51
|
Shi Q, Zhang SB, Wang JH, Huang W. Pre-illumination at high light significantly alleviates the over-reduction of photosystem I under fluctuating light. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111053. [PMID: 34620448 DOI: 10.1016/j.plantsci.2021.111053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). In angiosperms, cyclic electron flow (CEF) around PSI is thought to be the main player protecting PSI under FL. The activation of CEF is linked to the thylakoid stacking, which is in turn affected by light intensity. However, it is unknown how pre-illumination affects the CEF activation and PSI redox state under FL. To address this question, we conducted a spectroscopic analysis under FL in Bletilla striata and Morus alba after pre-illumination at moderate light (ML, 611 μmol photons m-2 s-1) or high light (HL, 1455 μmol photons m-2 s-1). Our results indicated that both species displayed a transient over-reduction of PSI after a transition from low to high light, but the extent of PSI over-reduction under FL was largely alleviated by pre-illumination at HL when compared with pre-illumination under ML. Furthermore, pre-illumination at HL accelerated the activation rate of CEF but did not affect the activation of non-photochemical quenching and linear electron flow from photosystem II under FL. Therefore, such increased CEF activity by pre-illumination under HL alleviated PSI over-reduction under FL by facilitating the electron sink downstream of PSI. Taking together, pre-illumination at HL protects PSI under FL through acceptor-side regulation.
Collapse
Affiliation(s)
- Qi- Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
52
|
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a Green Engine To Drive an Enzyme Cascade: A Light-Powered In Vitro Biosystem for Poly(3-hydroxybutyrate) Synthesis. Angew Chem Int Ed Engl 2021; 61:e202111054. [PMID: 34664348 DOI: 10.1002/anie.202111054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Many existing in vitro biosystems harness power from the chemical energy contained in substrates and co-substrates, and light or electric energy provided from abiotic parts, leading to a compromise in atom economy, incompatibility between biological and abiotic parts, and most importantly, incapability to spatiotemporally co-regenerate ATP and NADPH. In this study, we developed a light-powered in vitro biosystem for poly(3-hydroxybutyrate) (PHB) synthesis using natural thylakoid membranes (TMs) to regenerate ATP and NADPH for a five-enzyme cascade. Through effective coupling of cofactor regeneration and mass conversion, 20 mM PHB was yielded from 50 mM sodium acetate with a molar conversion efficiency of carbon of 80.0 % and a light-energy conversion efficiency of 3.04 %, which are much higher than the efficiencies of similar in vitro PHB synthesis biosystems. This suggests the promise of installing TMs as a green engine to drive more enzyme cascades.
Collapse
Affiliation(s)
- Fei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lin Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Cheng Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
53
|
Cinq-Mars M, Samson G. Down-Regulation of Photosynthetic Electron Transport and Decline in CO2 Assimilation under Low Frequencies of Pulsed Lights. PLANTS 2021; 10:plants10102033. [PMID: 34685841 PMCID: PMC8540243 DOI: 10.3390/plants10102033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The decline in CO2 assimilation in leaves exposed to decreasing frequencies of pulsed light is well characterized, in contrast to the regulation of photosynthetic electron transport under these conditions. Thus, we exposed sunflower leaves to pulsed lights of different frequencies but with the same duty ratio (25%) and averaged light intensity (575 μmoles photons m−2 s−1). The rates of net photosynthesis Pn were constant from 125 to 10 Hz, and declined by 70% from 10 to 0.1 Hz. This decline coincided with (1) a marked increase in nonphotochemical quenching (NPQ), and (2) the completion after 25 ms of illumination of the first phase of P700 photooxidation, the primary electron donor of PSI. Under longer light pulses (<5 Hz), there was a slower and larger P700 photooxidation phase that could be attributed to the larger NPQ and to a resistance of electron flow on the PSI donor side indicated by 44% slower kinetics of a P700+ dark reduction. In addition, at low frequencies, the decrease in quantum yield of photochemistry was 2.3-times larger for PSII than for PSI. Globally, our results indicate that the decline in CO2 assimilation at 10 Hz and lower frequencies coincide with the formation of NPQ and a restriction of electron flows toward PSI, favoring the accumulation of harmless P700+.
Collapse
|
54
|
Chen G, Zhang Z, Zhang W, Xia L, Nie X, Huang W, Wang X, Wang L, Hong C, Zhang Z, You Y. Photopolymerization performed under dark conditions using long-stored electrons in carbon nitride. MATERIALS HORIZONS 2021; 8:2018-2024. [PMID: 34846478 DOI: 10.1039/d1mh00412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, the chemical energy and electrons stored in ATP and NADPH generated during irradiation can facilitate biochemical reactions under dark conditions. However, in artificial photoreaction systems, it is still very difficult to perform photoreactions under dark conditions due to the fact that the photogenerated charge pairs can recombine immediately upon ceasing the irradiation. Preventing the recombination of photogenerated charge pairs still constitutes a major challenge at present. Here, it is reported that functionalized carbon nitride nanomaterials having many heptazine rings with a positive charge distribution, which can tightly trap photogenerated electrons, efficiently prevent the recombination of photogenerated charges. These stored charges are exceedingly long-lived (up to months) and can drive photopolymerization without light irradiation, even after one month. The system introduced here demonstrates a new approach for storing light energy as long-lived radicals, enabling photoreactions under dark conditions.
Collapse
Affiliation(s)
- Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat Commun 2021; 12:3941. [PMID: 34168134 PMCID: PMC8225790 DOI: 10.1038/s41467-021-24107-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
In plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1. It is currently thought that the thylakoid proteins PGRL1 and PGR5 form a complex to mediate cyclic electron flow (CEF) around photosystem I. Here the authors show that CEF can in fact be mediated by PGR5 alone and that PGRL1 and the homologous PGRL2 modify the process by modulating PGR5 activity and stability.
Collapse
|
56
|
NTRC Effects on Non-Photochemical Quenching Depends on PGR5. Antioxidants (Basel) 2021; 10:antiox10060900. [PMID: 34204867 PMCID: PMC8229092 DOI: 10.3390/antiox10060900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Non-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, Arabidopsis thaliana plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions. Conversely, the NADPH-dependent thioredoxin reductase C (NTRC) is required for efficient energy utilization and plant growth, and in its absence, transient and steady-state NPQ is drastically increased. How NTRC influences NPQ and functionally interacts with CEF is unclear. Therefore, we generated the A. thaliana line pgr5 ntrc, and found that the inactivation of PGR5 suppresses the high transient and steady-state NPQ and impaired growth phenotypes observed in the ntrc mutant under short-day conditions. This implies that NTRC negatively influences PGR5 activity and, accordingly, the lack of NTRC is associated with decreased levels of PGR5, possibly pointing to a mechanism to restrict upregulation of PGR5 activity in the absence of NTRC. When exposed to high light intensities, pgr5 ntrc plants display extremely impaired photosynthesis and growth, indicating additive effects of lack of both proteins. Taken together, these findings suggest that the interplay between NTRC and PGR5 is relevant for photoprotection and that NTRC might regulate PGR5 activity.
