic hiPSC-CM patch transplantation. We used a rat model of myocardial infarction to evaluate cardiac function using echocardiography six months after the transplantation of hiPSC-CM patches with immunosuppressant administration for either two or four months and compared them to control rats (sham operation, no immunosuppressant administration). Histological analysis performed at 6 months after hiPSC-CM patch transplantation revealed significant improvement in cardiac function in immunosuppressant-treated rats compared with those in the control group. Moreover, fibrosis and cardiomyocyte size was significantly reduced and the number of structurally mature blood vessels was significantly increased in the immunosuppressant-treated rats compared to control rats. However, there were no significant differences between the two immunosuppressant-treated groups. Our results show that prolonged administration of immunosuppressive agents did not enhance the effectiveness of hiPSC-CM patch transplantation, and therefore, highlight the importance of an appropriate immunological regimen for the clinical application of such transplantation.
Collapse
Affiliation(s)
- Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriko Mochizuki-Oda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
96
|
Park JC, Park MJ, Lee SY, Kim D, Kim KT, Jang HK, Cha HJ. Gene editing with 'pencil' rather than 'scissors' in human pluripotent stem cells. Stem Cell Res Ther 2023; 14:164. [PMID: 37340491 PMCID: PMC10283231 DOI: 10.1186/s13287-023-03394-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Owing to the advances in genome editing technologies, research on human pluripotent stem cells (hPSCs) have recently undergone breakthroughs that enable precise alteration of desired nucleotide bases in hPSCs for the creation of isogenic disease models or for autologous ex vivo cell therapy. As pathogenic variants largely consist of point mutations, precise substitution of mutated bases in hPSCs allows researchers study disease mechanisms with "disease-in-a-dish" and provide functionally repaired cells to patients for cell therapy. To this end, in addition to utilizing the conventional homologous directed repair system in the knock-in strategy based on endonuclease activity of Cas9 (i.e., 'scissors' like gene editing), diverse toolkits for editing the desirable bases (i.e., 'pencils' like gene editing) that avoid the accidental insertion and deletion (indel) mutations as well as large harmful deletions have been developed. In this review, we summarize the recent progress in genome editing methodologies and employment of hPSCs for future translational applications.
Collapse
Affiliation(s)
- Ju-Chan Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Mihn Jeong Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea.
| |
Collapse
|
97
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
98
|
Rájová J, Davidsson M, Avallone M, Hartnor M, Aldrin-Kirk P, Cardoso T, Nolbrant S, Mollbrink A, Storm P, Heuer A, Parmar M, Björklund T. Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo. Mol Ther Methods Clin Dev 2023; 29:381-394. [PMID: 37251982 PMCID: PMC10209706 DOI: 10.1016/j.omtm.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.
Collapse
Affiliation(s)
- Jana Rájová
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Martino Avallone
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
99
|
Huang H, Sanberg PR, Moviglia GA, Sharma A, Chen L, Chen D. Clinical results of neurorestorative cell therapies and therapeutic indications according to cellular bio-proprieties. Regen Ther 2023; 23:52-59. [PMID: 37122360 PMCID: PMC10130496 DOI: 10.1016/j.reth.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Cell therapies have been explored to treat patients with nervous diseases for over 20 years. Even though most kinds of cell therapies demonstrated neurorestorative effects in non-randomized clinical trials; the effects of the majority type cells could not be confirmed by randomized controlled trials. In this review, clinical therapeutic results of neurorestorative cell therapies according to cellular bio-proprieties or cellular functions were introduced. Currently it was demonstrated from analysis of this review that some indications of cell therapies were not appropriate, they might be reasons why their neurorestorative effects could not be proved by multicenter, randomized, double blind, placebo-controlled clinical trials. Theoretically if one kind of cell therapy has neurorestorative effects according to its cellular bio-proprieties, it should have appropriate indications. The cell therapies with special bio-properties is promising if the indication selections are appropriate, such as olfactory ensheathing cells for chronic ischemic stroke, and their neurorestorative effects can be confirmed by higher level clinical trials of evidence-based medicine.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
- Corresponding author.
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, Florida, USA
| | | | - Alok Sharma
- Department of Neurosurgery, LTM Medical College, LTMG Hospital, Mumbai, India
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Di Chen
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
| |
Collapse
|
100
|
Abstract
Bridging knowledge gaps could enable regenerative therapy.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Standford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shruti Naik
- Department of Pathology, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Langone Health, New York, NY, USA
- Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| |
Collapse
|