51
|
Yin Y, Zhao Y, Chen Q, Chen Y, Mao L. Dual roles and potential applications of exosomes in HCV infections. Front Microbiol 2022; 13:1044832. [PMID: 36578571 PMCID: PMC9791051 DOI: 10.3389/fmicb.2022.1044832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
The hepatitis C virus (HCV) causes severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma, which have high morbidity and mortality. Antibody targeting receptor-mediated HCV infections have limited therapeutic benefits, suggesting that the transmission of HCV infections is possibly mediated via receptor-independent mechanisms. Exosomes are membrane-enclosed vesicles with a diameter of 30-200 nm, which originate from the fusion of endosomal multivesicular bodies with the plasma membrane. Accumulating evidence suggests that exosomes have a pivotal role in HCV infections. Exosomes can transfer viral and cellular bioactive substances, including nucleic acids and proteins, to uninfected cells, thus spreading the infection by masking these materials from immunological recognition. In addition, exosomes originating from some cells can deliver antiviral molecules or prompt the immune response to inhibit HCV infection. Exosomes can be used for the diagnosis of HCV-related diseases, and are being presently evaluated as therapeutic tools for anti-HCV drug delivery. This review summarizes the current knowledge on the dual roles and potential clinical applications of exosomes in HCV infections.
Collapse
|
52
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
53
|
Hainisch EK, Jindra C, Reicher P, Miglinci L, Brodesser DM, Brandt S. Bovine Papillomavirus Type 1 or 2 Virion-Infected Primary Fibroblasts Constitute a Near-Natural Equine Sarcoid Model. Viruses 2022; 14:v14122658. [PMID: 36560661 PMCID: PMC9781842 DOI: 10.3390/v14122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Equine sarcoids are common, locally aggressive skin tumors induced by bovine papillomavirus types 1, 2, and possibly 13 (BPV1, BPV2, BPV13). Current in vitro models do not mimic de novo infection. We established primary fibroblasts from horse skin and succeeded in infecting these cells with native BPV1 and BPV2 virions. Subsequent cell characterization was carried out by cell culture, immunological, and molecular biological techniques. Infection of fibroblasts with serial 10-fold virion dilutions (2 × 106-20 virions) uniformly led to DNA loads settling at around 150 copies/cell after four passages. Infected cells displayed typical features of equine sarcoid cells, including hyperproliferation, and loss of contact inhibition. Neither multiple passaging nor storage negatively affected cell hyperproliferation, viral DNA replication, and gene transcription, suggestive for infection-mediated cell immortalization. Intriguingly, extracellular vesicles released by BPV1-infected fibroblasts contained viral DNA that was most abundant in the fractions enriched for apoptotic bodies and exosomes. This viral DNA is likely taken up by non-infected fibroblasts. We conclude that equine primary fibroblasts stably infected with BPV1 and BPV2 virions constitute a valuable near-natural model for the study of yet unexplored mechanisms underlying the pathobiology of BPV1/2-induced sarcoids.
Collapse
Affiliation(s)
- Edmund K. Hainisch
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
- Division Molecular Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Paul Reicher
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lea Miglinci
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Daniela M. Brodesser
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine Brandt
- Research Group Oncology, Equine Surgery, Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria
- Correspondence: ; Tel.: +43-1-25077-5308
| |
Collapse
|
54
|
Costafreda MI, Sauleda S, Rico A, Piron M, Bes M. Detection of Nonenveloped Hepatitis E Virus in Plasma of Infected Blood Donors. J Infect Dis 2022; 226:1753-1760. [PMID: 34865052 DOI: 10.1093/infdis/jiab589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transfusion-transmitted hepatitis E virus (HEV) infections have raised many concerns regarding the safety of blood products. To date, enveloped HEV particles have been described in circulating blood, whereas nonenveloped HEV virions have only been found in feces; however, no exhaustive studies have been performed to fully characterize HEV particles in blood. METHODS Using isopycnic ultracentrifugation, we determined the types of HEV particles in plasma of HEV-infected blood donors. RESULTS Nonenveloped HEV was detected in 8 of 23 plasma samples, whereas enveloped HEV was found in all of them. No association was observed between the presence of nonenveloped HEV and viral load, gender, or age at infection. However, samples with HEV-positive serology and/or increased levels of liver injury markers contained a higher proportion of nonenveloped HEV than samples with HEV-negative serology and normal levels of liver enzymes. These results were further confirmed by analyzing paired donation and follow-up samples of 10 HEV-infected donors who were HEV seronegative at donation but had anti-HEV antibodies and/or increased levels of liver enzymes at follow up. CONCLUSIONS The HEV-contaminated blood products may contain nonenveloped HEV, which may pose an additional risk to blood safety by behaving differently to pathogen inactivation treatments or increasing infectivity.
