51
|
Yu M, Yau CP, Yip WK. Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356532. [PMID: 28758833 PMCID: PMC5616157 DOI: 10.1080/15592324.2017.1356532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is gaseous plant hormone that controls a variety of physiologic activities. OsERS1 and OsETR2 are major ethylene receptors in rice that have been reported to have different regulatory functions. The GFP fused N-terminus of OsERS1 and OsETR2 showed differentially localization patterns when transiently expressed in onion epidermal cells. Base on these results, we suggested that OsERS1 could be localized to plasma membranes, whereas OsETR2 could be localized to the endoplasmic reticulum. Furthermore, instead of the constitutive expression profile of OsERS1, OsETR2 is differentially expressed in seedlings of light/dark-grown conditions, submergence or exogenous ethylene treatments. Our results and others support the notion that OsERS1 and OsETR2 could have different roles during rice plant submergence.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chi Ping Yau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing Kin Yip
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- CONTACT Wing Kin Yip 7S09 Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
52
|
Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. The Epigenome and Transcriptional Dynamics of Fruit Ripening. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:61-84. [PMID: 28226232 DOI: 10.1146/annurev-arplant-042916-040906] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit has evolved myriad forms that facilitate seed dispersal in varied environmental and ecological contexts. Because fleshy fruits become attractive and nutritious to seed-dispersing animals, the transition from unripe to ripe fruit represents a dramatic shift in survival strategy-from protecting unripe fruit against damaging animals to making it appealing to those same animals once ripened. For optimal fitness, ripening therefore must be tightly controlled and coordinated with seed development. Fruits, like many vegetative tissues of plants that contribute to human diets, are also subject to decay, which is enhanced as a consequence of the ripening transition. As such, ripening control has enormous relevance for both plant biology and food security. Here, we review the complex interactions of hormones and transcription factors during fleshy-fruit ripening, with an emphasis on the recent discovery that epigenome dynamics are a critical and early regulator of the cascade of molecular events that ultimately contribute to fruit maturation and ripening.
Collapse
Affiliation(s)
- James Giovannoni
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853;
- Boyce Thompson Institute, Ithaca, New York 14853;
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Cuong Nguyen
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Betsy Ampofo
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853; ,
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York 14853;
| |
Collapse
|
53
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
Affiliation(s)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilano, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | | | - M. I. R. Khan
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
54
|
Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, Busatto N, Vrhovsek U, Molin AD, Avanzato C, Biasioli F, Cappellin L, Scholz M, Velasco R, Trainotti L, Delledonne M, Costa F. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:963-975. [PMID: 27531564 DOI: 10.1111/tpj.13306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 05/08/2023]
Abstract
Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.
Collapse
Affiliation(s)
- Alice Tadiello
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Paola Tononi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Brian Farneti
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Nicola Busatto
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alessandra Dal Molin
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Carla Avanzato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Matthias Scholz
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Livio Trainotti
- Biology Department, Padova University, Viale Giuseppe Colombo 3, Padova, 35121, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| |
Collapse
|
55
|
He Y, Liu X, Ye L, Pan C, Chen L, Zou T, Lu G. Genome-Wide Identification and Expression Analysis of Two-Component System Genes in Tomato. Int J Mol Sci 2016; 17:ijms17081204. [PMID: 27472316 PMCID: PMC5000602 DOI: 10.3390/ijms17081204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/03/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
The two-component system (TCS), which comprises histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays pivotal roles in regulating plant growth, development, and responses to biotic and abiotic stresses. TCS genes have been comprehensively identified and investigated in various crops but poorly characterized in tomato. In this work, a total of 65 TCS genes consisting of 20 HK(L)s, six HPs, and 39 RRs were identified from tomato genome. The classification, gene structures, conserved domains, chromosome distribution, phylogenetic relationship, gene duplication events, and subcellular localization of the TCS gene family were predicted and analyzed in detail. The amino acid sequences of tomato TCS family members, except those of type-B RRs, are highly conserved. The gene duplication events of the TCS family mainly occurred in the RR family. Furthermore, the expansion of RRs was attributed to both segment and tandem duplication. The subcellular localizations of the selected green fluorescent protein (GFP) fusion proteins exhibited a diverse subcellular targeting, thereby confirming their predicted divergent functionality. The majority of TCS family members showed distinct organ- or development-specific expression patterns. In addition, most of TCS genes were induced by abiotic stresses and exogenous phytohormones. The full elucidation of TCS elements will be helpful for comprehensive analysis of the molecular biology and physiological role of the TCS superfamily.
Collapse
Affiliation(s)
- Yanjun He
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Xue Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Lei Ye
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Lifei Chen
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Tao Zou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, China.
