51
|
Jones JL, Peana D, Veteto AB, Lambert MD, Nourian Z, Karasseva NG, Hill MA, Lindman BR, Baines CP, Krenz M, Domeier TL. TRPV4 increases cardiomyocyte calcium cycling and contractility yet contributes to damage in the aged heart following hypoosmotic stress. Cardiovasc Res 2020; 115:46-56. [PMID: 29931225 DOI: 10.1093/cvr/cvy156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/15/2018] [Indexed: 01/29/2023] Open
Abstract
Aims Cardiomyocyte Ca2+ homeostasis is altered with aging via poorly-understood mechanisms. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an osmotically-activated Ca2+ channel, and there is limited information on the role of TRPV4 in cardiomyocytes. Our data show that TRPV4 protein expression increases in cardiomyocytes of the aged heart. The objective of this study was to examine the role of TRPV4 in cardiomyocyte Ca2+ homeostasis following hypoosmotic stress and to assess the contribution of TRPV4 to cardiac contractility and tissue damage following ischaemia-reperfusion (I/R), a pathological condition associated with cardiomyocyte osmotic stress. Methods and results TRPV4 protein expression increased in cardiomyocytes of Aged (24-27 months) mice compared with Young (3-6 months) mice. Immunohistochemistry revealed TRPV4 localization to microtubules and the t-tubule network of cardiomyocytes of Aged mice, as well as in left ventricular myocardium of elderly patients undergoing surgical aortic valve replacement for aortic stenosis. Following hypoosmotic stress, cardiomyocytes of Aged, but not Young exhibited an increase in action-potential induced Ca2+ transients. This effect was mediated via increased sarcoplasmic reticulum Ca2+ content and facilitation of Ryanodine Receptor Ca2+ release and was prevented by TRPV4 antagonism (1 μmol/L HC067047). A similar hypoosmotic stress-induced facilitation of Ca2+ transients was observed in Young transgenic mice with inducible TRPV4 expression in cardiomyocytes. Following I/R, isolated hearts of Young mice with transgenic TRPV4 expression exhibited enhanced contractility vs. hearts of Young control mice. Similarly, hearts of Aged mice exhibited enhanced contractility vs. hearts of Aged TRPV4 knock-out (TRPV4-/-) mice. In Aged, pharmacological inhibition of TRPV4 (1 μmol/L, HC067047) prevented hypoosmotic stress-induced cardiomyocyte death and I/R-induced cardiac damage. Conclusions Our findings provide a new mechanism for hypoosmotic stress-induced cardiomyocyte Ca2+ entry and cell damage in the aged heart. These finding have potential implications in treatment of elderly populations at increased risk of myocardial infarction and I/R injury.
Collapse
Affiliation(s)
- John L Jones
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| | - Deborah Peana
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| | - Adam B Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| | - Michelle D Lambert
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| | - Zahra Nourian
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| | | | - Michael A Hill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Brian R Lindman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO, USA
| |
Collapse
|
52
|
Hu Q, Ahmad AA, Seidel T, Hunter C, Streiff M, Nikolova L, Spitzer KW, Sachse FB. Location and function of transient receptor potential canonical channel 1 in ventricular myocytes. J Mol Cell Cardiol 2020; 139:113-123. [PMID: 31982426 DOI: 10.1016/j.yjmcc.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 11/17/2022]
Abstract
Transient receptor potential canonical 1 (TRPC1) protein is abundantly expressed in cardiomyocytes. While TRPC1 is supposed to be critically involved in cardiac hypertrophy, its physiological role in cardiomyocytes is poorly understood. We investigated the subcellular location of TRPC1 and its contribution to Ca2+ signaling in mammalian ventricular myocytes. Immunolabeling, three-dimensional scanning confocal microscopy and quantitative colocalization analysis revealed an abundant intracellular location of TRPC1 in neonatal rat ventricular myocytes (NRVMs) and adult rabbit ventricular myocytes. TRPC1 was colocalized with intracellular proteins including sarco/endoplasmic reticulum Ca2+ ATPase 2 in the sarcoplasmic reticulum (SR). Colocalization with wheat germ agglutinin, which labels the glycocalyx and thus marks the sarcolemma including the transverse tubular system, was low. Super-resolution and immunoelectron microscopy supported the intracellular location of TRPC1. We investigated Ca2+ signaling in NRVMs after adenoviral TRPC1 overexpression or silencing. In NRVMs bathed in Na+ and Ca2+ free solution, TRPC1 overexpression and silencing was associated with a decreased and increased SR Ca2+ content, respectively. In isolated rabbit cardiomyocytes bathed in Na+ and Ca2+ free solution, we found an increased decay of the cytosolic Ca2+ concentration [Ca2+]i and increased SR Ca2+ content in the presence of the TRPC channel blocker SKF-96365. In a computational model of rabbit ventricular myocytes at physiological pacing rates, Ca2+ leak through SR TRPC channels increased the systolic and diastolic [Ca2+]i with only minor effects on the action potential and SR Ca2+ content. Our studies suggest that TRPC1 channels are localized in the SR, and not present in the sarcolemma of ventricular myocytes. The studies provide evidence for a role of TRPC1 as a contributor to SR Ca2+ leak in cardiomyocytes, which was previously explained by ryanodine receptors only. We propose that the findings will guide us to an understanding of TRPC1 channels as modulators of [Ca2+]i and contractility in cardiomyocytes.
Collapse
Affiliation(s)
- Qinghua Hu
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Cardiovascular Surgery, Xiangya Hospital, Central-South University, Changsha, Hunan 410078, China
| | - Azmi A Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas Seidel
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Molly Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Linda Nikolova
- Core Research Facilities, Health Sciences Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
53
|
Bartoli F, Bailey MA, Rode B, Mateo P, Antigny F, Bedouet K, Gerbaud P, Gosain R, Plante J, Norman K, Gomez S, Lefebvre F, Rucker-Martin C, Ainscough JFX, Kearney MT, Bruns AF, Shi J, Appleby HL, Young RS, Shawer HM, Debant M, Gomez AM, Beech DJ, Foster R, Benitah JP, Sabourin J. Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca 2+ Handling After Pressure Overload. Circulation 2020; 141:199-216. [PMID: 31906693 PMCID: PMC6970549 DOI: 10.1161/circulationaha.118.038891] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.
Collapse
Affiliation(s)
- Fiona Bartoli
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Baptiste Rode
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Philippe Mateo
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Fabrice Antigny
- Inserm, UMR-S 999, Université Paris-Saclay, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (F.A., C.R.M.)
| | - Kaveen Bedouet
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Pascale Gerbaud
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Rajendra Gosain
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Jeffrey Plante
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Katherine Norman
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Susana Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Florence Lefebvre
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Catherine Rucker-Martin
- Inserm, UMR-S 999, Université Paris-Saclay, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France (F.A., C.R.M.)
| | - Justin F X Ainscough
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Hollie L Appleby
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Richard S Young
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Heba M Shawer
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Ana-Maria Gomez
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (M.A.B., B.R., J.F.X.A., M.T.K., A.-F.B., J. Shi, H.L.A., R.S.Y., H.M.S., M.D., D.J.B.)
| | - Richard Foster
- School of Chemistry, University of Leeds, United Kingdom (R.G., J.P., K.N., R.F.)
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (F.B., P.M., K.B., P.G., S.G., F.L., A.-M.G., J.P.B., J. Sabourin)
| |
Collapse
|
54
|
Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 2020; 16:344-360. [PMID: 30664669 DOI: 10.1038/s41569-018-0145-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.
Collapse
Affiliation(s)
- Thomas Hof
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Sébastien Chaigne
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Alice Récalde
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Laurent Sallé
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Fabien Brette
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Romain Guinamard
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France.
| |
Collapse
|
55
|
TRPC Channels: Dysregulation and Ca 2+ Mishandling in Ischemic Heart Disease. Cells 2020; 9:cells9010173. [PMID: 31936700 PMCID: PMC7017417 DOI: 10.3390/cells9010173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.
Collapse
|
56
|
Specific Upregulation of TRPC1 and TRPC5 Channels by Mineralocorticoid Pathway in Adult Rat Ventricular Cardiomyocytes. Cells 2019; 9:cells9010047. [PMID: 31878108 PMCID: PMC7017140 DOI: 10.3390/cells9010047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
Whereas cardiac TRPC (transient receptor potential canonical) channels and the associated store-operated Ca2+ entry (SOCE) are abnormally elevated during cardiac hypertrophy and heart failure, the mechanism of this upregulation is not fully elucidated but might be related to the activation of the mineralocorticoid pathway. Using a combination of biochemical, Ca2+ imaging, and electrophysiological techniques, we determined the effect of 24-h aldosterone treatment on the TRPCs/Orai-dependent SOCE in adult rat ventricular cardiomyocytes (ARVMs). The 24-h aldosterone treatment (from 100 nM to 1 µM) enhanced depletion-induced Ca2+ entry in ARVMs, as assessed by a faster reduction of Fura-2 fluorescence decay upon the addition of Mn2+ and increased Fluo-4/AM fluorescence following Ca2+ store depletion. These effects were prevented by co-treatment with a specific mineralocorticoid receptor (MR) antagonist, RU-28318, and they are associated with the enhanced depletion-induced N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2)-sensitive macroscopic current recorded by patch-clamp experiments. Molecular screening by qRT-PCR and Western blot showed a specific upregulation of TRPC1, TRPC5, and STIM1 expression at the messenger RNA (mRNA) and protein levels upon 24-h aldosterone treatment of ARVMs, corroborated by immunostaining. Our study provides evidence that the mineralocorticoid pathway specifically promotes TRPC1/TRPC5-mediated SOCE in adult rat cardiomyocytes.
