51
|
Jiang Y, Luo Z, Gong Y, Fu Y, Luo Y. NAD + supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling. Oncogene 2023; 42:808-824. [PMID: 36690678 DOI: 10.1038/s41388-023-02592-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
NAD+ levels decline with age and in certain disease conditions. NAD+ precursors have been shown to stimulate NAD+ biosynthesis and ameliorate various age-associated diseases in mouse models. However, NAD+ metabolism is complicated in cancer and its role in triple-negative breast cancer (TNBC) remains elusive. Here, we show that NAD+ supplement suppresses tumor metastasis in a TNBC orthotopic patient-derived xenograft (PDX) model. Sirtuin1 lysine deacetylase (SIRT1) is required for the effects since SIRT1 knockdown blocks NAD+-suppressed tumor metastasis. Overexpression of SIRT1 effectively impairs the metastatic potential of TNBC. Importantly, the interaction between SIRT1 and p66Shc causes the deacetylation and functional inactivation of p66Shc, which inhibits epithelial-mesenchymal transition (EMT). Overall, we demonstrate that NAD+ supplementation executes its anti-tumor function via activating the SIRT1-p66Shc axis, which highlights the preventive and therapeutic potential of SIRT1 activators as effective interventions for TNBC.
Collapse
Affiliation(s)
- Yi Jiang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, 100084, Beijing, China.,The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Zongrui Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, 100084, Beijing, China.,The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Yuanchao Gong
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, 100084, Beijing, China.,The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, 100084, Beijing, China. .,The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China. .,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, 100084, Beijing, China. .,The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China. .,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
52
|
Pant R, Sharma N, Kabeer SW, Sharma S, Tikoo K. Selenium-Enriched Probiotic Alleviates Western Diet-Induced Non-alcoholic Fatty Liver Disease in Rats via Modulation of Autophagy Through AMPK/SIRT-1 Pathway. Biol Trace Elem Res 2023; 201:1344-1357. [PMID: 35499800 DOI: 10.1007/s12011-022-03247-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Current study was aimed to investigate the ability of L.acidophilus SNZ 86 to biotransform inorganic selenium to a more active organic form, resulting in trace element enrichment. Selenium-enriched L. acidophilus SNZ 86 has been shown to be effective in the treatment of a variety of gastrointestinal illnesses, indicating the need for additional research to determine the full potential of this therapeutic strategy in the treatment of metabolic disorders. Herein, we employed the western style diet-induced model of non-alcoholic fatty liver disease (NAFLD) to explore the therapeutic effect of selenium-enriched probiotic (SP). Male Sprague Dawley rats (160-180 g) were fed a high-fat (58% Kcal of fat) and high-fructose (30% w/v) diet for 12 weeks to develop an animal model mimicking NAFLD. High-fat and High-fructose diet-fed rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, abnormal liver function test, increased hepatic oxidative stress, and steatosis. SP was then administered orally (L acidophilus 1 × 109 CFU/ml containing 0.4 g Se/day; p.o.) for 8 weeks. The selenium enrichment within L. acidophilus SNZ 86 was validated by TEM, which allowed for visualisation of the selenium deposition and size distribution in the probiotic. In NAFLD control rats, the expression of autophagy proteins (LC-3 A/B and Beclin), AMPK, and SIRT-1 was significantly reduced indicating downregulation of autophagy. However, supplementation of SP ameliorates hepatic steatosis as evidenced by improved biochemical markers and autophagic activation via upregulation of the AMPK and SIRT-1 pathway showing the relevance of autophagy in the disease aetiology. Collectively, these findings provide us with a better understanding of the role of SP in the treatment of hepatic steatosis and establish a therapeutic basis for potential clinical application of SP in the prevention of NAFLD and associated pathological conditions.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Shivam Sharma
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India.
| |
Collapse
|
53
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
54
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
55
|
Lancho O, Singh A, da Silva-Diz V, Aleksandrova M, Khatun J, Tottone L, Nunes PR, Luo S, Zhao C, Zheng H, Chiles E, Zuo Z, Rocha PP, Su X, Khiabanian H, Herranz D. A Therapeutically Targetable NOTCH1-SIRT1-KAT7 Axis in T-cell Leukemia. Blood Cancer Discov 2023; 4:12-33. [PMID: 36322781 PMCID: PMC9818047 DOI: 10.1158/2643-3230.bcd-22-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a NOTCH1-driven disease in need of novel therapies. Here, we identify a NOTCH1-SIRT1-KAT7 link as a therapeutic vulnerability in T-ALL, in which the histone deacetylase SIRT1 is overexpressed downstream of a NOTCH1-bound enhancer. SIRT1 loss impaired leukemia generation, whereas SIRT1 overexpression accelerated leukemia and conferred resistance to NOTCH1 inhibition in a deacetylase-dependent manner. Moreover, pharmacologic or genetic inhibition of SIRT1 resulted in significant antileukemic effects. Global acetyl proteomics upon SIRT1 loss uncovered hyperacetylation of KAT7 and BRD1, subunits of a histone acetyltransferase complex targeting H4K12. Metabolic and gene-expression profiling revealed metabolic changes together with a transcriptional signature resembling KAT7 deletion. Consistently, SIRT1 loss resulted in reduced H4K12ac, and overexpression of a nonacetylatable KAT7-mutant partly rescued SIRT1 loss-induced proliferation defects. Overall, our results uncover therapeutic targets in T-ALL and reveal a circular feedback mechanism balancing deacetylase/acetyltransferase activation with potentially broad relevance in cancer. SIGNIFICANCE We identify a T-ALL axis whereby NOTCH1 activates SIRT1 through an enhancer region, and SIRT1 deacetylates and activates KAT7. Targeting SIRT1 shows antileukemic effects, partly mediated by KAT7 inactivation. Our results reveal T-ALL therapeutic targets and uncover a rheostat mechanism between deacetylase/acetyltransferase activities with potentially broader cancer relevance. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Maya Aleksandrova
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jesminara Khatun
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Patricia Renck Nunes
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Zhenyu Zuo
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Pedro P. Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.,National Cancer Institute, NIH, Bethesda, Maryland
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.,Corresponding Author: Daniel Herranz, Department of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, Office Room 3037, Lab Room 3026, New Brunswick, NJ 08901. Phone: 1-732-235-4064; E-mail:
| |
Collapse
|
56
|
Chularojmontri L, Nanna U, Tingpej P, Hansakul P, Jansom C, Wattanapitayakul S, Naowaboot J. Raphanus sativus L. var. caudatus Extract Alleviates Impairment of Lipid and Glucose Homeostasis in Liver of High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Prev Nutr Food Sci 2022; 27:399-406. [PMID: 36721756 PMCID: PMC9843712 DOI: 10.3746/pnf.2022.27.4.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the activities of Raphanus sativus L. var. caudatus extract (RS) on abnormal lipid and glucose homeostasis in a high-fat diet (HFD)-induced obesity and insulin resistance in a mouse model. Institute of Cancer Research mice were rendered obese by 16-week HFD feeding. Obese mice were administered with 100 or 200 mg/kg/d RS orally during the last 8 weeks of diet feeding. Then, the biochemical parameters were determined. The gene and protein expressions regulating lipid and glucose homeostasis in the liver were measured. This study revealed that the state of hyperglycemia, hyperleptinemia, hyperinsulinemia, and hyperlipidemia was reduced after 8 weeks of RS treatment (100 or 200 mg/kg). Administration of RS also improved insulin sensitivity and increased serum adiponectin. The liver total cholesterol and triglyceride concentrations were decreased by both doses of RS. Notably, a decrease in the expression of liver-specific genes, including sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase, was found in the RS-treated groups. Moreover, administration of RS showed a significant increase in the expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and sirtuin1 (Sirt1) proteins. These findings indicated that RS improved abnormal lipid and glucose homeostasis in the liver of obesity-associated insulin resistance mouse model, possibly through the stimulation of the AMPK/Sirt1 pathway.
