51
|
York LM, Silberbush M, Lynch JP. Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3763-75. [PMID: 27037741 PMCID: PMC6371413 DOI: 10.1093/jxb/erw133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal.
Collapse
Affiliation(s)
- Larry M York
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA Intercollege Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Moshe Silberbush
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA Ben-Gurion University of the Negev, J. Blaustein Institute for Desert Research/French Institute of Dryland Agricultural Biotechnology, Sede-Boqer Campus, 84990 Israel
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
52
|
Topp CN, Bray AL, Ellis NA, Liu Z. How can we harness quantitative genetic variation in crop root systems for agricultural improvement? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:213-25. [PMID: 26911925 DOI: 10.1111/jipb.12470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains.
Collapse
Affiliation(s)
| | - Adam L Bray
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Nathanael A Ellis
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Zhengbin Liu
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| |
Collapse
|
53
|
Tai H, Lu X, Opitz N, Marcon C, Paschold A, Lithio A, Nettleton D, Hochholdinger F. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1123-35. [PMID: 26628518 PMCID: PMC4753849 DOI: 10.1093/jxb/erv513] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.
Collapse
Affiliation(s)
- Huanhuan Tai
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Xin Lu
- Experimental Medicine and Therapy Research, University of Regensburg, D-93053 Regensburg, Germany
| | - Nina Opitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Caroline Marcon
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Anja Paschold
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| | - Andrew Lithio
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011-1210, USA
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
54
|
LEGGETT M, NEWLANDS NK, GREENSHIELDS D, WEST L, INMAN S, KOIVUNEN ME. Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials. THE JOURNAL OF AGRICULTURAL SCIENCE 2015; 153:1464-1478. [PMID: 26500375 PMCID: PMC4611360 DOI: 10.1017/s0021859614001166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 05/29/2023]
Abstract
Findings from multi-year, multi-site field trial experiments measuring maize yield response to inoculation with the phosphorus-solubilizing fungus, Penicillium bilaiae Chalabuda are presented. The main objective was to evaluate representative data on crop response to the inoculant across a broad set of different soil, agronomic management and climate conditions. A statistical analysis of crop yield response and its variability was conducted to guide further implementation of a stratified trial and sampling plan. Field trials, analysed in the present study, were conducted across the major maize producing agricultural cropland of the United States (2005-11) comprising 92 small (with sampling replication) and 369 large (without replication) trials. The multi-plot design enabled both a determination of how sampling area affects the estimation of maize yield and yield variance and an estimation of the ability of inoculation with P. bilaiae to increase maize yield. Inoculation increased maize yield in 66 of the 92 small and 295 of the 369 large field trials (within the small plots, yield increased significantly at the 95% confidence level, by 0·17 ± 0·044 t/ha or 1·8%, while in the larger plots, yield increases were higher and less variable (i.e., 0·33 ± 0·026 t/ha or 3·5%). There was considerable inter-annual variability in maize yield response attributed to inoculation compared to the un-inoculated control, with yield increases varying from 0·7 ± 0·75 up to 3·7 ± 0·73%. No significant correlation between yield response and soil acidity (i.e., pH) was detected, and it appears that pH reduction (through organic acid or proton efflux) was unlikely to be the primary pathway for better phosphorus availability measured as increased yield. Seed treatment and granular or dribble band formulations of the inoculant were found to be equally effective. Inoculation was most effective at increasing maize yield in fields that had low or very low soil phosphorus status for both small and large plots. At higher levels of soil phosphorus, yield in the large plots increased more with inoculation than in the small plots, which could be explained by phosphorus fertilization histories for the different field locations, as well as transient (e.g., rainfall) and topographic effects.