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, China.
| |
Collapse
|
56
|
Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 2016; 21:715-28. [DOI: 10.1007/s00775-016-1378-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
|
57
|
He Y, Liu X, Zou T, Pan C, Qin L, Chen L, Lu G. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber. FRONTIERS IN PLANT SCIENCE 2016; 7:899. [PMID: 27446129 PMCID: PMC4916222 DOI: 10.3389/fpls.2016.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/07/2016] [Indexed: 05/30/2023]
Abstract
Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops.
Collapse
Affiliation(s)
- Yanjun He
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Xue Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Tao Zou
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Li Qin
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
58
|
Li YH, Wu QS, Huang X, Liu SH, Zhang HN, Zhang Z, Sun GM. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:710. [PMID: 27252725 PMCID: PMC4878293 DOI: 10.3389/fpls.2016.00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 05/29/2023]
Abstract
Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of AgricultureZhanjiang, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Xia Huang
- The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Sheng-Hui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Zhi Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Guang-Ming Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| |
Collapse
|
59
|
Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X. TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. THE NEW PHYTOLOGIST 2016; 210:960-973. [PMID: 27074399 DOI: 10.1111/nph.13821] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Nucleotide-binding leucine-rich repeat proteins (NLRs) serve as intracellular immune receptors in animals and plants. Sensor NLRs perceive pathogen-derived effector molecules and trigger robust host defense. Recent studies revealed the role of three coiled-coil-type NLRs (CNLs) of the ADR1 family - ADR1, ADR1-L1 and ADR1-L2 - as redundant helper NLRs, whose function is required for defense mediated by multiple sensor NLRs. From a mutant snc1-enhancing (MUSE) forward genetic screen in Arabidopsis targeted to identify negative regulators of snc1 that encodes a TIR-type NLR (TNL), we isolated two alleles of muse15, both carrying mutations in ADR1-L1. Interestingly, loss of ADR1-L1 also enhances immunity-related phenotypes in other autoimmune mutants including cpr1, bal and lsd1. This immunity-enhancing effect is not mediated by increased SNC1 protein stability, nor is it fully dependent on the accumulation of the defense hormone salicylic acid (SA). Transcriptional analysis revealed an upregulation of ADR1 and ADR1-L2 in the adr1-L1 background, which may overcompensate the loss of ADR1-L1, resulting in enhanced immunity. Interestingly, autoimmunity of snc1 and chs2, which encode typical TNLs, is fully suppressed by the adr1 triple mutant, suggesting that the ADRs are required for TNL downstream signaling. This study extends our knowledge on the interplay among ADRs and reveals their complexity in defense regulation.
Collapse
Affiliation(s)
- Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Farid El Kasmi
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lisa K Wünsch
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
60
|
AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening. PLoS Genet 2016; 12:e1005903. [PMID: 26959229 PMCID: PMC4784954 DOI: 10.1371/journal.pgen.1005903] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. The hormone ethylene is known to be involved in fleshy fruit ripening, although the role of other hormones is less well studied. Here we investigated the role of AUXIN RESPONSE FACTOR 2A (ARF2A) in tomato fruit ripening and suggest that it may be involved in the crosstalk between ethylene and other hormones. We show that over-expression of ARF2A (ARF2-OX) causes the fruit to ripen in an uneven, blotchy manner. The timing of ripening in ARF2-OX fruit is affected by applying exogenous ethylene, but the variegated appearance of ripening regions is independent of ethylene. In agreement with findings in ARF2-OX fruit, silencing of both ARF2 paralogs, ARF2A and ARF2B (ARF2as), delayed the ripening process. Comprehensive hormone profiling revealed that altered ARF2 expression in fruit significantly impacted abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Transcriptome analysis of ARF2-OX fruit patches revealed that normal ripening does occur, however, the timing and co-ordination is affected. These observations were reinforced in ARF2as fruit that displayed the opposite gene expression and metabolic phenotypes. Finally, we show that ARF2A homodimerizes as well as interacts with the known ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. Our results reveal that ARF2A may interconnect signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.