Collapse
Affiliation(s)
- Maria Isabel Costafreda
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Silvia Sauleda
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Angie Rico
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain
| | - Maria Piron
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Marta Bes
- Catalan Blood Bank (Banc de Sang i Teixits de Catalunya), Transfusion Safety Laboratory, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain.,Vall d'Hebron Institute of Research, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| |
Collapse
|
55
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
56
|
Man F, Xing H, Wang H, Wang J, Lu R. Engineered small extracellular vesicles as a versatile platform to efficiently load ferulic acid via an “esterase-responsive active loading” strategy. Front Bioeng Biotechnol 2022; 10:1043130. [DOI: 10.3389/fbioe.2022.1043130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
As nano-drug carriers, small extracellular vesicles (sEVs) have shown unique advantages, but their drug loading and encapsulation efficiency are far from being satisfied, especially for the loading of hydrophilic small-molecule drugs. Inspired by the strategies of active loading of liposomal nanomedicines, pre-drug design and immobilization enzyme, here we developed a new platform, named “Esterase-responsive Active Loading” (EAL), for the efficient and stable drug encapsulation of sEVs. Widely used ferulic acid ester derivatives were chosen as prodrugs based on the EAL of engineered sEVs to establish a continuous transmembrane ion gradient for achieving efficient loading of active molecule ferulic acid into sEVs. The EAL showed that the drug loading and encapsulation efficiency were around 6-fold and 5-fold higher than passive loading, respectively. Moreover, characterization by nano-flow cytometry and Malvern particle size analyzer showed that differential ultracentrifugation combined with multiple types of membrane filtration methods can achieve large-scale and high-quality production of sEVs. Finally, extracellular and intracellular assessments further confirmed the superior performance of the EAL-prepared sEVs-loaded ferulic acid preparation in terms of slow release and low toxicity. Taken together, these findings will provide an instructive insight into the development of sEV-based delivery systems.
Collapse
|
57
|
Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022; 39:2635-2671. [PMID: 35028802 PMCID: PMC8757927 DOI: 10.1007/s11095-021-03143-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are cell-derived components composed of proteins, lipid, genetic information, cytokines, and growth factors. They play a vital role in immune modulation, cell-cell communication, and response to inflammation. Immune modulation has downstream effects on the regeneration of damaged tissue, promoting survival and repair of damaged resident cells, and promoting the tumor microenvironment via growth factors, antigens, and signaling molecules. On top of carrying biological messengers like mRNAs, miRNAs, fragmented DNA, disease antigens, and proteins, exosomes modulate internal cell environments that promote downstream cell signaling pathways to facilitate different disease progression and induce anti-tumoral effects. In this review, we have summarized how vaccines modulate our immune response in the context of cancer and infectious diseases and the potential of exosomes as vaccine delivery vehicles. Both pre-clinical and clinical studies show that exosomes play a decisive role in processes like angiogenesis, prognosis, tumor growth metastasis, stromal cell activation, intercellular communication, maintaining cellular and systematic homeostasis, and antigen-specific T- and B cell responses. This critical review summarizes the advancement of exosome based vaccine development and delivery, and this comprehensive review can be used as a valuable reference for the broader delivery science community.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, University of Texas at El Paso School of Pharmacy, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Enviromental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
58
|
Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Molecules 2022; 27:7289. [PMID: 36364116 PMCID: PMC9658823 DOI: 10.3390/molecules27217289] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising of functional proteins, metabolites and nucleic acids. Exosomes are the smallest extracellular vesicles (EV) with sizes ranging from 30-100 nm and are derived from endosomes. Exosomes have similar surface morphology to cells and act as a signal transduction channel between cells. They encompass different biomolecules, such as proteins, nucleic acids and lipids, thus rendering them naturally as an attractive drug delivery vehicle. Like the other advanced drug delivery systems, such as polymeric nanoparticles and liposomes to encapsulate drug substances, exosomes also gained much attention in enhancing therapeutic activity. Exosomes present many advantages, such as compatibility with living tissues, low toxicity, extended blood circulation, capability to pass contents from one cell to another, non-immunogenic and special targeting of various cells, making them an excellent therapeutic carrier. Exosome-based molecules for drug delivery are still in the early stages of research and clinical trials. The problems and clinical transition issues related to exosome-based drugs need to be overcome using advanced tools for better understanding and systemic evaluation of exosomes. In this current review, we summarize the most up-to-date knowledge about the complex biological journey of exosomes from biogenesis and secretion, isolation techniques, characterization, loading methods, pharmaceutical and therapeutic applications, challenges and future perspectives of exosomes.