Collapse
Affiliation(s)
- M. LEGGETT
- Novozymes BioAg Ltd., 3935 Thatcher Avenue, Saskatoon, SK S7R 1A3, Canada
| | - N. K. NEWLANDS
- Science and Technology Branch (S&T), Agriculture and Agri-Food Canada (AAFC), Lethbridge Research Centre, 5403 1st. Ave. S., P.O. Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - D. GREENSHIELDS
- Novozymes BioAg Ltd., 3935 Thatcher Avenue, Saskatoon, SK S7R 1A3, Canada
| | - L. WEST
- Novozymes Biologicals Inc., 5400 Corporate Circle, Salem, VA 24153, USA
| | - S. INMAN
- Gowan Company, LLC, 370 S. Main Street, Yuma, AZ 85364, USA
| | - M. E. KOIVUNEN
- College of Agriculture, Plumas Hall 104 California State University, Chico, CA 95929-0310, USA
| |
Collapse
|
55
|
York LM, Lynch JP. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5493-505. [PMID: 26041317 PMCID: PMC4585417 DOI: 10.1093/jxb/erv241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition.
Collapse
Affiliation(s)
- Larry M York
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA Ecology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA Ecology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
56
|
da Silva A, Bruno IP, Franzini VI, Marcante NC, Benitiz L, Muraoka T. Phosphorus uptake efficiency, root morphology and architecture in Brazilian wheat cultivars. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4282-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
57
|
Paez-Garcia A, Motes CM, Scheible WR, Chen R, Blancaflor EB, Monteros MJ. Root Traits and Phenotyping Strategies for Plant Improvement. PLANTS (BASEL, SWITZERLAND) 2015; 4:334-55. [PMID: 27135332 PMCID: PMC4844329 DOI: 10.3390/plants4020334] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.
Collapse
Affiliation(s)
- Ana Paez-Garcia
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | - Christy M Motes
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | - Wolf-Rüdiger Scheible
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | - Rujin Chen
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | - Elison B Blancaflor
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| | - Maria J Monteros
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
| |
Collapse
|
58
|
Zhan A, Lynch JP. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2055-65. [PMID: 25680794 PMCID: PMC4378636 DOI: 10.1093/jxb/erv007] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 05/17/2023]
Abstract
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deeper rooting, and greater N acquisition than lines with many but short (MS) lateral roots. Maize recombinant inbred lines contrasting in lateral root number and length were grown with adequate and suboptimal N in greenhouse mesocosms and in the field in the USA and South Africa (SA). In low-N mesocosms, the FL phenotype had substantially reduced root respiration and greater rooting depth than the MS phenotype. In low-N fields in the USA and SA, the FL phenotype had greater rooting depth, shoot N content, leaf photosynthesis, and shoot biomass than the MS phenotype. The FL phenotype yielded 31.5% more than the MS phenotype under low N in the USA. Our results are consistent with the hypothesis that sparse but long lateral roots improve N capture from low-N soils. These results with maize probably pertain to other species. The FL lateral root phenotype merits consideration as a selection target for greater crop N efficiency.
Collapse
Affiliation(s)
- Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
59
|
Gao K, Chen F, Yuan L, Zhang F, Mi G. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. PLANT, CELL & ENVIRONMENT 2015; 38:740-50. [PMID: 25159094 DOI: 10.1111/pce.12439] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 05/13/2023]
Abstract
The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil.
Collapse
Affiliation(s)
- Kun Gao
- Key Laboratory of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
60
|
York LM, Galindo-Castañeda T, Schussler JR, Lynch JP. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2347-58. [PMID: 25795737 PMCID: PMC4407655 DOI: 10.1093/jxb/erv074] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/29/2014] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains.
Collapse
Affiliation(s)
- Larry M York
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA Ecology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tania Galindo-Castañeda
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
61
|
Ning P, Li S, White PJ, Li C. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen. PLoS One 2015; 10:e0121892. [PMID: 25799291 PMCID: PMC4370465 DOI: 10.1371/journal.pone.0121892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.
Collapse
Affiliation(s)
- Peng Ning
- Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Sa Li
- Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Philip J. White
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Chunjian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
62
|
Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, De Vita P, Mastrangelo AM. Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 2014; 290:785-806. [PMID: 25416422 DOI: 10.1007/s00438-014-0957-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.
