51
|
Sönmez AY, Bi Len S, Taştan Y, Nezih Kenanoğlu O, Terzi E. Effects of dietary Astragalus caudiculosus (Boiss & Huet, 1856) supplementation on growth, hematology, antioxidant enzyme activities, and immune responses in rainbow trout (Oncorhynchus mykiss Walbaum, 1792). FISH & SHELLFISH IMMUNOLOGY 2022; 122:366-375. [PMID: 35183741 DOI: 10.1016/j.fsi.2022.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The potential dietary utilization of Astragalus caudiculosus (AC) in rainbow trout (Oncorhynchus mykiss) was investigated. Four different fish groups (control, AC1, AC2.5, and AC5) were assigned and received the AC-containing diet for 90 days at the rates of 0, 1, 2.5, and 5%, respectively. Results indicated that the growth performance of the AC supplemented fish improved significantly (P < 0.05). Among non-specific immune parameters examined, while lysozyme activity of the AC supplemented fish increased (P < 0.05), oxidative radical production decreased in AC1 and AC2.5 fish groups (P < 0.05) but did not differ in the AC5 group (P > 0.05) compared to the control. Moreover, myeloperoxidase activity was not affected by the AC supplementation (P > 0.05). All pro-inflammatory and anti-inflammatory cytokine gene expressions, except IL-1β, were up-regulated, especially in the fish groups fed with 2.5 and 5% AC supplemented feed (P < 0.05). AC administration caused an elevation in GPx and G6PDH activities, and a decrease in SOD, CAT, and lipid peroxidation (P < 0.05). Overall, AC extract was found to improve the growth, antioxidant status, and immune response of the fish.
Collapse
Affiliation(s)
- Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey.
| | - Soner Bi Len
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Osman Nezih Kenanoğlu
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| |
Collapse
|
52
|
Emmanuel T, Petersen A, Houborg HI, Rønsholdt AB, Lybaek D, Steiniche T, Bregnhøj A, Iversen L, Johansen C. Climatotherapy at the Dead Sea for psoriasis is a highly effective anti-inflammatory treatment in the short term; an immunohistochemical study. Exp Dermatol 2022; 31:1136-1144. [PMID: 35196397 PMCID: PMC9541097 DOI: 10.1111/exd.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022]
Abstract
Climatotherapy is a well‐described treatment of psoriasis. Dead Sea climatotherapy (DSC) in Israel consists of intensive sun and Dead Sea bathing and is very effective in improving clinical and patient‐reported outcomes. However, the effect of DSC has not been widely studied. We aimed to investigate the effect of DSC on psoriasis skin using quantitative immunohistochemistry techniques and analysis of blood samples. Skin punch biopsies from 18 psoriasis patients from a previous cohort study were used. Biopsies were obtained from non‐lesional skin and from a psoriasis target lesion at baseline. A biopsy was acquired from the target lesion after DSC. Among patients who achieved complete visual clearance, a biopsy was also obtained at relapse. Blood samples were obtained at the same time points. We performed haematoxylin and eosin staining and quantitative immunohistochemical analysis of CD3, CD4, CD8, CD11c, CD103, CD163, CD207, forkhead box P3, Ki67 and myeloperoxidase. We performed blood tests of cholesterol, c‐reactive protein, glucose, haemoglobin A1c and triglycerides. All skin biomarkers except for CD207 were decreased after DSC. At relapse, none of the biomarkers were significantly different from the baseline lesional measurements. Total CD207 staining correlated with psoriasis area and severity index at baseline while CD163 staining correlated with psoriasis area and severity index at EOT. No changes were observed in selected blood tests during the study. Consistent with clinical results, DSC is highly effective in the short term almost normalising all investigated biomarkers. However, at relapse, biomarkers were upregulated to the baseline level.
Collapse
Affiliation(s)
- Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Annita Petersen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Dorte Lybaek
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
53
|
Morozova DS, Martyanov AA, Obydennyi SI, Korobkin JJD, Sokolov AV, Shamova EV, Gorudko IV, Khoreva AL, Shcherbina A, Panteleev MA, Sveshnikova AN. Ex vivo observation of granulocyte activity during thrombus formation. BMC Biol 2022; 20:32. [PMID: 35125118 PMCID: PMC8819951 DOI: 10.1186/s12915-022-01238-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/24/2022] [Indexed: 01/06/2023] Open
Abstract
Background The process of thrombus formation is thought to involve interactions between platelets and leukocytes. Leukocyte incorporation into growing thrombi has been well established in vivo, and a number of properties of platelet-leukocyte interactions critical for thrombus formation have been characterized in vitro in thromboinflammatory settings and have clinical relevance. Leukocyte activity can be impaired in distinct hereditary and acquired disorders of immunological nature, among which is Wiskott-Aldrich Syndrome (WAS). However, a more quantitative characterization of leukocyte behavior in thromboinflammatory conditions has been hampered by lack of approaches for its study ex vivo. Here, we aimed to develop an ex vivo model of thromboinflammation, and compared granulocyte behavior of WAS patients and healthy donors. Results Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips. Moving granulocytes were observed in hirudinated or sodium citrate-recalcified blood under low wall shear rate conditions (100 s−1). These cells crawled around thrombi in a step-wise manner with an average velocity of 90–120 nm/s. Pre-incubation of blood with granulocyte priming agents lead to a significant decrease in mean-velocity of the cells and increase in the number of adherent cells. The leukocytes from patients with WAS demonstrated a 1.5-fold lower mean velocity, in line with their impaired actin polymerization. It is noteworthy that in an experimental setting where patients’ platelets were replaced with healthy donor’s platelets the granulocytes’ crawling velocity did not change, thus proving that WASP (WAS protein) deficiency causes disruption of granulocytes’ behavior. Thereby, the observed features of granulocytes crawling are consistent with the neutrophil chemotaxis phenomenon. As most of the crawling granulocytes carried procoagulant platelets teared from thrombi, we propose that the role of granulocytes in thrombus formation is that of platelet scavengers. Conclusions We have developed an ex vivo experimental model applicable for observation of granulocyte activity in thrombus formation. Using the proposed setting, we observed a reduction of motility of granulocytes of patients with WAS. We suggest that our ex vivo approach should be useful both for basic and for clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01238-x.
Collapse
|
54
|
Bajic JE, Howarth GS, Mashtoub S, Whittaker AL, Bobrovskaya L, Hutchinson MR. Neuroimmunological complications arising from chemotherapy-induced gut toxicity and opioid exposure in female dark agouti rats. J Neurosci Res 2022; 100:237-250. [PMID: 34510524 DOI: 10.1002/jnr.24959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Cancer patients may experience symptom clusters, including chemotherapy-induced (CI) gut toxicity (CIGT) and cognitive impairment. Analgesic selection for pain associated with CIGT is difficult as opioids induce glial reactivity and unwanted side effects. This study quantified central glial reactivity and proinflammatory effects in rats with CIGT using three mechanistically different analgesics. Regional adaptations were indicative of immune-to-brain signaling routes. Utilizing a 5-fluorouracil-induced GT (5IGT) rat model and analgesic intervention (carprofen (CAR), buprenorphine (BUP), and tramadol (TRAM)), spinal and brain neuroimmune modulation was examined via microglial, astrocyte, and proinflammatory (cluster of differentiation molecule 11b; CD11b, glial fibrillary associated protein; GFAP, and interleukin-1 beta; IL1β) reactivity marker expression changes by western blot analysis. 5IGT significantly increased thoracic GFAP (p < 0.05) and IL-1β (p < 0.0001) expression, CAR and BUP ameliorated these effects. BUP and TRAM with 5-FU synergistically increased hippocampal GFAP expression. CAR administered with 5IGT significantly elevated hippocampal and thoracic CD11b expression levels (p < 0.05). The neuroimmune responses observed in this study suggest activation of peripheral-to-central immune signaling pathways. We speculate that the opioid-induced hippocampal changes inferred a humorally mediated mechanism, whereas thoracic neuroimmune modifications indicated activation of an indirect neural route. Although TRAM ameliorated 5IGT-intestinal inflammation, this opioid presents complications relating to bodyweight and regional glial dysregulation (neuroinflammation) and may not be optimal in the management of pain associated with 5IGT. The chemotherapy-induced gut-derived neuroimmune consequences observed suggest a potential mechanistic contribution to central components of the cancer symptom cluster experience, while the opioid-related glial changes have implications for optimal pain management in this setting warranting further investigation.