Collapse
|
57
|
Johnson JE, Berry JA. The role of Cytochrome b 6f in the control of steady-state photosynthesis: a conceptual and quantitative model. PHOTOSYNTHESIS RESEARCH 2021; 148:101-136. [PMID: 33999328 PMCID: PMC8292351 DOI: 10.1007/s11120-021-00840-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
Here, we present a conceptual and quantitative model to describe the role of the Cytochrome [Formula: see text] complex in controlling steady-state electron transport in [Formula: see text] leaves. The model is based on new experimental methods to diagnose the maximum activity of Cyt [Formula: see text] in vivo, and to identify conditions under which photosynthetic control of Cyt [Formula: see text] is active or relaxed. With these approaches, we demonstrate that Cyt [Formula: see text] controls the trade-off between the speed and efficiency of electron transport under limiting light, and functions as a metabolic switch that transfers control to carbon metabolism under saturating light. We also present evidence that the onset of photosynthetic control of Cyt [Formula: see text] occurs within milliseconds of exposure to saturating light, much more quickly than the induction of non-photochemical quenching. We propose that photosynthetic control is the primary means of photoprotection and functions to manage excitation pressure, whereas non-photochemical quenching functions to manage excitation balance. We use these findings to extend the Farquhar et al. (Planta 149:78-90, 1980) model of [Formula: see text] photosynthesis to include a mechanistic description of the electron transport system. This framework relates the light captured by PS I and PS II to the energy and mass fluxes linking the photoacts with Cyt [Formula: see text], the ATP synthase, and Rubisco. It enables quantitative interpretation of pulse-amplitude modulated fluorometry and gas-exchange measurements, providing a new basis for analyzing how the electron transport system coordinates the supply of Fd, NADPH, and ATP with the dynamic demands of carbon metabolism, how efficient use of light is achieved under limiting light, and how photoprotection is achieved under saturating light. The model is designed to support forward as well as inverse applications. It can either be used in a stand-alone mode at the leaf-level or coupled to other models that resolve finer-scale or coarser-scale phenomena.
Collapse
Affiliation(s)
- J E Johnson
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA.
| | - J A Berry
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA
| |
Collapse
|
58
|
Alber NA, Vanlerberghe GC. The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1625-1646. [PMID: 33811402 DOI: 10.1111/tpj.15259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
59
|
Chen Y, Zhong D, Yang X, Zhao Y, Dai L, Zeng D, Wang Q, Gao L, Li S. ZmFdC2 Encoding a Ferredoxin Protein With C-Terminus Extension Is Indispensable for Maize Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:646359. [PMID: 33968104 PMCID: PMC8104031 DOI: 10.3389/fpls.2021.646359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
As important electron carriers, ferredoxin (Fd) proteins play important roles in photosynthesis, and the assimilation of CO2, nitrate, sulfate, and other metabolites. In addition to the well-studied Fds, plant genome encodes two Fd-like protein members named FdC1 and FdC2, which have extension regions at the C-terminus of the 2Fe-2S cluster. Mutation or overexpression of FdC genes caused alterations in photosynthetic electron transfer rate in rice and Arabidopsis. Maize genome contains one copy of each FdC gene. However, the functions of these genes have not been reported. In this study, we identified the ZmFdC2 gene by forward genetics approach. Mutation of this gene causes impaired photosynthetic electron transport and collapsed chloroplasts. The mutant plant is seedling-lethal, indicating the indispensable function of ZmFdC2 gene in maize development. The ZmFdC2 gene is specifically expressed in photosynthetic tissues and induced by light treatment, and the encoded protein is localized on chloroplast, implying its specialized function in photosynthesis. Furthermore, ZmFdC2 expression was detected in both mesophyll cells and bundle sheath cells, the two cell types specialized for C4 and C3 photosynthesis pathways in maize. Epigenomic analyses showed that ZmFdC2 locus was enriched for active histone modifications. Our results demonstrate that ZmFdC2 is a key component of the photosynthesis pathway and is crucial for the development of maize.
Collapse
Affiliation(s)
- Yue Chen
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Deyi Zhong
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiu Yang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yonghui Zhao
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, China
| | - Liping Dai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Quan Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Gao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shengben Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
60
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
61
|
Huang W, Sun H, Tan SL, Zhang SB. The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110828. [PMID: 33691962 DOI: 10.1016/j.plantsci.2021.110828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 05/13/2023]
Abstract
The water-water cycle (WWC) has the potential to alleviate photoinhibition of photosystem I (PSI) in fluctuating light (FL) at room temperature and moderate heat stress. However, it is unclear whether WWC can function as a safety valve for PSI in FL at chilling temperature. In this study, we measured P700 redox state and chlorophyll fluorescence in FL at 25 °C and 4 °C in the high WWC activity plant Dendrobium officinale. At 25 °C, the operation of WWC contributed to the rapid re-oxidation of P700 upon dark-to-light transition. However, such rapid re-oxidation of P700 was not observed at 4 °C. Upon a sudden increase in light intensity, WWC rapidly consumed excess electrons in PSI and thus avoided an over-reduction of PSI at 25 °C. On the contrary, PSI was highly reduced within the first seconds after transition from low to high light at 4 °C. Therefore, in opposite to 25 °C, the WWC is not a major alternative sink in FL at chilling temperature. Upon transition from low to high light, cyclic electron transport was highly stimulated at 4 °C when compared with 25 °C. These results indicate that D. officinale enhances cyclic electron transport to partially compensate for the inactivation of WWC in FL at 4 °C.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
62
|
Coordination of Cyclic Electron Flow and Water-Water Cycle Facilitates Photoprotection under Fluctuating Light and Temperature Stress in the Epiphytic Orchid Dendrobium officinale. PLANTS 2021; 10:plants10030606. [PMID: 33806869 PMCID: PMC8004707 DOI: 10.3390/plants10030606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). Photosynthetic organisms employ alternative electron flows to protect PSI under FL. However, the understanding of the coordination of alternative electron flows under FL at temperature stresses is limited. To address this question, we measured the chlorophyll fluorescence, P700 redox state, and electrochromic shift signal in leaves of Dendrobium officinale exposed to FL at 42 °C, 25 °C, and 4 °C. Upon a sudden increase in illumination at 42 °C and 25 °C, the water-water cycle (WWC) consumed a significant fraction of the extra reducing power, and thus avoided an over-reduction of PSI. However, WWC was inactivated at 4 °C, leading to an over-reduction of PSI within the first seconds after light increased. Therefore, the role of WWC under FL is largely dependent on temperature conditions. After an abrupt increase in light intensity, cyclic electron flow (CEF) around PSI was stimulated at any temperature. Therefore, CEF and WWC showed different temperature responses under FL. Furthermore, the enhancement of CEF and WWC at 42 °C quickly generated a sufficient trans-thylakoid proton gradient (ΔpH). The inactivation of WWC at 4 °C was partially compensated for by an increased CEF activity. These findings indicate that CEF and WWC coordinate to protect PSI under FL at temperature stresses.