Collapse
|
61
|
Kou X, Liu C, Han L, Wang S, Xue Z. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. Mol Genet Genomics 2016; 291:1205-17. [PMID: 26852223 DOI: 10.1007/s00438-016-1177-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
NAC proteins comprise a large family of transcription factors that play important roles in diverse physiological processes during development. To explore the role of NAC transcription factors in the ripening of fruits, we predicted the secondary and tertiary structure as well as regulative function of the SNAC4 (SlNAC48, Accession number: NM 001279348.2) and SNAC9 (SlNAC19, Accession number: XM 004236996.2) transcription factors in tomato. We found that the tertiary structure of SNAC9 was similar to that of ATNAP, which played an important role in the fruit senescence and was required for ethylene stimulation. Likewise, the bio-function prediction results indicated that SNAC4 and SNAC9 participated in various plant hormone signaling and senescence processes. More information about SNACs was obtained by the application of VIGS (virus-induced gene silencing). The silencing of SNAC4 and SNAC9 dramatically repressed the LeACS2, LeACS4 and LeACO1 expression, which consequently led to the inhibition of the ripening process. The silencing of SNACs down-regulated the mRNA levels of the ethylene perception genes and, at the same time, suppressed the expression of ethylene signaling-related genes except for LeERF2 which was induced by the silencing of SNAC4. The expressions of LeRIN were different in two silenced fruits. In addition, the silencing of SNAC4 reduced its mRNA level, while the silencing of SNAC9 induced its expression. Furthermore, the silencing of LeACS4, LeACO1 and LeERF2 reduced the expression of SNAC4 and SNAC9, while the silencing of NR induced the expression of all of them. In particular, these results indicate that SNAC transcription factors bind to the promoter of the ethylene synthesis genes in vitro. This experimental evidence demonstrates that SNAC4 and SNAC9 could positively regulate the tomato fruit ripening process by functioning upstream of ethylene synthesis genes. These outcomes will be helpful to provide a theoretical foundation for further exploring the tomato fruit ripening and senescence mechanism.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin, 300072, People's Republic of China.
| | - Chen Liu
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin, 300072, People's Republic of China
| | - Lihua Han
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin, 300072, People's Republic of China
| | - Shuang Wang
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin, 300072, People's Republic of China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Weijin Road, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
62
|
Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato. PLoS Genet 2015; 11:e1005649. [PMID: 26716451 PMCID: PMC4696797 DOI: 10.1371/journal.pgen.1005649] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. The plant hormone ethylene is regarded as the major regulator of fruit ripening but the putative role of other hormones remains elusive. Auxin Response Factors (ARFs) are transcriptional regulators modulating the expression of auxin-response genes shown recently to play a primary role in regulating fruit set in tomato, but the potential role of ARFs in the ripening process is still unknown. We show that among all tomato ARF genes, SlARF2 displays the most remarkable ripening-associated pattern of expression, which prompted its functional characterization. Two paralogs, SlARF2A and SlARF2B are identified in the tomato that are shown to be functionally redundant. The simultaneous down-regulation of SlARF2A/B genes leads to a severe ripening inhibition with a dramatically reduced ethylene production and a strong decrease in the expression of key regulators of fruit ripening such as rin and nor. The study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato, suggesting that auxin, in concert with ethylene, might be an essential hormone for fruit ripening. While providing a new insight into the mechanisms underlying the control of fleshy fruit ripening, the study uncovers new avenues towards manipulating the ripening process through means that have not been described so far.
Collapse
Affiliation(s)
- Yanwei Hao
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Guojian Hu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Dario Breitel
- Weizmann Institute of Science, Department of Plant Sciences, Faculty of Biochemistry, Rehovot, Israel
| | - Mingchun Liu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Isabelle Mila
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Pierre Frasse
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Yongyao Fu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Asaph Aharoni
- Weizmann Institute of Science, Department of Plant Sciences, Faculty of Biochemistry, Rehovot, Israel
| | - Mondher Bouzayen
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
- * E-mail: (MB); (MZ)
| | - Mohamed Zouine
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
- * E-mail: (MB); (MZ)
| |
Collapse
|
63
|
Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Aharoni A, Bouzayen M, Zouine M. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato. PLoS Genet 2015. [PMID: 26716451 DOI: 10.1371/journal.pgen.10.05649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.
Collapse
Affiliation(s)
- Yanwei Hao
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Guojian Hu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Dario Breitel
- Weizmann Institute of Science, Department of Plant Sciences, Faculty of Biochemistry, Rehovot, Israel
| | - Mingchun Liu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Isabelle Mila
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Pierre Frasse
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Yongyao Fu
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Asaph Aharoni
- Weizmann Institute of Science, Department of Plant Sciences, Faculty of Biochemistry, Rehovot, Israel
| | - Mondher Bouzayen
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Mohamed Zouine
- University of Toulouse, INPT, Laboratory of Genomics and Biotechnology of Fruit, Castanet-Tolosan, France
- INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, France
| |
Collapse
|
64
|
Nham NT, de Freitas ST, Macnish AJ, Carr KM, Kietikul T, Guilatco AJ, Jiang CZ, Zakharov F, Mitcham EJ. A transcriptome approach towards understanding the development of ripening capacity in 'Bartlett' pears (Pyrus communis L.). BMC Genomics 2015; 16:762. [PMID: 26452470 PMCID: PMC4600301 DOI: 10.1186/s12864-015-1939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. RESULTS The softening response of pear fruit held for 14 days at 20 °C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911 bp), of which 32.8 % were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. CONCLUSIONS We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening.