Collapse
Affiliation(s)
- Juliana Esma Bajic
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Gordon Stanley Howarth
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Gastroenterology Department, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Gastroenterology Department, Women's and Children's Hospital, North Adelaide, SA, Australia
- School of Medicine, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia
| | | | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mark Rowland Hutchinson
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
55
|
Cattaneo L, Mezzetti M, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Gene network expression of whole blood leukocytes in dairy cows with different milk yield at dry-off. PLoS One 2021; 16:e0260745. [PMID: 34882732 PMCID: PMC8659302 DOI: 10.1371/journal.pone.0260745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Dairy cows at dry-off undergo several management and physiological changes, resulting in alterations in plasma biomarkers of inflammation, oxidative stress, and immune system. High milk yield at the end of lactation exacerbates these responses. The underlying mechanism of these changes has yet to be elucidated. We hypothesized altered leukocyte gene expression after dry-off and different responses in cows with different milk yield. Thirteen Holstein dairy cows were sampled at the turn of dry-off to investigated whole blood leukocyte gene expression and were grouped according to the average milk yield during the last week of lactation: low (< 15 kg/d) and high milk yield (> 15 kg/d). Blood samples were collected in PAXgene tubes (Preanalytix, Hombrechtikon, Switzerland) at -7, 7, and 34 days from dry-off (DFD) to measure mRNA abundance of 37 genes. Normalized gene abundance data were subjected to MIXED model ANOVA (SAS Institute Inc., Cary, NC). Compared with -7 DFD, at 7 DFD RNA abundance of lipoxygenase genes (ALOX5, ALOX15) and myeloperoxidase (MPO) increased, and that of the antioxidant gene (SOD2) decreased. Meanwhile, genes related to recognition and immune mediation (CD16, MYD88, TLR2), migration and cell adhesion (CX3CR1, ITGAL, ITGB2, TLN1), and the antimicrobial gene MMP9 were downregulated at 7 or 34 DFD, whereas the antimicrobial IDO1 gene was upregulated. Compared with low-producing cows, cows with high milk yield at dry-off cows had upregulated expression of the pro-inflammatory cytokines IL8 and IL18 and a greater reduction in transcript abundance of the toll-like receptor (TLR) recognition-related gene TLR2. Overall, the dry-off confirmed to be a phase of intense changes, triggering an inflammatory response and somewhat suppressing leukocyte immune function. In cows with high milk yield during the week before dry-off, the inflammatory response was exacerbated.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- * E-mail:
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for sustainable dairy production (CREI), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
56
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
57
|
Amaldoss MJN, Najar IA, Kumar J, Sharma A. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother 2021; 26:712-729. [PMID: 34760306 DOI: 10.5603/rpor.a2021.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. Materials and methods The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. Results The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. Conclusions The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Swift School of Pharmacy Rajpura, Punjab, India
| | | | | | | |
Collapse
|
58
|
Szandruk-Bender M, Merwid-Ląd A, Wiatrak B, Danielewski M, Dzimira S, Szkudlarek D, Szczukowski Ł, Świątek P, Szeląg A. Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]Pyridazinone Exert Anti-Inflammatory Activity without Acute Gastrotoxicity in the Carrageenan-Induced Rat Paw Edema Test. J Inflamm Res 2021; 14:5739-5756. [PMID: 34754217 PMCID: PMC8572108 DOI: 10.2147/jir.s330614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose Due to the risk of gastrointestinal damage and various tissue toxicity associated with non-steroidal anti-inflammatory drugs (NSAIDs) use, investigating new anti-inflammatory agents with efficacy comparable to that of NSAIDs but reduced toxicity is still a major challenge and a clinical need. Based on our previous study, new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone, especially 6-butyl-3,5,7-trimethyl-1-[[4-[[4-(4-nitrophenyl)piperazin-1-yl]methyl]-5-thioxo-1,3,4-oxadiazol-2-yl]methoxy]pyrrolo[3,4-d]pyridazin-4-one and 6-butyl-1-[[4-[[4-(4-chlorophenyl)-4-hydroxy-1-piperidyl]methyl]-2-thioxo-1,3,4-oxadiazol-5-yl]methoxy]-3,5,7-trimethyl-pyrrolo[3,4-d]pyridazin-4-one (hereafter referred to as the compounds 10b and 13b, respectively) seem to be promising anti-inflammatory agents. This study aimed to elucidate the effects of these two new derivatives on the course of experimental rat inflammation, liver and kidney function, and gastric mucosa. Methods The anti-inflammatory effect of compounds 10b and 13b was evaluated using the carrageenan-induced paw edema test in rats. The increase in paw volume (paw edema), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) levels, histological alterations, and inflammatory cell infiltration in paw tissue were determined. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, serum urea and creatinine levels, as well as changes in gastric mucosa, were measured as indicators of hepatic, renal, and gastric toxicity. Results Pretreatment with both novel derivatives at 10 mg/kg and 20 mg/kg doses reduced paw edema, counteracted the increased PGE2 and TNF-α levels, reduced the influx of inflammatory cells, and decreased histopathological alterations in paw tissue. Compound 13b at a dose of 20 mg/kg was more effective than indomethacin in reversing the increased TNF-α levels and reducing the influx of inflammatory cells. Only compound 13b at all studied doses (5, 10, or 20 mg/kg) counteracted the increased MPO level in paw tissue. Both compounds neither caused alterations in ALT, AST, urea, creatinine parameters nor gastric mucosal lesions. Conclusion New compounds exert an anti-inflammatory effect, presumably via inhibiting inflammatory mediators release and inflammatory cell infiltration. Moreover, both possess a more favorable benefit–risk profile than indomethacin, especially compound 13b.
Collapse
Affiliation(s)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Danuta Szkudlarek
- Foundation of the Wroclaw Medical University, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
59
|
Wang J, Jalali Motlagh N, Wang C, Wojtkiewicz GR, Schmidt S, Chau C, Narsimhan R, Kullenberg EG, Zhu C, Linnoila J, Yao Z, Chen JW. d-mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proc Natl Acad Sci U S A 2021; 118:e2107663118. [PMID: 34702739 PMCID: PMC8673064 DOI: 10.1073/pnas.2107663118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammation drives the pathology of many neurological diseases. d-mannose has been found to exert an antiinflammatory effect in peripheral diseases, but its effects on neuroinflammation and inflammatory cells in the central nervous system have not been studied. We aimed to determine the effects of d-mannose on key macrophage/microglial functions-oxidative stress and phagocytosis. In murine experimental autoimmune encephalomyelitis (EAE), we found d-mannose improved EAE symptoms compared to phosphate-buffered saline (PBS)-control mice, while other monosaccharides did not. Multiagent molecular MRI performed to assess oxidative stress (targeting myeloperoxidase [MPO] using MPO-bis-5-hydroxytryptamide diethylenetriaminepentaacetate gadolinium [Gd]) and phagocytosis (using cross-linked iron oxide [CLIO] nanoparticles) in vivo revealed that d-mannose-treated mice had smaller total MPO-Gd+ areas than those of PBS-control mice, consistent with decreased MPO-mediated oxidative stress. Interestingly, d-mannose-treated mice exhibited markedly smaller CLIO+ areas and much less T2 shortening effect in the CLIO+ lesions compared to PBS-control mice, revealing that d-mannose partially blocked phagocytosis. In vitro experiments with different monosaccharides further confirmed that only d-mannose treatment blocked macrophage phagocytosis in a dose-dependent manner. As phagocytosis of myelin debris has been known to increase inflammation, decreasing phagocytosis could result in decreased activation of proinflammatory macrophages. Indeed, compared to PBS-control EAE mice, d-mannose-treated EAE mice exhibited significantly fewer infiltrating macrophages/activated microglia, among which proinflammatory macrophages/microglia were greatly reduced while antiinflammatory macrophages/microglia increased. By uncovering that d-mannose diminishes the proinflammatory response and boosts the antiinflammatory response, our findings suggest that d-mannose, an over-the-counter supplement with a high safety profile, may be a low-cost treatment option for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Negin Jalali Motlagh
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cuihua Wang
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Stephan Schmidt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Chau
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Radha Narsimhan
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Enrico G Kullenberg
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cindy Zhu
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jenny Linnoila
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - John W Chen
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114;
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
60
|
Tulangekar A, Sztal TE. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021; 9:biomedicines9101366. [PMID: 34680483 PMCID: PMC8533596 DOI: 10.3390/biomedicines9101366] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive, X-linked, neuromuscular disorder caused by mutations in the dystrophin gene. In DMD, the lack of functional dystrophin protein makes the muscle membrane fragile, leaving the muscle fibers prone to damage during contraction. Muscle degeneration in DMD patients is closely associated with a prolonged inflammatory response, and while this is important to stimulate regeneration, inflammation is also thought to exacerbate muscle damage. Neutrophils are one of the first immune cells to be recruited to the damaged muscle and are the first line of defense during tissue injury or infection. Neutrophils can promote inflammation by releasing pro-inflammatory cytokines and compounds, including myeloperoxidase (MPO) and neutrophil elastase (NE), that lead to oxidative stress and are thought to have a role in prolonging inflammation in DMD. In this review, we provide an overview of the roles of the innate immune response, with particular focus on mechanisms used by neutrophils to exacerbate muscle damage and impair regeneration in DMD.
Collapse
|
61
|
Sönmez AY, Bi Len S, Taştan Y, Serag KJB, Toring CC, Romero JB, Kenanoğlu ON, Terzi E. Oral administration of Sargassum polycystum extracts stimulates immune response and increases survival against Aeromonas hydrophila infection in Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:291-298. [PMID: 34419600 DOI: 10.1016/j.fsi.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the immunomodulatory effects of Sargassum polycystum extract administration in rainbow trout (Oncorhynchus mykiss). S. polycystum methanolic extract was administered orally using feeding needles to individual rainbow trout at the dose of 0 (control), 1 (S1), 3 (S3) and 5 (S5) mg/100 μl/per fish twice a day for 7 days. On 1st, 5th, 3rd and 7th day, blood and tissues were collected from the fish and changes in humoral immune responses and immune-related gene expressions were determined. The result of oxidative radical production showed no difference during early stage of the experiment and was lately decreased (P < 0.05). Lysozyme activity increased on 3rd and 7th day of the study in S5 fish group and on 5th day in S3 group compared to control (P < 0.05). Myeloperoxidase activity had an increased level on the 1st and 3rd day in S1, S5 and S5 fish groups, respectively. IL-1β gene was significantly up-regulated in kidney and intestine in all experimental groups (except on the 1st day, in the intestine of S5 fish group) compared to control (P < 0.05). IL-8 gene expression was elevated on 1st and 3rd day in kidney of all experimental fish groups. IL-6 transcript enhanced in a dose-dependent manner on 3rd and 7th day. IL-10 and IL-12 genes were also up-regulated. Survival in all treated fish groups challenged with Aeromonas hydrophila was significantly increased compared to that of control. The highest survival rate was recorded in S5 fish group (83.65%) followed by S3 fish group (82.62%). Our results suggest that S. polycystum aqueous methanolic extract is an effective immunostimulant and provide protection against A. hydrophila infection in rainbow trout at a dose of 3-10 mg/20 g body weight/day.