Collapse
Affiliation(s)
| | | | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Erandwane, Pune 411038, Maharashtra, India
| |
Collapse
|
59
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
60
|
Characterization and Involvement of Exosomes Originating from Chikungunya Virus-Infected Epithelial Cells in the Transmission of Infectious Viral Elements. Int J Mol Sci 2022; 23:ijms232012117. [PMID: 36292974 PMCID: PMC9603488 DOI: 10.3390/ijms232012117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
The Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that affects the world's popula-tion with chikungunya disease. Adaptation of the viral life cycle to their host cells' environment is a key step for establishing their infection and pathogenesis. Recently, the accumulating evidence advocates a principal role of extracellular vesicles (EVs), including exosomes, in both the infection and pathogenesis of infectious diseases. However, the participation of exosomes in CHIKV infec-tion and transmission is not well clarified. Here, we demonstrated that the CHIKV RNA and pro-teins were captured in exosomes, which were released by viral-infected epithelial cells. A viral genomic element in the isolated exosomes was infectious to naïve mammalian epithelial cells. The assay of particle size distribution and transmission electron microscopy (TEM) revealed CHIKV-derived exosomes with a size range from 50 to 250 nm. Treatments with RNase A, Triton X-100, and immunoglobulin G antibodies from CHIKV-positive patient plasma indicated that in-fectious viral elements are encompassed inside the exosomes. Interestingly, our viral plaque for-mation also exhibited that infectious viral elements might be securely transmitted to neighboring cells by a secreted exosomal pathway. Taken together, our recent findings emphasize the evidence for a complementary means of CHIKV infection and suggest the role of exosome-mediated CHIKV transmission.
Collapse
|
61
|
Berry F, Morin‐Dewaele M, Majidipur A, Jamet T, Bartier S, Ignjatovic E, Toniutti D, Gaspar Lopes J, Soyeux‐Porte P, Maillé P, Saldana C, Brillet R, Ahnou N, Softic L, Couturaud B, Huet É, Ahmed‐Belkacem A, Fourati S, Louis B, Coste A, Béquignon É, de la Taille A, Destouches D, Vacherot F, Pawlotsky J, Firlej V, Bruscella P. Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. J Extracell Vesicles 2022; 11:e12269. [PMID: 36271885 PMCID: PMC9587708 DOI: 10.1002/jev2.12269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.
Collapse
Affiliation(s)
- François Berry
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Margot Morin‐Dewaele
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Amene Majidipur
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Thibaud Jamet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Sophie Bartier
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Eva Ignjatovic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Donatella Toniutti
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Jeanne Gaspar Lopes
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Soyeux‐Porte
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Maillé
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of PathologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Carolina Saldana
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of OncologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Rozenn Brillet
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Nazim Ahnou
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Laurent Softic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Benoit Couturaud
- Institute of Chemistry and Materials (ICMPE)Univ Paris Est Creteil, CNRS UMR7182CréteilFrance
| | - Éric Huet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Abdelhakim Ahmed‐Belkacem
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Slim Fourati
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - André Coste
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Émilie Béquignon
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Alexandre de la Taille
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of UrologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Damien Destouches
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Francis Vacherot
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Jean‐Michel Pawlotsky
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Virginie Firlej
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Patrice Bruscella
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| |
Collapse
|
62
|
Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol 2022; 28:706-724. [PMID: 35232008 PMCID: PMC9597227 DOI: 10.3350/cmh.2021.0390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles released from almost all cell types. EVs mediate intercellular communication by delivering their surface and luminal cargoes, including nucleic acids, proteins, and lipids, which reflect the pathophysiological conditions of their cellular origins. Hepatocytes and hepatic non-parenchymal cells utilize EVs to regulate a wide spectrum of biological events inside the liver and transfer them to distant organs through systemic circulation. The liver also receives EVs from multiple organs and integrates these extrahepatic signals that participate in pathophysiological processes. EVs have recently attracted growing attention for their crucial roles in maintaining and regulating hepatic homeostasis. This review summarizes the roles of EVs in intrahepatic and interorgan communications under different pathophysiological conditions of the liver, with a focus on chronic liver diseases including nonalcoholic steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, and hepatocellular carcinoma. This review also discusses recent progress for potential therapeutic applications of EVs by targeting or enhancing EV-mediated cellular communication for the treatment of liver diseases.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea,Corresponding author : Jong-Hoon Kim Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-3290-3007, Fax: +82-2-3290-3040, E-mail:
| |
Collapse
|
63
|
Presence of Intact Hepatitis B Virions in Exosomes. Cell Mol Gastroenterol Hepatol 2022; 15:237-259. [PMID: 36184032 PMCID: PMC9676402 DOI: 10.1016/j.jcmgh.2022.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 02/21/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.