Collapse
|
57
|
Suassuna PGDA, Cherem PM, de Castro BB, Maquigussa E, Cenedeze MA, Lovisi JCM, Custódio MR, Sanders-Pinheiro H, de Paula RB. αKlotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats. Exp Biol Med (Maywood) 2019; 245:66-78. [PMID: 31847589 DOI: 10.1177/1535370219894302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In chronic kidney disease (CKD), evidence suggests that soluble αKlotho (sKlotho) has cardioprotective effects. Contrariwise, high circulating levels of fibroblast growth factor 23 (FGF23) are related to uremic cardiomyopathy development. Recently, it has been demonstrated that sKlotho can act as a soluble FGF23 co-receptor, allowing sKlotho to modulate FGF23 actions in the myocardium, leading to the activation of cardioprotective pathways. Fibroblast growth factor 21 (FGF21) is a cardiomyokine with sKlotho-like protective actions and has never been evaluated in uremic cardiomyopathy. Here, we aimed to evaluate whether recombinant αKlotho (rKlotho) replacement can attenuate cardiac remodeling in an established uremic cardiomyopathy, and to explore its impact on myocardial FGF21 expression. Forty-six male Wistar rats were divided into three groups: control, CKD-untreated, and CKD treated with rKlotho (CKD + KL). CKD was induced by 5/6 nephrectomy. From weeks 4–8, the control and CKD-untreated groups received vehicle, whereas the CKD + KL group received subcutaneous rKlotho replacement (0.01 mg/kg) every 48 h. Myocardial remodeling was evaluated by heart weight/tibia length (HW/TL) ratio, echocardiographic parameters, myocardial histomorphometry, and myocardial expression of β-myosin heavy chain (MHCβ), alpha smooth muscle actin (αSMA), transient receptor potential cation channel 6 (TRPC6), and FGF21. As expected, CKD animals had reduced levels of sKlotho and increased serum FGF23 levels. Compared to the control group, manifest myocardial remodeling was present in the CKD-untreated group, while it was attenuated in the CKD + KL group. Furthermore, cardiomyocyte diameter and interstitial fibrotic area were reduced in the CKD + KL group compared to the CKD-untreated group. Similarly, rKlotho replacement was associated with reduced myocardial expression of TRPC6, MHCβ, and αSMA and a higher expression of FGF21. rKlotho showed cardioprotective effects by attenuating myocardial remodeling and reducing TRPC6 expression. Interestingly, rKlotho replacement was also associated with increased myocardial FGF21 expression, suggesting that an interaction between the two cardioprotective pathways needs to be further explored. Impact statement This study aimed to evaluate whether rKlotho replacement can attenuate cardiac remodeling in a post-disease onset therapeutic reasoning and explore the impact on myocardial FGF21 expression. This study contributes significantly to the literature, as the therapeutic effects of rKlotho replacement and FGF21 myocardial expression have not been widely evaluated in a setting of uremic cardiomyopathy. For the first time, it has been demonstrated that subcutaneous rKlotho replacement may attenuate cardiac remodeling in established uremic cardiomyopathy and increase myocardial expression of FGF21, suggesting a correlation between αKlotho and myocardial FGF21 expression. The possibility of interaction between the αKlotho and FGF21 cardioprotective pathways needs to be further explored, but, if confirmed, would point to a therapeutic potential of FGF21 in uremic cardiomyopathy.
Collapse
Affiliation(s)
- Paulo Giovani de Albuquerque Suassuna
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Paula Marocolo Cherem
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Bárbara Bruna de Castro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Edgar Maquigussa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Marco Antonio Cenedeze
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - Júlio Cesar Moraes Lovisi
- Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Melani Ribeiro Custódio
- Nephrology Division, Department of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Rogério Baumgratz de Paula
- Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil.,Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
58
|
Otani K, Tokudome T, Kamiya CA, Mao Y, Nishimura H, Hasegawa T, Arai Y, Kaneko M, Shioi G, Ishida J, Fukamizu A, Osaki T, Nagai-Okatani C, Minamino N, Ensho T, Hino J, Murata S, Takegami M, Nishimura K, Kishimoto I, Miyazato M, Harada-Shiba M, Yoshimatsu J, Nakao K, Ikeda T, Kangawa K. Deficiency of Cardiac Natriuretic Peptide Signaling Promotes Peripartum Cardiomyopathy-Like Remodeling in the Mouse Heart. Circulation 2019; 141:571-588. [PMID: 31665900 DOI: 10.1161/circulationaha.119.039761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The maternal circulatory system and hormone balance both change dynamically during pregnancy, delivery, and the postpartum period. Although atrial natriuretic peptides and brain natriuretic peptides produced in the heart control circulatory homeostasis through their common receptor, NPR1, the physiologic and pathophysiologic roles of endogenous atrial natriuretic peptide/brain natriuretic peptide in the perinatal period are not fully understood. METHODS To clarify the physiologic and pathophysiologic roles of the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system during the perinatal period, the phenotype of female wild-type and conventional or tissue-specific Npr1-knockout mice during the perinatal period was examined, especially focusing on maternal heart weight, blood pressure, and cardiac function. RESULTS In wild-type mice, lactation but not pregnancy induced reversible cardiac hypertrophy accompanied by increases in fetal cardiac gene mRNAs and ERK1/2 (extracellular signaling-regulated kinase) phosphorylation. Npr1-knockout mice exhibited significantly higher plasma aldosterone level than did wild-type mice, severe cardiac hypertrophy accompanied by fibrosis, and left ventricular dysfunction in the lactation period. Npr1-knockout mice showed a high mortality rate over consecutive pregnancy-lactation cycles. In the hearts of Npr1-knockout mice during or after the lactation period, an increase in interleukin-6 mRNA expression, phosphorylation of signal transducer and activator of transcription 3, and activation of the calcineurin-nuclear factor of the activated T cells pathway were observed. Pharmacologic inhibition of the mineralocorticoid receptor or neuron-specific deletion of the mineralocorticoid receptor gene significantly ameliorated cardiac hypertrophy in lactating Npr1-knockout mice. Anti-interleukin-6 receptor antibody administration tended to reduce cardiac hypertrophy in lactating Npr1-knockout mice. CONCLUSIONS These results suggest that the characteristics of lactation-induced cardiac hypertrophy in wild-type mice are different from exercise-induced cardiac hypertrophy, and that the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system plays an important role in protecting the maternal heart from interleukin-6-induced inflammation and remodeling in the lactation period, a condition mimicking peripartum cardiomyopathy.
Collapse
Affiliation(s)
- Kentaro Otani
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Tokudome
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chizuko A Kamiya
- Division of Perinatology and Gynecology (C.A.K., J.Y.), Osaka, Japan
| | - Yuanjie Mao
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Diabetes Institute, Ohio University, Athens (Y.M.)
| | - Hirohito Nishimura
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Hasegawa
- Exploratory Research Section II, Exploratory Research Laboratories, TOA EIYO Ltd, Fukushima, Japan (T.H.)
| | - Yuji Arai
- Bioscience and Genetics (Y.A.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mari Kaneko
- Animal Resource Development Unit (M.K.), RIKEN Center for Life Science Technologies, Hyogo, Japan.,Genetic Engineering Team (M.K., G.S.), RIKEN Center for Life Science Technologies, Hyogo, Japan
| | - Go Shioi
- Genetic Engineering Team (M.K., G.S.), RIKEN Center for Life Science Technologies, Hyogo, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Tsukasa Osaki
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chiaki Nagai-Okatani
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takuya Ensho
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Jun Hino
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shunsuke Murata
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Misa Takegami
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kunihiro Nishimura
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ichiro Kishimoto
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mikiya Miyazato
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mariko Harada-Shiba
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Molecular Innovation in Lipidology (M.H.-S.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Jun Yoshimatsu
- Division of Perinatology and Gynecology (C.A.K., J.Y.), Osaka, Japan
| | - Kazuwa Nakao
- Kyoto University Graduate School of Medicine Medical Innovation Center, Kyoto, Japan (K.N.)
| | - Tomoaki Ikeda
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Japan (T.I.)
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center (K.K.), Osaka, Japan
| |
Collapse
|
59
|
Bandleon S, Strunz PP, Pickel S, Tiapko O, Cellini A, Miranda-Laferte E, Eder-Negrin P. FKBP52 regulates TRPC3-dependent Ca 2+ signals and the hypertrophic growth of cardiomyocyte cultures. J Cell Sci 2019; 132:jcs.231506. [PMID: 31540954 DOI: 10.1242/jcs.231506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential (TRP; C-classical, TRPC) channel TRPC3 allows a cation (Na+/Ca2+) influx that is favored by the stimulation of Gq protein-coupled receptors (GPCRs). An enhanced TRPC3 activity is related to adverse effects, including pathological hypertrophy in chronic cardiac disease states. In the present study, we identified FK506-binding protein 52 (FKBP52, also known as FKBP4) as a novel interaction partner of TRPC3 in the heart. FKBP52 was recovered from a cardiac cDNA library by a C-terminal TRPC3 fragment (amino acids 742-848) in a yeast two-hybrid screen. Downregulation of FKBP52 promoted a TRPC3-dependent hypertrophic response in neonatal rat cardiomyocytes (NRCs). A similar effect was achieved by overexpressing peptidyl-prolyl isomerase (PPIase)-deficient FKBP52 mutants. Mechanistically, expression of the FKBP52 truncation mutants elevated TRPC3-mediated currents and Ca2+ fluxes, and the activation of calcineurin and the nuclear factor of activated T-cells in NRCs. Our data demonstrate that FKBP52 associates with TRPC3 via an as-yet-undescribed binding site in the C-terminus of TRPC3 and modulates TRPC3-dependent Ca2+ signals in a PPIase-dependent manner. This functional interaction might be crucial for limiting TRPC3-dependent signaling during chronic hypertrophic stimulation.