Collapse
Affiliation(s)
- Linda Chularojmontri
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Urarat Nanna
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Pintusorn Hansakul
- Division of Biochemistry, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand
| | - Chalerm Jansom
- Research Office, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Suvara Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Thammasat University, Pathum Thani 12120, Thailand,
Correspondence to Jarinyaporn Naowaboot, E-mail:
| |
Collapse
|
57
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
58
|
The Ethanolic Extract of Lindera aggregata Modulates Gut Microbiota Dysbiosis and Alleviates Ethanol-Induced Acute Liver Inflammation and Oxidative Stress SIRT1/Nrf2/NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6256450. [PMID: 36583098 PMCID: PMC9794438 DOI: 10.1155/2022/6256450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
This study is an attempt to evaluate the therapeutic effect of the ethanolic extract of Lindera aggregata on the liver and intestinal microbiota in rats with alcohol-induced liver injury (ALI). Rats were treated with 70 mg probiotics, 1 g/kg, 2 g/kg, and 3 g/kg ethanolic extract of Lindera aggregata, respectively, for 10 days. We found that Lindera aggregata could significantly reduce the biochemical parameters in the serum of ALD rats. Lindera aggregata alleviates oxidative stress and inflammation by upregulating SIRT1 and Nrf2 and downregulating COX2 and NF-κB. The results of 16S rRNA gene sequencing showed that the medium dose of Lindera aggregata had the best effect on the growth of beneficial bacteria. Diversity analysis and LEfSe analysis showed that beneficial bacteria gradually occupied the dominant niche. The relative abundance of potential pathogens in the gut decreased significantly. We demonstrated that the ethanolic extract of Lindera aggregata can alleviate the oxidative stress and inflammation induced by alcohol through the SIRT1/Nrf2/NF-κB pathway and can modulate the disturbance of gut microbiota induced by alcohol intake.
Collapse
|
59
|
Tozzi R, Campolo F, Baldini E, Venneri MA, Lubrano C, Ulisse S, Gnessi L, Mariani S. Ketogenic Diet Increases Serum and White Adipose Tissue SIRT1 Expression in Mice. Int J Mol Sci 2022; 23:ijms232415860. [PMID: 36555502 PMCID: PMC9785229 DOI: 10.3390/ijms232415860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Overnutrition and its sequelae have become a global concern due to the increasing incidence of obesity and insulin resistance. A ketogenic diet (KD) is widely used as a dietary treatment for metabolic disorders. Sirtuin1 (SIRT1), a metabolic sensor which regulates fat homeostasis, is modulated by dietary interventions. However, the influence of nutritional ketosis on SIRT1 is still debated. We examined the effect of KD on adipose tissue, liver, and serum levels of SIRT1 in mice. Adult C57BL/6J male mice were randomly assigned to two isocaloric dietary groups and fed with either high-fat KD or normal chow (NC) for 4 weeks. Serum SIRT1, beta-hydroxybutyrate (βHB), glucose, and triglyceride levels, as well as SIRT1 expression in visceral (VAT), subcutaneous (SAT), and brown (BAT) adipose tissues, and in the liver, were measured. KD-fed mice showed an increase in serum βHB in parallel with serum SIRT1 (r = 0.732, p = 0.0156), and increased SIRT1 protein expression in SAT and VAT. SIRT1 levels remained unchanged in BAT and in the liver, which developed steatosis. Normal glycemia and triglycerides were observed. Under a KD, serum and white fat phenotypes show higher SIRT1, suggesting that one of the molecular mechanisms underlying a KD's potential benefits on metabolic health involves a synergistic interaction with SIRT1.
Collapse
Affiliation(s)
- Rossella Tozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-6-49970509; Fax: +39-6-4461450
| |
Collapse
|
60
|
Andrikakou P, Reebye V, Vasconcelos D, Yoon S, Voutila J, George AJT, Swiderski P, Habib R, Catley M, Blakey D, Habib NA, Rossi JJ, Huang KW. Enhancing SIRT1 Gene Expression Using Small Activating RNAs: A Novel Approach for Reversing Metabolic Syndrome. Nucleic Acid Ther 2022; 32:486-496. [PMID: 35895511 DOI: 10.1089/nat.2021.0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MetS) is a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Sirtuin 1 (SIRT1), a highly conserved histone deacetylase, is characterized as a key metabolic regulator and protector against aging-associated pathologies, including MetS. In this study, we investigate the therapeutic potential of activating SIRT1 using small activating RNAs (saRNA), thereby reducing inflammatory-like responses and re-establishing normal lipid metabolism. SIRT1 saRNA significantly increased SIRT1 messenger RNA (mRNA) and protein levels in both lipopolysaccharide-stimulated and nonstimulated macrophages. SIRT1 saRNA significantly decreased inflammatory-like responses, by reducing mRNA levels of key inflammatory cytokines, such as Tumor Necrosis Factor alpha, Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), and chemokines Monocyte Chemoattractant Protein-1 and keratinocyte chemoattractant. SIRT1 overexpression also significantly reduced phosphorylation of nuclear factor-κB and c-Jun N-terminal kinase, both key signaling molecules for the inflammatory pathway. To investigate the therapeutic effect of SIRT1 upregulation, we treated a high-fat diet model with SIRT1 saRNA conjugated to a transferrin receptor aptamer for delivery to the liver and cellular internalization. Animals in the SIRT1 saRNA treatment arm demonstrated significantly decreased weight gain with a significant reduction in white adipose tissue, triglycerides, fasting glucose levels, and intracellular lipid accumulation. These suggest treatment-induced changes to lipid and glucose metabolism in the animals. The results of this study demonstrate that targeted activation of SIRT1 by saRNAs is a potential strategy to reverse MetS.