Collapse
|
64
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
65
|
Chen Y, Wang T, Yang Y, Fang Y, Zhao B, Zeng W, Lv D, Zhang L, Zhang Y, Xue Q, Chen X, Wang J, Qi X. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog 2022; 18:e1010759. [PMID: 36084159 PMCID: PMC9491601 DOI: 10.1371/journal.ppat.1010759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV is lymphotropic in nature and SLAM was identified as the primary receptor for PPRV and other Morbilliviruses. Many viruses have been demonstrated to engage extracellular vesicles (EVs) to facilitate their replication and pathogenesis. Here, we provide evidence that PPRV infection significantly induced the secretion levels of EVs from goat PBMC, and that PPRV-H protein carried in EVs can enhance SLAM receptor expression in the recipient cells via suppressing miR-218, a negative miRNA directly targeting SLAM gene. Importantly, EVs-mediated increased SLAM expression enhances PPRV infectivity as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Moreover, our data reveal that PPRV associate EVs rapidly entry into the recipient cells mainly through macropinocytosis pathway and cooperated with caveolin- and clathrin-mediated endocytosis. Taken together, our findings identify a new strategy by PPRV to enhance virus infection and escape innate immunity by engaging EVs pathway. Peste des petitsruminants virus (PPRV) infection induces a transient but severe immunosuppression in the host, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research, the mechanism underlying pathogenesis of PPRV infection remains elusive. Our data provide the first direct evidence that the EVs derived from PPRV-infected cells are involved in PPRV replication. In this study, the EVs derived from PPRV-infected goat PBMCs can enhance SLAM expression in the recipient cells, and more importantly, EVs-mediated increased SLAM expression enhances PPRV replication as well as the expression of various cytokines related to SLAM signaling pathway in the recipient cells. Taken together, our research has provided new insight into understanding the effect of EVs on PPRV replication and pathogenesis, and revealed a potential therapeutic target for antiviral intervention.
Collapse
Affiliation(s)
- Yan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi’an, China
| | - Wei Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Leyan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (XQ)
| |
Collapse
|
66
|
Wu X, Xu X, Xiang Y, Fan D, An Q, Yue G, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res 2022; 27:163. [PMID: 36045437 PMCID: PMC9429695 DOI: 10.1186/s40001-022-00792-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Exosomes are membranous vesicles containing RNA and proteins that are specifically secreted in vivo. Exosomes have many functions, such as material transport and signal transduction between cells. Many studies have proven that exosomes can not only be used as biomarkers for disease diagnosis but also as carriers to transmit information between cells. Exosomes participate in a variety of physiological and pathological processes, including the immune response, antigen presentation, cell migration, cell differentiation, and tumour development. Differences in exosome functions depend on cell type. In recent years, exosome origin, cargo composition, and precise regulatory mechanisms have been the focus of research. Although exosomes have been extensively reported in digestive tumours, few articles have reviewed their roles in inflammatory diseases of the digestive system, especially inflammatory-related diseases (such as reflux oesophagitis, gastritis, inflammatory bowel disease, hepatitis, and pancreatitis). This paper briefly summarizes the roles of exosomes in inflammatory diseases of the digestive system to provide a basis for research on the mechanism of inflammatory diseases of the digestive system targeted by exosomes.
Collapse
Affiliation(s)
- Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qiming An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China. .,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China. .,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
67
|
Fordjour FK, Guo C, Ai Y, Daaboul GG, Gould SJ. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J Biol Chem 2022; 298:102394. [PMID: 35988652 PMCID: PMC9512851 DOI: 10.1016/j.jbc.2022.102394] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Exosomes are small extracellular vesicles of ∼30 to 150 nm that are secreted by all cells, abundant in all biofluids, and play important roles in health and disease. However, details about the mechanism of exosome biogenesis are unclear. Here, we carried out a cargo-based analysis of exosome cargo protein biogenesis in which we identified the most highly enriched exosomal cargo proteins and then followed their biogenesis, trafficking, and exosomal secretion to test different hypotheses for how cells make exosomes. We show that exosome cargo proteins bud from cells (i) in exosome-sized vesicles regardless of whether they are localized to plasma or endosome membranes, (ii) ∼5-fold more efficiently when localized to the plasma membrane, (iii) ∼5-fold less efficiently when targeted to the endosome membrane, (iv) by a stochastic process that leads to ∼100-fold differences in their abundance from one exosome to another, and (v) independently of small GTPase Rab27a, the ESCRT complex–associated protein Alix, or the cargo protein CD63. Taken together, our results demonstrate that cells use a shared, stochastic mechanism to bud exosome cargoes along the spectrum of plasma and endosome membranes and far more efficiently from the plasma membrane than the endosome. Our observations also indicate that the pronounced variation in content between different exosome-sized vesicles is an inevitable consequence of a stochastic mechanism of small vesicle biogenesis, that the origin membrane of exosome-sized extracellular vesicles simply cannot be determined, and that most of what we currently know about exosomes has likely come from studies of plasma membrane-derived vesicles.