Collapse
Affiliation(s)
- Ngoc T Nham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Sergio Tonetto de Freitas
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Embrapa Tropical Semi-Arid, Petrolina, PE, 56302-970, Brazil.
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Present address: Horticulture and Forestry Science, Queensland Department of Agriculture, Fisheries and Forestry, Maroochy Research Facility, Nambour, QLD, 4560, Australia.
| | - Kevin M Carr
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA.
| | - Trisha Kietikul
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Angelo J Guilatco
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Cai-Zhong Jiang
- Agriculture Research Service, United States Department of Agriculture, Davis, CA, 95616, USA.
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Elizabeth J Mitcham
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
65
|
Tohge T, Fernie AR. Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. PLANT & CELL PHYSIOLOGY 2015; 56:1681-96. [PMID: 26228272 DOI: 10.1093/pcp/pcv093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
Tomato was one of the first plant species to be evaluated using metabolomics and remains one of the best characterized, with tomato fruit being both an important source of nutrition in the human diet and a valuable model system for the development of fleshy fruits. Additionally, given the broad habitat range of members of the tomato clade and the extensive use of exotic germplasm in tomato genetic research, it represents an excellent genetic model system for understanding both metabolism per se and the importance of various metabolites in conferring stress tolerance. This review summarizes technical approaches used to characterize the tomato metabolome to date and details insights into metabolic pathway structure and regulation that have been obtained via analysis of tissue samples taken under different developmental or environmental circumstance as well as following genetic perturbation. Particular attention is paid to compounds of importance for nutrition or the shelf-life of tomatoes. We propose furthermore how metabolomics information can be coupled to the burgeoning wealth of genome sequence data from the tomato clade to enhance further our understanding of (i) the shifts in metabolic regulation occurring during development and (ii) specialization of metabolism within the tomato clade as a consequence of either adaptive evolution or domestication.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
66
|
Abstract
Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses.
Collapse
|
67
|
Gallie DR. Appearance and elaboration of the ethylene receptor family during land plant evolution. PLANT MOLECULAR BIOLOGY 2015; 87:521-39. [PMID: 25682121 DOI: 10.1007/s11103-015-0296-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/11/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA,
| |
Collapse
|
68
|
Wilson RL, Bakshi A, Binder BM. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:433. [PMID: 25221561 PMCID: PMC4147998 DOI: 10.3389/fpls.2014.00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/13/2014] [Indexed: 05/18/2023]
Abstract
When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development.
Collapse
Affiliation(s)
| | | | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
69
|
Wilson RL, Kim H, Bakshi A, Binder BM. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress. PLANT PHYSIOLOGY 2014; 165:1353-1366. [PMID: 24820022 PMCID: PMC4081342 DOI: 10.1104/pp.114.241695] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arkadipta Bakshi
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
70
|
Gupta SK, Sharma S, Santisree P, Kilambi HV, Appenroth K, Sreelakshmi Y, Sharma R. Complex and shifting interactions of phytochromes regulate fruit development in tomato. PLANT, CELL & ENVIRONMENT 2014; 37:1688-702. [PMID: 24433205 DOI: 10.1111/pce.12279] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/05/2014] [Indexed: 05/22/2023]
Abstract
Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light signalling, as mutants encoding negative regulators of phytochrome signal transduction show higher accumulation of carotenoids. In tomato, phytochromes are encoded by a multi-gene family, namely PHYA, PHYB1, PHYB2, PHYE and PHYF; however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants phyA, phyB1 and phyB2 and multiple mutants phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening until fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening, with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening-specific carotenoid accumulation was not obligatorily dependent upon light and even dark-incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes. Our results indicate that, in addition to regulating carotenoid levels in tomato fruits, phytochromes also regulate the time required for phase transitions during ripening.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | | | |
Collapse
|
71
|
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 2014; 46:270-8. [PMID: 24441736 DOI: 10.1038/ng.2877] [Citation(s) in RCA: 558] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.
Collapse
Affiliation(s)
- Seungill Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Minkyu Park
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Seon-In Yeom
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Yong-Min Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Je Min Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Hyun-Ah Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Eunyoung Seo
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyeongchae Cheong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyongyong Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gir-Won Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sang-Keun Oh
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Chungyun Bae
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Saet-Byul Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hye-Young Lee
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Shin-Young Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Myung-Shin Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3] Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Bum Yang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Jin Jeong
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Won-Hee Kang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Jin-Kyung Kwon
- Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - June-Sik Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byung-Dong Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Oded Cohen
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Ilan Paran
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin, Korea
| | | | | | | | - Young Sam Seo
- Ginseng Resources Research Laboratory, Korea Ginseng Corporation, Daejeon, Korea
| | - Suk-Yoon Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun A Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jeong Mee Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Korea
| | - Paul W Bosland
- 1] Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA. [2] Chile Pepper Institute, New Mexico State University, Las Cruces, New Mexico, USA
| | - Gregory Reeves
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeisoo Yu
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, USA
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Beom-Seok Park
- Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Allen van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hee Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, Korea
| | - James J Giovannoni
- 1] US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, USA. [2] Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Sang-Jik Lee
- Biotechnology Institute, Nongwoo Bio, Yeoju, Korea
| | - Ryan W Kim
- Genome Center, University of California, Davis, Davis, California, USA
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Jong-Sung Lim
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Doil Choi
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
72
|
Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Commun 2014; 5:3062. [PMID: 24430163 DOI: 10.1038/ncomms4062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/04/2013] [Indexed: 02/08/2023] Open
Abstract
Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.