Collapse
Affiliation(s)
- Maria Petrarulo
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Cereal Research Centre, SS 673 km 25.200, 71122, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
63
|
Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR, Hanlon MT, Kaeppler SM, Brown KM, Lynch JP. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2293-311. [PMID: 25230896 DOI: 10.1007/s00122-014-2353-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/04/2014] [Indexed: 05/22/2023]
Abstract
QTL were identified for root architectural traits in maize. Root architectural traits, including the number, length, orientation, and branching of the principal root classes, influence plant function by determining the spatial and temporal domains of soil exploration. To characterize phenotypic patterns and their genetic control, three recombinant inbred populations of maize were grown for 28 days in solid media in a greenhouse and evaluated for 21 root architectural traits, including length, number, diameter, and branching of seminal, primary and nodal roots, dry weight of embryonic and nodal systems, and diameter of the nodal root system. Significant phenotypic variation was observed for all traits. Strong correlations were observed among traits in the same root class, particularly for the length of the main root axis and the length of lateral roots. In a principal component analysis, relationships among traits differed slightly for the three families, though vectors grouped together for traits within a given root class, indicating opportunities for more efficient phenotyping. Allometric analysis showed that trajectories of growth for specific traits differ in the three populations. In total, 15 quantitative trait loci (QTL) were identified. QTL are reported for length in multiple root classes, diameter and number of seminal roots, and dry weight of the embryonic and nodal root systems. Phenotypic variation explained by individual QTL ranged from 0.44% (number of seminal roots, NyH population) to 13.5% (shoot dry weight, OhW population). Identification of QTL for root architectural traits may be useful for developing genotypes that are better suited to specific soil environments.
Collapse
Affiliation(s)
- Amy L Burton
- Department of Plant Science, The Pennsylvania State University, 102 Tyson Building, University Park, PA, 16801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Yu P, White PJ, Hochholdinger F, Li C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. PLANTA 2014; 240:667-78. [PMID: 25143250 DOI: 10.1007/s00425-014-2150-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 05/03/2023]
Abstract
Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, People's Republic of China
| | | | | | | |
Collapse
|
65
|
Giehl RFH, Gruber BD, von Wirén N. It's time to make changes: modulation of root system architecture by nutrient signals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:769-78. [PMID: 24353245 DOI: 10.1093/jxb/ert421] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, D-06466, Gatersleben, Germany
| | | | | |
Collapse
|
66
|
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:95-123. [PMID: 24579991 DOI: 10.1146/annurev-arplant-050213-035949] [Citation(s) in RCA: 391] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.
Collapse
|
67
|
Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. ANNALS OF BOTANY 2013; 112:347-57. [PMID: 23328767 PMCID: PMC3698384 DOI: 10.1093/aob/mcs293] [Citation(s) in RCA: 538] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/21/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
68
|
Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. ANNALS OF BOTANY 2013; 112:381-9. [PMID: 23172414 PMCID: PMC3698377 DOI: 10.1093/aob/mcs245] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. METHODS Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus ['Tapidor' × 'Ningyou 7' (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. KEY RESULTS In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. CONCLUSIONS High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Taoxiong Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Martin R. Broadley
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | | | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - John P. Hammond
- School of Plant Biology and Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
69
|
Gutjahr C, Paszkowski U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:204. [PMID: 23785383 PMCID: PMC3684781 DOI: 10.3389/fpls.2013.00204] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/31/2013] [Indexed: 05/18/2023]
Abstract
In nature, the root systems of most plants develop intimate symbioses with glomeromycotan fungi that assist in the acquisition of mineral nutrients and water through uptake from the soil and direct delivery into the root cortex. Root systems are endowed with a strong, environment-responsive architectural plasticity that also manifests itself during the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root proliferation. In this review, we collect evidence for the idea that AM-induced root system remodeling is regulated at several levels: by AM fungal signaling molecules and by changes in plant nutrient status and distribution within the root system.