Collapse
|
63
|
Peharec Štefanić P, Košpić K, Lyons DM, Jurković L, Balen B, Tkalec M. Phytotoxicity of Silver Nanoparticles on Tobacco Plants: Evaluation of Coating Effects on Photosynthetic Performance and Chloroplast Ultrastructure. NANOMATERIALS 2021; 11:nano11030744. [PMID: 33809644 PMCID: PMC8002358 DOI: 10.3390/nano11030744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are the most exploited nanomaterial in agriculture and food production, and their release into the environment raises concern about their impact on plants. Since AgNPs are prone to biotransformation, various surface coatings are used to enhance their stability, which may modulate AgNP-imposed toxic effects. In this study, the impact of AgNPs stabilized with different coatings (citrate, polyvinylpyrrolidone (PVP), and cetyltrimethylammonium bromide (CTAB)) and AgNO3 on photosynthesis of tobacco plants as well as AgNP stability in exposure medium have been investigated. Obtained results revealed that AgNP-citrate induced the least effects on chlorophyll a fluorescence parameters and pigment content, which could be ascribed to their fast agglomeration in the exposure medium and consequently weak uptake. The impact of AgNP-PVP and AgNP-CTAB was more severe, inducing a deterioration of photosynthetic activity along with reduced pigment content and alterations in chloroplast ultrastructure, which could be correlated to their higher stability, elevated Ag accumulation, and surface charge. In conclusion, intrinsic properties of AgNP coatings affect their stability and bioavailability in the biological medium, thereby indirectly contributing changes in the photosynthetic apparatus. Moreover, AgNP treatments exhibited more severe inhibitory effects compared to AgNO3, which indicates that the impact on photosynthesis is dependent on the form of Ag.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; (D.M.L.); (L.J.)
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; (D.M.L.); (L.J.)
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (P.P.Š.); (K.K.); (B.B.)
- Correspondence:
| |
Collapse
|
64
|
Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int J Mol Sci 2021; 22:ijms22062969. [PMID: 33804002 PMCID: PMC8000295 DOI: 10.3390/ijms22062969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
Collapse
|
65
|
Kramer M, Rodriguez-Heredia M, Saccon F, Mosebach L, Twachtmann M, Krieger-Liszkay A, Duffy C, Knell RJ, Finazzi G, Hanke GT. Regulation of photosynthetic electron flow on dark to light transition by ferredoxin:NADP(H) oxidoreductase interactions. eLife 2021; 10:56088. [PMID: 33685582 PMCID: PMC7984839 DOI: 10.7554/elife.56088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
During photosynthesis, electron transport is necessary for carbon assimilation and must be regulated to minimize free radical damage. There is a longstanding controversy over the role of a critical enzyme in this process (ferredoxin:NADP(H) oxidoreductase, or FNR), and in particular its location within chloroplasts. Here we use immunogold labelling to prove that FNR previously assigned as soluble is in fact membrane associated. We combined this technique with a genetic approach in the model plant Arabidopsis to show that the distribution of this enzyme between different membrane regions depends on its interaction with specific tether proteins. We further demonstrate a correlation between the interaction of FNR with different proteins and the activity of alternative photosynthetic electron transport pathways. This supports a role for FNR location in regulating photosynthetic electron flow during the transition from dark to light.
Collapse
Affiliation(s)
- Manuela Kramer
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Francesco Saccon
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Manuel Twachtmann
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Paris, France
| | - Chris Duffy
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Robert J Knell
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat a` l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, Grenoble, France
| | - Guy Thomas Hanke
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom.,Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
66
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
67
|
Luu Trinh MD, Miyazaki D, Ono S, Nomata J, Kono M, Mino H, Niwa T, Okegawa Y, Motohashi K, Taguchi H, Hisabori T, Masuda S. The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I. iScience 2021; 24:102059. [PMID: 33554065 PMCID: PMC7848650 DOI: 10.1016/j.isci.2021.102059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. P700 oxidation at photosystem I is important for regulation of photosynthesis TCR is a redox active chloroplast protein harboring a 3Fe-4S iron-sulfur cluster TCR controls electron flow around photosystem I, contributing to P700 oxidation
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Daichi Miyazaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Jiro Nomata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Mino
- Division of Materials Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Corresponding author
| |
Collapse
|
68
|
Kodru S, Sass L, Patil P, Szabó M, Vass I. Identification of the AG afterglow thermoluminescence band in the cyanobacterium Synechocystis PCC 6803. PHYSIOLOGIA PLANTARUM 2021; 171:291-300. [PMID: 33314124 DOI: 10.1111/ppl.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The so-called afterglow, AG, thermoluminescence (TL) band is a useful indicator of the presence of cyclic electron flow (CEF), which is mediated by the NADH dehydrogenase-like (NDH) complex in higher plants. Although NDH-dependent CEF occurs also in cyanobacteria, the AG band has previously not been found in these organisms. In the present study, we tested various experimental conditions and could identify a TL component with ca. +40°C peak temperature in Synechocystis PCC 6803 cells, which were illuminated by far-red (FR) light at around -10°C. The +40°C band could be observed when WT cells were grown under ambient air level CO2 , but was absent in the M55 mutant, which is deficient in the NDH-1 complex. These experimental observations match the characteristics of the AG band of higher plants. Therefore, we conclude that the newly identified +40°C TL component in Synechocystis PCC 6803 is the cyanobacterial counterpart of the plant AG band and originates from NDH-1-mediated CEF. The cyanobacterial AG band was most efficiently induced when FR illumination was applied at -10°C and its contribution to the total TL intensity declined when cells were illuminated above and below this temperature. Based on this phenomenon we also conclude that CEF is blocked by low temperatures at two different sites in Synechocystis PCC 6803: (1) Below -10°C at the level of NDH-1 and (2) below -30°C at the donor or acceptor side of Photosystem I.
Collapse
Affiliation(s)
- Sandeesha Kodru
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - László Sass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Priyanka Patil
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
69
|
Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. Cytochrome b 6f - Orchestrator of photosynthetic electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148380. [PMID: 33460588 DOI: 10.1016/j.bbabio.2021.148380] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
Collapse
Affiliation(s)
- Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
70
|
Hepworth C, Wood WHJ, Emrich-Mills TZ, Proctor MS, Casson S, Johnson MP. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. NATURE PLANTS 2021. [PMID: 33432159 DOI: 10.1038/s41477-020-00828-823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
TAP38/STN7-dependent (de)phosphorylation of light-harvesting complex II (LHCII) regulates the relative excitation rates of photosystems I and II (PSI, PSII) (state transitions) and the size of the thylakoid grana stacks (dynamic thylakoid stacking). Yet, it remains unclear how changing grana size benefits photosynthesis and whether these two regulatory mechanisms function independently. Here, by comparing Arabidopsis wild-type, stn7 and tap38 plants with the psal mutant, which undergoes dynamic thylakoid stacking but lacks state transitions, we explain their distinct roles. Under low light, smaller grana increase the rate of PSI reduction and photosynthesis by reducing the diffusion distance for plastoquinol; however, this beneficial effect is only apparent when PSI/PSII excitation balance is maintained by state transitions or far-red light. Under high light, the larger grana slow plastoquinol diffusion and lower the equilibrium constant between plastocyanin and PSI, maximizing photosynthesis by avoiding PSI photoinhibition. Loss of state transitions in low light or maintenance of smaller grana in high light also both bring about a decrease in cyclic electron transfer and over-reduction of the PSI acceptor side. These results demonstrate that state transitions and dynamic thylakoid stacking work synergistically to regulate photosynthesis in variable light.