Collapse
Affiliation(s)
- Sandra Bandleon
- Comprehensive Heart Failure Center Wuerzburg, The Department of Internal Medicine I, University Hospital Wuerzburg, Am Schwarzenberg 15, 97078 Wuerzburg, Germany
| | - Patrick P Strunz
- Comprehensive Heart Failure Center Wuerzburg, The Department of Internal Medicine I, University Hospital Wuerzburg, Am Schwarzenberg 15, 97078 Wuerzburg, Germany
| | - Simone Pickel
- Institute of Physiology, University of Wuerzburg, Röntgenring 9, 97070 Wuerzburg, Germany
| | - Oleksandra Tiapko
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Antonella Cellini
- Comprehensive Heart Failure Center Wuerzburg, The Department of Internal Medicine I, University Hospital Wuerzburg, Am Schwarzenberg 15, 97078 Wuerzburg, Germany
| | - Erick Miranda-Laferte
- Institute of Physiology, University of Wuerzburg, Röntgenring 9, 97070 Wuerzburg, Germany
| | - Petra Eder-Negrin
- Comprehensive Heart Failure Center Wuerzburg, The Department of Internal Medicine I, University Hospital Wuerzburg, Am Schwarzenberg 15, 97078 Wuerzburg, Germany
| |
Collapse
|
60
|
Zhang Y, Knight W, Chen S, Mohan A, Yan C. Multiprotein Complex With TRPC (Transient Receptor Potential-Canonical) Channel, PDE1C (Phosphodiesterase 1C), and A2R (Adenosine A2 Receptor) Plays a Critical Role in Regulating Cardiomyocyte cAMP and Survival. Circulation 2019; 138:1988-2002. [PMID: 29871977 DOI: 10.1161/circulationaha.118.034189] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND cAMP plays a critical role in regulating cardiomyocyte survival. Various cAMP signaling pathways behave distinctly or in opposition. We have previously reported that activation of cAMP hydrolysis by cyclic nucleotide phosphodiesterase 1C (PDE1C) promotes cardiomyocytes death/apoptosis, yet the underlying molecular mechanism remains unknown. In this study, we aimed to identify the specific cAMP signaling pathway modulated by PDE1C and determine the mechanism by which Ca2+/calmodulin-stimulated PDE1C is activated. METHODS To study cardiomyocyte death/apoptosis, we used both isolated mouse adult cardiomyocytes in vitro and doxorubicin-induced cardiotoxicity in vivo. We used a variety of pharmacological activators and inhibitors as well as genetically engineered molecular tools to manipulate the expression and activity of proteins of interest. RESULTS We found that the protective effect of PDE1C inhibition/deficiency on Ang II or doxorubicin-induced cardiomyocyte death/apoptosis is dependent on cAMP-generating adenosine A2 receptors (A2Rs), suggesting that PDE1C's cAMP-hydrolyzing activity selectively modulates A2R-cAMP signaling in cardiomyocytes. In addition, we found that the effects of PDE1C activation on Ang II-mediated cAMP reduction and cardiomyocyte death are dependent on transient receptor potential-canonical (TRPC) channels, in particular TRPC3. We also observed synergistic protective effects on cardiomyocyte survival from the combination of A2R stimulation together with PDE1 or TRPC inhibition. Coimmunostaining and coimmunoprecipitation studies showed that PDE1C is localized in proximity with A2R and TRPC3 in the plasma membrane and perhaps T tubules. It is important to note that we found that doxorubicin-induced cardiac toxicity and dysfunction in mice are attenuated by the PDE1 inhibitor IC86340 or in PDE1C knockout mice, and this protective effect is significantly diminished by A2R antagonism. CONCLUSIONS We have characterized a novel multiprotein complex comprised of A2R, PDE1C, and TRPC3, in which PDE1C is activated by TRPC3-derived Ca2+, thereby antagonizing A2R-cAMP signaling and promoting cardiomyocyte death/apoptosis. Targeting these molecules individually or in combination may represent a compelling therapeutic strategy for potentiating cardiomyocyte survival.
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine (Y.Z., W.K., S.C., A.M., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Walter Knight
- Aab Cardiovascular Research Institute, Department of Medicine (Y.Z., W.K., S.C., A.M., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Pharmacology and Physiology (W.K., S.C.), University of Rochester School of Medicine and Dentistry, NY
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine (Y.Z., W.K., S.C., A.M., C.Y.), University of Rochester School of Medicine and Dentistry, NY.,Department of Pharmacology and Physiology (W.K., S.C.), University of Rochester School of Medicine and Dentistry, NY
| | - Amy Mohan
- Aab Cardiovascular Research Institute, Department of Medicine (Y.Z., W.K., S.C., A.M., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine (Y.Z., W.K., S.C., A.M., C.Y.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
61
|
Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L. Ca 2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E34. [PMID: 31547577 PMCID: PMC6956282 DOI: 10.3390/jcdd6040034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. Over the past decade, the transient receptor potential (TRP) channels have emerged as one of the most important families of ion channels mediating Ca2+ signaling in cardiac fibroblasts. TRP channels are a superfamily of non-voltage-gated, Ca2+-permeable non-selective cation channels. Their ability to respond to various stimulating cues makes TRP channels effective sensors of the many different pathophysiological events that stimulate cardiac fibrogenesis. This review focuses on the mechanisms of Ca2+ signaling in fibroblast differentiation and fibrosis-associated heart diseases and will highlight recent advances in the understanding of the roles that TRP and other Ca2+-permeable channels play in cardiac fibrosis.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Maria K Armillei
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Bruce T Liang
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Loren W Runnels
- Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
62
|
Ma T, Lin S, Wang B, Wang Q, Xia W, Zhang H, Cui Y, He C, Wu H, Sun F, Zhao Z, Gao P, Zhu Z, Liu D. TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 2019; 519:674-681. [PMID: 31543348 DOI: 10.1016/j.bbrc.2019.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
Abstract
Long-term high salt intake leads to cardiac hypertrophy, but the mechanism remains elusive. Transient receptor potential channel, canonical 3(TRPC3), located in mitochondria, regulates mitochondrial calcium and reactive oxygen species(ROS) production. Herein, we investigated whether TRPC3 participates in high salt-induced cardiac hypertrophy by impairing cardiac mitochondrial function. High salt treatment increased the expression of mitochondrial TRPC3 in cardiomyocytes, accompanied by enhanced mitochondrial calcium uptake and elevated ROS production. Inhibition of TRPC3 significantly reduced high salt-induced ROS generation, promoted ATP production by stimulating oxidative phosphorylation, and increased enzyme activity in mitochondria in cardiomyocytes. Additionally, TRPC3 deficiency inhibited high salt-induced cardiac hypertrophy in vivo. A long-term high salt diet increased cardiac mitochondrial TRPC3 expression, elevated expression of cardiac hypertrophic markers atrial natriuretic peptide (ANP),brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) and decreased ATP production and mitochondrial complex I and II enzyme activity in a TRPC3-dependent manner. TRPC3 deficiency antagonises high salt diet-mediated cardiac hypertrophy by ameliorating TRPC3-mediated cardiac mitochondrial dysfunction. TRPC3 may therefore represent a novel target for preventing high salt-induced cardiac damage.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Bin Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Weijie Xia
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Yuanting Cui
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Hao Wu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhigang Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| |
Collapse
|
63
|
Dhakal S, Lee Y. Transient Receptor Potential Channels and Metabolism. Mol Cells 2019; 42:569-578. [PMID: 31446746 PMCID: PMC6715338 DOI: 10.14348/molcells.2019.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| |
Collapse
|
64
|
Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 2019; 294:12655-12669. [PMID: 31266804 PMCID: PMC6709635 DOI: 10.1074/jbc.ra119.008299] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential cation channel subfamily C member 6 (TRPC6) is a widely expressed ion channel. Gain-of-function mutations in the human TRPC6 channel cause autosomal-dominant focal segmental glomerulosclerosis, but the molecular components involved in disease development remain unclear. Here, we found that overexpression of gain-of-function TRPC6 channel variants is cytotoxic in cultured cells. Exploiting this phenotype in a genome-wide CRISPR/Cas screen for genes whose inactivation rescues cells from TRPC6-associated cytotoxicity, we identified several proteins essential for TRPC6 protein expression, including the endoplasmic reticulum (ER) membrane protein complex transmembrane insertase. We also identified transmembrane protein 208 (TMEM208), a putative component of a signal recognition particle-independent (SND) ER protein-targeting pathway, as being necessary for expression of TRPC6 and several other ion channels and transporters. TRPC6 expression was also diminished by loss of the previously uncharacterized WD repeat domain 83 opposite strand (WDR83OS), which interacted with both TRPC6 and TMEM208. Additionally enriched among the screen hits were genes involved in N-linked protein glycosylation. Deletion of the mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (MGAT1), necessary for the generation of complex N-linked glycans, abrogated TRPC6 gain-of-function variant-mediated Ca2+ influx and extracellular signal-regulated kinase activation in HEK cells, but failed to diminish cytotoxicity in cultured podocytes. However, mutating the two TRPC6 N-glycosylation sites abrogated the cytotoxicity of mutant TRPC6 and reduced its surface expression. These results expand the targets of TMEM208-mediated ER translocation to include multipass transmembrane proteins and suggest that TRPC6 N-glycosylation plays multiple roles in modulating channel trafficking and activity.