Collapse
Affiliation(s)
- Pinelopi Andrikakou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Vikash Reebye
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Vasconcelos
- MiNA Therapeutics Limited, London, United Kingdom.,Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| | - Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jon Voutila
- MiNA Therapeutics Limited, London, United Kingdom
| | | | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Robert Habib
- MiNA Therapeutics Limited, London, United Kingdom
| | | | - David Blakey
- MiNA Therapeutics Limited, London, United Kingdom
| | - Nagy A Habib
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.,MiNA Therapeutics Limited, London, United Kingdom
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kai-Wen Huang
- Department of Surgery, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
61
|
Hu H, Sun N, Du H, He Y, Pan K, Liu X, Lu X, Wei J, Liao M, Duan C. Mouse promyelocytic leukemia zinc finger protein (PLZF) regulates hepatic lipid and glucose homeostasis dependent on SIRT1. Front Pharmacol 2022; 13:1039726. [PMID: 36438786 PMCID: PMC9684722 DOI: 10.3389/fphar.2022.1039726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have demonstrated that promyelocytic leukemia zinc finger protein (PLZF) promotes the expression of gluconeogenic genes and hepatic glucose output, which leads to hyperglycemia. However, the role played by PLZF in regulating lipid metabolism is not known. In this study, we aimed to examine the function of PLZF in regulating hepatic lipid and glucose homeostasis and the underlying mechanisms. The expression of PLZF was determined in different mouse models with regard to non-alcoholic fatty liver disease (NAFLD). In the next step, adenoviruses that express PLZF (Ad-PLZF) or PLZF-specific shRNA (Ad-shPLZF) were utilized to alter PLZF expression in mouse livers and in primary hepatocytes. For the phenotype of the fatty liver, histologic and biochemical analyses of hepatic triglyceride (TG), serum TG and cholesterol levels were carried out. The underlying molecular mechanism for the regulation of lipid metabolism by PLZF was further explored using luciferase reporter gene assay and ChIP analysis. The results demonstrated that PLZF expression was upregulated in livers derived from ob/ob, db/db and diet-induced obesity (DIO) mice. Liver PLZF-overexpressing C57BL/6J mice showed fatty liver phenotype, liver inflammation, impaired glucose tolerance and insulin sensitivity. On the other hand, hepatic PLZF knockdown in db/db and DIO mice alleviated hepatic steatosis. Of note, we found that PLZF activates SREBP-1c gene transcription through binding directly to the promoter fragment of this gene, which would induce a repressor-to-activator conversion depending on its interaction with SIRT1 in the role played by PLZF in the transcription process through deacetylation. Thus, PLZF is identified as an essential regulator of hepatic lipid and glucose metabolism, where the modulation of its liver expression could open up a therapeutic path for treating NAFLD.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nannan Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kunyi Pan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiuli Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| | - Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jie Wei, ; Mianmian Liao, ; Chaohui Duan,
| |
Collapse
|
62
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
63
|
Billeter AT, Scheurlen KM, Israel B, Straub BK, Schirmacher P, Kopf S, Nawroth PP, Müller-Stich BP. Gastric Bypass Resolves Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Low-BMI Patients: A Prospective Cohort Study. Ann Surg 2022; 276:814-821. [PMID: 35880762 PMCID: PMC9534054 DOI: 10.1097/sla.0000000000005631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Metabolic dysfunction-associated fatty liver disease (MAFLD) reflects the multifactorial pathogenesis of fatty liver disease in metabolically sick patients. The effects of metabolic surgery on MAFLD have not been investigated. This study assesses the impact of Roux-en-Y gastric bypass (RYGB) on MAFLD in a prototypical cohort outside the guidelines for obesity surgery. METHODS Twenty patients were enrolled in this prospective, single-arm trial investigating the effects of RYGB on advanced metabolic disease (DRKS00004605). Inclusion criteria were an insulin-dependent type 2 diabetes, body mass index of 25 to 35 kg/m 2 , glucagon-stimulated C-peptide of >1.5 ng/mL, glycated hemoglobin >7%, and age 18 to 70 years. A RYGB with intraoperative liver biopsies and follow-up liver biopsies 3 years later was performed. Steatohepatitis was assessed by expert liver pathologists. Data were analyzed using the Wilcoxon rank sum test and a P value <0.05 was defined as significant. RESULTS MAFLD completely resolved in all patients 3 years after RYGB while fibrosis improved as well. Fifty-five percent were off insulin therapy with a significant reduction in glycated hemoglobin (8.45±0.27% to 7.09±0.26%, P =0.0014). RYGB reduced systemic and hepatic nitrotyrosine levels likely through upregulation of NRF1 and its dependent antioxidative and mitochondrial genes. In addition, central metabolic regulators such as SIRT1 and FOXO1 were upregulated while de novo lipogenesis was reduced and β-oxidation was improved in line with an improvement of insulin resistance. Lastly, gastrointestinal hormones and adipokines secretion were changed favorably. CONCLUSIONS RYGB is a promising therapy for MAFLD even in low-body mass index patients with insulin-treated type 2 diabetes with complete histologic resolution. RYGB restores the oxidative balance, adipose tissue function, and gastrointestinal hormones.
Collapse
Affiliation(s)
- Adrian T. Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Katharina M. Scheurlen
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Barbara Israel
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Beate K. Straub
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Heidelberg, Germany
| | - Peter P. Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| | - Beat P. Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
64
|
Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 2022; 37:2181-2195. [PMID: 35616799 DOI: 10.1007/s11011-022-00956-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
About 50% of the diabetic patients worldwide suffer from Diabetic peripheral neuropathy (DPN) which is characterized by chronic pain and loss of sensation, frequent foot ulcerations, and risk for amputation. Numerous factors like hyperglycemia, oxidative stress (OS), impaired glucose signaling, inflammatory responses, neuronal cell death are known to be the various mechanisms underlying DACD and DPN. Development of tolerance, insufficient and inadequate relief and potential toxicity of classical antinociceptives still remains a challenge in the clinical setting. Therefore, there is an emerging need for novel treatments which are both without any potential side effects as well as which focus more on the pathophysiological mechanisms underlying the disease. Also, sirtuins are known to deacetylate Nrf2 and contribute to its action of reducing ROS by generation of anti-oxidant enzymes. Therefore, targeting sirtuins could be a favourable therapeutic strategy to treat diabetic neuropathy by reducing ROS and thereby alleviating OS in DPN. In the present review, we outline the potential use of SIRT1 activators as therapeutic alternatives in treating DPN. We have tried to highlight how sirtuins are interlinked with Nrf2 and NF-κB and put forth how SIRT activators could serve as potential therapy for DPN.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Hasnat Khan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
65
|
Brenner C. Sirtuins are Not Conserved Longevity Genes. LIFE METABOLISM 2022; 1:122-133. [PMID: 37035412 PMCID: PMC10081735 DOI: 10.1093/lifemeta/loac025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/14/2022]
Abstract
It is central to biology that sequence conservation suggests functional conservation. Animal longevity is an emergent property of selected traits that integrates capacities to perform physical and mental functions after reproductive maturity. Though the yeast SIR2 gene was nominated as a longevity gene based on extended replicative longevity of old mother cells, this is not a selected trait: SIR2 is selected against in chronological aging and the direct targets of SIR2 in replicative lifespan are not conserved. Though it would be difficult to imagine how a gene that advantages 1 in 5 million yeast cells could have anticipated causes of aging in animals, overexpression of SIR2 homologs was tested in invertebrates for longevity. Because artifactual positive results were reported years before they were sorted out and because it was not known that SIR2 functions as a pro-aging gene in yeast chronological aging and in flies subject to amino acid deprivation, a global pursuit of longevity phenotypes was driven by a mixture of framing bias, confirmation bias and hype. Review articles that propagate these biases are so rampant that few investigators have considered how weak the case ever was for sirtuins as longevity genes. Acknowledging that a few positive associations between sirtuins and longevity have been identified after thousands of person-years and billions of dollars of effort, we review the data and suggest rejection of the notions that sirtuins 1) have any specific connection to lifespan in animals and 2) are primary mediators of the beneficial effects of NAD repletion.
Collapse
Affiliation(s)
- Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010USA
| |
Collapse
|
66
|
Nicotinamide riboside kinase 1 protects against diet and age-induced pancreatic β-cell failure. Mol Metab 2022; 66:101605. [PMID: 36165811 PMCID: PMC9557729 DOI: 10.1016/j.molmet.2022.101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Disturbances in NAD+ metabolism have been described as a hallmark for multiple metabolic and age-related diseases, including type 2 diabetes. While alterations in pancreatic β-cell function are critical determinants of whole-body glucose homeostasis, the role of NAD+ metabolism in the endocrine pancreas remains poorly explored. Here, we aimed to evaluate the role of nicotinamide riboside (NR) metabolism in maintaining NAD+ levels and pancreatic β-cell function in pathophysiological conditions. METHODS Whole body and pancreatic β-cell-specific NRK1 knockout (KO) mice were metabolically phenotyped in situations of high-fat feeding and aging. We also analyzed pancreatic β-cell function, β-cell mass and gene expression. RESULTS We first demonstrate that NRK1, the essential enzyme for the utilization of NR, is abundantly expressed in pancreatic β-cells. While NR treatment did not alter glucose-stimulated insulin secretion in pancreatic islets from young healthy mice, NRK1 knockout mice displayed glucose intolerance and compromised β-cells response to a glucose challenge upon high-fat feeding or aging. Interestingly, β cell dysfunction stemmed from the functional failure of other organs, such as liver and kidney, and the associated changes in circulating peptides and hormones, as mice lacking NRK1 exclusively in β-cells did not show altered glucose homeostasis. CONCLUSIONS This work unveils a new physiological role for NR metabolism in the maintenance of glucose tolerance and pancreatic β-cell function in high-fat feeding or aging conditions.