Collapse
Affiliation(s)
- Ibrokhim Y Abdurakhmonov
- 1] Centre of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Ministry of Agriculture & Water Resources of Uzbekistan, and 'Uzpakhtasanoat' Association, University street-2, Kibray region, Tashkent 111215, Uzbekistan [2]
| | - Zabardast T Buriev
- 1] Centre of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Ministry of Agriculture & Water Resources of Uzbekistan, and 'Uzpakhtasanoat' Association, University street-2, Kibray region, Tashkent 111215, Uzbekistan [2]
| | - Sukumar Saha
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture, P. O. Box 5367, 812 Highway 12E, Mississippi State, Mississippi 39762, USA
| | - Johnie N Jenkins
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture, P. O. Box 5367, 812 Highway 12E, Mississippi State, Mississippi 39762, USA
| | - Abdusattor Abdukarimov
- 1] Centre of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Ministry of Agriculture & Water Resources of Uzbekistan, and 'Uzpakhtasanoat' Association, University street-2, Kibray region, Tashkent 111215, Uzbekistan [2]
| | - Alan E Pepper
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
73
|
Gapper NE, Giovannoni JJ, Watkins CB. Understanding development and ripening of fruit crops in an 'omics' era. HORTICULTURE RESEARCH 2014; 1:14034. [PMID: 26504543 PMCID: PMC4596339 DOI: 10.1038/hortres.2014.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 05/17/2023]
Abstract
Next generation sequencing has revolutionized plant biology. Not only has our understanding of plant metabolism advanced using model systems and modern chromatography, but application of 'omics'-based technology has been widely extended to non-model systems as costs have plummeted and efficiency increased. As a result, important fundamental questions relating to important horticultural crops are being answered, and novel approaches with application to industry are in progress. Here we review recent research advances on development and ripening of fruit crops, how next generation sequencing approaches are driving this advance and the emerging future landscape.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- mailto:
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
74
|
Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. MOLECULAR PLANT 2013; 6:1830-48. [PMID: 23718947 DOI: 10.1093/mp/sst087] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latché A, Pech JC, Bouzayen M, Regad F. A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:406-19. [PMID: 23931552 DOI: 10.1111/tpj.12305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 05/20/2023]
Abstract
Ethylene Response Factors (ERFs) are downstream components of the ethylene signal transduction pathway, although their role in ethylene-dependent developmental processes remains poorly understood. As the ethylene-inducible tomato Sl-ERF.B3 has been shown previously to display a strong binding affinity to GCC-box-containing promoters, its physiological significance was addressed here by a reverse genetics approach. However, classical up- and down-regulation strategies failed to give clear clues to its roles in planta, probably due to functional redundancy among ERF family members. Expression of a dominant repressor ERF.B3-SRDX version of Sl-ERF.B3 in the tomato resulted in pleiotropic ethylene responses and vegetative and reproductive growth phenotypes. The dominant repressor etiolated seedlings displayed partial constitutive ethylene response in the absence of ethylene and adult plants exhibited typical ethylene-related alterations such as leaf epinasty, premature flower senescence and accelerated fruit abscission. The multiple symptoms related to enhanced ethylene sensitivity correlated with the altered expression of ethylene biosynthesis and signaling genes and suggested the involvement of Sl-ERF.B3 in a feedback mechanism that regulates components of ethylene production and response. Moreover, Sl-ERF.B3 was shown to modulate the transcription of a set of ERFs and revealed the existence of a complex network interconnecting different ERF genes. Overall, the study indicated that Sl-ERF.B3 had a critical role in the regulation of multiple genes and identified a number of ERFs among its primary targets, consistent with the pleiotropic phenotypes displayed by the dominant repression lines.
Collapse
Affiliation(s)
- Mingchun Liu
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan, F-31326, France; INRA, Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
In BC, Binder BM, Falbel TG, Patterson SE. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4923-37. [PMID: 24078672 PMCID: PMC3830478 DOI: 10.1093/jxb/ert281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.