Collapse
Affiliation(s)
| | - Uta Paszkowski
- Department of Plant Sciences, University of CambridgeCambridge, UK
| |
Collapse
|
70
|
Postma JA, Lynch JP. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. ANNALS OF BOTANY 2012; 110:521-34. [PMID: 22523423 PMCID: PMC3394648 DOI: 10.1093/aob/mcs082] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures. METHODS A functional-structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils. KEY RESULTS Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production. CONCLUSIONS We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.
Collapse
Affiliation(s)
- Johannes A. Postma
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P. Lynch
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
71
|
Ingram PA, Zhu J, Shariff A, Davis IW, Benfey PN, Elich T. High-throughput imaging and analysis of root system architecture in Brachypodium distachyon under differential nutrient availability. Philos Trans R Soc Lond B Biol Sci 2012; 367:1559-69. [PMID: 22527399 PMCID: PMC3321691 DOI: 10.1098/rstb.2011.0241] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitrogen (N) and phosphorus (P) deficiency are primary constraints for plant productivity, and root system architecture (RSA) plays a vital role in the acquisition of these nutrients. The genetic determinants of RSA are poorly understood, primarily owing to the complexity of crop genomes and the lack of sufficient RSA phenotyping methods. The objective of this study was to characterize the RSA of two Brachypodium distachyon accessions under different nutrient availability. To do so, we used a high-throughput plant growth and imaging platform, and developed software that quantified 19 different RSA traits. We found significant differences in RSA between two Brachypodium accessions grown on nutrient-rich, low-N and low-P conditions. More specifically, one accession maintained axile root growth under low N, while the other accession maintained lateral root growth under low P. These traits resemble the RSA of crops adapted to low-N and -P conditions, respectively. Furthermore, we found that a number of these traits were highly heritable. This work lays the foundation for future identification of important genetic components of RSA traits under nutrient limitation using a mapping population derived from these two accessions.
Collapse
Affiliation(s)
| | | | | | | | - Philip N. Benfey
- GrassRoots Biotechnology, Durham, NC, USA
- Department of Biology and Center for Systems Biology, Duke University, Durham, NC, USA
| | - Tedd Elich
- GrassRoots Biotechnology, Durham, NC, USA
| |
Collapse
|
72
|
Postma JA, Lynch JP. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. PLANT PHYSIOLOGY 2011; 156:1190-201. [PMID: 21628631 PMCID: PMC3135917 DOI: 10.1104/pp.111.175489] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, and potassium by reducing the metabolic costs of soil exploration in maize (Zea mays). RCA increased the growth of simulated 40-d-old maize plants up to 55%, 54%, or 72% on low nitrogen, phosphorus, or potassium soil, respectively, and reduced critical fertility levels by 13%, 12%, or 7%, respectively. The greater utility of RCA on low-potassium soils is associated with the fact that root growth in potassium-deficient plants was more carbon limited than in phosphorus- and nitrogen-deficient plants. In contrast to potassium-deficient plants, phosphorus- and nitrogen-deficient plants allocate more carbon to the root system as the deficiency develops. The utility of RCA also depended on other root phenes and environmental factors. On low-phosphorus soils (7.5 μM), the utility of RCA was 2.9 times greater in plants with increased lateral branching density than in plants with normal branching. On low-nitrate soils, the utility of RCA formation was 56% greater in coarser soils with high nitrate leaching. Large genetic variation in RCA formation and the utility of RCA for a range of stresses position RCA as an interesting crop-breeding target for enhanced soil resource acquisition.