Collapse
Affiliation(s)
- Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - David H Vandorpe
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
65
|
Zaleta-Rivera K, Dainis A, Ribeiro AJS, Cordero P, Rubio G, Shang C, Liu J, Finsterbach T, Parikh VN, Sutton S, Seo K, Sinha N, Jain N, Huang Y, Hajjar RJ, Kay MA, Szczesna-Cordary D, Pruitt BL, Wheeler MT, Ashley EA. Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. Circulation 2019; 140:765-778. [PMID: 31315475 DOI: 10.1161/circulationaha.118.036965] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Restrictive cardiomyopathy is a rare heart disease associated with mutations in sarcomeric genes and with phenotypic overlap with hypertrophic cardiomyopathy. There is no approved therapy directed at the underlying cause. Here, we explore the potential of an interfering RNA (RNAi) therapeutic for a human sarcomeric mutation in MYL2 causative of restrictive cardiomyopathy in a mouse model. METHODS A short hairpin RNA (M7.8L) was selected from a pool for specificity and efficacy. Two groups of myosin regulatory light chain N47K transgenic mice were injected with M7.8L packaged in adeno-associated virus 9 at 3 days of age and 60 days of age. Mice were subjected to treadmill exercise and echocardiography after treatment to determine maximal oxygen uptake and left ventricular mass. At the end of treatment, heart, lung, liver, and kidney tissue was harvested to determine viral tropism and for transcriptomic and proteomic analysis. Cardiomyocytes were isolated for single-cell studies. RESULTS A one-time injection of AAV9-M7.8L RNAi in 3-day-old humanized regulatory light chain mutant transgenic mice silenced the mutated allele (RLC-47K) with minimal effects on the normal allele (RLC-47N) assayed at 16 weeks postinjection. AAV9-M7.8L RNAi suppressed the expression of hypertrophic biomarkers, reduced heart weight, and attenuated a pathological increase in left ventricular mass. Single adult cardiac myocytes from mice treated with AAV9-M7.8L showed partial restoration of contraction, relaxation, and calcium kinetics. In addition, cardiac stress protein biomarkers, such as calmodulin-dependent protein kinase II and the transcription activator Brg1 were reduced, suggesting recovery toward a healthy myocardium. Transcriptome analyses further revealed no significant changes of argonaute (AGO1, AGO2) and endoribonuclease dicer (DICER1) transcripts, and endogenous microRNAs were preserved, suggesting that the RNAi pathway was not saturated. CONCLUSIONS Our results show the feasibility, efficacy, and safety of RNAi therapeutics directed towards human restrictive cardiomyopathy. This is a promising step toward targeted therapy for a prevalent human disease.
Collapse
Affiliation(s)
- Kathia Zaleta-Rivera
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Alexandra Dainis
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | | | - Pablo Cordero
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Gabriel Rubio
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Ching Shang
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Jing Liu
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Thomas Finsterbach
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Victoria N Parikh
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Shirley Sutton
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Kinya Seo
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Nikita Sinha
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Nikhil Jain
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Yong Huang
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Roger J Hajjar
- Cardiovascular Institute, Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai, New York, NY (R.J.H.)
| | - Mark A Kay
- Department of Genetics (M.A.K., E.A.A.), Stanford University School of Medicine, CA
- Department of Pediatrics (M.A.K.), Stanford University School of Medicine, CA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, FL (D.S.-C.)
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, CA (A.J.S.R., B.L.P.)
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
| | - Euan A Ashley
- Division of Cardiovascular Medicine (K.Z.-R., A.D., P.C., G.R., C.S., J.L., T.F., W.N.P., S.S., K.S., N.S., N.J., Y.H., M.T.W., E.A.A.), Stanford University School of Medicine, CA
- Department of Genetics (M.A.K., E.A.A.), Stanford University School of Medicine, CA
| |
Collapse
|
66
|
TRP Channels Expression Profile in Human End-Stage Heart Failure. ACTA ACUST UNITED AC 2019; 55:medicina55070380. [PMID: 31315301 PMCID: PMC6681334 DOI: 10.3390/medicina55070380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Objectives: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy. However, the data is often conflicted and has originated in animal models. Here, we provide systematic analysis of TRP channels expression in human failing myocardium. Methods and results: Left-ventricular tissue samples were isolated from explanted hearts of NYHA III-IV patients undergoing heart transplants (n = 43). Quantitative real-time PCR was performed to assess the mRNA levels of TRPC, TRPM and TRPV channels. Analysis of functional, clinical and biochemical data was used to confirm an end-stage heart failure diagnosis. Compared to myocardium samples from healthy donor hearts (n = 5), we detected a distinct increase in the expression of TRPC1, TRPC5, TRPM4 and TRPM7, and decreased expression of TRPC4 and TRPV2. These changes were not dependent on gender, clinical or biochemical parameters, nor functional parameters of the heart. We detected, however, a significant correlation of TRPC1 and MEF2c expression. Conclusions: The end-stage heart failure displays distinct expressional changes of TRP channels. Our findings provide a systematic description of TRP channel expression in human heart failure. The results highlight the complex interplay between TRP channels and the need for deeper analysis of early stages of hypertrophy and heart failure development.
Collapse
|
67
|
Nakamura T, Zhu G, Ranek MJ, Kokkonen-Simon K, Zhang M, Kim GE, Tsujita K, Kass DA. Prevention of PKG-1α Oxidation Suppresses Antihypertrophic/Antifibrotic Effects From PDE5 Inhibition but not sGC Stimulation. Circ Heart Fail 2019; 11:e004740. [PMID: 29545395 DOI: 10.1161/circheartfailure.117.004740] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stimulation of sGC (soluble guanylate cyclase) or inhibition of PDE5 (phosphodiesterase type 5) activates PKG (protein kinase G)-1α to counteract cardiac hypertrophy and failure. PKG1α acts within localized intracellular domains; however, its oxidation at cysteine 42, linking homomonomers, alters this localization, impairing suppression of pathological cardiac stress. Because PDE5 and sGC reside in separate microdomains, we speculated that PKG1α oxidation might also differentially influence the effects from their pharmacological modulation. METHODS AND RESULTS Knock-in mice expressing a redox-dead PKG1α (PKG1αC42S) or littermate controls (PKG1αWT) were subjected to transaortic constriction to induce pressure overload and treated with a PDE5 inhibitor (sildenafil), sGC activator (BAY602770 [BAY]), or vehicle. In PKG1αWT controls, sildenafil and BAY similarly enhanced PKG activity and reduced pathological hypertrophy/fibrosis and cardiac dysfunction after transaortic constriction. However, sildenafil failed to protect the heart in PKG1αC42S, unlike BAY, which activated PKG and thereby facilitated protective effects. This corresponded with minimal PDE5 activation in PKG1αC42S exposed to transaortic constriction versus higher activity in controls and little colocalization of PDE5 with PKG1αC42S (versus colocalization with PKG1αWT) in stressed myocytes. CONCLUSIONS In the stressed heart and myocytes, PKG1α C42-disulfide formation contributes to PDE5 activation. This augments the pathological role of PDE5 and so in turn enhances the therapeutic impact from its inhibition. PKG1α oxidation does not change the benefits from sGC activation. This finding favors the use of sGC activators regardless of PKG1α oxidation and may help guide precision therapy leveraging the cyclic GMP/PKG pathway to treat heart disease.
Collapse
Affiliation(s)
- Taishi Nakamura
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Guangshuo Zhu
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Mark J Ranek
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Kristen Kokkonen-Simon
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Manling Zhang
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Grace E Kim
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - Kenichi Tsujita
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.)
| | - David A Kass
- From the Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (T.N., G.Z., M.J.R., K.K.-S., M.Z., G.E.K., D.A.K.); and Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan (T.N., K.T.).
| |
Collapse
|
68
|
Ezeani M. TRP Channels Mediated Pathological Ca 2+-Handling and Spontaneous Ectopy. Front Cardiovasc Med 2019; 6:83. [PMID: 31281820 PMCID: PMC6595228 DOI: 10.3389/fcvm.2019.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
Ion channel biology offers great opportunity in identifying and learning about cardiac pathophysiology mechanisms. The discovery of transient receptor potential (TRP) channels is an add-on to the opportunity. Interacting with numerous signaling pathways, being activated multimodally, and having prescribed signatures underlining acute hemodynamic control and cardiac remodeling, TRP channels regulate cardiac pathophysiology. Impaired Ca2+-handling cause contractile abnormality. Modulation of intracellular Ca2+ concentration ([Ca2+]i) is a major part of Ca2+-handling processes in cardiac pathophysiology. TRP channels including TRPM4 regulate [Ca2+]i, Ca2+-handling and cardiac contractility. The channels modulate flux of divalent cations, such as Ca2+ during Ca2+-handling and cardiac contractility. Seminal works implicate TRPM4 and TRPC families in intracellular Ca2+ homeostasis. Defective Ca2+-homeostasis through TRP channels interaction with Ca2+-dependent regulatory proteins such as sodium calcium exchanger (NCX) results in abnormal Ca2+ handling, contractile dysfunction and in spontaneous ectopy. This review provides insight into TRP channels mediated pathological Ca2+-handling and spontaneous ectopy.
Collapse
Affiliation(s)
- Martin Ezeani
- Faculty of Medicine, Nursing and Health Sciences, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
69
|
TRPA1 Promotes Cardiac Myofibroblast Transdifferentiation after Myocardial Infarction Injury via the Calcineurin-NFAT-DYRK1A Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6408352. [PMID: 31217840 PMCID: PMC6537015 DOI: 10.1155/2019/6408352] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Cardiac fibroblasts (CFs) are a critical cell population responsible for myocardial extracellular matrix homeostasis. After stimulation by myocardial infarction (MI), CFs transdifferentiate into cardiac myofibroblasts (CMFs) and play a fundamental role in the fibrotic healing response. Transient receptor potential ankyrin 1 (TRPA1) channels are cationic ion channels with a high fractional Ca2+ current, and they are known to influence cardiac function after MI injury; however, the molecular mechanisms regulating CMF transdifferentiation remain poorly understood. TRPA1 knockout mice, their wild-type littermates, and mice pretreated with the TRPA1 agonist cinnamaldehyde (CA) were subjected to MI injury and monitored for survival, cardiac function, and fibrotic remodeling. TRPA1 can drive myofibroblast transdifferentiation initiated 1 week after MI injury. In addition, we explored the underlying mechanisms via in vitro experiments through gene transfection alone or in combination with inhibitor treatment. TRPA1 overexpression fully activated CMF transformation, while CFs lacking TRPA1 were refractory to transforming growth factor β- (TGF-β-) induced transdifferentiation. TGF-β enhanced TRPA1 expression, which promoted the Ca2+-responsive activation of calcineurin (CaN). Moreover, dual-specificity tyrosine-regulated kinase-1a (DYRK1A) regulated CaN-mediated NFAT nuclear translocation and TRPA1-dependent transdifferentiation. These findings suggest a potential therapeutic role for TRPA1 in the regulation of CMF transdifferentiation in response to MI injury and indicate a comprehensive pathway driving CMF formation in conjunction with TGF-β, Ca2+ influx, CaN, NFATc3, and DYRK1A.