Collapse
Affiliation(s)
- Byung-Chun In
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tanya G. Falbel
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sara E. Patterson
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: simple ligand, complex regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:554-60. [PMID: 24012247 DOI: 10.1016/j.pbi.2013.08.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 05/21/2023]
Abstract
The hormone ethylene plays numerous roles in plant development. In the last few years the model of ethylene signaling has evolved from an initially largely linear route to a much more complex pathway with multiple feedback loops. Identification of key transcriptional and post-transcriptional regulatory modules controlling expression and/or stability of the core pathway components revealed that ethylene perception and signaling are tightly regulated at multiple levels. This review describes the most current outlook on ethylene signal transduction and emphasizes the latest discoveries in the ethylene field that shed light on the mechanistic mode of action of the central pathway components CTR1 and EIN2, as well as on the post-transcriptional regulatory steps that modulate the signaling flow through the pathway.
Collapse
Affiliation(s)
- Catharina Merchante
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | | |
Collapse
|
78
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013. [PMID: 23585213 DOI: 10.1007/s1103-013-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
79
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
80
|
Serra TS, Figueiredo DD, Cordeiro AM, Almeida DM, Lourenço T, Abreu IA, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira MM, Saibo NJM. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. PLANT MOLECULAR BIOLOGY 2013; 82:439-55. [PMID: 23703395 DOI: 10.1007/s11103-013-0073-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/13/2013] [Indexed: 05/03/2023]
Abstract
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Collapse
Affiliation(s)
- Tânia S Serra
- Genomics of Plant Stress Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Wang F, Cui X, Sun Y, Dong CH. Ethylene signaling and regulation in plant growth and stress responses. PLANT CELL REPORTS 2013; 32:1099-109. [PMID: 23525746 DOI: 10.1007/s00299-013-1421-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/28/2013] [Accepted: 03/09/2013] [Indexed: 05/19/2023]
Abstract
Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, People's Republic of China
| | | | | | | |
Collapse
|
82
|
Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1531-44. [PMID: 23443139 DOI: 10.1007/s00122-013-2071-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/12/2013] [Indexed: 05/03/2023]
Abstract
The coexistence of both climacteric and non-climacteric genotypes and the availability of a set of genetic and genomic resources make melon a suitable model for genetic studies of fruit ripening. We have previously described a QTL, ETHQB3.5, which induces climacteric fruit ripening in the near-isogenic line (NIL) SC3-5 that harbors an introgression on linkage group (LG) III from the non-climacteric melon accession PI 161375 in the, also non-climacteric cultivar, "Piel de Sapo" genetic background. In the current study, a new major QTL, ETHQV6.3, on LG VI was detected on an additional introgression in the same NIL. These QTLs are capable, individually, of inducing climacteric ripening in the non-climacteric background, the effects of ETHQV6.3 being greater than that of ETHQB3.5. The QTLs interact epistatically, advancing the timing of ethylene biosynthesis during ripening and, therefore, the climacteric responses. ETHQV6.3 was fine-mapped to a 4.5 Mb physical region of the melon genome, probably in the centromeric region of LG VI. The results presented will be of value in the molecular identification of the gene underlying ETHQV6.3.
Collapse
Affiliation(s)
- Juan Vegas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
83
|
Mi-1-mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. PLoS One 2013; 8:e63281. [PMID: 23717408 PMCID: PMC3662669 DOI: 10.1371/journal.pone.0063281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes, Meloidogyne spp., are important pests of tomato (Solanum lycopersicum) and resistance to the three most prevalent species of this genus, including Meloidogyne incognita, is mediated by the Mi-1 gene. Mi-1 encodes a nucleotide binding (NB) leucine-rich repeat (LRR) resistance (R) protein. Ethylene (ET) is required for the resistance mediated by a subset of NB-LRR proteins and its role in Mi-1-mediated nematode resistance has not been characterized. Infection of tomato roots with M. incognita differentially induces ET biosynthetic genes in both compatible and incompatible interactions. Analyzing the expression of members of the ET biosynthetic gene families ACC synthase (ACS) and ACC oxidase (ACO), in both compatible and incompatible interactions, shows differences in amplitude and temporal expression of both ACS and ACO genes in these two interactions. Since ET can promote both resistance and susceptibility against microbial pathogens in tomato, we investigated the role of ET in Mi-1-mediated resistance to M. incognita using both genetic and pharmacological approaches. Impairing ET biosynthesis or perception using virus-induced gene silencing (VIGS), the ET-insensitive Never ripe (Nr) mutant, or 1-methylcyclopropene (MCP) treatment, did not attenuate Mi-1-mediated resistance to M. incognita. However, Nr plants compromised in ET perception showed enhanced susceptibility to M. incognita indicating a role for ETR3 in basal resistance to root-knot nematodes.