Collapse
|
67
|
Batra T, Buniyaadi A, Kumar V. Daytime restriction of feeding prevents illuminated night-induced impairment of metabolism and sleep in diurnal zebra finches. Physiol Behav 2022; 253:113866. [PMID: 35659511 DOI: 10.1016/j.physbeh.2022.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
We investigated whether nocturnal eating was causal to the impairment of metabolism and sleep disruption in diurnal animals exposed to illuminated nights. Adult zebra finches hatched and raised in 12 h light: 12 h darkness (LD) were exposed to 5-lux dim light at night (dLAN, two groups), with a control group maintained on LD. For the next 3 weeks, the food availability to one of the dLAN groups was restricted to the 12 h light period (dLAN -F); the other dLAN (dLAN +F) and LD groups were continued on ad lib feeding. In spite of similar food intakes, dLAN +F condition led to the fat accumulation and weight gain. These birds showed concurrent changes in hepatic expression of genes associated with carbohydrate and lipid metabolism, suggesting an enhanced gluconeogenesis and impaired fatty acids synthesis. Increased sirt1 mRNA levels indicated the activation of molecular mechanisms to counter-balance the metabolic damage under dLAN +F. Furthermore, reduced bout length and total duration of the nocturnal sleep suggested a poorer sleep in dLAN +F condition. Negative sleep effects of dLAN were supported by the lower hypothalamic expression of sleep promoting sik3 and camkii genes, and higher mRNA expression of awake promoting achm3 gene in dLAN +F, compared to the LD condition. Importantly, dLAN-induced negative effects in metabolism and sleep were alleviated in the dLAN -F group. These results suggest the role of timed feeding in alleviating the negative impact of illuminated nights in metabolism and sleep in diurnal zebra finches.
Collapse
Affiliation(s)
- Twinkle Batra
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Amaan Buniyaadi
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Indo US Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
68
|
Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction. Antioxidants (Basel) 2022; 11:antiox11091695. [PMID: 36139771 PMCID: PMC9495674 DOI: 10.3390/antiox11091695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.
Collapse
|
69
|
Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation. Oncogene 2022; 41:4474-4484. [PMID: 36030331 DOI: 10.1038/s41388-022-02447-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
SIRT1 is an NAD+-dependent deacetylase and plays an important role in the deacetylation of both histone and non-histone proteins. Many studies revealed that SIRT1 is upregulated in a variety of tumors and tightly associated with tumorigenesis and cancer progression, but the detailed underlying mechanism of the biological processes remains unclarified. In the present study, we found a nucleolar protein NOC4L, human ortholog of yeast Noc4p, which is essential for the nuclear export of the ribosomal 40S subunit and could bind to SIRT1 to inhibit SIRT1 mediated deacetylation of p53. NOC4L interacts with SIRT1 in variety of cells under nucleolar stress and directly interacts with SIRT1 in vitro. Furthermore, we determined the C-terminal of NOC4L and the catalytic domain of SIRT1 were required for their interaction. Overexpression of NOC4L did not change the protein levels of SIRT1 or p53, but increased the acetylation of p53 and promoted cell apoptosis. Additionally, NOC4L inhibited tumor cell proliferation in a p53-dependent manner and restrained tumor growth in a nude mice xenograft model. Clinically, colorectal cancer patients with the high expression of NOC4L had a better prognosis as TP53 was normally expressed, but no significant difference was observed in survival with mutant TP53. Taken together, our results identified a novel SIRT1 regulatory protein and broaden our understanding of the molecular mechanism of how nucleolar protein NOC4L regulates p53 under nucleolar stress. This research provides an insight into tumorigenesis and cell self-protection in the early stage of DNA damage.
Collapse
|
70
|
Zhou S, Xue J, Shan J, Hong Y, Zhu W, Nie Z, Zhang Y, Ji N, Luo X, Zhang T, Ma W. Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1. Nutrients 2022; 14:3338. [PMID: 36014845 PMCID: PMC9416570 DOI: 10.3390/nu14163338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite after ingesting dietary choline, has been identified as a novel risk factor for atherosclerosis through inducing vascular inflammation. However, the underlying molecular mechanism is poorly understood. Using an in vitro vascular cellular model, we found that the TMAO-induced inflammation responses were correlated with an elevation of ROS levels and downregulation of SIRT1 expression in VSMCs and HUVECs. The overexpression of SIRT1 could abrogate both the stimulation of ROS and inflammation. Further studies revealed that AMPK was also suppressed by TMAO and was a mediator upstream of SIRT1. Activation of AMPK by AICAR could reduce TMAO-induced ROS and inflammation. Moreover, the GSH precursor NAC could attenuate TMAO-induced inflammation. In vivo studies with mice models also showed that choline-induced production of TMAO and the associated glycolipid metabolic changes leading to atherosclerosis could be relieved by NAC and a probiotic LP8198. Collectively, the present study revealed an unrecognized mechanistic link between TMAO and atherosclerosis risk, and probiotics ameliorated TMAO-induced atherosclerosis through affecting the gut microbiota. Consistent with previous studies, our data confirmed that TMAO could stimulate inflammation by modulating cellular ROS levels. However, this was not due to direct cytotoxicity but through complex signaling pathways involving AMPK and SIRT1.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiamin Xue
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Shan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yujie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nanxi Ji
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
71
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
72
|
Ni TW, Han TT, Li YR, Zhang C, Qin N, Wang YS, Duan HQ, Chen Y, Duan XC. The isoxazole based flavonoid derivative 1 ameliorates non-alcoholic fatty liver disease in high-fat diet-induced obese mice by regulating lipid metabolism and inflammatory responses. PHYTOCHEMISTRY LETTERS 2022; 50:112-117. [DOI: 10.1016/j.phytol.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
73
|
Yu M, Zhou M, Li J, Zong R, Yan Y, Kong L, Zhu Q, Li C. Notch-activated mesenchymal stromal/stem cells enhance the protective effect against acetaminophen-induced acute liver injury by activating AMPK/SIRT1 pathway. Stem Cell Res Ther 2022; 13:318. [PMID: 35842731 PMCID: PMC9288678 DOI: 10.1186/s13287-022-02999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Notch signaling plays important roles in regulating innate immunity. However, little is known about the role of Notch in mesenchymal stromal/stem cell (MSC)-mediated immunomodulation during liver inflammatory response. Methods Notch activation in human umbilical cord-derived MSCs was performed by a tissue culture plate coated with Notch ligand, recombinant human Jagged1 (JAG1). Mice were given intravenous injection of Notch-activated MSCs after acetaminophen (APAP)-induced acute liver injury. Liver tissues were collected and analyzed by histology and immunohistochemistry. Results MSC administration reduced APAP-induced hepatocellular damage, as manifested by decreased serum ALT levels, intrahepatic macrophage/neutrophil infiltration, hepatocellular apoptosis and proinflammatory mediators. The anti-inflammatory activity and therapeutic effects of MSCs were greatly enhanced by Notch activation via its ligand JAG1. However, Notch2 disruption in MSCs markedly diminished the protective effect of MSCs against APAP-induced acute liver injury, even in the presence of JAG1 pretreatment. Strikingly, Notch-activated MSCs promoted AMP-activated protein kinase (AMPKα) phosphorylation, increased the sirtuins 1 (SIRT1) deacetylase expression, but downregulated spliced X-box-binding protein 1 (XBP1s) expression and consequently reduced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation. Furthermore, SIRT1 disruption or XBP1s overexpression in macrophages exacerbated APAP-triggered liver inflammation and augmented NLRP3/caspase-1 activity in MSC-administrated mice. Mechanistic studies further demonstrated that JAG1-pretreated MSCs activated Notch2/COX2/PGE2 signaling, which in turn induced macrophage AMPK/SIRT1 activation, leading to XBP1s deacetylation and inhibition of NLRP3 activity. Conclusions Activation of Notch2 is required for the ability of MSCs to reduce the severity of APAP-induced liver damage in mice. Our findings underscore a novel molecular insights into MSCs-mediated immunomodulation by activating Notch2/COX2/AMPK/SIRT1 pathway and thus provide a new strategy for the treatment of liver inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02999-6.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahui Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Anatomy and Histology Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yufei Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liangyi Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiang Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