Collapse
Affiliation(s)
- Adem Yavuz Sönmez
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu, Turkey
| | - Soner Bi Len
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey.
| | - Yiğit Taştan
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Karen Joy B Serag
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Concepcion C Toring
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Jumelita B Romero
- Mindanao State University, Tawi-Tawi College of Technology and Oceanography, Tawi-Tawi, Philippines
| | - Osman Nezih Kenanoğlu
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Department of Aquaculture, Kastamonu, Turkey
| |
Collapse
|
62
|
Topical Neck Cooling Prolongs Survival of Rats with Intra-Abdominal Feculent Sepsis by Activation of the Vagus Nerve. Int J Mol Sci 2021; 22:ijms22189828. [PMID: 34575994 PMCID: PMC8465551 DOI: 10.3390/ijms22189828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Global hypothermia prolongs survival in rats with intraabdominal feculent sepsis by inhibiting inflammatory responses. We hypothesized that topical neck cooling (TNC) has similar benefits. Septic shock was induced by cecal ligation and incision (CLI) in Sprague Dawley rats. Rats were randomized to sham laparotomy, control with CLI, CLI with TNC, or vagotomy at the gastroesophageal junction before CLI and TNC. Two more groups underwent peritoneal washout with and without TNC two hours after CLI. TNC significantly lowered neck skin temperature (16.7 ± 1.4 vs. 30.5 ± 0.6 °C, p < 0.05) while maintaining core body normothermia. TNC rats recovered from anesthesia 70 min earlier than the control (p < 0.05). Three hours following CLI, the control and vagotomy with TNC groups had significantly more splenic contraction, fewer circulating leukocytes and higher plasma IL-1β, IL-10 and TNF-α levels than TNC rats (p < 0.05). TNC prolonged survival duration after CLI by a median of four hours vs. control (p < 0.05), but no benefit was seen if vagotomy preceded TNC. Peritoneal washout alone increased survival by 3 h (9.2 (7.8–10.5) h). Survival duration increased dramatically with TNC preceding washout, to a 56% survival rate (>10 days). TNC significantly prolonged the survival of rats with severe intraabdominal sepsis by inhibiting systemic proinflammatory responses by activating vagal anti-inflammatory pathways.
Collapse
|
63
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
64
|
Coulibaly AP, Pezuk P, Varghese P, Gartman W, Triebwasser D, Kulas JA, Liu L, Syed M, Tvrdik P, Ferris H, Provencio JJ. Neutrophil Enzyme Myeloperoxidase Modulates Neuronal Response in a Model of Subarachnoid Hemorrhage by Venous Injury. Stroke 2021; 52:3374-3384. [PMID: 34404234 PMCID: PMC8478903 DOI: 10.1161/strokeaha.120.033513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mariam Syed
- Department of Neurology (M.S., J.J.P.), University of Virginia, Charlottesville
| | - Petr Tvrdik
- Department of Neuroscience (P.T., H.F., J.J.P.), University of Virginia, Charlottesville.,Department of Neurosurgery (P.T.), University of Virginia, Charlottesville
| | - Heather Ferris
- Department of Neuroscience (P.T., H.F., J.J.P.), University of Virginia, Charlottesville.,Division of Endocrinology, Department of Internal Medicine (H.F.), University of Virginia, Charlottesville
| | - J Javier Provencio
- Department of Neurology (M.S., J.J.P.), University of Virginia, Charlottesville.,Department of Neuroscience (P.T., H.F., J.J.P.), University of Virginia, Charlottesville
| |
Collapse
|
65
|
Ma H, Liu J, Li Z, Xiong H, Zhang Y, Song Y, Lai J. Expression profile analysis reveals hub genes that are associated with immune system dysregulation in primary myelofibrosis. ACTA ACUST UNITED AC 2021; 26:478-490. [PMID: 34238135 DOI: 10.1080/16078454.2021.1945237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTION Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.
Collapse
Affiliation(s)
- Haotian Ma
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zilong Li
- College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanping Song
- Institute of Hematology, Central Hospital of Xi'an, Xi'an, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
66
|
Alexeev EE, Dowdell AS, Henen MA, Lanis JM, Lee JS, Cartwright IM, Schaefer REM, Ornelas A, Onyiah JC, Vögeli B, Colgan SP. Microbial-derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J 2021; 35:e21552. [PMID: 33826788 DOI: 10.1096/fj.202100027r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl- and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response. Previous work suggests that the microbiota-derived tryptophan metabolites 1H-indole and related molecules ("indoles") are protective during intestinal inflammation, although their precise mechanism of action is unclear. In the present work, we serendipitously discovered that indoles are potent and selective inhibitors of MPO. Using both primary human PMNs and recombinant human MPO in a cell-free system, we revealed that indoles inhibit MPO at physiologic concentrations. Particularly, indoles block the chlorinating activity of MPO, a reliable marker for MPO-associated tissue damage, as measured by coulometric-coupled HPLC. Further, we observed direct interaction between indoles and MPO using the established biochemical techniques microscale thermophoresis and STD-NMR. Utilizing a murine colitis model, we demonstrate that indoles inhibit bystander tissue damage, reflected in decreased colon 3-chlorotyrosine and pro-inflammatory chemokine expression in vivo. Taken together, these results identify microbiota-derived indoles that acts as endogenous immunomodulatory compounds through their actions on MPO, suggesting a symbiotic association between the gut microbiota and host innate immune system. Such findings offer exciting new targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Erica E Alexeev
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander S Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Jordi M Lanis
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ian M Cartwright
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel E M Schaefer
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph C Onyiah
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
67
|
Schädel P, Troisi F, Czapka A, Gebert N, Pace S, Ori A, Werz O. Aging drives organ-specific alterations of the inflammatory microenvironment guided by immunomodulatory mediators in mice. FASEB J 2021; 35:e21558. [PMID: 33855766 DOI: 10.1096/fj.202002684r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022]
Abstract
Aging is accompanied by chronic, low-grade systemic inflammation, termed inflammaging, a main driver of age-associated diseases. Such sterile inflammation is typically characterized by elevated levels of pro-inflammatory mediators, such as cytokines, chemokines and reactive oxygen species causing organ damage. Lipid mediators play important roles in the fine-tuning of both the promotion and the resolution of inflammation. Yet, it remains unclear how lipid mediators fit within the concept of inflammaging and how their biosynthesis and function is affected by aging. Here, we provide comprehensive signature profiles of inflammatory markers in organs afflicted with inflammation of young and old C57BL/6 mice. We reveal an organ-specific footprint of inflammation-related cytokines, chemokines and lipid mediators, which are distinctively affected by aging. While some organs are characterized by a pronounced pro-inflammatory microenvironment and impaired resolution during aging, others display elevated levels of pro-resolving mediators or an overall decrease in inflammatory signaling. Our results demonstrate that it proves difficult to establish a unifying concept for alterations of immunomodulatory mediators as consequence of aging and that organ specificity needs to be considered. Moreover, our data imply that inclusion of lipid mediators into the concept of inflammaging provides a comprehensive tool to characterize the inflammatory microenvironment during aging on a broader and yet, more detailed scope.
Collapse
Affiliation(s)
- Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany.,Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
68
|
Rehring JF, Bui TM, Galán-Enríquez CS, Urbanczyk JM, Ren X, Wiesolek HL, Sullivan DP, Sumagin R. Released Myeloperoxidase Attenuates Neutrophil Migration and Accumulation in Inflamed Tissue. Front Immunol 2021; 12:654259. [PMID: 33959129 PMCID: PMC8093447 DOI: 10.3389/fimmu.2021.654259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.
Collapse
Affiliation(s)
- Jacob F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Jessica M Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
69
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
70
|
Liu TW, Gammon ST, Yang P, Fuentes D, Piwnica-Worms D. Myeloid cell-derived HOCl is a paracrine effector that trans-inhibits IKK/NF-κB in melanoma cells and limits early tumor progression. Sci Signal 2021; 14:14/677/eaax5971. [PMID: 33824181 DOI: 10.1126/scisignal.aax5971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The myeloperoxidase (MPO) system of myeloid-derived cells (MDCs) is central to cellular innate immunity. Upon MDC activation, MPO is secreted into phagosomes where it catalyzes the production of hypochlorous acid (HOCl), a potent chlorinating oxidant. Here, we demonstrated that the myeloid lineage-restricted MPO-HOCl system had antitumor effects in early melanoma growth in aged mice. Orthotopic melanomas grew more slowly in immunocompetent MPO+/+ host mice compared to age-matched syngeneic MPO-/- mice. Real-time intravital tumor imaging in vivo and in cell cocultures revealed a cell-cell proximity-dependent association between MDC-derived MPO enzyme activity and blockade of ligand-induced IκBα degradation in tumor cells. HOCl directly trans-inhibited IκB kinase (IKK) activity in tumor cells, thereby decreasing nuclear factor κB (NF-κB) transcriptional activation and inducing changes in the expression of genes involved in metabolic pathways, cell cycle progression, and DNA replication. By contrast, HOCl induced transcriptional changes in CD8+ T cells related to ion transport and the MAPK and PI3K-AKT signaling pathways that are associated with T cell activation. MPO increased the circulating concentrations of the myeloid cell-attracting cytokines CXCL1 and CXCL5, enhanced local infiltration by CD8+ cytotoxic T cells, and decreased tumor growth. Overall, these data reveal a role for MDC-derived HOCl as a small-molecule paracrine signaling factor that trans-inhibits IKK in melanoma tumor cells, mediating antitumor responses during early tumor progression.