Collapse
Affiliation(s)
| | - Jonathan Paul Lynch
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
73
|
Lynch JP. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. PLANT PHYSIOLOGY 2011; 156:1041-9. [PMID: 21610180 PMCID: PMC3135935 DOI: 10.1104/pp.111.175414] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/23/2011] [Indexed: 05/17/2023]
Affiliation(s)
- Jonathan P Lynch
- Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
74
|
Zhu J, Ingram PA, Benfey PN, Elich T. From lab to field, new approaches to phenotyping root system architecture. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:310-7. [PMID: 21530367 DOI: 10.1016/j.pbi.2011.03.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 05/18/2023]
Abstract
Plant root system architecture (RSA) is plastic and dynamic, allowing plants to respond to their environment in order to optimize acquisition of important soil resources. A number of RSA traits are known to be correlated with improved crop performance. There is increasing recognition that future gains in productivity, especially under low input conditions, can be achieved through optimization of RSA. However, realization of this goal has been hampered by low resolution and low throughput approaches for characterizing RSA. To overcome these limitations, new methods are being developed to facilitate high throughput and high content RSA phenotyping. Here we summarize laboratory and field approaches for phenotyping RSA, drawing particular attention to recent advances in plant imaging and analysis. Improvements in phenotyping will facilitate the genetic analysis of RSA and aid in the identification of the genetic loci underlying useful agronomic traits.
Collapse
|
75
|
Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV. Three-dimensional root phenotyping with a novel imaging and software platform. PLANT PHYSIOLOGY 2011; 156:455-65. [PMID: 21454799 PMCID: PMC3177249 DOI: 10.1104/pp.110.169102] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/22/2011] [Indexed: 05/17/2023]
Abstract
A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform's capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leon V. Kochian
- Department of Biological and Environmental Engineering (R.T.C., D.J.A.), Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service (R.T.C., J.E.S., L.V.K.), Department of Mechanical and Aerospace Engineering (R.B.M.), and Department of Plant Breeding and Genetics (J.K.J., S.R.M.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
76
|
Postma JA, Lynch JP. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. ANNALS OF BOTANY 2011; 107:829-41. [PMID: 20971728 PMCID: PMC3077978 DOI: 10.1093/aob/mcq199] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/19/2010] [Accepted: 08/31/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration. METHODS To test the quantitative logic of the hypothesis, SimRoot, a functional-structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO(2) environments was simulated. KEY RESULTS The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO(2) in future climates will not significantly effect the benefits of having RCA. CONCLUSIONS The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more 'expensive' root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.
Collapse
Affiliation(s)
| | - Jonathan P. Lynch
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
77
|
Mi G, Chen F, Wu Q, Lai N, Yuan L, Zhang F. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1369-73. [PMID: 21181338 DOI: 10.1007/s11427-010-4097-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 06/28/2010] [Indexed: 11/29/2022]
Abstract
The use of nitrogen (N) fertilizers has contributed to the production of a food supply sufficient for both animals and humans despite some negative environmental impact. Sustaining food production by increasing N use efficiency in intensive cropping systems has become a major concern for scientists, environmental groups, and agricultural policymakers worldwide. In high-yielding maize systems the major method of N loss is nitrate leaching. In this review paper, the characteristic of nitrate movement in the soil, N uptake by maize as well as the regulation of root growth by soil N availability are discussed. We suggest that an ideotype root architecture for efficient N acquisition in maize should include (i) deeper roots with high activity that are able to uptake nitrate before it moves downward into deep soil; (ii) vigorous lateral root growth under high N input conditions so as to increase spatial N availability in the soil; and (iii) strong response of lateral root growth to localized nitrogen supply so as to utilize unevenly distributed nitrate especially under limited N conditions.