74
|
Barber TM, Kabisch S, Randeva HS, Pfeiffer AFH, Weickert MO. Implications of Resveratrol in Obesity and Insulin Resistance: A State-of-the-Art Review. Nutrients 2022; 14:nu14142870. [PMID: 35889827 PMCID: PMC9320680 DOI: 10.3390/nu14142870] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Resveratrol is a polyphenol chemical that naturally occurs in many plant-based dietary products, most notably, red wine. Discovered in 1939, widespread interest in the potential health benefits of resveratrol emerged in the 1970s in response to epidemiological data on the cardioprotective effects of wine. Objective: To explore the background of resveratrol (including its origins, stability, and metabolism), the metabolic effects of resveratrol and its mechanisms of action, and a potential future role of dietary resveratrol in the lifestyle management of obesity. Data sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the following search terms: “resveratrol”, “obesity”, “Diabetes Mellitus”, and “insulin sensitivity”. Results: Following its ingestion, resveratrol undergoes extensive metabolism. This includes conjugation (with sulfate and glucuronate) within enterocytes, hydrolyzation and reduction within the gut through the action of the microbiota (with the formation of metabolites such as dihydroresveratrol), and enterohepatic circulation via the bile. Ex vivo studies on adipose tissue reveal that resveratrol inhibits adipogenesis and prevents the accumulation of triglycerides through effects on the expression of Peroxisome Proliferator-activated Receptor γ (PPARγ) and sirtuin 1, respectively. Furthermore, resveratrol induces anti-inflammatory effects, supported by data from animal-based studies. Limited data from human-based studies reveal that resveratrol improves insulin sensitivity and fasting glucose levels in patients with Type 2 Diabetes Mellitus and may improve inflammatory status in human obesity. Although numerous mechanisms may underlie the metabolic benefits of resveratrol, evidence supports a role in its interaction with the gut microbiota and modulation of protein targets, including sirtuins and proteins related to nitric oxide, insulin, and nuclear hormone receptors (such as PPARγ). Conclusions: Despite much interest, there remain important unanswered questions regarding its optimal dosage (and how this may differ between and within individuals), and possible benefits within the general population, including the potential for weight-loss and improved metabolic function. Future studies should properly address these important questions before we can advocate the widespread adoption of dietary resveratrol supplementation.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 2TU, UK
- Correspondence:
| |
Collapse
|
75
|
Atherosclerosis Plaque Reduction by Lycopene Is Mediated by Increased Energy Expenditure through AMPK and PPARα in ApoE KO Mice Fed with a High Fat Diet. Biomolecules 2022; 12:biom12070973. [PMID: 35883529 PMCID: PMC9313394 DOI: 10.3390/biom12070973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Lycopene is a carotenoid found in tomatoes that has potent antioxidant activity. The Mediterranean diet is particularly rich in lycopene, which has well-known beneficial effects on cardiovascular health. We tested the effects of lycopene extract in a group of 20 ApoE knockout mice, fed with a high fat western diet for 14 weeks. Starting from week 3 and up to week 14, the mice were randomly divided into two groups that received lycopene (n = 10) by oral suspension every day at the human equivalent dose of 60 mg/day (0.246 mg/mouse/day), or the vehicle solution (n = 10). The lycopene administration reduced triglycerides and cholesterol blood levels starting from week 6 and continuing through to the end of the experiment (p < 0.001). This reduction was mediated by an enhanced liver expression of PPAR-α and AMPK-α and reduced SREBP levels (p < 0.0001). As a histological red-out, the extent of atherosclerotic plaques and the intima−media thickness in the aorta were significantly reduced by lycopene. In this context, lycopene augmented the Nrf-2 positivity staining in the endothelium, thereby confirming that its antioxidant activity was mediated by this nuclear factor. The positive results obtained in this pre-clinical model further support the use of lycopene extracts to reduce atherosclerosis.
Collapse
|
76
|
Li Y, Adeniji NT, Fan W, Kunimoto K, Török NJ. Non-alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis 2022; 13:1239-1251. [PMID: 35855331 PMCID: PMC9286912 DOI: 10.14336/ad.2022.0318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease-related mortality. The prevalence of NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and comorbidities, and effective medical treatments are still lacking. In this review we focused on pathways that are key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies to treat NASH in the elderly.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Nia T. Adeniji
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Natalie J. Török
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
77
|
Beegum F, P V A, George KT, K P D, Begum F, Krishnadas N, Shenoy RR. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30:911-926. [PMID: 35787722 DOI: 10.1080/1061186x.2022.2085729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sirtuins are a vast family of histone deacetylases, which are NAD+ dependent enzymes, consisting of seven members, namely SIRT 1, SIRT 6 and SIRT 7 located within the nucleus, SIRT 2 in the cytoplasm and SIRT 3, SIRT 4, and SIRT 5 in the mitochondria. They have vital roles in regulating various biological functions such as age-related metabolic disorders, inflammation, stress response, cardiovascular and neuronal functions. Delayed wound healing is one of the complication of diabetes, which can lead to lower limb amputation if not treated timely. SIRT 1, 3 and 6 are potent targets for diabetic wound healing. SIRT 1 deficiency reduces recruitment of fibroblasts, macrophages, mast cells, neutrophils to wound site and delays wound healing; negatively expressing MMP-9. The SIRT 1 mediated signalling pathway in diabetic wound healing is the SIRT 1-foxo-C-Myc pathway. On the contrary SIRT 3 deficiency, impairs proliferation and migration of fibroblasts and SIRT 6 deficiency impairs wound closure rate and interrupts the vascular remodelling. This review focuses on the role of sirtuins in improving delayed wound healing in diabetes and its natural modulators with their specific functions towards healing diabetic wounds.
Collapse
Affiliation(s)
- Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana P V
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya K P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
78
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
79
|
McGinnis CD, Jennings EQ, Harris PS, Galligan JJ, Fritz KS. Biochemical Mechanisms of Sirtuin-Directed Protein Acylation in Hepatic Pathologies of Mitochondrial Dysfunction. Cells 2022; 11:cells11132045. [PMID: 35805129 PMCID: PMC9266223 DOI: 10.3390/cells11132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial protein acetylation is associated with a host of diseases including cancer, Alzheimer’s, and metabolic syndrome. Deciphering the mechanisms regarding how protein acetylation contributes to disease pathologies remains difficult due to the complex diversity of pathways targeted by lysine acetylation. Specifically, protein acetylation is thought to direct feedback from metabolism, whereby nutritional status influences mitochondrial pathways including beta-oxidation, the citric acid cycle, and the electron transport chain. Acetylation provides a crucial connection between hepatic metabolism and mitochondrial function. Dysregulation of protein acetylation throughout the cell can alter mitochondrial function and is associated with numerous liver diseases, including non-alcoholic and alcoholic fatty liver disease, steatohepatitis, and hepatocellular carcinoma. This review introduces biochemical mechanisms of protein acetylation in the regulation of mitochondrial function and hepatic diseases and offers a viewpoint on the potential for targeted therapies.
Collapse
Affiliation(s)
- Courtney D. McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - Erin Q. Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Peter S. Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
- Correspondence:
| |
Collapse
|
80
|
Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol 2022; 54:102353. [PMID: 35777200 PMCID: PMC9287736 DOI: 10.1016/j.redox.2022.102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.