Collapse
Affiliation(s)
- Francis K Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | | | - Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
68
|
Sun X, Zhang S. Exosomes from WSSV-infected shrimp contain viral components that mediate virus infection. J Gen Virol 2022; 103. [PMID: 36018853 DOI: 10.1099/jgv.0.001776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes have been described as vesicles that mediate intercellular communication and thus affect normal and pathological processes. Furthermore, many viruses have been reported to deliver viral components to host cells through exosomes. However, the roles of exosomes in invertebrates response to virus infection are poorly understood. In this study, we found that exosomes purified from white spot syndrome virus (WSSV)-infected hemocytes of shrimp could promote viral replication. These exosomes contained WSSV genomic DNA and nucleocapsid protein VP15, suggesting that exosomes can transfer viral genetic materials between cells, although the exosomes did not have similar infection ability to viruses. Remarkably, in exosomes WSSV DNA was bound to VP15 protein, and moreover VP15 silencing significantly suppressed WSSV infection and reduced the WSSV genome fragments in exosomes, indicating that the presence of VP15 is required for the packing of WSSV DNA inside the exosomes and thereby assists virus to complete immune escape. The above results not only contribute to elucidation of the infection and transmission mechanisms of WSSV, but are also of great significance for further study of virus-host interaction and reasonable prevention measures. Taken together, our findings provide a novel insight into the regulation of virus transmission via exosomes and highlight potential therapeutic strategies.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
69
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
70
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
71
|
Gallard C, Lebsir N, Khursheed H, Reungoat E, Plissonnier ML, Bré J, Michelet M, Chouik Y, Zoulim F, Pécheur EI, Bartosch B, Grigorov B. Heparanase-1 is upregulated by hepatitis C virus and favors its replication. J Hepatol 2022; 77:29-41. [PMID: 35085593 DOI: 10.1016/j.jhep.2022.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Over time, chronic HCV infection can lead to hepatocellular carcinoma (HCC), a process that involves changes to the liver extracellular matrix (ECM). However, the exact mechanisms by which HCV induces HCC remain unclear. Therefore, we sought to investigate the impact of HCV on the liver ECM, with a focus on heparanase-1 (HPSE). METHODS HPSE expression was assessed by quantitative reverse-transcription PCR, immunoblotting and immunofluorescence in liver biopsies infected or not with HCV, and in 10-day-infected hepatoma Huh7.5 cells. Cell lines deficient for or overexpressing HPSE were established to study its role during infection. RESULTS HCV propagation led to significant HPSE induction, in vivo and in vitro. HPSE enhanced infection when exogenously expressed or supplemented as a recombinant protein. Conversely, when HPSE expression was downregulated or its activity blocked, HCV infection dropped, suggesting a role of HPSE in the HCV life cycle. We further studied the underlying mechanisms of such observations and found that HPSE favored HCV release by enhancing CD63 synthesis and exosome secretion, but not by stimulating HCV entry or genome replication. We also showed that virus-induced oxidative stress was involved in HPSE induction, most likely through NF-κB activation. CONCLUSIONS We report for the first time that HCV infection is favored by HPSE, and upregulates HPSE expression and secretion, which may result in pathogenic alterations of the ECM. LAY SUMMARY Chronic hepatitis C virus (HCV) infection can lead to hepatocellular carcinoma development in a process that involves derangement of the extracellular matrix (ECM). Herein, we show that heparanase-1, a protein involved in ECM degradation and remodeling, favors HCV infection and is upregulated by HCV infection; this upregulation may result in pathogenic alterations of the ECM.
Collapse
Affiliation(s)
- Christophe Gallard
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Nadjet Lebsir
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Hira Khursheed
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Emma Reungoat
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Marie-Laure Plissonnier
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Jennifer Bré
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Maud Michelet
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Yasmina Chouik
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France; Hospices Civils de Lyon, Lyon, France
| | - Fabien Zoulim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France; Hospices Civils de Lyon, Lyon, France
| | - Eve-Isabelle Pécheur
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France.
| | - Birke Bartosch
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Boyan Grigorov
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France.
| |
Collapse
|
72
|
Zhou GF, Chen CX, Cai QC, Yan X, Peng NN, Li XC, Cui JH, Han YF, Zhang Q, Meng JH, Tang HM, Cai CH, Long J, Luo KJ. Bracovirus Sneaks Into Apoptotic Bodies Transmitting Immunosuppressive Signaling Driven by Integration-Mediated eIF5A Hypusination. Front Immunol 2022; 13:901593. [PMID: 35664011 PMCID: PMC9156803 DOI: 10.3389/fimmu.2022.901593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral–host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.