Collapse
Affiliation(s)
- Christopher Hepworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Tom Z Emrich-Mills
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
71
|
Sukhova EM, Vodeneev VA, Sukhov VS. Mathematical Modeling of Photosynthesis and Analysis of Plant Productivity. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Hepworth C, Wood WHJ, Emrich-Mills TZ, Proctor MS, Casson S, Johnson MP. Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. NATURE PLANTS 2021; 7:87-98. [PMID: 33432159 DOI: 10.1038/s41477-020-00828-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/04/2020] [Indexed: 05/11/2023]
Abstract
TAP38/STN7-dependent (de)phosphorylation of light-harvesting complex II (LHCII) regulates the relative excitation rates of photosystems I and II (PSI, PSII) (state transitions) and the size of the thylakoid grana stacks (dynamic thylakoid stacking). Yet, it remains unclear how changing grana size benefits photosynthesis and whether these two regulatory mechanisms function independently. Here, by comparing Arabidopsis wild-type, stn7 and tap38 plants with the psal mutant, which undergoes dynamic thylakoid stacking but lacks state transitions, we explain their distinct roles. Under low light, smaller grana increase the rate of PSI reduction and photosynthesis by reducing the diffusion distance for plastoquinol; however, this beneficial effect is only apparent when PSI/PSII excitation balance is maintained by state transitions or far-red light. Under high light, the larger grana slow plastoquinol diffusion and lower the equilibrium constant between plastocyanin and PSI, maximizing photosynthesis by avoiding PSI photoinhibition. Loss of state transitions in low light or maintenance of smaller grana in high light also both bring about a decrease in cyclic electron transfer and over-reduction of the PSI acceptor side. These results demonstrate that state transitions and dynamic thylakoid stacking work synergistically to regulate photosynthesis in variable light.
Collapse
Affiliation(s)
- Christopher Hepworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Tom Z Emrich-Mills
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Stuart Casson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
73
|
Flannery SE, Hepworth C, Wood WHJ, Pastorelli F, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:223-244. [PMID: 33118270 PMCID: PMC7898487 DOI: 10.1111/tpj.15053] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 05/03/2023]
Abstract
Photosynthetic acclimation, the ability to adjust the composition of the thylakoid membrane to optimise the efficiency of electron transfer to the prevailing light conditions, is crucial to plant fitness in the field. While much is known about photosynthetic acclimation in Arabidopsis, to date there has been no study that combines both quantitative label-free proteomics and photosynthetic analysis by gas exchange, chlorophyll fluorescence and P700 absorption spectroscopy. Using these methods we investigated how the levels of 402 thylakoid proteins, including many regulatory proteins not previously quantified, varied upon long-term (weeks) acclimation of Arabidopsis to low (LL), moderate (ML) and high (HL) growth light intensity and correlated these with key photosynthetic parameters. We show that changes in the relative abundance of cytb6 f, ATP synthase, FNR2, TIC62 and PGR6 positively correlate with changes in estimated PSII electron transfer rate and CO2 assimilation. Improved photosynthetic capacity in HL grown plants is paralleled by increased cyclic electron transport, which positively correlated with NDH, PGRL1, FNR1, FNR2 and TIC62, although not PGR5 abundance. The photoprotective acclimation strategy was also contrasting, with LL plants favouring slowly reversible non-photochemical quenching (qI), which positively correlated with LCNP, while HL plants favoured rapidly reversible quenching (qE), which positively correlated with PSBS. The long-term adjustment of thylakoid membrane grana diameter positively correlated with LHCII levels, while grana stacking negatively correlated with CURT1 and RIQ protein abundance. The data provide insights into how Arabidopsis tunes photosynthetic electron transfer and its regulation during developmental acclimation to light intensity.
Collapse
Affiliation(s)
- Sarah E. Flannery
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| | - Christopher Hepworth
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| | - William H. J. Wood
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| | - Federica Pastorelli
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| | - Christopher N. Hunter
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| | - Mark J. Dickman
- Department of Chemical and Biological EngineeringChELSI InstituteUniversity of SheffieldSheffieldUK
| | - Philip J. Jackson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
- Department of Chemical and Biological EngineeringChELSI InstituteUniversity of SheffieldSheffieldUK
| | - Matthew P. Johnson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth CourtWestern BankSheffieldUK
| |
Collapse
|
74
|
Sun Z, Shen Y, Niinemets Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7364-7381. [PMID: 32996573 PMCID: PMC7906789 DOI: 10.1093/jxb/eraa415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Isoprene emissions have been considered as a protective response of plants to heat stress, but there is limited information of how prolonged heat spells affect isoprene emission capacity, particularly under the drought conditions that often accompany hot weather. Under combined long-term stresses, presence of isoprene emission could contribute to the maintenance of the precursor pool for rapid synthesis of essential isoprenoids to repair damaged components of leaf photosynthetic apparatus. We studied changes in leaf isoprene emission rate, photosynthetic characteristics, and antioxidant enzyme activities in two hybrid Populus clones, Nanlin 1388 (relatively high drought tolerance) and Nanlin 895 (relatively high thermotolerance) that were subjected to long-term (30 d) soil water stress (25% versus 90% soil field capacity) combined with a natural heat spell (day-time temperatures of 35-40 °C) that affected both control and water-stressed plants. Unexpectedly, isoprene emissions from both the clones were similar and the overall effects of drought on the emission characteristics were initially minor; however, treatment effects and clonal differences increased with time. In particular, the isoprene emission rate only increased slightly in the Nanlin 895 control plants after 15 d of treatment, whereas it decreased by more than 5-fold in all treatment × clone combinations after 30 d. The reduction in isoprene emission rate was associated with a decrease in the pool size of the isoprene precursor dimethylallyl diphosphate in all cases at 30 d after the start of treatment. Net assimilation rate, stomatal conductance, the openness of PSII centers, and the effective quantum yield all decreased, and non-photochemical quenching and catalase activity increased in both control and water-stressed plants. Contrary to the hypothesis of protection of leaf photosynthetic apparatus by isoprene, the data collectively indicated that prolonged stress affected isoprene emissions more strongly than leaf photosynthetic characteristics. This primarily reflected the depletion of isoprene precursor pools under long-term severe stress.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, Hangzhou, Zhejiang, China
| | - Yan Shen
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
| |
Collapse
|
75
|
PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem J 2020; 477:1631-1650. [PMID: 32267468 DOI: 10.1042/bcj20190914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes - via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.