Collapse
|
81
|
Hwang YJ, Sung GJ, Marquardt R, Young SL, Lessey BA, Kim TH, Cheon YP, Jeong JW. SIRT1 plays an important role in implantation and decidualization during mouse early pregnancy. Biol Reprod 2022; 106:1072-1082. [PMID: 35134122 PMCID: PMC9198957 DOI: 10.1093/biolre/ioac026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a member of the sirtuin family that functions to deacetylate both histones and non-histone proteins. Previous studies have identified significant SIRT1 upregulation in eutopic endometrium from infertile women with endometriosis. However, SIRT1 function in the uterus has not been directly studied. Using immunochemistry analysis, we found SIRT1 to be most strongly expressed at GD4.5 and GD5.5 in decidualized cells and at GD7.5 in secondary decidual cells in mouse. To assess the role of SIRT1 in uterine function, we generated uterine Sirt1 conditional knockout mice (Pgrcre/+Sirt1f/f; Sirt1d/d). A 6-month fertility trial revealed that Sirt1d/d females were subfertile. Implantation site numbers were significantly decreased in Sirt1d/d mice compared with controls at GD5.5. Sirt1d/d implantation sites at GD4.5 could be divided into two groups, Group #1 with luminal closure and nonspecific COX2 expression compared with controls (14/20) and Group #2 with an open lumen and no COX2 (6/20). In Sirt1d/d Group #1, nuclear FOXO1 expression in luminal epithelial cells was significantly decreased. In Sirt1d/d Group #2, nuclear FOXO1 expression was almost completely absent, and there was strong PGR expression in epithelial cells. At GD5.5, stromal PGR and COX2 were significantly decreased in Sirt1d/d uterine in the areas surrounding the embryo compared with controls, indicating defective decidualization. An artificially induced decidualization test revealed that Sirt1d/d females showed defects in decidualization response. All together, these data suggest that SIRT1 is important for decidualization and contributes to preparing a receptive endometrium for successful implantation.
Collapse
Affiliation(s)
- Yeon Jeong Hwang
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute of Basic Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Gi-Jun Sung
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Ryan Marquardt
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertilithy, Atrium Health, Wake Forest Baptist, Winston-Salem, NC, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute of Basic Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
82
|
Chen Y, Li J, Zhang M, Yang W, Qin W, Zheng Q, Chu Y, Wu Y, Wu D, Yuan X. 11β-HSD1 Inhibitor Alleviates Non-Alcoholic Fatty Liver Disease by Activating the AMPK/SIRT1 Signaling Pathway. Nutrients 2022; 14:nu14112358. [PMID: 35684158 PMCID: PMC9182913 DOI: 10.3390/nu14112358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
We investigated the effect of an 11β-HSD1 inhibitor (H8) on hepatic steatosis and its mechanism of action. Although H8, a curcumin derivative, has been shown to alleviate insulin resistance, its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Rats were fed a high-fat diet (HFD) for 8 weeks, intraperitoneally injected with streptozotocin (STZ) to induce NAFLD, and, then, treated with H8 (3 or 6 mg/kg/day) or curcumin (6 mg/kg/day) for 4 weeks, to evaluate the effects of H8 on NAFLD. H8 significantly alleviated HFD+STZ-induced lipid accumulation, fibrosis, and inflammation as well as improved liver function. Moreover, 11β-HSD1 overexpression was established by transfecting animals and HepG2 cells with lentivirus, carrying the 11β-HSD1 gene, to confirm that H8 improved NAFLD, by reducing 11β-HSD1. An AMP-activated protein kinase (AMPK) inhibitor (Compound C, 10 μM for 2 h) was used to confirm that H8 increased AMPK, by inhibiting 11β-HSD1, thereby restoring lipid metabolic homeostasis. A silencing-related enzyme 1 (SIRT1) inhibitor (EX572, 10 μM for 4 h) and a SIRT1 activator (SRT1720, 1 μM for 4 h) were used to confirm that H8 exerted anti-inflammatory effects, by elevating SIRT1 expression. Our findings demonstrate that H8 alleviates hepatic steatosis, by inhibiting 11β-HSD1, which activates the AMPK/SIRT1 signaling pathway.
Collapse
|
83
|
Li L, Wang H, Zhao S, Zhao Y, Chen Y, Zhang J, Wang C, Sun N, Fan H. Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats. Phytother Res 2022; 36:2558-2571. [PMID: 35570830 DOI: 10.1002/ptr.7471] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Acute liver injury (ALI) is a poor prognosis and high mortality complication of sepsis. Paeoniflorin (PF) has remarkable anti-inflammatory effects in different disease models. Here, we explored the protective effect and underlying molecular mechanisms of PF against lipopolysaccharide (LPS)-induced ALI. Sprague-Dawley rats received intraperitoneal (i.p.) injection of PF for 7 days, 1 h after the last administration, and rats were injected i.p. 10 mg/kg LPS. PF improved liver structure and function, reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels, and increased superoxide dismutase (SOD) activity. Western blot analysis suggested that PF significantly inhibited expression of inflammatory cytokines (TNF-α, IL-1β, and IL-18) and inhibited activation of the NLRP3 inflammasome. PF or mitochondrial ROS scavenger (mito-TEMPO) significantly improved liver mitochondrial function by scavenging mitochondrial ROS (mROS), restoring mitochondrial membrane potential loss and increasing level of ATP and enzyme activity of complex I and III. In addition, PF increased expression of sirtuin-1 (SIRT1), forkhead box O1 (FOXO1a) and manganese superoxide dismutase (SOD2), and increased FOXO1a nuclear retention. However, the inhibitor of SIRT1 (EX527) abolished the protective effect of PF. Taken together, PF promotes mROS clearance to inhibit mitochondrial damage and activation of the NLRP3 inflammasome via SIRT1/FOXO1a/SOD2 signaling.
Collapse
Affiliation(s)
- Lin Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuyan Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
84
|
Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, Garcia-Arroyo FE, Sánchez-Lozada LG. Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. Am J Physiol Regul Integr Comp Physiol 2022; 322:R347-R359. [PMID: 35271385 PMCID: PMC8993531 DOI: 10.1152/ajpregu.00238.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, Colorado
- Kidney Disease Division, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | | | - Fernando E Garcia-Arroyo
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Laura G Sánchez-Lozada
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| |
Collapse
|
85
|
Taurone S, De Ponte C, Rotili D, De Santis E, Mai A, Fiorentino F, Scarpa S, Artico M, Micera A. Biochemical Functions and Clinical Characterizations of the Sirtuins in Diabetes-Induced Retinal Pathologies. Int J Mol Sci 2022; 23:ijms23074048. [PMID: 35409409 PMCID: PMC8999941 DOI: 10.3390/ijms23074048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is undoubtedly one of the most prominent causes of blindness worldwide. This pathology is the most frequent microvascular complication arising from diabetes, and its incidence is increasing at a constant pace. To date, the insurgence of DR is thought to be the consequence of the intricate complex of relations connecting inflammation, the generation of free oxygen species, and the consequent oxidative stress determined by protracted hyperglycemia. The sirtuin (SIRT) family comprises 7 histone and non-histone protein deacetylases and mono (ADP-ribosyl) transferases regulating different processes, including metabolism, senescence, DNA maintenance, and cell cycle regulation. These enzymes are involved in the development of various diseases such as neurodegeneration, cardiovascular pathologies, metabolic disorders, and cancer. SIRT1, 3, 5, and 6 are key enzymes in DR since they modulate glucose metabolism, insulin sensitivity, and inflammation. Currently, indirect and direct activators of SIRTs (such as antagomir, glycyrrhizin, and resveratrol) are being developed to modulate the inflammation response arising during DR. In this review, we aim to illustrate the most important inflammatory and metabolic pathways connecting SIRT activity to DR, and to describe the most relevant SIRT activators that might be proposed as new therapeutics to treat DR.