Collapse
Affiliation(s)
- Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ji-Hui Cui
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chen-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
73
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
74
|
Zhou Q, Ma K, Hu H, Xing X, Huang X, Gao H. Extracellular vesicles: Their functions in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2022; 23:760-771. [PMID: 34873812 PMCID: PMC9104264 DOI: 10.1111/mpp.13170] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are rounded vesicles enclosed by a lipid bilayer membrane, released by eukaryotic cells and by bacteria. They carry various types of bioactive substances, including nucleic acids, proteins, and lipids. Depending on their cargo, EVs have a variety of well-studied functions in mammalian systems, including cell-to-cell communication, cancer progression, and pathogenesis. In contrast, EVs in plant cells (which have rigid walls) have received very little research attention for many decades. Increasing evidence during the past decade indicates that both plant cells and plant pathogens are able to produce and secrete EVs, and that such EVs play key roles in plant-pathogen interactions. Plant EVs contains small RNAs (sRNAs) and defence-related proteins, and may be taken up by pathogenic fungi, resulting in reduced virulence. On the other hand, EVs released by gram-negative bacteria contain a wide variety of effectors and small molecules capable of activating plant immune responses via pattern-recognition receptor- and BRI1-ASSOCIATED RECEPTOR KINASE- and SUPPRESSOR OF BIR1-mediated signalling pathways, and salicylic acid-dependent and -independent processes. The roles of EVs in plant-pathogen interactions are summarized in this review, with emphasis on important molecules (sRNAs, proteins) present in plant EVs.
Collapse
Affiliation(s)
- Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| | - Huanhuan Hu
- School of Life Sciences and TechnologiesSanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Xiaolong Xing
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education)Provincial Key Laboratory of BiotechnologyCollege of Life SciencesNorthwest UniversityXi'anChina
| | - Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuChina
| |
Collapse
|
75
|
Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94:110325. [PMID: 35367363 PMCID: PMC8968181 DOI: 10.1016/j.cellsig.2022.110325] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.
Collapse
|
76
|
Wang X, Zhao X, Zhong Y, Shen J, An W. Biomimetic Exosomes: A New Generation of Drug Delivery System. Front Bioeng Biotechnol 2022; 10:865682. [PMID: 35677298 PMCID: PMC9168598 DOI: 10.3389/fbioe.2022.865682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Most of the naked drugs, including small molecules, inorganic agents, and biomacromolecule agents, cannot be used directly for disease treatment because of their poor stability and undesirable pharmacokinetic behavior. Their shortcomings might seriously affect the exertion of their therapeutic effects. Recently, a variety of exogenous and endogenous nanomaterials have been developed as carriers for drug delivery. Among them, exosomes have attracted great attention due to their excellent biocompatibility, low immunogenicity, low toxicity, and ability to overcome biological barriers. However, exosomes used as drug delivery carriers have significant challenges, such as low yields, complex contents, and poor homogeneity, which limit their application. Engineered exosomes or biomimetic exosomes have been fabricated through a variety of approaches to tackle these drawbacks. We summarized recent advances in biomimetic exosomes over the past decades and addressed the opportunities and challenges of the next-generation drug delivery system.
Collapse
|
77
|
Sun P, Wang C, Mang G, Xu X, Fu S, Chen J, Wang X, Wang W, Li H, Zhao P, Li Y, Chen Q, Wang N, Tong Z, Fu X, Lang Y, Duan S, Liu D, Zhang M, Tian J. Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction. Clin Transl Med 2022; 12:e779. [PMID: 35452193 PMCID: PMC9028097 DOI: 10.1002/ctm2.779] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mounting evidence suggests that extracellular vesicles (EVs) are effective communicators in biological signalling in cardiac physiology and pathology. However, the role of EVs in cardiac injury, particularly in ischemic myocardial scenarios, has not been fully elucidated. Here, we report that acute myocardial infarction (AMI)‐induced EVs can impair cardiomyocyte survival and exacerbate cardiac injury. EV‐encapsulated miR‐503, which is enriched during the early phase of AMI, is a critical molecule that mediates myocardial injury. Functional studies revealed that miR‐503 promoted cardiomyocyte death by directly binding to peroxisome proliferator‐activated receptor gamma coactivator‐1β (PGC‐1β) and a mitochondrial deacetylase, sirtuin 3 (SIRT3), thereby triggering mitochondrial metabolic dysfunction and cardiomyocyte death. Mechanistically, we identified endothelial cells as the primary source of miR‐503 in EVs after AMI. Hypoxia induced rapid H3K4 methylation of the promoter of the methyltransferase‐like 3 gene (METTL3) and resulted in its overexpression. METTL3 overexpression evokes N6‐methyladenosine (m6A)‐dependent miR‐503 biogenesis in endothelial cells. In summary, this study highlights a novel endogenous mechanism wherein EVs aggravate myocardial injury during the onset of AMI via endothelial cell‐secreted miR‐503 shuttling.