Collapse
|
76
|
|
77
|
Okegawa Y, Motohashi K. M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1. THE PLANT CELL 2020; 32:3866-3883. [PMID: 33037145 PMCID: PMC7721319 DOI: 10.1105/tpc.20.00304] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 05/11/2023]
Abstract
In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (Arabidopsis thaliana), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)-dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the m-type thioredoxins (Trx m). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx m and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx m specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx m4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx m4-PGRL1 complex formation. Furthermore, the Trx m4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx m directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan
| |
Collapse
|
78
|
Storti M, Segalla A, Mellon M, Alboresi A, Morosinotto T. Regulation of electron transport is essential for photosystem I stability and plant growth. THE NEW PHYTOLOGIST 2020; 228:1316-1326. [PMID: 32367526 DOI: 10.1111/nph.16643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic electron transport is regulated by cyclic and pseudocyclic electron flow (CEF and PCEF) to maintain the balance between light availability and metabolic demands. CEF transfers electrons from photosystem I to the plastoquinone pool with two mechanisms, dependent either on PGR5/PGRL1 or on the type I NADH dehydrogenase-like (NDH) complex. PCEF uses electrons from photosystem I to reduce oxygen and in many groups of photosynthetic organisms, but remarkably not in angiosperms, it is catalyzed by flavodiiron proteins (FLVs). In this study, Physcomitrella patens plants depleted in PGRL1, NDH and FLVs in different combinations were generated and characterized, showing that all these mechanisms are active in this moss. Surprisingly, in contrast to flowering plants, Physcomitrella patens can cope with the simultaneous inactivation of PGR5- and NDH-dependent CEF but, when FLVs are also depleted, plants show strong growth reduction and photosynthetic activity is drastically reduced. The results demonstrate that mechanisms for modulation of photosynthetic electron transport have large functional overlap but are together indispensable to protect photosystem I from damage and they are an essential component for photosynthesis in any light regime.
Collapse
Affiliation(s)
- Mattia Storti
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Marco Mellon
- Department of Biology, University of Padova, Padova, 35121, Italy
| | | | | |
Collapse
|
79
|
Li L, Yi H. Photosynthetic responses of Arabidopsis to SO 2 were related to photosynthetic pigments, photosynthesis gene expression and redox regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111019. [PMID: 32888606 DOI: 10.1016/j.ecoenv.2020.111019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.
Collapse
Affiliation(s)
- Lijuan Li
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
80
|
Bhaduri S, Singh SK, Cohn W, Hasan SS, Whitelegge JP, Cramer WA. A novel chloroplast super-complex consisting of the ATP synthase and photosystem I reaction center. PLoS One 2020; 15:e0237569. [PMID: 32817667 PMCID: PMC7444523 DOI: 10.1371/journal.pone.0237569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/29/2020] [Indexed: 11/18/2022] Open
Abstract
Several 'super-complexes' of individual hetero-oligomeric membrane protein complexes, whose function is to facilitate intra-membrane electron and proton transfer and harvesting of light energy, have been previously characterized in the mitochondrial cristae and chloroplast thylakoid membranes. We report the presence of an intra-membrane super-complex dominated by the ATP-synthase, photosystem I (PSI) reaction-center complex and the ferredoxin-NADP+ Reductase (FNR) in the thylakoid membrane. The presence of the super-complex has been documented by mass spectrometry, clear-native PAGE and Western Blot analyses. This is the first documented presence of ATP synthase in a super-complex with the PSI reaction-center located in the non-appressed stromal domain of the thylakoid membrane.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Sandeep K Singh
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California/Los Angeles, Los Angeles, California, United States of America
| | - S. Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California/Los Angeles, Los Angeles, California, United States of America
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
81
|
Sunoj VSJ, Prasad PVV, Ciampitti IA, Maswada HF. Narrowing Diurnal Temperature Amplitude Alters Carbon Tradeoff and Reduces Growth in C 4 Crop Sorghum. FRONTIERS IN PLANT SCIENCE 2020; 11:1262. [PMID: 32973831 PMCID: PMC7466774 DOI: 10.3389/fpls.2020.01262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/31/2020] [Indexed: 05/29/2023]
Abstract
Effect of diurnal temperature amplitude on carbon tradeoff (photosynthesis vs. respiration) and growth are not well documented in C4 crops, especially under changing temperatures of light (daytime) and dark (nighttime) phases in 24 h of a day. Fluctuations in daytime and nighttime temperatures due to climate change narrows diurnal temperature amplitude which can alter circadian rhythms in plant, thus influence the ability of plants to cope with temperature changes and cause contradictory responses in carbon tradeoff, particularly in night respiration during dark phase, and growth. Sorghum [Sorghum bicolor (L.) Moench] is a key C4 cereal crop grown in high temperature challenging agro-climatic regions. Hence, it is important to understand its response to diurnal temperature amplitude. This is the first systematic investigation using controlled environmental facility to monitor the response of sorghum to different diurnal temperature amplitudes with same mean temperature. Two sorghum hybrids (DK 53 and DK 28E) were grown under optimum (27°C) and high (35°C) mean temperatures with three different diurnal temperature amplitudes (2, 10, and 18°C) accomplished by modulating daytime and nighttime temperatures [optimum daytime and nighttime temperatures (ODNT): 28/26, 32/22, and 36/18°C and high daytime and nighttime temperatures (HDNT): 36/34, 40/30, and 44/26°C]. After exposure to different temperature conditions, total soluble sugars, starch, total leaf area and biomass were reduced, while night respiration and specific leaf area were increased with narrowing of diurnal temperature amplitude (18 to 2°C) of HDNT followed by ODNT. However, there was no influence on photosynthesis across different ODNT and HDNT. Contradiction in response of foliar gas exchange and growth suggests higher contribution of night respiration for maintenance rather than growth with narrowing of diurnal temperature amplitude of ODNT and HDNT. Results imply that diurnal temperature amplitude has immense impact on the carbon tradeoff and growth, regardless of hybrid variation. Hence, diurnal temperature amplitude and night respiration should be considered while quantifying response and screening for high temperature tolerance in sorghum genotypes and comprehensive understanding of dark phase mechanisms which are coupled with stress response can further strengthen screening procedures.