Collapse
Affiliation(s)
- Guohua Mi
- Key Laboratory of Plant Nutrition, MOA, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
78
|
Suriyagoda LDB, Ryan MH, Renton M, Lambers H. Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. ANNALS OF BOTANY 2010; 105:755-67. [PMID: 20421234 PMCID: PMC2859915 DOI: 10.1093/aob/mcq040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/13/2010] [Accepted: 01/29/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Many Australian legumes have evolved in low-phosphorus (P) soils and low-rainfall areas. Therefore a study was made of the interaction of soil [P] and water availability on growth, photosynthesis, water-use efficiency (WUE) and P nutrition of two Australian native legumes with pasture potential, Cullen australasicum and C. pallidum, and the widely grown exotic pasture legume, lucerne (Medicago sativa). METHODS Plants were grown in a glasshouse at 3, 10 and 30 mg P kg(-1) dry soil for 5 months. At week 10, two drought treatments were imposed, total pot dried (all-dry) and only top soil dried (top-dry), while control pots were maintained at field capacity. KEY RESULTS Shoot dry weight produced by lucerne was never higher than that of C. australasicum. For C. pallidum only, shoot dry weight was reduced at 30 mg P kg(-1) dry soil. The small root system of the Cullen species was quite plastic, allowing plants to access P and moisture efficiently. Lucerne always had a higher proportion of its large root system in the top soil layer compared with Cullen species. All species showed decreased photosynthesis, leaf water potential and stomatal conductance when exposed to drought, but the reductions were less for Cullen species, due to tighter stomatal control, and consequently they achieved a higher WUE. All species showed highest rhizosphere carboxylate concentrations in the all-dry treatment. For lucerne only, carboxylates decreased as P supply increased. Citrate was the main carboxylate in the control and top-dry treatments, and malate in the all-dry treatment. CONCLUSIONS Multiple adaptive responses of Cullen species and lucerne favoured exploitation of low-P soils under drought. The performance of undomesticated Cullen species, relative to that of lucerne, shows their promise as pasture species for environments such as in south-western Australia where water and P are limiting, especially in view of a predicted drying and warming climate.
Collapse
Affiliation(s)
- Lalith D B Suriyagoda
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | | | |
Collapse
|
79
|
Zhu J, Brown KM, Lynch JP. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). PLANT, CELL & ENVIRONMENT 2010; 33:740-9. [PMID: 20519019 DOI: 10.1111/j.1365-3040.2009.02099.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
80
|
Li H, Smith SE, Ophel-Keller K, Holloway RE, Smith FA. Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:124-130. [PMID: 32688763 DOI: 10.1071/fp07202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/22/2008] [Indexed: 06/11/2023]
Abstract
We investigated the roles of naturally occurring arbuscular mycorrhizal (AM) fungi in phosphorus (P) uptake by wheat (Triticum aestivum L.) in a calcareous, P-fixing soil. Plants grew in a main pot containing autoclaved soil (NM) or autoclaved soil mixed with non-autoclaved soil (to provide inoculum of naturally occurring AM fungi; AM). Granular (GP; monoammonium phosphate) or fluid (FP; ammonium polyphosphate) fertilisers were applied in small compartments (PCs) within a main pot, to which either roots plus hyphae (-Mesh) or hyphae only (+Mesh) had access. Controls received no additional P (NP). Inoculated plants were well colonised by AM fungi. AM growth depressions were observed in -Mesh treatments with NP and GP, but not with FP. Neither AM growth nor P responses were observed in +Mesh treatments. AM plants had much higher P uptake than NM plants, regardless of the P and mesh treatments. Total P uptake by NM plants increased with FP in -Mesh, but was unaffected by either form of P in the +Mesh treatments. Total P uptake by AM plants was similar between -Mesh and +Mesh treatments, regardless of applied P, showing that roots plus hyphae and hyphae alone have the same ability to obtain P. Thus, hyphae can take over the roles of roots in P uptake when roots are not able to access P sources.