Collapse
Affiliation(s)
- Tracy W Liu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Sekheri M, Othman A, Filep JG. β2 Integrin Regulation of Neutrophil Functional Plasticity and Fate in the Resolution of Inflammation. Front Immunol 2021; 12:660760. [PMID: 33859651 PMCID: PMC8043047 DOI: 10.3389/fimmu.2021.660760] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils act as the first line of cellular defense against invading pathogens or tissue injury. Their rapid recruitment into inflamed tissues is critical for the elimination of invading microorganisms and tissue repair, but is also capable of inflicting damage to neighboring tissues. The β2 integrins and Mac-1 (CD11b/CD18, αMβ2 or complement receptor 3) in particular, are best known for mediating neutrophil adhesion and transmigration across the endothelium and phagocytosis of microbes. However, Mac-1 has a broad ligand recognition property that contributes to the functional versatility of the neutrophil population far beyond their antimicrobial function. Accumulating evidence over the past decade has demonstrated roles for Mac-1 ligands in regulating reverse neutrophil transmigration, lifespan, phagocytosis-induced cell death, release of neutrophil extracellular traps and efferocytosis, hence extending the traditional β2 integrin repertoire in shaping innate and adaptive immune responses. Understanding the functions of β2 integrins may partly explain neutrophil heterogeneity and may be instrumental to develop novel therapies specifically targeting Mac-1-mediated pro-resolution actions without compromising immunity. Thus, this review details novel insights on outside-in signaling through β2 integrins and neutrophil functional heterogeneity pertinent to the resolution of inflammation.
Collapse
Affiliation(s)
- Meriem Sekheri
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
72
|
Kessinger CW, Qi G, Hassan MZO, Henke PK, Tawakol A, Jaffer FA. Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging Predicts Vein Wall Scarring and Statin Benefit in Murine Venous Thrombosis. Circ Cardiovasc Imaging 2021; 14:e011898. [PMID: 33724049 DOI: 10.1161/circimaging.120.011898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The postthrombotic syndrome is a common, often morbid sequela of venous thrombosis (VT) that arises from thrombus persistence and inflammatory scarring of juxtaposed vein walls and valves. Noninvasive 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging can measure neutrophil inflammation in VT. Here, we hypothesized (1) early fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) VT inflammation can predict subsequent vein wall scarring (VWS) and (2) statin therapy can reduce FDG-PET VT inflammation and subsequent VWS. METHODS C57BL/6J mice (n=75) underwent induction of stasis-induced VT of the inferior vena cava or jugular vein. Inferior vena cava VT mice (n=44) were randomized to daily oral rosuvastatin 5 mg/kg or saline starting at day -1. Subgroups of mice then underwent FDG-PET/CT 2 days after VT induction. On day 14, a subset of mice was euthanized, and VWS was assessed via histology. In vitro studies were further performed on bone marrow-derived neutrophils. RESULTS Statin therapy reduced early day 2 FDG-PET VT inflammation, thrombus neutrophil influx, and plasma IL (interleukin)-6 levels. At day 14, statin therapy reduced VWS but did not affect day 2 thrombus mass, cholesterol, or white blood counts, nor reduce day 2 glucose transporter 1 or myeloperoxidase expression in thrombus or in isolated neutrophils. In survival studies, the day 2 FDG-PET VT inflammation signal as measured by mean and maximum standardized uptake values predicted the extent of day 14 VWS (area under the receiver operating characteristic curve =0.82) with a strong correlation coefficient (r) of r=0.73 and r=0.74, respectively. Mediation analyses revealed that 40% of the statin-induced VWS reduction was mediated by reductions in VT inflammation as quantified by FDG-PET. CONCLUSIONS Early noninvasive FDG-PET/CT imaging of VT inflammation predicts the magnitude of subsequent VWS and may provide a new translatable approach to identify individuals at risk for postthrombotic syndrome and to assess anti-inflammatory postthrombotic syndrome therapies, such as statins.
Collapse
Affiliation(s)
- Chase W Kessinger
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.).,Department of Cardiovascular Medicine, Masonic Medical Research Institute, Utica, NY (C.W.K.)
| | - Guanming Qi
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.)
| | - Malek Z O Hassan
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| | - Peter K Henke
- Conrad Jobst Vascular Research Laboratory, Section of Vascular Surgery, Departments of Surgery and Medicine, University of Michigan Medical School, Ann Arbor (P.K.H.)
| | - Ahmed Tawakol
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| | - Farouc A Jaffer
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA (C.W.K., G.Q., F.A.J.).,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (M.Z.O.H., A.T., F.A.J.)
| |
Collapse
|
73
|
Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J 2021; 289:3932-3953. [PMID: 33683814 PMCID: PMC9546106 DOI: 10.1111/febs.15803] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
Neutrophil granulocytes form the first line of host defense against invading pathogens and tissue injury. They are rapidly recruited from the blood to the affected sites, where they deploy an impressive arsenal of effectors to eliminate invading microbes and damaged cells. This capacity is endowed in part by readily mobilizable proteins acquired during granulopoiesis and stored in multiple types of cytosolic granules with each granule type containing a unique cargo. Once released, granule proteins contribute to killing bacteria within the phagosome or the extracellular milieu, but are also capable of inflicting collateral tissue damage. Neutrophil-driven inflammation underlies many common diseases. Research over the last decade has documented neutrophil heterogeneity and functional versatility far beyond their antimicrobial function. Emerging evidence indicates that neutrophils utilize granule proteins to interact with innate and adaptive immune cells and orchestrate the inflammatory response. Granule proteins have been identified as important modulators of neutrophil trafficking, reverse transendothelial migration, phagocytosis, neutrophil life span, neutrophil extracellular trap formation, efferocytosis, cytokine activity, and autoimmunity. Hence, defining their roles within the inflammatory locus is critical for minimizing damage to the neighboring tissue and return to homeostasis. Here, we provide an overview of recent advances in the regulation of degranulation, granule protein functions, and signaling in modulating neutrophil-mediated immunity. We also discuss how targeting granule proteins and/or signaling could be harnessed for therapeutic benefits.
Collapse
Affiliation(s)
- Amira Othman
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Meriem Sekheri
- Department of Biomedical Sciences, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, QC, Canada.,Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| |
Collapse
|
74
|
Burnap SA, Mayr U, Shankar-Hari M, Cuello F, Thomas MR, Shah AM, Sabroe I, Storey RF, Mayr M. A Proteomics-Based Assessment of Inflammation Signatures in Endotoxemia. Mol Cell Proteomics 2021; 20:100021. [PMID: 33288685 PMCID: PMC7950208 DOI: 10.1074/mcp.ra120.002305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n = 10; three time points) injected with low-dose endotoxin (lipopolysaccharide [LPS]) and analyzed using data-independent acquisition MS. The human plasma proteome response was compared with an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerization of PTX3 were explored in two genetic mouse models: MPO global knock-out (KO) mice and LysM Cre Nox2 KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM Cre Nox2 KO mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and aortas. MPO and myeloid Nox2 are not required for the multimerization of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta.
Collapse
Affiliation(s)
- Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Ursula Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Ian Sabroe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom.
| |
Collapse
|
75
|
Fatemi A, Alipour R, Khanahmad H, Alsahebfosul F, Andalib A, Pourazar A. The impact of neutrophil extracellular trap from patients with systemic lupus erythematosus on the viability, CD11b expression and oxidative burst of healthy neutrophils. BMC Immunol 2021; 22:12. [PMID: 33546594 PMCID: PMC7863477 DOI: 10.1186/s12865-021-00402-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background NET (neutrophil extracellular trap) has been shown to directly influence inflammation; in SLE (systemic lupus erythematosus), it is reportedly a plausible cause for the broken self-tolerance that contributes to this pathology. Meanwhile, the role of NET is not easily explicable, and there is a serious discrepancy in the role of NET in SLE pathology and generally inflammation; in particular, the interactions of neutrophils with NET have been rarely inspected. This study evaluates the effect of NET on neutrophils in the context of SLE. The neutrophils were incubated by the collected NET (from SLE patients and healthy controls) and their expression of an activation marker, viability and oxidative burst ability were measured. Results The level of cell mortality, CD11b expression and the oxidative burst capacity were elevated in NET-treated neutrophils. Also, the elevation caused by the SLE NET was higher than that produced by the healthy NET. Conclusion The decreased neutrophil viability was not due to the increase in apoptosis; rather, it was because of the augmentation of other inflammatory cell-death modes. The upregulation of CD11b implies that NET causes neutrophils to more actively contribute to inflammation. The increased oxidative burst capacity of neutrophils can play a double role in inflammation. Overall, the effects induced by NET on neutrophils help prolong inflammation; accordingly, the NET collected from SLE patients is stronger than the NET from healthy individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00402-2.