Collapse
|
84
|
Liu D, Liu X, Meng Y, Sun C, Tang H, Jiang Y, Khan MA, Xue J, Ma N, Gao J. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2333-44. [PMID: 23599274 PMCID: PMC3654423 DOI: 10.1093/jxb/ert092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1-5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1-5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals.
Collapse
Affiliation(s)
- Daofeng Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, PR China
- * These authors contributed equally to this work
| | - Xiaojing Liu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- Flower Research and Development Center, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, PR China
- * These authors contributed equally to this work
| | - Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Cuihui Sun
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Hongshu Tang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Yudong Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, PR China
- To whom correspondence should be addressed.
| |
Collapse
|
85
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 PMCID: PMC3611092 DOI: 10.1093/aobpla/plt010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/17/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Xiaomin Wang
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Corresponding author's e-mail address:
| |
Collapse
|
86
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 DOI: 10.1093/aobpla/plt01010.1093/aobpla/plt010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N Shakeel
- Department of Biological Sciences , Dartmouth College , Hanover, NH 03755 , USA ; Department of Biochemistry , Quaid-i-azam University , Islamabad 45320 , Pakistan
| | | | | | | |
Collapse
|
87
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 DOI: 10.1093/aobpla/plt010,1-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/17/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N Shakeel
- Department of Biological Sciences , Dartmouth College , Hanover, NH 03755 , USA ; Department of Biochemistry , Quaid-i-azam University , Islamabad 45320 , Pakistan
| | | | | | | |
Collapse
|
88
|
Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. PLANT PHYSIOLOGY 2012; 160:1968-84. [PMID: 23043080 PMCID: PMC3510124 DOI: 10.1104/pp.112.205476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Abstract
The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), respectively. In Arabidopsis, AtRTE1 is required for function of the ETR1 ethylene receptor and acts predominantly through this receptor via direct protein-protein interaction. While most eudicot families including the Brassicaceae possess a single gene that is closely related to AtRTE1, we report that members of the Solanaceae family contain two phylogenetically distinct genes defined by GR and GREEN-RIPE LIKE1 (GRL1), creating the possibility of subfunctionalization. We also show that SlGR and SlGRL1 are differentially expressed in tomato tissues and encode proteins predominantly localized to the Golgi. A combination of overexpression in tomato and complementation of the rte1-3 mutant allele indicates that SlGR and SlGRL1 influence distinct but overlapping ethylene responses. Overexpression of SlGRL1 in the Gr mutant background provides evidence for the existence of different ethylene signaling modules in tomato that are influenced by GR, GRL1, or both. In addition, overexpression of AtRTE1 in tomato leads to reduced ethylene responsiveness in a subset of tissues but does not mimic the Gr mutant phenotype. Together, these data reveal species-specific heterogeneity in the control of ethylene responses mediated by members of the GR/RTE1 family.
Collapse
|
89
|
Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. PLANT PHYSIOLOGY 2012; 160:1498-514. [PMID: 22977280 PMCID: PMC3490579 DOI: 10.1104/pp.112.206086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.
Collapse
|
90
|
Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. PLANT PHYSIOLOGY 2012; 160:488-97. [PMID: 22797658 PMCID: PMC3440222 DOI: 10.1104/pp.112.202820] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 05/18/2023]
Abstract
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.
Collapse
|
91
|
Abstract
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.
Collapse
|
92
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
93
|
Zhang W, Zhou X, Wen CK. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4151-64. [PMID: 22451723 PMCID: PMC3398448 DOI: 10.1093/jxb/ers098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.
Collapse
|
94
|
Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:191-204. [PMID: 22111515 DOI: 10.1111/j.1365-313x.2011.04863.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Solanum lycopersicum (tomato) and its wild relatives harbor genetic diversity that yields heritable variation in fruit chemistry that could be exploited to identify genes regulating their synthesis and accumulation. Carotenoids, for example, are essential in plant and animal nutrition, and are the visual indicators of ripening for many fruits, including tomato. Whereas carotenoid synthesis is well characterized, factors regulating flux through the pathway are poorly understood at the molecular level. To exploit the impact of tomato genetic diversity on carotenoids, Solanum pennellii introgression lines were used as a source of defined natural variation and as a resource for the identification of candidate regulatory genes. Ripe fruits were analyzed for numerous fruit metabolites and transcriptome profiles generated using a 12,000 unigene oligoarray. Correlation analysis between carotenoid content and gene expression profiles revealed 953 carotenoid-correlated genes. To narrow the pool, subnetwork analysis of carotenoid-correlated transcription revealed 38 candidates. One candidate for impact on trans-lycopene and β-carotene accumulation was functionally charaterized, SlERF6, revealing that it indeed influences carotenoid biosynthesis and additional ripening phenotypes. Reduced expression of SlERF6 by RNAi enhanced both carotenoid and ethylene levels during fruit ripening, demonstrating an important role for SlERF6 in ripening, integrating the ethylene and carotenoid synthesis pathways.