Collapse
Affiliation(s)
- Samanta Taurone
- IRCCS—Fondazione Bietti, via Livenza 3, 00198 Rome, Italy;
- Correspondence: ; Tel.: +39-06-85-356-727; Fax: +39-06-84-242-333
| | - Chiara De Ponte
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (D.R.); (A.M.); (F.F.)
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (M.A.)
| | | |
Collapse
|
86
|
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47:645-659. [DOI: 10.1016/j.tibs.2022.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
|
87
|
Braga CL, Acquarone M, Arona VDC, Osório BS, Barreto TG, Kian RM, Pereira JPAL, Silva MDMCD, Silva BA, de Oliveira GMM, Macedo Rocco PR, Silva PL, Alencar AKN. Can Epigenetics Help Solve the Puzzle Between Concomitant Cardiovascular Injury and Severity of Coronavirus Disease 2019? J Cardiovasc Pharmacol 2022; 79:431-443. [PMID: 34935698 DOI: 10.1097/fjc.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023]
Abstract
ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.
Collapse
Affiliation(s)
- Cássia L Braga
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor da C Arona
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Brenno S Osório
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Thiago G Barreto
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | - Ruan M Kian
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
| | | | - Marina de Moraes C da Silva
- Serviço de Radiologia do Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bagnólia A Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Gláucia Maria M de Oliveira
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan K N Alencar
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina de Petrópolis, School Clinic, Petrópolis, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
88
|
Malekpour-Dehkordi Z, Nourbakhsh M, Shahidi M, Sarraf N, Sharifi R. "Silymarin diminishes oleic acid-induced lipid accumulation in HepG2 cells by modulating the expression of endoplasmic reticulum stress markers". J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
89
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
90
|
Higgins CB, Mayer AL, Zhang Y, Franczyk M, Ballentine S, Yoshino J, DeBosch BJ. SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase. Nat Commun 2022; 13:1074. [PMID: 35228549 PMCID: PMC8885655 DOI: 10.1038/s41467-022-28717-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling pathways, including nicotinamide adenine dinucleotide (NAD+) biosynthesis and salvage. Nicotinamide phosphoribosyltransferase (NAMPT) is rate-limiting in NAD+ salvage, yet hepatocyte NAMPT actions during fasting and metabolic duress remain unclear. We demonstrate that hepatocyte NAMPT is upregulated in fasting mice, and in isolated hepatocytes subjected to nutrient withdrawal. Mice lacking hepatocyte NAMPT exhibit defective FGF21 activation and thermal regulation during fasting, and are sensitized to diet-induced glucose intolerance. Hepatocyte NAMPT overexpression induced FGF21 and adipose browning, improved glucose homeostasis, and attenuated dyslipidemia in obese mice. Hepatocyte SIRT1 deletion reversed hepatocyte NAMPT effects on dark-cycle thermogenesis, and hepatic FGF21 expression, but SIRT1 was dispensable for NAMPT insulin-sensitizing, anti-dyslipidemic, and light-cycle thermogenic effects. Hepatocyte NAMPT thus conveys key aspects of the fasting response, which selectively dissociate through hepatocyte SIRT1. Modulating hepatocyte NAD+ is thus a potential mechanism through which to attenuate fasting-responsive disease.
Collapse
Affiliation(s)
- Cassandra B. Higgins
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Yiming Zhang
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Michael Franczyk
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Samuel Ballentine
- grid.4367.60000 0001 2355 7002Department of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jun Yoshino
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Brian J. DeBosch
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
91
|
Kennedy L. Tilting the Scales: Sirtuin 1 Favors Proinflammatory Macrophage Response Via Inflammasome Signaling and Metabolic Reprogramming. Cell Mol Gastroenterol Hepatol 2022; 13:1261-1262. [PMID: 35150614 PMCID: PMC9073724 DOI: 10.1016/j.jcmgh.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
92
|
Mehmood R, Sheikh N, Khawar MB, Abbasi MH, Mukhtar M. High-fat diet intake ameliorates the expression of hedgehog signaling pathway in adult rat liver. Mol Biol Rep 2022; 49:1985-1994. [PMID: 35040007 DOI: 10.1007/s11033-021-07012-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Disproportionate fatty diet intake provokes hepatic lipid accumulation that causes non-alcoholic fatty liver disease, triggering the embryonically conserved Hedgehog (Hh) pathway in the adult liver. The present study incorporates exploring the impact of chronically administered unsaturated (D-1) and saturated (D-2) fat-enriched diets on hematological parameters, liver functioning, and lipid profile in the rat model. Besides, hepatohistology and real time gene expression analysis of Hh signaling pathway genes i.e., Shh, Ihh, Hhip, Ptch1, Smo, Gli1, Gli2, and Gli3 were carried out. METHODS AND RESULTS Fifteen Rattus norvegicus (♂) of 200 ± 25 g weight were grouped into control, D-1, and D-2. Animals were fed on their respective diets for 16 weeks. Fatty diet intake resulted in neutropenia, lymphocytosis, monocytosis, polycythemia, and macrocytosis in both experimental groups. Altered liver injury biomarkers, hypertriglyceridemia, and significantly increased very-low-density lipoprotein VLDL were also noted in both high-fat diet (HFD) groups as compared to control. Hepatohistological examination showed disrupted microarchitecture, infiltration of inflammatory cells, cellular necrosis, widened sinusoidal spaces, and microvesicular steatotic hepatocytes in D-1 and D-2. Collagen deposition in both HFD groups marks the extent of fibrosis. Significant upregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh Ihh, Hhip, Ptch1, Smo, Gli1, Gli2, and Gli3 were upregulated in D-1. In D-2 Shh, Hhip, and Smo expressions were upregulated, Ihh exhibited downregulation as compared to control. CONCLUSION Excess fat deposits in liver due to chronic consumption of high-fat diet results in anomalous architecture and functioning. High-fat diet induced significant variations in Hh pathway genes expression; especially Shh, Ihh, Hhip, Ptch1, Smo, Gli1, Gli2, and Gli3 were upregulated. Infiltration of inflammatory cells ( ), widened sinusoidal spaces (▲), cellular necrosis, and micro vesicular steatotic hepatocytes (*) were shown in the liver. Significant collagen deposition in both HFD groups i.e. D-1 and D-2 confirmed liver fibrosis. Excessive intake of dietary fats impaired normal liver functioning and liver inflammation triggered Hh signaling in adult rats.
Collapse
Affiliation(s)
- Rabia Mehmood
- Institute of Zoology, University of the Punjab, Q-A- Campus, Lahore, 54590, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Q-A- Campus, Lahore, 54590, Pakistan.
| | - Muhammad Babar Khawar
- Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Q-A- Campus, Lahore, 54590, Pakistan.,Department of Zoology, University of Okara, Okara, Punjab, Pakistan
| | - Maryam Mukhtar
- Institute of Zoology, University of the Punjab, Q-A- Campus, Lahore, 54590, Pakistan
| |
Collapse
|
93
|
Obesity and Male Reproduction: Do Sirtuins Play a Role? Int J Mol Sci 2022; 23:ijms23020973. [PMID: 35055159 PMCID: PMC8779691 DOI: 10.3390/ijms23020973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.
Collapse
|
94
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
95
|
Tan Y, Feng J, Xiao Y, Bao C. Grafting Resveratrol onto Mesoporous Silica Nanoparticles towards Efficient Sustainable Immunoregulation and Insulin Resistance Alleviation for Diabetic Periodontitis Therapy. J Mater Chem B 2022; 10:4840-4855. [PMID: 35678150 DOI: 10.1039/d2tb00484d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of diabetic periodontitis (DP) has become a tough challenge in dental clinic mainly due to the intrinsic drawbacks of conventional therapy strategy and currently unclear mechanisms to elucidate...