Collapse
Affiliation(s)
- Alimohammad Fatemi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Alipour
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosul
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Alireza Andalib
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran
| | - Abbasali Pourazar
- Department of Immunology, Medical School, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, IR, 81746-73695, Iran.
| |
Collapse
|
76
|
CX3CR1 Depletion Promotes the Formation of Platelet-Neutrophil Complexes and Aggravates Acute Peritonitis. Shock 2021; 56:287-297. [PMID: 33481549 DOI: 10.1097/shk.0000000000001733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peritonitis is a life-threatening condition on intensive care units. Inflammatory cytokines and their receptors drive inflammation, cause the formation of platelet-neutrophil complexes (PNCs) and therefore the migration of polymorphonuclear neutrophils (PMNs) into the inflamed tissue. CX3CL1 and its receptor CX3CR1 are expressed in various cells, and promote inflammation. The shedding of CX3CL1 is mediated by a disintegrin and metalloprotease (ADAM) 17. The role of the CX3CL1-CX3CR1 axis in acute peritonitis remains elusive. METHODS In zymosan-induced peritonitis, we determined the formation of PNCs in the blood and the expression of PNC-related molecules on PNCs. PMN migration into the peritoneal lavage was evaluated in wild-type (WT) and CX3CR1-/- animals by flow cytometry. CX3CL1, ADAM17, and the expression of various inflammatory cytokines were detected. Further, we determined the inflammation-associated activation of the intracellular transcription factor extracellular signal-regulated kinase 1/2 (ERK1/2) by Western blot. RESULTS The PMN accumulation in the peritoneal lavage and the PNC formation in the circulation were significantly raised in CX3CR1-/- compared with WT animals. The expression of PNC-related selectins on PNCs was significantly increased in the blood of CX3CR1-/- animals, as well as cytokine levels. Further, we observed an increased activation of ERK1/2 and elevated ADAM17 expression in CX3CR1-/- during acute inflammation. Selective ERK1/2 inhibition ameliorated inflammation-related increased ADAM17 expression. CONCLUSIONS A CX3CR1 deficiency raised the release of inflammatory cytokines and increased the PNC formation respectively PMN migration via an elevated ERK1/2 activation during acute peritonitis. Further, we observed a link between the ERK1/2 activation and an elevated ADAM17 expression on PNC-related platelets and PMNs during inflammation. Our data thus illustrate a crucial role of CX3CR1 on the formation of PNCs and regulating inflammation in acute peritonitis.
Collapse
|
77
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
78
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
79
|
|
80
|
Grégory Franck. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis 2020; 318:60-69. [PMID: 33190807 DOI: 10.1016/j.atherosclerosis.2020.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023]
Abstract
Mechanical stress is a well-recognized driver of plaque rupture. Likewise, investigating the role of mechanical forces in plaque erosion has recently begun to provide some important insights, yet the knowledge is by far less advanced. The most significant example is that of shear stress, which has early been proposed as a possible driver for focal endothelial death and denudation. Recent findings using optical coherence tomography, computational sciences and mechanical models show that plaque erosion occurs most likely around atheromatous plaque throats with specific stress pattern. In parallel, we have recently shown that neutrophil-dependent inflammation promotes plaque erosion, possibly through a noxious action on ECs. Most importantly, spontaneous thrombosis - associated or not with EC denudation - can be impacted by hemodynamics, and it is now established that neutrophils promote thrombosis and platelet activation, highlighting a potential relationship between, mechanical stress, inflammation, and EC loss in the setting of coronary plaque erosion. Here, we review our current knowledge regarding the implication of both mechanical stress and neutrophils, and we discuss their implication in the promotion of plaque erosion via EC loss and thrombosis.
Collapse
Affiliation(s)
- Grégory Franck
- Inserm LVTS U1148. CHU Bichat, 46 Rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
81
|
Effect of Green Algae Chaetomorpha antennina Extract on Growth, Modulate Immunity, and Defenses against Edwardsiella tarda Infection in Labeo rohita. Animals (Basel) 2020; 10:ani10112033. [PMID: 33158146 PMCID: PMC7694223 DOI: 10.3390/ani10112033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. The study was undertaken to know the effect of methanolic extract of Chaetomorpha antennina in fish. The results demonstrated that the betterment of growth, immune system, and resistance to disease against Edwardsiella tarda in Indian major carp, rohu, and Labeo rohita. These findings are useful for development of new feed additive in aquaculture sectors. Abstract The current study focused on assessing the outcome of methanol extract of Chaetomorpha antennina (MECA) on the growth performance and immune modulation in both specific and non-specific immune responses through the assessment of neutrophil, serum lysozyme, serum myeloperoxidase, antiprotease, ceruloplasmin, reactive oxygen species (ROS), and reactive nitrogen species (RNS) activity in Labeo rohita (rohu) at 28 days post treatment along with assessment of the disease resistance capacity against Edwardsiella tarda at 30days post immunization. Fishes (n = 144; average weight 50.0 ± 0.23 g) were evenly divided into four treatments, with 12 fishes per tank in triplicates. The MECA was injected intraperitoneally in the fishes at different doses as 0, 25, 75, and 150 mg/kg of the body weight. The results demonstrated that fish treated with MECA have an increased body weight, specific growth rate, and feed conversion ratio (p < 0.05) with respect to the control group. Results suggested that the MECA inclusion can significantly enhance (p < 0.05) the levels of serum lysozyme, neutrophil function, serum antiprotease activity, cellular RNS, and ROS production. Exposure to MECA of 75 mg/kg showed a significantly higher survival percentage against E. tarda disease infection. These results indicate MECA as a stimulant of immunity in L. rohita against E. tarda. The results suggested that MECA is a potent immunostimulant in finfish aquaculture and can offer higher economic welfare.
Collapse
|
82
|
Paul AM, Mhatre SD, Cekanaviciute E, Schreurs AS, Tahimic CGT, Globus RK, Anand S, Crucian BE, Bhattacharya S. Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts. Front Immunol 2020; 11:564950. [PMID: 33224136 PMCID: PMC7667275 DOI: 10.3389/fimmu.2020.564950] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,KBR, Houston, TX, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,COSMIAC Research Center, University of New Mexico, Albuquerque, NM, United States.,Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States
| | - Brian E Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Science Center, Houston, TX, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
83
|
Scandolara TB, da Silva JC, Malanowski J, de Oliveira JA, Rech D, Panis C. Anti-neutrophil antibodies (anti-MPO-ANCAs) are associated with poor prognosis in breast cancer patients. Immunobiology 2020; 225:152011. [PMID: 33130517 DOI: 10.1016/j.imbio.2020.152011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Anti-neutrophil antibodies are capable of activating neutrophils in sterile environments, releasing extracellular traps containing myeloperoxidase (MPO) and anti-MPO antibodies (MPO-ANCAs or anti-MPO-ANCAs), which have been implicated in the pathogenesis of several diseases. The present study evaluated systemic and tumor tissue levels of anti-MPO-ANCAs breast cancer patients, and its relation to clinicopathological characteristics. Anti-MPO-ANCAs were measured in serum and tissue samples of 150 patients by enzyme-linked immunoassay. Samples were pooled according to clinicopathological characteristics of patients. Higher anti-MPO-ANCAs levels were detected in groups presenting negative clinicopathological characteristics, such as high histological grade tumors and risk factors such as body mass index, menopausal status and early onset at diagnosis. The present data highlights anti-MPO-ANCAs as associated to poor prognosis in breast cancer, a role beyond its actually discussed role in autoimmunity and vasculitis.
Collapse
Affiliation(s)
- Thalita Basso Scandolara
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Federal University of Rio de Janeiro, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Janaína Carla da Silva
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Jéssica Malanowski
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Janoário Athanázio de Oliveira
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Francisco Beltrão Cancer Hospital (Ceonc), Francisco Beltrão, Paraná, Brazil
| | - Daniel Rech
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Francisco Beltrão Cancer Hospital (Ceonc), Francisco Beltrão, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
84
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
85
|
Akgun E, Tuzuner MB, Sahin B, Kilercik M, Kulah C, Cakiroglu HN, Serteser M, Unsal I, Baykal AT. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One 2020; 15:e0240012. [PMID: 33079950 PMCID: PMC7575075 DOI: 10.1371/journal.pone.0240012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared throughout the World and currently affected more than 9 million people and caused the death of around 470,000 patients. The novel strain of the coronavirus disease is transmittable at a devastating rate with a high rate of severe hospitalization even more so for the elderly population. Naso-oro-pharyngeal swab samples as the first step towards detecting suspected infection of SARS-CoV-2 provides a non-invasive method for PCR testing at a high confidence rate. Furthermore, proteomics analysis of PCR positive and negative naso-oropharyngeal samples provides information on the molecular level which highlights disease pathology. Samples from 15 PCR positive cases and 15 PCR negative cases were analyzed with nanoLC-MS/MS to identify the differentially expressed proteins. Proteomic analyses identified 207 proteins across the sample set and 17 of them were statistically significant. Protein-protein interaction analyses emphasized pathways like Neutrophil degranulation, Innate Immune System, Antimicrobial Peptides. Neutrophil Elastase (ELANE), Azurocidin (AZU1), Myeloperoxidase (MPO), Myeloblastin (PRTN3), Cathepsin G (CTSG) and Transcobalamine-1 (TCN1) were found to be significantly altered in naso-oropharyngeal samples of SARS-CoV-2 patients. The identified proteins are linked to alteration in the innate immune system specifically via neutrophil degranulation and NETosis.