Collapse
Affiliation(s)
- V. S. John Sunoj
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
- State Key Laboratory of Conservation and Utilization of Subtropical Agro−bio−resources, College of Forestry, Guangxi University, Nanning, China
| | - P. V. Vara Prasad
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Ignacio A. Ciampitti
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Hanafey F. Maswada
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
82
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
83
|
Pilarska M, Niewiadomska E, Sychta K, Słomka A. Differences in the functioning of photosynthetic electron transport between metallicolous and non-metallicolous populations of the pseudometallophyte Viola tricolor. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153185. [PMID: 32497866 DOI: 10.1016/j.jplph.2020.153185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to assess the effect of metalliferous conditions on the functioning of photosynthetic electron transport in waste heap populations of a pseudometallophyte, Viola tricolor L. Measurements of chlorophyll a fluorescence and the absorbance changes at 830 nm enabled a non-invasive assessment of photosynthetic apparatus performance. This was complemented by the evaluation of the chlorophyll content. Low temperature chlorophyll fluorescence emission spectra were also recorded. Based on the OJIP test performed in situ, we demonstrated a disturbed condition of photosystem II (PSII) in three metalliferous populations in comparison with a non-metallicolous one. The combined effects of elevated concentrations of zinc, cadmium and lead in soil resulted in the decline of some parameters describing the efficiency and electron flow through PSII. The differences between waste heap populations seemed to be partly correlated with the concentration of heavy metals in the soil. The characteristic of electron transport at photosystem I (PSI) in the light-adapted state revealed increased values of PSI donor-side limitation (YND) and a declined PSI quantum efficiency (YI). It was also demonstrated that the waste heap conditions negatively affect the total chlorophyll content in leaves and led to an increased ratio of fluorescence emission at 77 K (F730/F685). The obtained data indicate that, regardless of the high adaptation of metallicolous populations, photosynthetic electron transport is hampered in V. tricolor plants at metal polluted sites.
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Klaudia Sychta
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Cracow, Poland.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Cracow, Poland.
| |
Collapse
|
84
|
Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dülger E, Bovdilova A, Caffarri S, Hippler M, Jahns P. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148183. [DOI: 10.1016/j.bbabio.2020.148183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
85
|
Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS, Morgan-Kiss R. Chlamydomonas sp. UWO 241 Exhibits High Cyclic Electron Flow and Rewired Metabolism under High Salinity. PLANT PHYSIOLOGY 2020; 183:588-601. [PMID: 32229607 PMCID: PMC7271785 DOI: 10.1104/pp.19.01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 06/01/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO 241 (UWO 241) is adapted to permanent low temperatures, hypersalinity, and extreme shade. One of the most striking phenotypes of UWO 241 is an altered PSI organization and constitutive PSI cyclic electron flow (CEF). To date, little attention has been paid to CEF during long-term stress acclimation, and the consequences of sustained CEF in UWO 241 are not known. In this study, we combined photobiology, proteomics, and metabolomics to understand the underlying role of sustained CEF in high-salinity stress acclimation. High salt-grown UWO 241 exhibited increased thylakoid proton motive flux and an increased capacity for nonphotochemical quenching. Under high salt, a significant proportion of the up-regulated enzymes were associated with the Calvin-Benson-Bassham cycle, carbon storage metabolism, and protein translation. Two key enzymes of the shikimate pathway, 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate synthase, were also up-regulated, as well as indole-3-glycerol phosphate synthase, an enzyme involved in the biosynthesis of l-Trp and indole acetic acid. In addition, several compatible solutes (glycerol, Pro, and Suc) accumulated to high levels in high salt-grown UWO 241 cultures. We suggest that UWO 241 maintains constitutively high CEF through the associated PSI-cytochrome b 6 f supercomplex to support robust growth and strong photosynthetic capacity under a constant growth regime of low temperatures and high salinity.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Norman Hüner
- Department of Biology and Biotron Centre for Experimental Climate Change, University of Western Ontario, London N6A 3K7, Ontario, Canada
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77840
| | | |
Collapse
|
86
|
Bielczynski LW, Schansker G, Croce R. Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:866-879. [PMID: 31834625 PMCID: PMC7154682 DOI: 10.1111/pce.13701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 05/24/2023]
Abstract
In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms. In our study, we used an Arabidopsis thaliana mutant (dLhcb2), which has a 60% decrease of Lhcb1 and Lhcb2, the two main components of the major Photosystem II antenna complex. We show that the mutant maintains the photosynthetic and photoprotective capacity of the Wild Type (WT) and adapts to different light conditions by remodelling its photosynthetic apparatus, but the regulatory mechanism differs from that of the WT. Surprisingly, it does not compensate for the decreased light-harvesting capacity by increasing other pigment-protein complexes. Instead, it lowers the ratio of the cytochrome b6 f and ATP synthase to the photosystems, regulating linear electron flow and maintaining the photosynthetic control at the level of these complexes as in the WT. We show that targeting the reduction of two specific antenna proteins, Lhcb1 and Lhcb2, represents a viable solution to obtain plants with a truncated antenna size, which still maintain the capacity to acclimate to different light conditions.
Collapse
Affiliation(s)
- Ludwik W. Bielczynski
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Gert Schansker
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis/Energy, Faculty of Sciences, Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
87
|
Elsheery NI, Sunoj VSJ, Wen Y, Zhu JJ, Muralidharan G, Cao KF. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:50-60. [PMID: 32035252 DOI: 10.1016/j.plaphy.2020.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Chilling is one of the main abiotic stresses that adversely affect the productivity of sugarcane, in marginal tropical regions where chilling incidence occurs with seasonal changes. However, nanoparticles (NPs) have been tested as a mitigation strategy against diverse abiotic stresses. In this study, NPs such as silicon dioxide (nSiO2; 5-15 nm), zinc oxide (nZnO; <100 nm), selenium (nSe; 100 mesh), graphene (graphene nanoribbons [GNRs] alkyl functionalized; 2-15 μm × 40-250 nm) were applied as foliar sprays on sugarcane leaves to understand the amelioration effect of NPs against negative impact of chilling stress on photosynthesis and photoprotection. To this end, seedlings of moderately chilling tolerant sugarcane variety Guitang 49 was used for current study and spilt plot was used as statistical design. The changes in the level chilling tolerance after the application of NPs on Guitang 49 were compared with tolerance level of chilling tolerant variety Guitang 28. NPs treatments reduced the adverse effects of chilling by maintaining the maximum photochemical efficiency of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), and photosynthetic gas exchange. Furthermore, application of NPs increased the content of light harvesting pigments (chlorophylls and cartinoids) in NPs treated seedlings. Higher carotenoid accumulation in leaves of NPs treated seedlings enhanced the nonphotochemical quenching (NPQ) of PSII. Among the NPs, nSiO2 showed higher amelioration effects and it can be used alone or in combination with other NPs to mitigate chilling stress in sugarcane.