Collapse
Affiliation(s)
- Je Min Lee
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University campus, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Manjunatha G, Gupta KJ, Lokesh V, Mur LAJ, Neelwarne B. Nitric oxide counters ethylene effects on ripening fruits. PLANT SIGNALING & BEHAVIOR 2012; 7:476-83. [PMID: 22499176 PMCID: PMC3419037 DOI: 10.4161/psb.19523] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits.
Collapse
Affiliation(s)
- Girigowda Manjunatha
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Kapuganti J. Gupta
- Department of Plant Physiology; University of Rostock; Rostock, Germany
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| | - Veeresh Lokesh
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Luis AJ Mur
- IBERS; Penglais Campus Aberystwyth; Aberystwyth University; Wales UK
| | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| |
Collapse
|
96
|
Cruz-Hernández A, Paredes-lópez O. Fruit Quality: New Insights for Biotechnology. Crit Rev Food Sci Nutr 2012; 52:272-89. [DOI: 10.1080/10408398.2010.499844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
97
|
Abstract
Tomato ripening is a highly coordinated developmental process that coincides with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids, and volatile compounds that increase attraction to animals. A combination of molecular tools and ripening-affected mutants has permitted researchers to establish a framework for the control of ripening. Tomato is a climacteric fruit, with an absolute requirement for the phytohormone ethylene to ripen. This dependence upon ethylene has established tomato fruit ripening as a model system for study of regulation of its synthesis and perception. In addition, several important ripening mutants, including rin, nor, and Cnr, have provided novel insights into the control of ripening processes. Here, we describe how ethylene and the transcription factors associated with the ripening process fit together into a network controlling ripening.
Collapse
Affiliation(s)
- Harry J Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
98
|
Trivellini A, Ferrante A, Vernieri P, Serra G. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5437-52. [PMID: 21841180 PMCID: PMC3223042 DOI: 10.1093/jxb/err218] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 05/23/2011] [Accepted: 06/15/2011] [Indexed: 05/04/2023]
Abstract
The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style-stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l(-1) methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style-stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style-stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | - Antonio Ferrante
- Department of Plant Production, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Vernieri
- Department of Crop Biology, Università degli Studi di Pisa, Viale delle Piagge 24, 56124 Pisa, Italy
| | | |
Collapse
|
99
|
Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q. The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5405-18. [PMID: 21865178 PMCID: PMC3223041 DOI: 10.1093/jxb/err217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chengguo Jia
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Ramaiah M, Jain A, Baldwin JC, Karthikeyan AS, Raghothama KG. Characterization of the phosphate starvation-induced glycerol-3-phosphate permease gene family in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:279-91. [PMID: 21788361 PMCID: PMC3165876 DOI: 10.1104/pp.111.178541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/12/2011] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) deficiency is one of the leading causes of loss in crop productivity. Plants respond to Pi deficiency by increasing Pi acquisition and remobilization involving organic and inorganic Pi transporters. Here, we report the functional characterization of a putative organic Pi transporter, Glycerol-3-phosphate permease (G3Pp) family, comprising five members (AtG3Pp1 to -5) in Arabidopsis (Arabidopsis thaliana). AtG3Pp1 and AtG3Pp2 showed 24-and 3-fold induction, respectively, in the roots of Pi-deprived seedlings, whereas Pi deficiency-mediated induction of AtG3Pp3 and -4 was evident in both roots and shoots. Furthermore, promoter-β-glucuronidase (GUS) fusion transgenics were generated for AtG3Pp2 to -5 for elucidation of their in planta role in Pi homeostasis. During Pi starvation, there was a strong expression of the reporter gene driven by AtG3Pp4 promoter in the roots, shoots, anthers, and siliques, whereas GUS expression was specific either to the roots (AtG3Pp3) or to stamens and siliques (AtG3Pp5) in other promoter-GUS fusion transgenics. Quantification of reporter gene activities further substantiated differential responses of AtG3Pp family members to Pi deprivation. A distinct pattern of reporter gene expression exhibited by AtG3Pp3 and AtG3Pp5 during early stages of germination also substantiated their potential roles during seedling ontogeny. Furthermore, an AtG3Pp4 knockdown mutant exhibited accentuated total lateral root lengths under +phosphorus and -phosphorus conditions compared with the wild type. Several Pi starvation-induced genes involved in root development and/or Pi homeostasis were up-regulated in the mutant. A 9-fold induction of AtG3Pp3 in the mutant provided some evidence for a lack of functional redundancy in the gene family. These results thus reflect differential roles of members of the G3Pp family in the maintenance of Pi homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Kashchandra G. Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165
| |
Collapse
|