Collapse
|
70
|
Lin BL, Matera D, Doerner JF, Zheng N, Del Camino D, Mishra S, Bian H, Zeveleva S, Zhen X, Blair NT, Chong JA, Hessler DP, Bedja D, Zhu G, Muller GK, Ranek MJ, Pantages L, McFarland M, Netherton MR, Berry A, Wong D, Rast G, Qian HS, Weldon SM, Kuo JJ, Sauer A, Sarko C, Moran MM, Kass DA, Pullen SS. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc Natl Acad Sci U S A 2019; 116:10156-10161. [PMID: 31028142 PMCID: PMC6525474 DOI: 10.1073/pnas.1815354116] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential canonical type 6 (TRPC6) is a nonselective receptor-operated cation channel that regulates reactive fibrosis and growth signaling. Increased TRPC6 activity from enhanced gene expression or gain-of-function mutations contribute to cardiac and/or renal disease. Despite evidence supporting a pathophysiological role, no orally bioavailable selective TRPC6 inhibitor has yet been developed and tested in vivo in disease models. Here, we report an orally bioavailable TRPC6 antagonist (BI 749327; IC50 13 nM against mouse TRPC6, t1/2 8.5-13.5 hours) with 85- and 42-fold selectivity over the most closely related channels, TRPC3 and TRPC7. TRPC6 calcium conductance results in the stimulation of nuclear factor of activated T cells (NFAT) that triggers pathological cardiac and renal fibrosis and disease. BI 749327 suppresses NFAT activation in HEK293T cells expressing wild-type or gain-of-function TRPC6 mutants (P112Q, M132T, R175Q, R895C, and R895L) and blocks associated signaling and expression of prohypertrophic genes in isolated myocytes. In vivo, BI 749327 (30 mg/kg/day, yielding unbound trough plasma concentration ∼180 nM) improves left heart function, reduces volume/mass ratio, and blunts expression of profibrotic genes and interstitial fibrosis in mice subjected to sustained pressure overload. Additionally, BI 749327 dose dependently reduces renal fibrosis and associated gene expression in mice with unilateral ureteral obstruction. These results provide in vivo evidence of therapeutic efficacy for a selective pharmacological TRPC6 inhibitor with oral bioavailability and suitable pharmacokinetics to ameliorate cardiac and renal stress-induced disease with fibrosis.
Collapse
Affiliation(s)
- Brian Leei Lin
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Damian Matera
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | | | - Nan Zheng
- Hydra Biosciences, Cambridge, MA 02138
| | | | - Sumita Mishra
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Hong Bian
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Svetlana Zeveleva
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | | | | | | | | | - Djahida Bedja
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Guangshuo Zhu
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Grace K Muller
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Mark J Ranek
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Lynn Pantages
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Mary McFarland
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Matthew R Netherton
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Angela Berry
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Diane Wong
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Hu Sheng Qian
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Steven M Weldon
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Jay J Kuo
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | - Achim Sauer
- Drug Discovery Sciences, Boehringer Ingelheim GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Chris Sarko
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877
| | | | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205;
| | - Steven S Pullen
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877;
| |
Collapse
|
71
|
Transient Receptor Potential Canonical Channel Blockers Improve Ventricular Contractile Functions After Ischemia/Reperfusion in a Langendorff-perfused Mouse Heart Model. J Cardiovasc Pharmacol 2019; 71:248-255. [PMID: 29389740 DOI: 10.1097/fjc.0000000000000566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reperfusion of ischemic myocardium is accompanied by intracellular Ca overload, leading to cardiac dysfunction. However, the mechanisms underlying intracellular Ca overload have yet to be fully elucidated. The mechanism may involve the activation of store-operated Ca entry, which is primarily mediated through the transient receptor potential canonical (TRPC) channels. This study was undertaken to examine the possible involvement of TRPC channels in the development of contractile dysfunction associated with reperfusion of ischemic myocardium using a mouse heart model. The functional expression of TRPC channels was confirmed in mouse ventricular myocytes using immunocytochemistry, Western blotting, and patch-clamp experiments. The left ventricular functions were assessed by measuring left ventricular end-diastolic pressure, left ventricular developed pressure, and its first derivatives in a Langendorff-perfused mouse heart subjected to 30 minutes of normothermic (37°C) global ischemia followed by 60 minutes of reperfusion. Under control conditions, left ventricular functions were deteriorated during reperfusion, which was significantly ameliorated by administration of the TRPC channel blockers 2-aminoethoxydiphenyl borate and La during initial 5 minutes of reperfusion. Our findings suggest that TRPC channels are involved in mediating contractile dysfunction during reperfusion of ischemic myocardium and detect TRPC channels as a potential therapeutic target for preventing myocardial ischemia/reperfusion injury.
Collapse
|
72
|
TRPC-mediated Ca 2+ signaling and control of cellular functions. Semin Cell Dev Biol 2019; 94:28-39. [PMID: 30738858 DOI: 10.1016/j.semcdb.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Canonical members of the TRP superfamily of ion channels have long been recognized as key elements of Ca2+ handling in a plethora of cell types. The emerging role of TRPC channels in human physiopathology has generated considerable interest in their pharmacological targeting, which requires detailed understanding of their molecular function. Although consent has been reached that receptor-phospholipase C (PLC) pathways and generation of lipid mediators constitute the prominent upstream signaling process that governs channel activity, multimodal sensing features of TRPC complexes have been demonstrated repeatedly. Downstream signaling by TRPC channels is similarly complex and involves the generation of local and global cellular Ca2+ rises, which are well-defined in space and time to govern specific cellular functions. These TRPC-mediated Ca2+ signals rely in part on Ca2+ permeation through the channels, but are essentially complemented by secondary mechanisms such as Ca2+ mobilization from storage sites and Na+/Ca2+ exchange, which involve coordinated interaction with signaling partners. Consequently, the control of cell functions by TRPC molecules is critically determined by dynamic assembly and subcellular targeting of the TRPC complexes. The very recent availability of high-resolution structure information on TRPC channel complexes has paved the way towards a comprehensive understanding of signal transduction by TRPC channels. Here, we summarize current concepts of cation permeation in TRPC complexes, TRPC-mediated shaping of cellular Ca2+ signals and the associated control of specific cell functions.
Collapse
|
73
|
Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, Hmadcha A, Smani T. TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling. Front Physiol 2019; 10:159. [PMID: 30881310 PMCID: PMC6406032 DOI: 10.3389/fphys.2019.00159] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.
Collapse
Affiliation(s)
- Debora Falcón
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Eva Calderón-Sánchez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | - Marta Martín-Bórnez
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, Spain
| | - Abdelkrim Hmadcha
- Department of Generation and Cell Therapy, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain.,CIBERDEM, Madrid, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Seville, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
74
|
Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2019; 126:143-154. [DOI: 10.1016/j.yjmcc.2018.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022]
|
75
|
Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5171945. [PMID: 30671457 PMCID: PMC6323445 DOI: 10.1155/2018/5171945] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Kałużna-Oleksy
- Department of Cardiology, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
76
|
Wen H, Zhao Z, Fefelova N, Xie LH. Potential Arrhythmogenic Role of TRPC Channels and Store-Operated Calcium Entry Mechanism in Mouse Ventricular Myocytes. Front Physiol 2018; 9:1785. [PMID: 30618800 PMCID: PMC6300467 DOI: 10.3389/fphys.2018.01785] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose: Store-operated calcium entry (SOCE) is an important physiological phenomenon that extensively mediates intracellular calcium ion (Ca2+) load. It has been previously found in myocytes isolated from neonatal or diseased hearts. We aimed to determine its existence, molecular nature in undiseased hearts and its potential arrhythmogenic implications under hyperactive conditions. Experimental Approach: Ventricular myocytes isolated from adult FVB mice were studied by using Ca2+ imaging and whole-cell perforated patch-clamp recording. In addition, lead II ECGs were recorded in isolated Langendorff-perfused mice hearts. Functional TRPC channel antibodies and inhibitors, and TRPC6 activator hyperforin were used. Key Results: In this study, we demonstrate the existence and contribution of SOCE in normal adult mouse cardiac myocytes. For an apparent SOCE activation, complete depletion of sarcoplasmic reticulum (SR) Ca2+ by employing both caffeine (10 mM) and thapsigargin (1 μM) or cyclopiazonic acid (10 μM) was required. Consistent with the notion that SOCE may be mediated by heteromultimeric TRPC channels, SOCEs observed from those myocytes were significantly reduced by the pretreatment with anti-TRPC1, 3, and 6 antibodies as well as by gadolinium, a non-selective TRPC channel blocker. In addition, we showed that SOCE may regulate spontaneous SR Ca2+ release, Ca2+ waves, and triggered activities which may manifest cardiac arrhythmias. Since the spontaneous depolarization in membrane potential preceded the elevation of intracellular Ca2+, an inward membrane current presumably via TRPC channels was considered as the predominant cause of cellular arrhythmias. The selective TRPC6 activator hyperforin (0.1–10 μM) significantly facilitated the SOCE, SOCE-mediated inward current, and calcium load in the ventricular myocytes. ECG recording further demonstrated the proarrhythmic effects of hyperforin in ex vivo mouse hearts. Conclusion and Implications: We suggest that SOCE, which is at least partially mediated by TRPC channels, exists in adult mouse ventricular myocytes. TRPC channels and SOCE mechanism may be involved in cardiac arrhythmogenesis via promotion of spontaneous Ca2+ waves and triggered activities under hyperactivated conditions.