Collapse
Affiliation(s)
- Huiying Li
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, DX650636, The University of Adelaide, SA 5005, Australia
| | - Sally E Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, DX650636, The University of Adelaide, SA 5005, Australia
| | - Kathy Ophel-Keller
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, DX650636, The University of Adelaide, SA 5005, Australia
| | - Robert E Holloway
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, DX650636, The University of Adelaide, SA 5005, Australia
| | - F Andrew Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, DX650636, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
81
|
|
82
|
Liao M, Hocking PJ, Dong B, Delhaize E, Richardson AE, Ryan PR. Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar06311] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Seedlings from 198 wheat genotypes were screened in glasshouse trials for early biomass production (49 days after sowing, DAS) in a soil high in total phosphorus (P) but low in plant-available P. Fifteen hexaploid bread wheats were then examined more closely for early biomass production on 2 low-P soils: a highly P-fixing Ferrosol (1.3 mg resin-extractable P/kg) and a Red Kandosol (5.2 mg resin-extractable P/kg). The soils were either unamended for P or supplemented with sufficient P for maximum growth. Single lines of rye, triticale, and durum wheat were included for comparison. The plants were harvested at 21 and 35 DAS, and shoot biomass, root biomass, P content, and root length were measured. Shoot biomass was correlated with the P content of the seed in both unamended soils at the first harvest but only in the Ferrosol at the second harvest. There were no correlations between seed P and shoot biomass in the high-P treatments at either harvest. Genotypes were compared with one another by plotting shoot biomass from the high-P treatment against shoot biomass from the low-P treatment. Phosphorus-efficient genotypes were defined as those with relatively greater biomass at low P, while genotypes with a high biomass potential were defined as those able to accumulate relatively more biomass at high P. Two hexaploid wheats, Kukri and Vigour 18, were ranked as being P-efficient genotypes with a high biomass potential on both soils, while Halberd, CD87, and Katepwa were P-inefficient on both soils. Biomass accumulation for each genotype was compared with their root biomass, root : shoot ratio, specific root length and P-uptake efficiency. The strongest correlation across all treatments occurred between shoot biomass and root biomass. We discuss factors that may contribute to the variation in P-uptake efficiency among the genotypes.
Collapse
|
83
|
|
84
|
Basu P, Zhang YJ, Lynch JP, Brown KM. Ethylene modulates genetic, positional, and nutritional regulation of root plagiogravitropism. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:41-51. [PMID: 32689330 DOI: 10.1071/fp06209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 11/17/2006] [Indexed: 06/11/2023]
Abstract
Plagiogravitropic growth of roots strongly affects root architecture and topsoil exploration, which are important for the acquisition of water and nutrients. Here we show that basal roots of Phaseolus vulgaris L. develop from 2-3 definable whorls at the root-shoot interface and exhibit position-dependent plagiogravitropic growth. The whorl closest to the shoot produces the shallowest roots, and lower whorls produce deeper roots. Genotypes vary in both the average growth angles of roots within whorls and the range of growth angles, i.e. the difference between the shallowest and deepest basal roots within a root system. Since ethylene has been implicated in both gravitropic and edaphic stress responses, we studied the role of ethylene and its interaction with phosphorus availability in regulating growth angles of genotypes with shallow or deep basal roots. There was a weak correlation between growth angle and ethylene production in the basal rooting zone, but ethylene sensitivity was strongly correlated with growth angle. Basal roots emerging from the uppermost whorl were more responsive to ethylene treatment than the lower-most whorl, displaying shallower angles and inhibition of growth. Ethylene sensitivity is greater for shallow than for deep genotypes and for plants grown with low phosphorus compared with those supplied with high phosphorus. Ethylene exposure increased the range of angles, although deep genotypes grown in low phosphorus were less affected. Our results identify basal root whorl number as a novel architectural trait, and show that ethylene mediates regulation of growth angle by position of origin, genotype and phosphorus availability.