Collapse
Affiliation(s)
- Emel Akgun
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | | | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Canan Kulah
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | | | - Mustafa Serteser
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ibrahim Unsal
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| |
Collapse
|
86
|
Elbesthi RTA, Özdemir KY, Taştan Y, Bilen S, Sönmez AY. Effects of ribwort plantain (Plantago lanceolata) extract on blood parameters, immune response, antioxidant enzyme activities, and growth performance in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1295-1307. [PMID: 32253566 DOI: 10.1007/s10695-020-00790-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, we examined changes occurred in blood parameters, immune responses, antioxidant enzyme activities, and growth performance of rainbow trout (Oncorhynchus mykiss) administered with ribwort plantain (RP) through feed. Fish (mean weight 36.56 ± 1.99 g) were fed a diet supplemented with an aqueous methanolic extract of RP at variable doses, 0 (control), 1 (RP1), 2 (RP2), and 3 g kg-1 (RP3) for 90 days. The final weight, weight gain, and specific growth rate were significantly increased in RP1, RP2, and RP3 treatment groups compared to that of the control. Among examined blood parameters, hemoglobin value in RP1 group (9.77 ± 0.10 g dl-1) only was significantly high on the 30th day of the study. When immune response parameters were evaluated, we observed that oxidative radical production and lysozyme activities were affected positively in experimental groups (P < 0.05). The highest oxidative radical production was determined in fish of RP3 group. Glutathione peroxidase and glucose 6 phosphate dehydrogenase were increased in RP3 group compared to control and other treatment groups. Based on these results, it is concluded that ribwort plantain promotes growth, enhances immune responses and antioxidant enzyme activities in rainbow trout, and therefore, may be used in aquaculture.
Collapse
Affiliation(s)
- Randa Taher A Elbesthi
- Department of Aquaculture, Kastamonu University, Institute of Science, Kastamonu, Turkey
| | - Keriman Yürüten Özdemir
- Faculty of Fisheries, Department of Basic Science, Kastamonu University, Kuzeykent, 37100, Kastamonu, Turkey
| | - Yiğit Taştan
- Faculty of Fisheries, Department of Aquaculture, Kastamonu University, Kastamonu, Turkey
| | - Soner Bilen
- Faculty of Fisheries, Department of Aquaculture, Kastamonu University, Kastamonu, Turkey
| | - Adem Yavuz Sönmez
- Faculty of Fisheries, Department of Basic Science, Kastamonu University, Kuzeykent, 37100, Kastamonu, Turkey.
| |
Collapse
|
87
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
88
|
Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat Microbiol 2020; 5:1271-1284. [PMID: 32661313 PMCID: PMC7529909 DOI: 10.1038/s41564-020-0756-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of biofilm-associated prosthetic joint infection (PJI), resulting in significant disability and prolonged treatment. It is known that host leukocyte IL-10 production is required for S. aureus biofilm persistence in PJI. A S. aureus bursa aurealis Tn library consisting of 1,952 non-essential genes was screened for mutants that failed to induce IL-10 in myeloid-derived suppressor cells (MDSCs), which identified a critical role for bacterial lactic acid biosynthesis. We generated a S. aureus ddh/ldh1/ldh2 triple Tn mutant that cannot produce D- or L-lactate. Co-culture of MDSCs or macrophages with ddh/ldh1/ldh2 mutant biofilm produced substantially less IL-10 compared with wild type S. aureus, which was also observed in a mouse model of PJI and led to reduced biofilm burden. Using MDSCs recovered from the mouse PJI model and in vitro leukocyte-biofilm co-cultures we show that bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11), causing unchecked HDAC6 activity and increased histone 3 acetylation at the Il-10 promoter, resulting in enhanced Il-10 transcription in MDSCs and macrophages. Finally, we show that synovial fluid of patients with PJI contains elevated amounts of D-lactate and IL-10 compared with control subjects, and bacterial lactate increases IL-10 production by human monocyte-derived macrophages. Biofilms are bacterial communities that are difficult to treat because of their tolerance to antibiotics and ability to evade immune-mediated clearance. Prosthetic joint infection (PJI), a devastating complication of arthroplasty, is characterized by biofilm formation. The current study has discovered a central role for lactic acid biosynthesis in S. aureus biofilm formation during PJI. Mechanistically, bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11) activity, which causes extensive epigenetic changes at the promoters of numerous host genes, including the key anti-inflammatory cytokine Il-10. Indeed, IL-10 production by myeloid-derived suppressor cells (MDSCs) and macrophages is critical for biofilm persistence during PJI. HDAC11 inhibition by S. aureus lactate results in unchecked HDAC6 activity, a positive regulator of IL-10, thereby increasing IL-10 production by MDSCs and macrophages in vitro and in vivo. Similarly, S. aureus lactate promotes IL-10 production in human monocyte-derived macrophages following biofilm exposure. This study highlights how bacterial metabolism can influence the host immune response to promote infection persistence.
Collapse
|
89
|
Alimirah F, Pulido T, Valdovinos A, Alptekin S, Chang E, Jones E, Diaz DA, Flores J, Velarde MC, Demaria M, Davalos AR, Wiley CD, Limbad C, Desprez PY, Campisi J. Cellular Senescence Promotes Skin Carcinogenesis through p38MAPK and p44/42MAPK Signaling. Cancer Res 2020; 80:3606-3619. [PMID: 32641409 DOI: 10.1158/0008-5472.can-20-0108] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/09/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence entails an irreversible growth arrest that evolved in part to prevent cancer. Paradoxically, senescent cells secrete proinflammatory and growth-stimulatory molecules, termed the senescence-associated secretory phenotype (SASP), which is correlated with cancer cell proliferation in culture and xenograft models. However, at what tumor stage and how senescence and the SASP act on endogenous tumor growth in vivo is unknown. To understand the role of senescence in cancer etiology, we subjected p16-3MR transgenic mice, which permit the identification and selective elimination of senescent cells in vivo, to the well-established two-step protocol of squamous cell skin carcinoma, in which tumorigenesis is initiated by a carcinogen 7,12-dimethylbenz[α]anthracene, and then promoted by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We show that TPA promotes skin carcinogenesis by inducing senescence and a SASP. Systemic induction of senescence in nontumor-bearing p16-3MR mice using a chemotherapy followed by the two-step carcinogenesis protocol potentiated the conversion of benign papillomas to carcinomas by elevating p38MAPK and MAPK/ERK signaling. Ablation of senescent cells reduced p38MAPK and MAPK/ERK signaling, thereby preventing the progression of benign papillomas to carcinomas. Thus, we show for the first time that senescent cells are tumor promoters, not tumor initiators, and that they stimulate skin carcinogenesis by elevating p38MAPK and MAPK/ERK signaling. These findings pave the way for developing novel therapeutics against senescence-fueled cancers. SIGNIFICANCE: These findings identify chemotherapy-induced senescence as a culprit behind tumor promotion, suggesting that elimination of senescent cells after chemotherapy may reduce occurrence of second cancers decades later. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3606/F1.large.jpg.
Collapse
Affiliation(s)
| | - Tanya Pulido
- Buck Institute for Research on Aging, Novato, California
| | | | - Sena Alptekin
- Buck Institute for Research on Aging, Novato, California.,Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Emily Chang
- Buck Institute for Research on Aging, Novato, California
| | - Elijah Jones
- Buck Institute for Research on Aging, Novato, California
| | - Diego A Diaz
- Buck Institute for Research on Aging, Novato, California
| | - Jose Flores
- Buck Institute for Research on Aging, Novato, California
| | - Michael C Velarde
- Buck Institute for Research on Aging, Novato, California.,Institute of Biology, University of the Philippines Diliman, College of Science, Quezon City, Philippines
| | - Marco Demaria
- Buck Institute for Research on Aging, Novato, California.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California. .,Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
90
|
De Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: Underestimated Players in the Pathogenesis of Multiple Sclerosis (MS). Int J Mol Sci 2020; 21:E4558. [PMID: 32604901 PMCID: PMC7349048 DOI: 10.3390/ijms21124558] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Neutrophils are the most abundant circulating and first-responding innate myeloid cells and have so far been underestimated in the context of multiple sclerosis (MS). MS is the most frequent, immune-mediated, inflammatory disease of the central nervous system. MS is treatable but not curable and its cause(s) and pathogenesis remain elusive. The involvement of neutrophils in MS pathogenesis has been suggested by the use of preclinical animal disease models, as well as on the basis of patient sample analysis. In this review, we provide an overview of the possible mechanisms and functions by which neutrophils may contribute to the development and pathology of MS. Neutrophils display a broad variety of effector functions enabling disease pathogenesis, including (1) the release of inflammatory mediators and enzymes, such as interleukin-1β, myeloperoxidase and various proteinases, (2) destruction and phagocytosis of myelin (as debris), (3) release of neutrophil extracellular traps, (4) production of reactive oxygen species, (5) breakdown of the blood-brain barrier and (6) generation and presentation of autoantigens. An important question relates to the issue of whether neutrophils exhibit a predominantly proinflammatory function or are also implicated in the resolution of chronic inflammatory responses in MS.