Collapse
Affiliation(s)
- Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States.,Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
77
|
Yamamoto T, Endo J, Kataoka M, Matsuhashi T, Katsumata Y, Shirakawa K, Yoshida N, Isobe S, Moriyama H, Goto S, Yamashita K, Nakanishi H, Shimanaka Y, Kono N, Shinmura K, Arai H, Fukuda K, Sano M. Decrease in membrane phospholipids unsaturation correlates with myocardial diastolic dysfunction. PLoS One 2018; 13:e0208396. [PMID: 30533011 PMCID: PMC6289418 DOI: 10.1371/journal.pone.0208396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 11/19/2022] Open
Abstract
Increase in saturated fatty acid (SFA) content in membrane phospholipids dramatically affects membrane properties and cellular functioning. We sought to determine whether exogenous SFA from the diet directly affects the degree of membrane phospholipid unsaturation in adult hearts and if these changes correlate with contractile dysfunction. Although both SFA-rich high fat diets (HFDs) and monounsaturated FA (MUFA)-rich HFDs cause the same degree of activation of myocardial FA uptake, triglyceride turnover, and mitochondrial FA oxidation and accumulation of toxic lipid intermediates, the former induced more severe diastolic dysfunction than the latter, which was accompanied with a decrease in membrane phospholipid unsaturation, induction of unfolded protein response (UPR), and a decrease in the expression of Sirt1 and stearoyl-CoA desaturase-1 (SCD1), catalyzing the conversion of SFA to MUFA. When the SFA supply in the heart overwhelms the cellular capacity to use it for energy, excess exogenous SFA channels to membrane phospholipids, leading to UPR induction, and development of diastolic dysfunction.
Collapse
Affiliation(s)
- Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Naohiro Yoshida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Yamashita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Hypertension, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
78
|
Wang Z, Xu Y, Wang M, Ye J, Liu J, Jiang H, Ye D, Wan J. TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice. EBioMedicine 2018; 36:54-62. [PMID: 30297144 PMCID: PMC6197736 DOI: 10.1016/j.ebiom.2018.08.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent evidence has indicated that the transient receptor potential ankyrin 1 (TRPA1) is expressed in the cardiovascular system and implicated in the development and progression of several cardiovascular diseases. However, the effects of TRPA1 on cardiac hypertrophy development remain unclear. The aim of this study was to determine the role of TRPA1 in cardiac hypertrophy and fibrosis development. METHODS C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were orally treated with the TRPA1 selective inhibitors HC-030031 (HC) and TCS-5861528 (TCS). Morphological assessments, echocardiographic parameters, histological analyses and flow cytometry were used to evaluate cardiac hypertrophy and fibrosis. RESULTS Human and mouse hypertrophic hearts presented with noticeably increased TRPA1 protein levels. Inhibition of TRPA1 by HC and TCS attenuated cardiac hypertrophy and preserved cardiac function after chronic pressure overload, as evidenced by increased heart weight/body weight ratio, cardiomyocyte cross-sectional area and mRNA expression of hypertrophic markers, including ANP, BNP and β-MHC. Dramatic interstitial fibrosis was observed in the mice subjected to TAC surgery, and this was markedly attenuated in the HC and TCS treated mice. Mechanistically, the results revealed that TRPA1 inhibition ameliorated pressure overload-induced cardiac hypertrophy by negatively regulating Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calcineurin signaling pathways. We also demonstrated that blocking TRPA1 decreased the proportion of M2 macrophages and reduced profibrotic cytokine levels, thereby improving cardiac fibrosis. CONCLUSIONS TRPA1 inhibition protected against cardiac hypertrophy and suppressed cardiac dysfunction via Ca2+-dependent signal pathways and inhibition of the M2 macrophages transition. These results suggest that TRPA1 may represent a potential therapeutic drug target for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
79
|
Han L, Li J. Canonical transient receptor potential 3 channels in atrial fibrillation. Eur J Pharmacol 2018; 837:1-7. [PMID: 30153442 DOI: 10.1016/j.ejphar.2018.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The pathogenesis of atrial fibrillation (AF) is largely dependent on structural remodeling and electrical reconfiguration, which in turn drive localized fibrosis. Canonical transient receptor potential 3 (TRPC3) channel is indispensable regulator of fibrosis development, promoting fibroblasts to transition into myofibroblasts via intracellular Ca2+ overload. TRPC3 is a non-voltage gated, non-selective cation channel that regulates the permeability of the cell to Ca2+. When subjected to various external physical and chemical stimuli, such as angiotensin II (AngII), mechanical stretch, hypoxia, or oxidative stress, TRPC3 coordinates with downstream signal transduction pathways to alter gene expression and thereby regulate a number of distinct pathological patterns and mechanisms. This review will focus on how TRPC3 affects AF pathogenesis by exploring the underlying mechanisms governing fibrosis associated with particular signaling proteins, ultimately highlighting the characteristics of TPRC3 that mark it as a novel therapeutic target for AF alleviation.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
80
|
Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD. Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat Commun 2018; 9:2526. [PMID: 29955040 PMCID: PMC6023870 DOI: 10.1038/s41467-018-04931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Long-range chromosomal interactions bring distal regulatory elements and promoters together to regulate gene expression in biological processes. By performing promoter capture Hi-C (PCHi-C) on human embryonic stem cell-derived cardiomyocytes (hESC-CMs), we show that such promoter interactions are a key mechanism by which enhancers contact their target genes after hESC-CM differentiation from hESCs. We also show that the promoter interactome of hESC-CMs is associated with expression quantitative trait loci (eQTLs) in cardiac left ventricular tissue; captures the dynamic process of genome reorganisation after hESC-CM differentiation; overlaps genome-wide association study (GWAS) regions associated with heart rate; and identifies new candidate genes in such regions. These findings indicate that regulatory elements in hESC-CMs identified by our approach control gene expression involved in ventricular conduction and rhythm of the heart. The study of promoter interactions in other hESC-derived cell types may be of utility in functional investigation of GWAS-associated regions.
Collapse
Affiliation(s)
- Mun-Kit Choy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | - Biola M Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias I Pujol, Badalona, 08916, Barcelona, Spain
| | - Simon G Williams
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephanie L Baross
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Yingjuan Liu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Paula Freire-Pritchett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Department of Biological Science, Florida State University, Tallahassee, 32306, FL, USA.
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
81
|
Role of the TRPM4 Channel in Cardiovascular Physiology and Pathophysiology. Cells 2018; 7:cells7060062. [PMID: 29914130 PMCID: PMC6025450 DOI: 10.3390/cells7060062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential cation channel subfamily M member 4 (TRPM4) channel influences calcium homeostasis during many physiological activities such as insulin secretion, immune response, respiratory reaction, and cerebral vasoconstriction. This calcium-activated, monovalent, selective cation channel also plays a key role in cardiovascular pathophysiology; for example, a mutation in the TRPM4 channel leads to cardiac conduction disease. Recently, it has been suggested that the TRPM4 channel is also involved in the development of cardiac ischemia-reperfusion injury, which causes myocardial infarction. In the present review, we discuss the physiological function of the TRPM4 channel, and assess its role in cardiovascular pathophysiology.
Collapse
|
82
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
Affiliation(s)
| | - Thomas Mager
- Department of Biophysical ChemistryMax Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Amir Apelbaum
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Arne Bothe
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Christos Gatsogiannis
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
83
|
|
84
|
Sabourin J, Boet A, Rucker-Martin C, Lambert M, Gomez AM, Benitah JP, Perros F, Humbert M, Antigny F. Ca 2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. J Mol Cell Cardiol 2018; 118:208-224. [PMID: 29634917 DOI: 10.1016/j.yjmcc.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca2+ remodeling. METHODS AND RESULTS After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca2+]i transients and increased sarcoplasmic reticulum (SR) Ca2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser16-phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca2+-ATPase) pump abundance. Moreover, after PH induction, Ca2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca2+-release-activated Ca2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca2+]i transients amplitude, the SR Ca2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. CONCLUSIONS These new findings demonstrate RV-specific cellular Ca2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca2+ current participates in this Ca2+ remodeling in RVH secondary to PH.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Angèle Boet
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Catherine Rucker-Martin
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Ana-Maria Gomez
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Frédéric Perros
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France; Assistance Publique Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France; Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.