Collapse
Affiliation(s)
- Yujie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Jing Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| |
Collapse
|
96
|
Li R, Li Y, Tian M, Zhang H, Lou L, Liu K, Zhang J, Zhao Y, Zhang J, Le S, Fu X, Zhou Y, Li W, Gao X, Nie Y. Comparative proteomic profiling reveals a pathogenic role for the O-GlcNAcylated AIMP2-PARP1 complex in aging-related hepatic steatosis in mice. FEBS Lett 2022; 596:128-145. [PMID: 34817071 DOI: 10.1002/1873-3468.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/07/2022]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) increases with aging. However, the mechanism of aging-related NAFLD remains unclear. Herein, we constructed an aging-related hepatic steatosis model and analyzed the differentially expressed proteins (DEPs) in livers from young and old mice using liquid chromatography-mass spectrometry. Five hundred and eighty-eight aging-related DEPs and novel pathways were identified. Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), the most significantly upregulated protein, promoted poly(ADP-ribose) polymerase 1 (PARP1) activation in aging-related hepatic steatosis. Additionally, mice liver-specific O-GlcNAcase knockout promoted AIMP2 and PARP1 expression. O-GlcNAc transferase (OGT) overexpression and O-GlcNAcase inhibition by genetic or pharmaceutical manipulations increased AIMP2 and PARP1 levels in vitro. Mechanistically, O-GlcNAcylation increased AIMP2 protein stability, leading to its aggregation. Our study reveals O-GlcNAcylated AIMP2 as a novel pathogenic regulator of aging-related hepatic steatosis.
Collapse
Affiliation(s)
- Renlong Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yan Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Miaomiao Tian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Haohao Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Lijun Lou
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Kun Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiehao Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yu Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jing Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Shuangshuang Le
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Xin Fu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yao Zhou
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wenjiao Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Xianchun Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
97
|
Isaacs-Ten A, Moreno-Gonzalez M, Bone C, Martens A, Bernuzzi F, Ludwig T, Hellmich C, Hiller K, Rushworth SA, Beraza N. Metabolic Regulation of Macrophages by SIRT1 Determines Activation During Cholestatic Liver Disease in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:1019-1039. [PMID: 34952202 PMCID: PMC8873616 DOI: 10.1016/j.jcmgh.2021.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Inflammation is the hallmark of chronic liver disease. Metabolism is a key determinant to regulate the activation of immune cells. Here, we define the role of sirtuin 1 (SIRT1), a main metabolic regulator, in controlling the activation of macrophages during cholestatic liver disease and in response to endotoxin. METHODS We have used mice overexpressing SIRT1, which we treated with intraperitoneal lipopolysaccharides or induced cholestasis by bile duct ligation. Bone marrow-derived macrophages were used for mechanistic in vitro studies. Finally, PEPC-Boy mice were used for adoptive transfer experiments to elucidate the impact of SIRT1-overexpressing macrophages in contributing to cholestatic liver disease. RESULTS We found that SIRT1 overexpression promotes increased liver inflammation and liver injury after lipopolysaccharide/GalN and bile duct ligation; this was associated with an increased activation of the inflammasome in macrophages. Mechanistically, SIRT1 overexpression associated with the activation of the mammalian target of rapamycin (mTOR) pathway that led to increased activation of macrophages, which showed metabolic rewiring with increased glycolysis and broken tricarboxylic acid cycle in response to endotoxin in vitro. Activation of the SIRT1/mTOR axis in macrophages associated with the activation of the inflammasome and the attenuation of autophagy. Ultimately, in an in vivo model of cholestatic disease, the transplantation of SIRT1-overexpressing myeloid cells contributed to liver injury and fibrosis. CONCLUSIONS Our study provides novel mechanistic insights into the regulation of macrophages during cholestatic disease and the response to endotoxin, in which the SIRT1/mTOR crosstalk regulates macrophage activation controlling the inflammasome, autophagy and metabolic rewiring.
Collapse
Affiliation(s)
- Anna Isaacs-Ten
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Andre Martens
- Department of Bioinfomatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Braunschweig, Germany
| | - Federico Bernuzzi
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Tobias Ludwig
- Department of Bioinfomatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Braunschweig, Germany
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Karsten Hiller
- Department of Bioinfomatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Braunschweig, Germany; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom; Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, United Kingdom.
| |
Collapse
|
98
|
Liu D, Liu X, Ma X, Li C, Li J, Li Q, Zhang N, Cao Y, Li Z, Kang X, Tian Y, Li W. Two novel InDels within the Promoter of SIRT1 are associated with growth traits in chickens. Br Poult Sci 2021; 63:445-453. [PMID: 34923879 DOI: 10.1080/00071668.2021.2014400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objectives of the present study were to elucidate the relationship between novel variations of the SIRT1 gene and chicken growth traits. In total, 1,429 chickens, including six breeds and a Gushi ×Anka F2 resource population, were genotyped using PCR-RFLP. 2. Two novel InDels (c.-1552_-1553insCG and c.-450_-451delCG) in the promoter of the chicken SIRT1 gene were identified. An association study showed that c.-1552_-1553insCG was significantly correlated with growth traits and serum lipid indicators. 3. The insertion genotype was most highly associated with body weight at day old, two- and four-week-old chickens, and with shank circumference at four and eight weeks of age. The wild type genotype at this site was most highly associated with serum lipid indicators. 4. In contrast, c.-450_-451delCG was significantly correlated with muscle fibre diameter. The SIRT1 gene expression in chickens with different InDel genotypes was analysed and was significantly higher with heterozygous genotypes at both sites in muscle and fat tissue, relative to expression in chickens with the corresponding homozygous genotypes. 5. The effects of different haplotypes on SIRT1 promoter activity showed that promoter activity depends on haplotype, with haplotype HapII exhibiting the highest activity. 6. It was concluded that the SIRT1 gene is associated with chicken growth traits and that the two InDels influence SIRT1 promoter activity in chickens.
Collapse
Affiliation(s)
- Dandan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Xuelian Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Xuejie Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Qi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Yanfang Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450002
| |
Collapse
|
99
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
100
|
Gong P, Xiao X, Wang S, Shi F, Liu N, Chen X, Yang W, Wang L, Chen F. Hypoglycemic effect of astragaloside IV via modulating gut microbiota and regulating AMPK/SIRT1 and PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114558. [PMID: 34438030 DOI: 10.1016/j.jep.2021.114558] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Astragali, the dried root of Astragalus mongholicus Bunge, has long been used in traditional Chinese Medicine to treat diabetes. Astragaloside IV (AS-IV), one of the most active ingredients in the root, has been shown to have anti-diabetes ability; however, its underlying mechanism is still unclear. MATERIALS AND METHODS In this study, we evaluated the hypoglycemic effect and possible mechanisms of AS-IV in diabetic mice and insulin resistance-HepG2 cells. The components of the intestinal microflora in mice with type 2 diabetes mellitus (T2DM) were determined using high-throughput 16S rRNA gene sequencing. Moreover, the molecular mechanisms of specific members of insulin signaling pathways were analyzed. RESULTS AS-IV significantly reversed the abnormalities in blood lipids, glucose, insulin resistance, as well as oxidative stress levels in T2DM mice. Histological finding showed that AS-IV could protect the cellular architecture of the liver and pancreas. AS-IV also regulated the abundance and diversity of intestinal flora of T2DM mice in a positive direction and increased butyric acid levels. The active role of AS-IV as an anti-diabetic compound by regulating the AMPK/SIRT1 and PI3K/AKT signaling pathways was revealed using a T2DM model and verified through the intervention of inhibitors using insulin-resistance HepG2 cells. CONCLUSION Our results suggested that AS-IV may be used as an anti-diabetic drug candidate owing to its effects of regulating gut microbiota and AMPK/SIRT1 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Pin Gong
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xuyang Xiao
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Shuang Wang
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxiong Shi
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Ni Liu
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xuefeng Chen
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Wenjuan Yang
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Lan Wang
- College of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|