Collapse
Affiliation(s)
- Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1042, 3000 Leuven, Belgium;
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| | - Niels Hellings
- Neuro Immune Connections & Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49—Box 1042, 3000 Leuven, Belgium;
| |
Collapse
|
91
|
Hage C, Michaëlsson E, Kull B, Miliotis T, Svedlund S, Linde C, Donal E, Daubert JC, Gan LM, Lund LH. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. ESC Heart Fail 2020; 7:1534-1546. [PMID: 32424988 PMCID: PMC7373930 DOI: 10.1002/ehf2.12700] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Aims In heart failure (HF) with preserved ejection fraction (HFpEF), microvascular inflammation is proposed as an underlying mechanism. Myeloperoxidase (MPO) is associated with vascular dysfunction and prognosis in congestive HF. Methods and results MPO, MPO‐related biomarkers, and echocardiography were assessed in 86 patients, 4–8 weeks after presentation with acute HF (EF ≥ 45%), and in 46 healthy controls. Patients were followed up for median 579 days (Q1;Q3 276;1178) regarding the composite endpoint all‐cause mortality or HF hospitalization. Patients were 73 years old, 51% were female, EF was 64% (Q1;Q3 58;68), E/e′ was ratio 10.8 (8.3;14.0), and left atrial volume index (LAVI) was 43 mL/m2 (38;52). Controls were 60 (57;62) years old (vs. patients; P < 0.001), 24% were female (P = 0.005), and left ventricular EF was 63% (59;66; P = 0.790). MPO was increased in HFpEF compared with controls, 101 (81;132) vs. 86 (74;101 ng/mL, P = 0.015), as was uric acid 369 (314;439) vs. 289 (252;328 μmol/L, P < 0.001), calprotectin, asymmetric dimethyl arginine (ADMA), and symmetric dimethyl arginine (SDMA), while arginine was decreased. MPO correlated with uric acid (r = 0.26; P = 0.016). In patients with E/e′ > 14, uric acid and SDMA were elevated (421 vs. 344 μM, P = 0.012; 0.54 vs. 0.47 μM, P = 0.039, respectively), and MPO was 121 vs. 98 ng/mL (P = 0.090). The ratios of arginine/ADMA (112 vs. 162; P < 0.001) and ADMA/SDMA (1.36 vs. 1.17; P = 0.002) were decreased in HFpEF patients, suggesting reduced NO availability and increased enzymatic clearance of ADMA, respectively. Uric acid independently predicted the endpoint [hazard ratio (HR) 3.76 (95% CI 1.19–11.85; P = 0.024)] but not MPO [HR 1.48 (95% CI 0.70–3.14; P = 0.304)] or the other biomarkers. Conclusions In HFpEF, MPO‐dependent oxidative stress reflected by uric acid and calprotectin is increased, and SDMA is associated with diastolic dysfunction and uric acid with outcome. This suggests microvascular neutrophil involvement mirroring endothelial dysfunction, a central component of the HFpEF syndrome and a potential treatment target.
Collapse
Affiliation(s)
- Camilla Hage
- Heart and Vascular Theme, Heart Failure Section, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Erik Michaëlsson
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bengt Kull
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Linde
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Donal
- Département de Cardiologie and CIC-IT U 804, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Claude Daubert
- Département de Cardiologie and CIC-IT U 804, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Li-Ming Gan
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars H Lund
- Heart and Vascular Theme, Heart Failure Section, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
92
|
Soucek O, Kacerovsky M, Musilova I, Pliskova L, Bolehovska R, Andrys C. Amniotic fluid CD11b levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2020; 35:1703-1711. [PMID: 32429753 DOI: 10.1080/14767058.2020.1767578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective: CD11b is an integrin molecule located on the surface of leukocytes. CD11b is involved in the processes of cell adhesion and migration. Expression of CD11b increases during inflammation. Therefore, this study was aimed at the evaluation of concentrations of CD11b in the amniotic fluid from pregnancies complicated by preterm prelabor rupture of the membranes (PPROM), with respect to the presence of microbial invasion of the amniotic cavity (MIAC), intra-amniotic inflammation (IAI), and microbial-associated IAI (the presence of both MIAC and IAI).Methods: Eighty women with singleton pregnancies complicated by PPROM were included. Amniotic fluid samples were obtained by transabdominal amniocentesis. Amniotic fluid CD11b concentrations were determined by enzyme-linked immunosorbent assay. MIAC was determined by a non-cultivation approach. IAI was defined by a bedside amniotic fluid interleukin-6 concentration ≥745 pg/mL.Result: Women with MIAC or microbial-associated IAI had higher CD11b concentrations in the amniotic fluid than women without these complications (with MIAC: median 0.31 ng/mL versus without MIAC: median 0.17 ng/mL, p = .001; with microbial associated-IAI: median 0.35 ng/mL versus without microbial-associated IAI: median 0.16 ng/mL; p =.02). The presence of IAI was not associated with elevated CD11b concentrations. A weak negative correlation was found between amniotic fluid CD11b concentrations and interleukin-6 concentrations (rho = 0.26; p = .02).Conclusions: MIAC and microbial-associated IAI are characterized by higher amniotic fluid CD11b concentrations in pregnancies complicated by PPROM.
Collapse
Affiliation(s)
- Ondrej Soucek
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
93
|
Bourke CD, Gough EK, Pimundu G, Shonhai A, Berejena C, Terry L, Baumard L, Choudhry N, Karmali Y, Bwakura-Dangarembizi M, Musiime V, Lutaakome J, Kekitiinwa A, Mutasa K, Szubert AJ, Spyer MJ, Deayton JR, Glass M, Geum HM, Pardieu C, Gibb DM, Klein N, Edens TJ, Walker AS, Manges AR, Prendergast AJ. Cotrimoxazole reduces systemic inflammation in HIV infection by altering the gut microbiome and immune activation. Sci Transl Med 2020; 11:11/486/eaav0537. [PMID: 30944164 DOI: 10.1126/scitranslmed.aav0537] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Long-term cotrimoxazole prophylaxis reduces mortality and morbidity in HIV infection, but the mechanisms underlying these clinical benefits are unclear. Here, we investigate the impact of cotrimoxazole on systemic inflammation, an independent driver of HIV mortality. In HIV-positive Ugandan and Zimbabwean children receiving antiretroviral therapy, we show that plasma inflammatory markers were lower after randomization to continue (n = 144) versus stop (n = 149) cotrimoxazole. This was not explained by clinical illness, HIV progression, or nutritional status. Because subclinical enteropathogen carriage and enteropathy can drive systemic inflammation, we explored cotrimoxazole effects on the gut microbiome and intestinal inflammatory biomarkers. Although global microbiome composition was unchanged, viridans group Streptococci and streptococcal mevalonate pathway enzymes were lower among children continuing (n = 36) versus stopping (n = 36) cotrimoxazole. These changes were associated with lower fecal myeloperoxidase. To isolate direct effects of cotrimoxazole on immune activation from antibiotic effects, we established in vitro models of systemic and intestinal inflammation. In vitro cotrimoxazole had modest but consistent inhibitory effects on proinflammatory cytokine production by blood leukocytes from HIV-positive (n = 16) and HIV-negative (n = 8) UK adults and reduced IL-8 production by gut epithelial cell lines. Collectively we demonstrate that cotrimoxazole reduces systemic and intestinal inflammation both indirectly via antibiotic effects on the microbiome and directly by blunting immune and epithelial cell activation. Synergy between these pathways may explain the clinical benefits of cotrimoxazole despite high antimicrobial resistance, providing further rationale for extending coverage among people living with HIV in sub-Saharan Africa.
Collapse
Affiliation(s)
- Claire D Bourke
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| | - Ethan K Gough
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Annie Shonhai
- College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Chipo Berejena
- College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Louise Terry
- Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Lucas Baumard
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Naheed Choudhry
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Yusuf Karmali
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | | | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda.,College of Health Sciences, Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Joseph Lutaakome
- Uganda Virus Research Institute/MRC Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children's Foundation-Uganda, Mulago Hospital, Kampala, Uganda
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Moira J Spyer
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Jane R Deayton
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.,Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Magdalena Glass
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Claire Pardieu
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Thaddeus J Edens
- Devil's Staircase Consulting, West Vancouver, British Columbia V7T 1V7, Canada
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.,MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| |
Collapse
|
94
|
Murphy MP, McEnery T, McQuillan K, McElvaney OF, McElvaney OJ, Landers S, Coleman O, Bussayajirapong A, Hawkins P, Henry M, Meleady P, Reeves EP, McElvaney NG. α 1 Antitrypsin therapy modulates the neutrophil membrane proteome and secretome. Eur Respir J 2020; 55:13993003.01678-2019. [PMID: 32060059 DOI: 10.1183/13993003.01678-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Obstructive pulmonary disease in patients with α1 antitrypsin (AAT) deficiency (AATD) occurs earlier in life compared with patients without AATD. To understand this further, the aim of this study was to investigate whether AATD presents with altered neutrophil characteristics, due to the specific lack of plasma AAT, compared with non-AATD COPD.This study focussed on the neutrophil plasma membrane and, by use of label-free tandem mass spectrometry, the proteome of the neutrophil membrane was compared in forced expiratory volume in 1 s (FEV1)-matched AATD, non-AATD COPD and in AATD patients receiving weekly AAT augmentation therapy (n=6 patients per cohort). Altered protein expression in AATD was confirmed by Western blot, ELISA and fluorescence resonance energy transfer analysis.The neutrophil membrane proteome in AATD differed significantly from that of COPD as demonstrated by increased abundance and activity of primary granule proteins including neutrophil elastase on the cell surface in AATD. The signalling mechanism underlying increased degranulation involved Rac2 activation, subsequently resulting in proteinase-activated receptor 2 activation by serine proteinases and enhanced reactive oxygen species production. In vitro and ex vivo, AAT reduced primary granule release and the described plasma membrane variance was resolved post-AAT augmentation therapy in vivo, the effects of which significantly altered the AATD neutrophil membrane proteome to that of a non-AATD COPD cell.These results provide strong insight into the mechanism of neutrophil driven airways disease associated with AATD. Therapeutic AAT augmentation modified the membrane proteome to that of a typical COPD cell, with implications for clinical practice.