Collapse
Affiliation(s)
- Nabil I Elsheery
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China; Department of Agricultural Botany, Tanta University, Tanta, 72513, Egypt
| | - V S J Sunoj
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Y Wen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - J J Zhu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - G Muralidharan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - K F Cao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China.
| |
Collapse
|
88
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
89
|
Murchie EH, Ruban AV. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:885-896. [PMID: 31686424 DOI: 10.1111/tpj.14601] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Photoprotection refers to a set of well defined plant processes that help to prevent the deleterious effects of high and excess light on plant cells, especially within the chloroplast. Molecular components of chloroplast photoprotection are closely aligned with those of photosynthesis and together they influence productivity. Proof of principle now exists that major photoprotective processes such as non-photochemical quenching (NPQ) directly determine whole canopy photosynthesis, biomass and yield via prevention of photoinhibition and a momentary downregulation of photosynthetic quantum yield. However, this phenomenon has neither been quantified nor well characterized across different environments. Here we address this problem by assessing the existing literature with a different approach to that taken previously, beginning with our understanding of the molecular mechanism of NPQ and its regulation within dynamic environments. We then move to the leaf and the plant level, building an understanding of the circumstances (when and where) NPQ limits photosynthesis and linking to our understanding of how this might take place on a molecular and metabolic level. We argue that such approaches are needed to fine tune the relevant features necessary for improving dynamic NPQ in important crop species.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
90
|
Pan X, Cao D, Xie F, Xu F, Su X, Mi H, Zhang X, Li M. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat Commun 2020; 11:610. [PMID: 32001694 PMCID: PMC6992706 DOI: 10.1038/s41467-020-14456-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 11/23/2022] Open
Abstract
NAD(P)H dehydrogenase-like (NDH) complex NDH-1L of cyanobacteria plays a crucial role in cyclic electron flow (CEF) around photosystem I and respiration processes. NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen that drives the ATP production. NDH-1L-dependent CEF increases the ATP/NADPH ratio, and is therefore pivotal for oxygenic phototrophs to function under stress. Here we report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively. Our structures represent the complete model of cyanobacterial NDH-1L, revealing the binding manner of NDH-1L with Fd and PQ, as well as the structural elements crucial for proper functioning of the NDH-1L complex. Together, our data provides deep insights into the electron transport from Fd to PQ, and its coupling with proton translocation in NDH-1L. NAD(P)H dehydrogenase-like complex NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen. Here authors report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.,National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR China. .,Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
91
|
Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134816. [PMID: 31704404 DOI: 10.1016/j.scitotenv.2019.134816] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnology is an emerging field in science and engineering, which presents significant impacts on the economy, society and the environment. The nanomaterials' (NMs) production, use, and disposal is inevitably leading to their release into the environment where there are uncertainties about its fate, behaviour, and toxicity. Recent works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. However, studies about the effects of the NMs on plants are still limited because most investigations are carried out in the initial stage of plant development. The present study aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The AgNPs were characterized by transmission electron microscopy and dynamic light scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion (Ag+) release from Ag particles was determined by dialysis. The results revealed that AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and an increase in the non-photochemical quenching. The data also revealed that AgNPs affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that AgBulk caused only a small or no changes on plants. In summary, the results point out that AgNPs may negatively affect the photosynthesis process when accumulated in the leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release was detected.
Collapse
Affiliation(s)
- William F Falco
- Grupo de Óptica Aplicada, Universidade Federal da Grande Dourados, CP 533, 79804-970 Dourados, MS, Brazil
| | - Marisa D Scherer
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Samuel L Oliveira
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil.
| | - Heberton Wender
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil
| | - Ian Colbeck
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| | - Anderson R L Caires
- Grupo de Óptica e Fotônica, Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, 790070-900 Campo Grande, MS, Brazil; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
92
|
PGR5 and NDH-1 systems do not function as protective electron acceptors but mitigate the consequences of PSI inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148154. [PMID: 31935360 DOI: 10.1016/j.bbabio.2020.148154] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
Abstract
Avoidance of photoinhibition at photosystem (PS)I is based on synchronized function of PSII, PSI, Cytochrome b6f and stromal electron acceptors. Here, we used a special light regime, PSI photoinhibition treatment (PIT), in order to specifically inhibit PSI by accumulating excess electrons at the photosystem (Tikkanen and Grebe, 2018). In the analysis, Arabidopsis thaliana WT was compared to the pgr5 and ndho mutants, deficient in one of the two main cyclic electron transfer pathways described to function as protective alternative electron acceptors of PSI. The aim was to investigate whether the PGR5 (pgr5) and the type I NADH dehydrogenase (NDH-1) (ndho) systems protect PSI from excess electron stress and whether they help plants to cope with the consequences of PSI photoinhibition. First, our data reveals that neither PGR5 nor NDH-1 system protects PSI from a sudden burst of electrons. This strongly suggests that these systems in Arabidopsis thaliana do not function as direct acceptors of electrons delivered from PSII to PSI - contrasting with the flavodiiron proteins that were found to make Physcomitrella patens PSI resistant to the PIT. Second, it is demonstrated that under light-limiting conditions, the electron transfer rate at PSII is linearly dependent on the amount of functional PSI in all genotypes, while under excess light, the PGR5-dependent control of electron flow at the Cytochrome b6f complex overrides the effect of PSI inhibition. Finally, the PIT is shown to increase the amount of PGR5 and NDH-1 as well as of PTOX, suggesting that they mitigate further damage to PSI after photoinhibition rather than protect against it.
Collapse
|
93
|
Acid treatment combined with high light leads to increased removal efficiency of Ulva prolifera. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
94
|
Ahmad N, Khan MO, Islam E, Wei ZY, McAusland L, Lawson T, Johnson GN, Nixon PJ. Contrasting Responses to Stress Displayed by Tobacco Overexpressing an Algal Plastid Terminal Oxidase in the Chloroplast. FRONTIERS IN PLANT SCIENCE 2020; 11:501. [PMID: 32411169 PMCID: PMC7199157 DOI: 10.3389/fpls.2020.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 05/10/2023]
Abstract
The plastid terminal oxidase (PTOX) - an interfacial diiron carboxylate protein found in the thylakoid membranes of chloroplasts - oxidizes plastoquinol and reduces molecular oxygen to water. It is believed to play a physiologically important role in the response of some plant species to light and salt (NaCl) stress by diverting excess electrons to oxygen thereby protecting photosystem II (PSII) from photodamage. PTOX is therefore a candidate for engineering stress tolerance in crop plants. Previously, we used chloroplast transformation technology to over express PTOX1 from the green alga Chlamydomonas reinhardtii in tobacco (generating line Nt-PTOX-OE). Contrary to expectation, growth of Nt-PTOX-OE plants was more sensitive to light stress. Here we have examined in detail the effects of PTOX1 on photosynthesis in Nt-PTOX-OE tobacco plants grown at two different light intensities. Under 'low light' (50 μmol photons m-2 s-1) conditions, Nt-PTOX-OE and WT plants showed similar photosynthetic activities. In contrast, under 'high light' (125 μmol photons m-2 s-1) conditions, Nt-PTOX-OE showed less PSII activity than WT while photosystem I (PSI) activity was unaffected. Nt-PTOX-OE grown under high light also failed to increase the chlorophyll a/b ratio and the maximum rate of CO2 assimilation compared to low-light grown plants, suggesting a defect in acclimation. In contrast, Nt-PTOX-OE plants showed much better germination, root length, and shoot biomass accumulation than WT when exposed to high levels of NaCl and showed better recovery and less chlorophyll bleaching after NaCl stress when grown hydroponically. Overall, our results strengthen the link between PTOX and the resistance of plants to salt stress.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
- *Correspondence: Niaz Ahmad, ;
| | - Muhammad Omar Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Ejazul Islam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Zheng-Yi Wei
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Science, Changchun, China
| | - Lorna McAusland
- School of Life Sciences, University of Essex, Essex, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Essex, United Kingdom
| | - Giles N. Johnson
- School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building–Wolfson Laboratories, Imperial College London, London, United Kingdom
| |
Collapse
|
95
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
96
|
Schuster M, Gao Y, Schöttler MA, Bock R, Zoschke R. Limited Responsiveness of Chloroplast Gene Expression during Acclimation to High Light in Tobacco. PLANT PHYSIOLOGY 2020; 182:424-435. [PMID: 31636102 PMCID: PMC6945831 DOI: 10.1104/pp.19.00953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
Acclimation to changing light intensities poses major challenges to plant metabolism and has been shown to involve regulatory adjustments in chloroplast gene expression. However, this regulation has not been examined at a plastid genome-wide level and for many genes, it is unknown whether their expression responds to altered light intensities. Here, we applied comparative ribosome profiling and transcriptomic experiments to analyze changes in chloroplast transcript accumulation and translation in leaves of tobacco (Nicotiana tabacum) seedlings after transfer from moderate light to physiological high light. Our time-course data revealed almost unaltered chloroplast transcript levels and only mild changes in ribosome occupancy during 2 d of high light exposure. Ribosome occupancy on the psbA mRNA (encoding the D1 reaction center protein of PSII) increased and that on the petG transcript decreased slightly after high light treatment. Transfer from moderate light to high light did not induce substantial alterations in ribosome pausing. Transfer experiments from low light to high light conditions resulted in strong PSII photoinhibition and revealed the distinct light-induced activation of psbA translation, which was further confirmed by reciprocal shift experiments. In low-light-to-high-light shift experiments, as well as reciprocal treatments, the expression of all other chloroplast genes remained virtually unaltered. Altogether, our data suggest that low light-acclimated plants upregulate the translation of a single chloroplast gene, psbA, during acclimation to high light. Our results indicate that psbA translation activation occurs already at moderate light intensities. Possible reasons for the otherwise mild effects of light intensity changes on gene expression in differentiated chloroplasts are discussed.