| |
Collapse
|
85
|
Correll RN, Makarewich CA, Zhang H, Zhang C, Sargent MA, York AJ, Berretta RM, Chen X, Houser SR, Molkentin JD. Caveolae-localized L-type Ca2+ channels do not contribute to function or hypertrophic signalling in the mouse heart. Cardiovasc Res 2018; 113:749-759. [PMID: 28402392 DOI: 10.1093/cvr/cvx046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
Aims L-type Ca2+ channels (LTCCs) in adult cardiomyocytes are localized to t-tubules where they initiate excitation-contraction coupling. Our recent work has shown that a subpopulation of LTCCs found at the surface sarcolemma in caveolae of adult feline cardiomyocytes can also generate a Ca2+ microdomain that activates nuclear factor of activated T-cells signaling and cardiac hypertrophy, although the relevance of this paradigm to hypertrophy regulation in vivo has not been examined. Methods and results Here we generated heart-specific transgenic mice with a putative caveolae-targeted LTCC activator protein that was ineffective in initiating or enhancing cardiac hypertrophy in vivo. We also generated transgenic mice with cardiac-specific overexpression of a putative caveolae-targeted inhibitor of LTCCs, and while this protein inhibited caveolae-localized LTCCs without effects on global Ca2+ handling, it similarly had no effect on cardiac hypertrophy in vivo. Cardiac hypertrophy was elicited by pressure overload for 2 or 12 weeks or with neurohumoral agonist infusion. Caveolae-specific LTCC activator or inhibitor transgenic mice showed no greater change in nuclear factor of activated T-cells activity after 2 weeks of pressure overload stimulation compared with control mice. Conclusion Our results indicate that LTCCs in the caveolae microdomain do not affect cardiac function and are not necessary for the regulation of hypertrophic signaling in the adult mouse heart.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Catherine A Makarewich
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hongyu Zhang
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Chen Zhang
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Remus M Berretta
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA.,Department of Pediatrics, Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
86
|
|
87
|
Wang Y, Wang Y, Li GR. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget 2018; 7:50937-50951. [PMID: 27472391 PMCID: PMC5239449 DOI: 10.18632/oncotarget.10853] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/09/2016] [Indexed: 02/05/2023] Open
Abstract
The earlier study showed that lysophosphatidylcholine (lysoPC) induced apoptosis in human coronary artery smooth muscle cells (SMCs); however, the related molecular mechanisms are not fully understood. The present study investigated how lysoPC induces apoptosis in cultured human coronary artery SMCs using cell viability assay, flow cytometry, confocal microscopy, and molecular biological approaches. We found that lysoPC reduced cell viability in human coronary artery SMCs by eliciting a remarkable Ca2+ influx. The effect was antagonized by La3+, SKF-96365, or Pyr3 as well as by silencing TRPC1 or TRPC3. Co-immunoprecipitation revealed that TRPC1 and TRPC3 had protein-protein interaction. Silencing TRPC1 or TRPC3 countered the lysoPC-induced increase of Ca2+ influx and apoptosis, and the pro-apoptotic proteins Bax and cleaved caspase-3 and decrease of the anti-apoptotic protein Bcl-2 and the survival kinase pAkt. These results demonstrate the novel information that TRPC1/TRPC3 channels mediate lysoPC-induced Ca2+ influx and apoptosis via activating the pro-apoptotic proteins Bax and cleaved caspase-3 and inhibiting the anti-apoptotic protein Bcl-2 and the survival kinase pAkt in human coronary artery SMCs, which implies that TRPC1/TRC3 channels may be the therapeutic target of lysoPC-induced disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Yuan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical School of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
88
|
Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [DOI: 10.1016/j.pbiomolbio.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
89
|
Nikolova-Krstevski V, Wagner S, Yu ZY, Cox CD, Cvetkovska J, Hill AP, Huttner IG, Benson V, Werdich AA, MacRae C, Feneley MP, Friedrich O, Martinac B, Fatkin D. Endocardial TRPC-6 Channels Act as Atrial Mechanosensors and Load-Dependent Modulators of Endocardial/Myocardial Cross-Talk. ACTA ACUST UNITED AC 2017; 2:575-590. [PMID: 30062171 PMCID: PMC6058914 DOI: 10.1016/j.jacbts.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/05/2017] [Accepted: 05/22/2017] [Indexed: 12/01/2022]
Abstract
Mechanoelectrical feedback may increase arrhythmia susceptibility, but the molecular mechanisms are incompletely understood. This study showed that mechanical stretch altered the localization, protein levels, and function of the cation-selective transient receptor potential channel (TRPC)-6 in atrial endocardial cells in humans, pigs, and mice. In endocardial/myocardial cross-talk studies, addition of media from porcine atrial endocardium (AE) cells altered the calcium (Ca2+) transient characteristics of human-induced pluripotent stem cell-derived cardiomyocytes. These changes did not occur with media from stretched AE cells. Our data suggested that endocardial TRPC-6-dependent paracrine signaling may modulate myocardial Ca2+ homeostasis under basal conditions and protect against stretch-induced atrial arrhythmias.
Collapse
Key Words
- AE, atrial endocardium
- AF, atrial fibrillation
- APB, aminoethoxydiphenyl borate
- Ab, antibody
- CM, cardiomyocyte
- Ca2+, calcium
- Dil-Ac-LDL, dil acetylated−low-density lipoprotein
- ET, endothelin
- HUVEC, human umbilical vein endothelial cell
- OAG, 1-oleoyl-2-acetyl-sn-glycerol
- TAC, thoracic aortic constriction
- TRPC, transient receptor potential channel
- Tet, tetanus toxin
- [Ca2+]i, intracellular global Ca2+
- atrial endocardium
- endothelium
- iPS, induced pluripotent stem
- mechanical stretch
- transient receptor potential channels
Collapse
Affiliation(s)
- Vesna Nikolova-Krstevski
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Soeren Wagner
- Department of Anesthesiology, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ze Yan Yu
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jasmina Cvetkovska
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Inken G Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Victoria Benson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andreas A Werdich
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Calum MacRae
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P Feneley
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Oliver Friedrich
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia.,Cardiology Department, St. Vincent's Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|
90
|
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 2017; 121:1000-1020. [DOI: 10.1161/circresaha.117.310355] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium (Ca
2+
) is a universal regulator of various cellular functions. In cardiomyocytes, Ca
2+
is the central element of excitation–contraction coupling, but also impacts diverse signaling cascades and influences the regulation of gene expression, referred to as excitation–transcription coupling. Disturbances in cellular Ca
2+
-handling and alterations in Ca
2+
-dependent gene expression patterns are pivotal characteristics of failing cardiomyocytes, with several excitation–transcription coupling pathways shown to be critically involved in structural and functional remodeling processes. Thus, targeting Ca
2+
-dependent transcriptional pathways might offer broad therapeutic potential. In this article, we (1) review cytosolic and nuclear Ca
2+
dynamics in cardiomyocytes with respect to their impact on Ca
2+
-dependent signaling, (2) give an overview on Ca
2+
-dependent transcriptional pathways in cardiomyocytes, and (3) discuss implications of excitation–transcription coupling in the diseased heart.
Collapse
Affiliation(s)
- Matthias Dewenter
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Albert von der Lieth
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Hugo A. Katus
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| | - Johannes Backs
- From the Department of Molecular Cardiology and Epigenetics (M.D., A.v.d.L., J.B.) and Department of Cardiology (H.A.K.), Heidelberg University, Germany; and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (M.D., A.v.d.L., H.A.K., J.B.)
| |
Collapse
|
91
|
Abstract
This chapter offers a brief introduction of the functions of TRPC channels in non-neuronal systems. We focus on three major organs of which the research on TRPC channels have been most focused on: kidney, heart, and lung. The chapter highlights on cellular functions and signaling pathways mediated by TRPC channels. It also summarizes several inherited diseases in humans that are related to or caused by TRPC channel mutations and malfunction. A better understanding of TRPC channels functions and the importance of TRPC channels in health and disease should lead to new insights and discovery of new therapeutic approaches for intractable disease.
Collapse
|
92
|
Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M. TRPC3 Channels in Cardiac Fibrosis. Front Cardiovasc Med 2017; 4:56. [PMID: 28936433 PMCID: PMC5594069 DOI: 10.3389/fcvm.2017.00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac stiffness, caused by interstitial fibrosis due to deposition of extracellular matrix proteins, is thought as a major clinical outcome of heart failure with preserved ejection fraction (HFpEF). Canonical transient receptor potential (TRPC) subfamily proteins are components of Ca2+-permeable non-selective cation channels activated by receptor stimulation and mechanical stress, and have been attracted attention as a key mediator of maladaptive cardiac remodeling. How TRPC-mediated local Ca2+ influx encodes a specific signal to induce maladaptive cardiac remodeling has been long obscure, but our recent studies suggest a pathophysiological significance of channel activity-independent function of TRPC proteins for amplifying redox signaling in heart. This review introduces the current understanding of the physiological and pathophysiological roles of TRPCs, especially focuses on the role of TRPC3 as a positive regulator of reactive oxygen species (PRROS) in heart. We have revealed that TRPC3 stabilizes NADPH oxidase 2 (Nox2), a membrane-bound reactive oxygen species (ROS)-generating enzyme, by forming stable protein complex with Nox2, which leads to amplification of mechanical stress-induced ROS signaling in cardiomyocytes, resulting in induction of fibrotic responses in cardiomyocytes and cardiac fibroblasts. Thus, the TRPC3 function as PRROS will offer a new therapeutic strategy for the prevention or treatment of HFpEF.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Supachoke Mangmool
- Faculty of Pharmacy, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
93
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
94
|
Shimauchi T, Numaga-Tomita T, Ito T, Nishimura A, Matsukane R, Oda S, Hoka S, Ide T, Koitabashi N, Uchida K, Sumimoto H, Mori Y, Nishida M. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight 2017; 2:93358. [PMID: 28768915 DOI: 10.1172/jci.insight.93358] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Myocardial atrophy is a wasting of cardiac muscle due to hemodynamic unloading. Doxorubicin is a highly effective anticancer agent but also induces myocardial atrophy through a largely unknown mechanism. Here, we demonstrate that inhibiting transient receptor potential canonical 3 (TRPC3) channels abolishes doxorubicin-induced myocardial atrophy in mice. Doxorubicin increased production of ROS in rodent cardiomyocytes through hypoxic stress-mediated upregulation of NADPH oxidase 2 (Nox2), which formed a stable complex with TRPC3. Cardiomyocyte-specific expression of TRPC3 C-terminal minipeptide inhibited TRPC3-Nox2 coupling and suppressed doxorubicin-induced reduction of myocardial cell size and left ventricular (LV) dysfunction, along with its upregulation of Nox2 and oxidative stress, without reducing hypoxic stress. Voluntary exercise, an effective treatment to prevent doxorubicin-induced cardiotoxicity, also downregulated the TRPC3-Nox2 complex and promoted volume load-induced LV compliance, as demonstrated in TRPC3-deficient hearts. These results illustrate the impact of TRPC3 on LV compliance and flexibility and, focusing on the TRPC3-Nox2 complex, provide a strategy for prevention of doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Tsukasa Shimauchi
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and.,Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuro Numaga-Tomita
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Tomoya Ito
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Ryosuke Matsukane
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and
| | - Sayaka Oda
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norimichi Koitabashi
- Department of Medicine and Biological Sciences, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Koji Uchida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, and.,School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Department of Physiological Sciences, Aichi, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
95
|
Can the Drosophila model help in paving the way for translational medicine in heart failure? Biochem Soc Trans 2017; 44:1549-1560. [PMID: 27911738 DOI: 10.1042/bst20160017c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
Chronic heart failure is a common consequence of various heart diseases. Mechanical force is known to play a key role in heart failure development through regulating cardiomyocyte hypertrophy. In order to understand the complex disease mechanism, this article discussed a multi-disciplinary approach that may aid the illustration of heart failure molecular process.