Collapse
Affiliation(s)
- Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ge Mang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin city, Harbin, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jianfeng Chen
- Laboratory Animal Center, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqi Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiwei Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hairu Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qi Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Naixin Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhonghua Tong
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Lang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shasha Duan
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dongmei Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
78
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
79
|
Ghanam J, Chetty VK, Barthel L, Reinhardt D, Hoyer PF, Thakur BK. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022; 12:37. [PMID: 35346363 PMCID: PMC8961894 DOI: 10.1186/s13578-022-00771-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution. Protecting DNA in membrane vesicles seems to be a conserved phenomenon for the horizontal genetic flux between prokaryotes and lower eukaryotes. Capturing and analyzing this vesicular DNA enables quick and non-invasive monitoring of natural ecosystems. Cancer-derived extracellular vesicles containing DNA open up novel directions in cell-to-cell communication and therefore disease monitoring. Complex and fluctuating conditions of the tumor microenvironment, mimicking natural ecosystems, could favor EV-DNA release, mediating tumor multi-clonal evolution and providing survival benefits.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Venkatesh Kumar Chetty
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Peter-Friedrich Hoyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
80
|
PPRV-Induced Autophagy Facilitates Infectious Virus Transmission by the Exosomal Pathway. J Virol 2022; 96:e0024422. [PMID: 35319226 DOI: 10.1128/jvi.00244-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.
Collapse
|
81
|
Tan LY, Komarasamy TV, James W, Balasubramaniam VRMT. Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Front Microbiol 2022; 13:743147. [PMID: 35308394 PMCID: PMC8931420 DOI: 10.3389/fmicb.2022.743147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood–brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.
Collapse
Affiliation(s)
- Li Yin Tan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Vinod R. M. T. Balasubramaniam,
| |
Collapse
|
82
|
Jiang J, Mei J, Ma Y, Jiang S, Zhang J, Yi S, Feng C, Liu Y, Liu Y. Tumor hijacks macrophages and microbiota through extracellular vesicles. EXPLORATION (BEIJING, CHINA) 2022; 2:20210144. [PMID: 37324578 PMCID: PMC10190998 DOI: 10.1002/exp.20210144] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 06/17/2023]
Abstract
The tumor microenvironment (TME) is a biological system with sophisticated constituents. In addition to tumor cells, tumor-associated macrophages (TAMs) and microbiota are also dominant components. The phenotypic and functional changes of TAMs are widely considered to be related to most tumor progressions. The chronic colonization of pathogenic microbes and opportunistic pathogens accounts for the generation and development of tumors. As messengers of cell-to-cell communication, tumor-derived extracellular vesicles (TDEVs) can transfer various malignant factors, regulating physiological and pathological changes in the recipients and affecting TAMs and microbes in the TME. Despite the new insights into tumorigenesis and progress brought by the above factors, the crosstalk among tumor cells, macrophages, and microbiota remain elusive, and few studies have focused on how TDEVs act as an intermediary. We reviewed how tumor cells recruit and domesticate macrophages and microbes through extracellular vehicles and how hijacked macrophages and microbiota interact with tumor-promoting feedback, achieving a reciprocal coexistence under the TME and working together to facilitate tumor progression. It is significant to seek evidence to clarify those specific interactions and reveal therapeutic targets to curb tumor progression and improve prognosis.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- University of Chinese Academy of Science Beijing P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shasha Jiang
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Jian Zhang
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Shaoqiong Yi
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Changjiang Feng
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Yang Liu
- Postgraduate School Medical School of Chinese PLA Beijing P. R. China
- Department of Thoracic Surgery The First Medical Center of Chinese PLA General Hospital Beijing P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing P. R. China
- GBA National Institute for Nanotechnology Innovation Guangdong P. R. China
| |
Collapse
|
83
|
Quadri Z, Elsherbini A, Bieberich E. Extracellular vesicles in pharmacology: Novel approaches in diagnostics and therapy. Pharmacol Res 2022; 175:105980. [PMID: 34863822 PMCID: PMC8760625 DOI: 10.1016/j.phrs.2021.105980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Exosomes are nano-sized lipid vesicles that are produced by all eukaryotic cells, and they typically range in size from 30 to 150 nm. Exosomes were discovered almost 40 years ago; however, the last two decades have attracted considerable attention due to exosomes' inherent abilities to shuttle nucleic acids, lipids and proteins between cells, along with their natural affinity to exosome target cells. From a pharmaceutical perspective, exosomes are regarded as naturally produced nanoparticle drug delivery vehicles. The application of exosomes as a means of drug delivery offers critical advantages compared to other nanoparticulate drug delivery systems, such as liposomes and polymeric nanoparticles. These advantages are due to the exosomes' intrinsic features, such as low immunogenicity, biocompatibility, stability, and their ability to overcome biological barriers. Herein, we outline the structure and origin of exosomes, as well as their biological functions. We also touch upon recent advances in exosome labeling, imaging and drug loading. Finally, we discuss exosomes in targeted drug delivery and clinical trial development.