Collapse
Affiliation(s)
- Maja Schuster
- Department III, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yang Gao
- Department III, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department III, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department III, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department III, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
97
|
Fulgosi H, Vojta L. Tweaking Photosynthesis: FNR-TROL Interaction as Potential Target for Crop Fortification. FRONTIERS IN PLANT SCIENCE 2020; 11:318. [PMID: 32265967 PMCID: PMC7108012 DOI: 10.3389/fpls.2020.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/04/2020] [Indexed: 05/10/2023]
|
98
|
Sun H, Zhang SB, Liu T, Huang W. Decreased photosystem II activity facilitates acclimation to fluctuating light in the understory plant Paris polyphylla. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148135. [PMID: 31821793 DOI: 10.1016/j.bbabio.2019.148135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/11/2023]
Abstract
In forests, understory plants are usually exposed to sunflecks on timescales of seconds or minutes. However, it is unclear how understory plants acclimate to fluctuating light. In this study, we compared chlorophyll fluorescence, PSI redox state and the electrochromic shift signal under fluctuating light between an understory plant Paris polyphylla (Liliaceae) and a light-demanding plant Bletilla striata (Orchidaceae). Within the first seconds after transition from low to high light, PSI was highly oxidized in P. polyphylla but was highly reduced in B. striata, although both species could not generate a sufficient trans-thylakoid proton gradient (ΔpH). Furthermore, the outflow of electrons from PSI to O2 was not significant in P. polyphylla, as indicated by the P700 redox kinetics upon dark-to-light transition. Therefore, the different responses of PSI to fluctuating light between P. polyphylla and B. striata could not be explained by ΔpH formation or alternative electron transport. In contrast, upon a sudden transition from low to high light, electron flow from PSII was much lower in P. polyphylla than in B. striata, suggesting that the rapid oxidation of PSI in P. polyphylla was largely attributed to the lower PSII activity. We propose, for the first time, that down-regulation of PSII activity is an important strategy used by some understory angiosperms to cope with sunflecks.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201 Kunming, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China.
| |
Collapse
|
99
|
Huang W, Yang YJ, Wang JH, Hu H. Photorespiration is the major alternative electron sink under high light in alpine evergreen sclerophyllous Rhododendron species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110275. [PMID: 31623777 DOI: 10.1016/j.plantsci.2019.110275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Owing to the high leaf mass per area, alpine evergreen sclerophyllous Rhododendron have low values of mesophyll conductance (gm). The resulting low chloroplast CO2 concentration aggravates photorespiration, which requires a higher ATP/NADPH ratio. However, the significance of photorespiration and underlying mechanisms of energy balance in these species are little known. In this study, eight alpine evergreen sclerophyllous Rhododendron species grown in a common garden were tested for their gm, electron flow to photorespiration, and energy balancing. Under saturating light, gm was the most limiting factor for net photosynthesis (AN) in all species, and the species differences in AN were primarily driven by gm rather than stomatal conductance. The total electron flow through photosystem II (ETRII) nearly equaled the electron transport required for Rubisco carboxylation and oxygenation. Furthermore, blocking electron flow to photosystem I with appropriate inhibitors showed that electron flow to plastic terminal oxidase was not observed. As a result, these studied species showed little alternative electron flow mediated by water-water cycle or plastic terminal oxidase. By comparison, the ratio of electron transport consumed by photorespiration to ETRII (JPR/ETRII), ranging from 43%∼55%, was negatively correlated to AN and gm. Furthermore, the increased ATP production required by enhanced photorespiration was regulated by cyclic electron flow around photosystem I. These results indicate that photorespiration is the major electron sink for dissipation of excess excitation energy in the alpine evergreen sclerophyllous Rhododendron species. The coordination of gm, photorespiration and cyclic electron flow is important for sustaining leaf photosynthesis.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, PR China.
| | - Hong Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China.
| |
Collapse
|
100
|
Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 201:111659. [PMID: 31698219 DOI: 10.1016/j.jphotobiol.2019.111659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
Abstract
Stressors of different natures, including drought stress, substantially compromise the ability of plants to effectively and safely utilize light energy. We investigated the influence of water stress on the photosynthetic processes in Picea abies and Pinus sylvestris, two species with contrasting drought sensitivities. Spruce and pine seedlings were exposed to polyethylene glycol 6000-induced water deficits of different intensities and durations. The maintenance of photosystem I (PSI) oxidation in spruce required increased photosynthetic control and led to the increased reduction of the plastoquinone pool, which was not the case in pine seedlings. As a result of increased excitation pressure, photosystem II (PSII) inactivation was observed in spruce plants, whereas in pine, the decreased PSII photochemistry was likely due to sustained non-photochemical quenching. Downregulation of PSII photochemistry and maintenance of PSI in an oxidized state were linked with the prevention of oxidative stress, even under severe water deficit. The decreased photosynthetic pigment content and photosynthetic gene expression suggested the coordinated downregulation of photosynthetic apparatus components under water stress to reduce light energy absorption. In summary, the observed adaptative mechanisms of pine and spruce to water stress may be similar to the well-studied adaptative mechanisms to winter stress, which may indicate the universality of protective mechanisms under various stresses in conifers.
Collapse
|