Collapse
|
96
|
Ahmad AA, Streiff M, Hunter C, Hu Q, Sachse FB. Physiological and pathophysiological role of transient receptor potential canonical channels in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28629808 DOI: 10.1016/j.pbiomolbio.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a family of seven Ca2+ permeable ion channels, named TRPC1 to 7. These channels are abundantly expressed in the mammalian heart, yet mechanisms underlying activation of TRPC channels and their precise role in cardiac physiology remain poorly understood. In this review, we perused original literature regarding TRPC channels in cardiomyocytes. We first reviewed studies on TRPC channel assembly and sub-cellular localization across multiple species and cell types. Our review indicates that TRPC localization in cardiac cells is still a topic of controversy. We then examined common molecular biology tools used to infer on location and physiological roles of TRPC channels in the heart. We subsequently reviewed pharmacological tools used to modulate TRPC activity in both cardiac and non-cardiac cells. Suggested physiological roles in the heart include modulation of heart rate and sensing of mechanical strain. We examined studies on the contribution of TRPC to cardiac pathophysiology, mainly hypertrophic signaling. Several TRPC channels, particularly TRPC1, 3 and 6 were proposed to play a crucial role in hypertrophic signaling. Finally, we discussed gaps in our understanding of the location and physiological role of TRPC channels in cardiomyocytes. Closing these gaps will be crucial to gain a full understanding of the role of TRPC channels in cardiac pathophysiology and to further explore these channels as targets for treatments for cardiac diseases, in particular, hypertrophy.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Molly Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Qinghua Hu
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA.
| |
Collapse
|
97
|
Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017; 66:48-61. [PMID: 28807149 DOI: 10.1016/j.ceca.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Miklos Kecskes
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
98
|
Troupes CD, Wallner M, Borghetti G, Zhang C, Mohsin S, von Lewinski D, Berretta RM, Kubo H, Chen X, Soboloff J, Houser S. Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circ Res 2017; 121:125-136. [PMID: 28592415 DOI: 10.1161/circresaha.117.311094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Pathological increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical and mechanical phenotype. Remodeling of contractile and signaling Ca2+ occurs in pathological hypertrophy and is central to myocyte remodeling. STIM1 (stromal interaction molecule 1) regulates Ca2+ signaling in many cell types by sensing low endoplasmic reticular Ca2+ levels and then coupling to plasma membrane Orai channels to induce a Ca2+ influx pathway. Previous reports suggest that STIM1 may play a role in cardiac hypertrophy, but its role in electrical and mechanical phenotypic alterations is not well understood. OBJECTIVE To define the contributions of STIM1-mediated Ca2+ influx on electrical and mechanical properties of normal and diseased myocytes, and to determine whether Orai channels are obligatory partners for STIM1 in these processes using a clinically relevant large animal model of hypertrophy. METHODS AND RESULTS Cardiac hypertrophy was induced by slow progressive pressure overload in adult cats. Hypertrophied myocytes had increased STIM1 expression and activity, which correlated with altered Ca2+-handling and action potential (AP) prolongation. Exposure of hypertrophied myocytes to the Orai channel blocker BTP2 caused a reduction of AP duration and reduced diastolic Ca2+ spark rate. BTP2 had no effect on normal myocytes. Forced expression of STIM1 in cultured adult feline ventricular myocytes increased diastolic spark rate and prolonged AP duration. STIM1 expression produced an increase in the amount of Ca2+ stored within the sarcoplasmic reticulum and activated Ca2+/calmodulin-dependent protein kinase II. STIM1 expression also increased spark rates and induced spontaneous APs. STIM1 effects were eliminated by either BTP2 or by coexpression of a dominant negative Orai construct. CONCLUSIONS STIM1 can associate with Orai in cardiac myocytes to produce a Ca2+ influx pathway that can prolong the AP duration and load the sarcoplasmic reticulum and likely contributes to the altered electromechanical properties of the hypertrophied heart.
Collapse
Affiliation(s)
- Constantine D Troupes
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Markus Wallner
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Giulia Borghetti
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Chen Zhang
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Sadia Mohsin
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Dirk von Lewinski
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Xiongwen Chen
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Jonathan Soboloff
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.)
| | - Steven Houser
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (C.D.T., M.W., G.B., C.Z., S.M., R.M.B., H.K., X.C., S.H.); Department of Cardiology, Medical University of Graz, Austria (D.v.L.); and Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA (J.S.).
| |
Collapse
|
99
|
Gopalakrishnan K, More AS, Hankins GD, Nanovskaya TN, Kumar S. Postnatal Cardiovascular Consequences in the Offspring of Pregnant Rats Exposed to Smoking and Smoking Cessation Pharmacotherapies. Reprod Sci 2017; 24:919-933. [PMID: 27733658 PMCID: PMC5933098 DOI: 10.1177/1933719116673199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Approximately 20% of pregnant women smoke despite intentions to quit. Smoking cessation drugs, such as nicotine replacement therapy (NRT) and bupropion, are recommended treatments. Adverse cardiovascular outcomes in offspring have raised concerns about NRT's safety during pregnancy. However, the effect of bupropion is unknown. Using a rat model, we determined whether NRT and bupropion interventions during pregnancy are safer than continued smoking on offspring's cardiovascular function. Male offspring of controls and dams exposed to cigarette smoke (1.6 packs/day, inhalation), nicotine (2 mg/kg/d subcutaneously), and bupropion (13 mg/kg twice daily orally) were assessed for fetoplacental weight, cardiac function, blood pressure, and vascular reactivity. Fetoplacental weights were decreased and spontaneous beating and intracellular calcium in neonatal cardiomyocytes were increased in smoking, nicotine, and bupropion offspring; however, these effects were more accentuated in smoking followed by nicotine and bupropion offspring. Increased heart rate and decreased cardiac output, stroke volume, and left ventricular percent posterior wall thickening were observed in smoking, nicotine, and bupropion offspring. The left ventricular mass was reduced in smoking and nicotine but not in bupropion offspring. Blood pressure was higher with decreased endothelium-dependent relaxation and exaggerated vascular contraction to angiotensin II in smoking and nicotine offspring, with more pronounced dysfunctions in smoking than nicotine offspring. Maternal bupropion did not impact offspring's blood pressure, endothelium-dependent relaxation, and vascular contraction. In conclusion, maternal nicotine intervention adversely affects offspring's cardiovascular outcomes, albeit less severely than continued smoking. However, bupropion causes cardiac derangement in offspring but does not adversely affect blood pressure and vascular function.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Amar S. More
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gary D. Hankins
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Tatiana N. Nanovskaya
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
100
|
Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. Proc Natl Acad Sci U S A 2017; 114:E4582-E4591. [PMID: 28526717 DOI: 10.1073/pnas.1621384114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The injury phase after myocardial infarcts occurs during reperfusion and is a consequence of calcium release from internal stores combined with calcium entry, leading to cell death by apoptopic and necrotic processes. The mechanism(s) by which calcium enters cells has(ve) not been identified. Here, we identify canonical transient receptor potential channels (TRPC) 3 and 6 as the cation channels through which most of the damaging calcium enters cells to trigger their death, and we describe mechanisms activated during the injury phase. Working in vitro with H9c2 cardiomyoblasts subjected to 9-h hypoxia followed by 6-h reoxygenation (H/R), and analyzing changes occurring in areas-at-risk (AARs) of murine hearts subjected to a 30-min ischemia followed by 24-h reperfusion (I/R) protocol, we found: (i) that blocking TRPC with SKF96365 significantly ameliorated damage induced by H/R, including development of the mitochondrial permeability transition and proapoptotic changes in Bcl2/BAX ratios; and (ii) that AAR tissues had increased TUNEL+ cells, augmented Bcl2/BAX ratios, and increased p(S240)NFATc3, p(S473)AKT, p(S9)GSK3β, and TRPC3 and -6 proteins, consistent with activation of a positive-feedback loop in which calcium entering through TRPCs activates calcineurin-mediated NFATc3-directed transcription of TRPC genes, leading to more Ca2+ entry. All these changes were markedly reduced in mice lacking TRPC3, -6, and -7. The changes caused by I/R in AAR tissues were matched by those seen after H/R in cardiomyoblasts in all aspects except for p-AKT and p-GSK3β, which were decreased after H/R in cardiomyoblasts instead of increased. TRPC should be promising targets for pharmacologic intervention after cardiac infarcts.
Collapse
|