Collapse
Affiliation(s)
- Mark P Murphy
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Thomas McEnery
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Karen McQuillan
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Oisín F McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Sarah Landers
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Anchalin Bussayajirapong
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Padraig Hawkins
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland .,Noel G. McElvaney and Emer P. Reeves share joint senior authorship
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Dept of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.,Noel G. McElvaney and Emer P. Reeves share joint senior authorship
| |
Collapse
|
95
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
96
|
Response of Human Neutrophil Granulocytes to the Hyphae of the Emerging Fungal Pathogen Curvularia lunata. Pathogens 2020; 9:pathogens9030235. [PMID: 32245253 PMCID: PMC7157731 DOI: 10.3390/pathogens9030235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
Curvularia lunata is an ascomycete filamentous fungus causing local and invasive phaeohyphomycoses in both immunocompromised and immunocompetent patients. Neutrophils are crucial participants of the first line host defense against fungal infections. They migrate to the infected site and eliminate the infectious agents by various mechanisms including phagocytoses, oxidative damage, or formation of neutrophil extracellular trap (NET). Neutropenia may be a risk factor for phaeohyphomycoses, and restoration of the neutrophil function can improve the outcome of the infection. In the present study, interaction of primary human neutrophil granulocytes with the hyphae C. lunata was examined and compared to that with the well characterized filamentous fungal pathogen Aspergillus fumigatus. Neutrophils could recognize the serum opsonized hyphae of C. lunata and attach to them. Myeloperoxidase release was also activated by a soluble factor present in the culture supernatant of the fungus. Induction of the oxidative burst was found to depend on serum opsonization of the hyphae. Although extracellular hydrogen peroxide production was induced, the fungus efficiently blocked the oxidative burst by acidifying the reaction environment. This blockage also affected the NET forming ability of the neutrophils.
Collapse
|
97
|
Basilico S, Wang X, Kennedy A, Tzelepis K, Giotopoulos G, Kinston SJ, Quiros PM, Wong K, Adams DJ, Carnevalli LS, Huntly BJP, Vassiliou GS, Calero-Nieto FJ, Göttgens B. Dissecting the early steps of MLL induced leukaemogenic transformation using a mouse model of AML. Nat Commun 2020; 11:1407. [PMID: 32179751 PMCID: PMC7075888 DOI: 10.1038/s41467-020-15220-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Leukaemogenic mutations commonly disrupt cellular differentiation and/or enhance proliferation, thus perturbing the regulatory programs that control self-renewal and differentiation of stem and progenitor cells. Translocations involving the Mll1 (Kmt2a) gene generate powerful oncogenic fusion proteins, predominantly affecting infant and paediatric AML and ALL patients. The early stages of leukaemogenic transformation are typically inaccessible from human patients and conventional mouse models. Here, we take advantage of cells conditionally blocked at the multipotent haematopoietic progenitor stage to develop a MLL-r model capturing early cellular and molecular consequences of MLL-ENL expression based on a clear clonal relationship between parental and leukaemic cells. Through a combination of scRNA-seq, ATAC-seq and genome-scale CRISPR-Cas9 screening, we identify pathways and genes likely to drive the early phases of leukaemogenesis. Finally, we demonstrate the broad utility of using matched parental and transformed cells for small molecule inhibitor studies by validating both previously known and other potential therapeutic targets.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Female
- Hematopoietic Stem Cells/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Mice
- Mice, Inbred C57BL
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Silvia Basilico
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Xiaonan Wang
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alison Kennedy
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Milner Therapeutics Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George Giotopoulos
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pedro M Quiros
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Kim Wong
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Brian J P Huntly
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - George S Vassiliou
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Fernando J Calero-Nieto
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and University of Cambridge Department of Haematology, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
98
|
Jackson SR, Costa MFDM, Pastore CF, Zhao G, Weiner AI, Adams S, Palashikar G, Quansah K, Hankenson K, Herbert DR, Vaughan AE. R-spondin 2 mediates neutrophil egress into the alveolar space through increased lung permeability. BMC Res Notes 2020; 13:54. [PMID: 32019591 PMCID: PMC7001225 DOI: 10.1186/s13104-020-4930-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective R-spondin 2 (RSPO2) is required for lung morphogenesis, activates Wnt signaling, and is upregulated in idiopathic lung fibrosis. Our objective was to investigate whether RSPO2 is similarly important in homeostasis of the adult lung. While investigating the characteristics of bronchoalveolar lavage in RSPO2-deficient (RSPO2−/−) mice, we observed unexpected changes in neutrophil homeostasis and vascular permeability when compared to control (RSPO2+/+) mice at baseline. Here we quantify these observations to explore how tonic RSPO2 expression impacts lung homeostasis. Results Quantitative PCR (qPCR) analysis demonstrated significantly elevated myeloperoxidase (MPO) expression in bronchoalveolar lavage fluid (BALF) cells from RSPO2−/− mice. Likewise, immunocytochemical (ICC) analysis demonstrated significantly more MPO+ cells in BALF from RSPO2−/− mice compared to controls, confirming the increase of infiltrated neutrophils. We then assessed lung permeability/barrier disruption via Fluorescein Isothiocyanate (FITC)-dextran instillation and found a significantly higher dextran concentration in the plasma of RSPO2−/− mice compared to identically treated RSPO2+/+ mice. These data demonstrate that RSPO2 may be crucial for blood-gas barrier integrity and can limit neutrophil migration from circulation into alveolar spaces associated with increased lung permeability and/or barrier disruption. This study indicates that additional research is needed to evaluate RSPO2 in scenarios characterized by pulmonary edema or neutrophilia.
Collapse
Affiliation(s)
- S R Jackson
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - M F D M Costa
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - C F Pastore
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A I Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - S Adams
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - G Palashikar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Quansah
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - K Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - D R Herbert
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA
| | - A E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Old Vet 372E, Philadelphia, PA, 19104, USA. .,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
99
|
Bilen S, Altief TAS, Özdemir KY, Salem MOA, Terzi E, Güney K. Effect of lemon balm (Melissa officinalis) extract on growth performance, digestive and antioxidant enzyme activities, and immune responses in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:471-481. [PMID: 31784930 DOI: 10.1007/s10695-019-00737-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
This study was conducted to determine the effects of dietary supplementation of lemon balm (Melissa officinalis) aqueous methanolic extract on growth performance, blood parameters, digestive and antioxidant enzyme activities, and non-specific immune responses in rainbow trout (Oncorhynchus mykiss). Fish with an average weight of 23.03 ± 0.07 g were fed a diet supplemented with an aqueous methanolic extract of lemon balm at a dose of 0 (control), 0.1 (LB0.1), 0.5 (LB0.5), and 1 g kg-1 (LB1) for 75 days. The final weight, weight gain, and specific growth rate were observed to be significantly increased in LB0.5 and LB1 groups compared with that of the control. No differences were observed in feed conversion ratio values. WBC increased at the 45th day of the study in LB0.1 group. No differences were determined in RBC (P > 0.05). At the end of the study, lipase increased significantly in all experimental groups compared with the control. Pepsin was also elevated in LB0.5 and LB1 groups compared with the control. Increased trypsin was determined in LB1 group (P < 0.05). SOD activity increased at the end of the study in LB1 group (P < 0.05). CAT values had no differences compared with control. GR activity increased in all experimental groups compared with control. GPx improved in LB0.5 and LB1 groups significantly (P < 0.05). Lipid peroxidation was decreased in LB1 group compared with that of control, but this decrease was not significant (P < 0.05). Oxidative radical production and lysozyme activity significantly increased in LB1 group (P < 0.05). The highest MPO was determined in control group (P < 0.05). Current results suggest that lemon balm extract stimulates growth promoting antioxidant and immune responses in rainbow trout.
Collapse
Affiliation(s)
- Soner Bilen
- Faculty of Fisheries, Department of Aquaculture, Kastamonu University, Kastamonu, Turkey.
| | | | | | | | - Ertugrul Terzi
- Faculty of Fisheries, Department of Aquaculture, Kastamonu University, Kastamonu, Turkey
| | - Kerim Güney
- Faculty of Forestry, Department of Forest Engineering, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
100
|
Jeelani R, Chatzicharalampous C, Kohan-Ghadr HR, Bai D, Morris RT, Sliskovic I, Awonuga A, Abu-Soud HM. Hypochlorous acid reversibly inhibits caspase-3: a potential regulator of apoptosis. Free Radic Res 2020; 54:43-56. [DOI: 10.1080/10715762.2019.1694675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - David Bai
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert T. Morris
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Inga Sliskovic
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Awoniyi Awonuga
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, the CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Microbiology, Immunology and Biochemistry and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|