Collapse
Affiliation(s)
- Paramita Basu
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuan-Ji Zhang
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kathleen M Brown
- Intercollege Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
85
|
Denton MD, Sasse C, Tibbett M, Ryan MH. Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:1091-1102. [PMID: 32689320 DOI: 10.1071/fp06176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/03/2006] [Indexed: 06/11/2023]
Abstract
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g-1) or (ii) the top 500 mm (12 µg P g-1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0-50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g-1, L. australis 2.4 mg g-1, M. sativa 3.2 mg g-1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Collapse
Affiliation(s)
- Matthew D Denton
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Camille Sasse
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Mark Tibbett
- Centre for Land Rehabilitation, School of Earth and Geographical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Megan H Ryan
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
86
|
Conlin TSS, van den Driessche R. Influence of nutrient supply and water vapour pressure on root architecture of Douglas-fir and western hemlock seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:941-948. [PMID: 32689304 DOI: 10.1071/fp05317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/25/2006] [Indexed: 06/11/2023]
Abstract
Root growth responses of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and western hemlock (Tsuga heterophylla Raf. Sarg.) seedlings to three nutrient concentrations and two shoot vapour pressure deficits were measured. Both species gained dry mass at high and medium nutrient treatments throughout the experiment, but not at low nutrition. Low nutrition gave highest ratios of projected leaf surface area to total root length in both species. Douglas-fir geometry differed from that of hemlock, with longer interior link lengths, particularly at the lowest nutrition. Douglas-fir showed greater numbers of exterior-interior links than hemlock. More links were observed at medium and high nutrition than at low nutrition for both species. Exterior-interior links increased over time for the two highest nutrient treatments. Significant topological differences were observed between species, the lowest and two highest nutrient treatments, and high and low vapour pressure deficits. Both species showed herring-bone root architecture at the lowest nutrition. This architectural configuration became more pronounced in hemlock seedlings grown under higher vapour pressure deficits. Faster-growing Douglas-fir had a dichotomous architecture at medium and high nutrition that was not influenced by increased vapour pressure deficits. Douglas-fir topology appears to be adapted to exploit soil nutrient patches while hemlock appears to rely on efficient exploitation of soil volume.
Collapse
Affiliation(s)
- Timothy S S Conlin
- Forested Ecosystems Research, 3119 Glasgow Street, Victoria, B.C., Canada V8X 1L8
| | - R van den Driessche
- Centre for Forest Biology, University of Victoria, P.O. Box 3020, Victoria, B.C., Canada V8W 3N5
| |
Collapse
|
87
|
Zhu J, Mickelson SM, Kaeppler SM, Lynch JP. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1-10. [PMID: 16783587 DOI: 10.1007/s00122-006-0260-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 03/06/2006] [Indexed: 05/10/2023]
Abstract
Suboptimal phosphorus availability is a primary constraint for terrestrial plant growth. Seminal roots play an important role in acquisition of nutrients by plant seedlings. The length and number of seminal roots may be particularly important in acquisition of immobile nutrients such as phosphorus by increasing soil exploration. The objective of this study was to identify quantitative trait loci (QTL) controlling seminal root growth in response to phosphorus stress in maize, and to characterize epistatic interactions among QTL. Seminal root length and number were evaluated in 162 recombinant inbred lines derived from a cross between B73 and Mo17 in seedlings grown in a controlled environment. B73 and Mo17 significantly differed for seminal root length under low phosphorus, but not under adequate phosphorus conditions. Seminal root length of the population grown under low phosphorus ranged from 0 to 79.2 cm with a mean of 32.3 cm; while seminal root length of plants grown under high phosphorus ranged from 0.67 to 59.0 cm with a mean of 23.4 cm. Under low phosphorus, one main-effect QTL was associated with seminal root length and three QTL with seminal root number; under high phosphorus, two QTL with seminal root length and three QTL for seminal root number. These accounted for 11, 25.4, 22.8, and 24.1% of the phenotypic variations for seminal root length and number at low phosphorus, and seminal root length and number at high phosphorus, respectively. Di-genic epistatic loci were detected for seminal root length at low phosphorus (two pairs) seminal root number at low phosphorus (eight pairs), seminal root length at high phosphorus (four pairs), and seminal root number at high phosphorus (two pairs), which accounted for 23.2, 50.6, 32.2, and 20.3% of the total variations, respectively. Seminal root traits observed here were positively yet weakly correlated with shoot biomass in the field under low phosphorus, although no coincident QTL were detected. These results suggest that epistatic interactions are important in controlling genotypic variation associated with seedling seminal root traits.
Collapse
Affiliation(s)
- Jinming Zhu
- Department of Horticulture, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|