Collapse
Affiliation(s)
- Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Ahmed Elsherbini
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States.
| |
Collapse
|
84
|
Muhuri M, Gao G. Membranous Bubbles: High-Purity and High-Titer Exosomes as the Potential Solution for Adeno-Associated Viruses to Evade Neutralization? Hum Gene Ther 2021; 32:1427-1429. [PMID: 34935455 DOI: 10.1089/hum.2021.29189.mmu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program, and
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
85
|
Zhou H, Yan ZH, Yuan Y, Xing C, Jiang N. The Role of Exosomes in Viral Hepatitis and Its Associated Liver Diseases. Front Med (Lausanne) 2021; 8:782485. [PMID: 34881274 PMCID: PMC8645545 DOI: 10.3389/fmed.2021.782485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes, the important carriers between cells, can carry proteins, micro ribonucleic acids (miRNAs), long non-coding RNAs (lncRNAs) and other molecules to mediate cellular information transduction. They also play an important role in the pathogenesis, prognosis and treatment of viral hepatitis and its associated liver diseases. Several studies have reported that viral hepatitis and its associated liver diseases, including hepatitis A, B, C and E; hepatic fibrosis and hepatocellular carcinoma, were closely associated with exosomes. Exploring the role of exosomes in viral hepatitis and associated liver diseases will enhance our understanding of these diseases. Therefore, this review mainly summarised the role of exosomes in viral hepatitis and its associated liver diseases to identify new strategies for liver diseases in clinical practise.
Collapse
Affiliation(s)
- Hao Zhou
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Han Yan
- Department of Hepatology, Wuxi Fifth People's Hospital, Wuxi, China
| | - Yuan Yuan
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xing
- Department of Oncology, The Second People's Hospital of Yancheng City, Yancheng, China
| | - Nan Jiang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, China
| |
Collapse
|
86
|
Liao L, Wu Z, Chen W, Zhang H, Li A, Yan Y, Xie Z, Li H, Lin W, Ma J, Zhang X, Xie Q. Anti-CD81 antibody blocks vertical transmission of avian leukosis virus subgroup J. Vet Microbiol 2021; 264:109293. [PMID: 34883334 DOI: 10.1016/j.vetmic.2021.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
Control of ALV-J in breed of chicken is still a serious issue that need more attention to be paid. Vertical transmission of ALV-J often give rise to more adverse pathogenicity. However, the way to elimination of ALV-J underlying vertical transmission remains not-well understood. In addition, effective vaccines or drugs have not been developed to prevent and control the transmission of ALV-J so far. CD81, a member of the tetraspanins superfamily, plays important roles in regulating membrane proteins, facilitating cells adhesion or fusion, and also participates in viral infection. The purpose of this study was to investigate whether antibodies against certain tetraspanins affect infection of ALV-J. Here, we showed that anti-CD81 antibody could inhibit viral RNA and protein level. We also found that anti-CD81 antibody interacts with viral protein p27, p32 and gp37. Moreover, treatment with antibody to CD81 can effectively prevent the vertical transmission of ALV-J in animal model. Collectively, current study provides new avenues for the control of ALV-J transmission.
Collapse
Affiliation(s)
- Liqin Liao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Zhiqiang Wu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, PR China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Zi Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China.
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China.
| |
Collapse
|
87
|
Hancock TJ, Hetzel ML, Ramirez A, Sparer TE. MCMV Centrifugal Enhancement: A New Spin on an Old Topic. Pathogens 2021; 10:1577. [PMID: 34959531 PMCID: PMC8705575 DOI: 10.3390/pathogens10121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen infecting a majority of people worldwide, with diseases ranging from mild to life-threatening. Its clinical relevance in immunocompromised people and congenital infections have made treatment and vaccine development a top priority. Because of cytomegaloviruses' species specificity, murine cytomegalovirus (MCMV) models have historically informed and advanced translational CMV therapies. Using the phenomenon of centrifugal enhancement, we explored differences between MCMVs derived in vitro and in vivo. We found centrifugal enhancement on tissue culture-derived virus (TCV) was ~3× greater compared with salivary gland derived virus (SGV). Using novel "flow virometry", we found that TCV contained a distinct submicron particle composition compared to SGV. Using an inhibitor of exosome production, we show these submicron particles are not extracellular vesicles that contribute to centrifugal enhancement. We examined how these differences in submicron particles potentially contribute to differing centrifugal enhancement phenotypes, as well as broader in vivo vs. in vitro MCMV differences.
Collapse
Affiliation(s)
| | | | | | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; (T.J.H.); (M.L.H.); (A.R.)
| |
Collapse
|
88
|
Yang L, Li J, Li S, Dang W, Xin S, Long S, Zhang W, Cao P, Lu J. Extracellular Vesicles Regulated by Viruses and Antiviral Strategies. Front Cell Dev Biol 2021; 9:722020. [PMID: 34746122 PMCID: PMC8566986 DOI: 10.3389/fcell.2021.722020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles, mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs are increasingly recognized as a tool to mediate the intercellular communication and are closely related to human health. Viral infection is associated with various diseases, including respiratory diseases, neurological diseases, and cancers. Accumulating studies have shown that viruses could modulate their infection ability and pathogenicity through regulating the component and function of EVs. Non-coding RNA (ncRNA) molecules are often targets of viruses and also serve as the main functional cargo of virus-related EVs, which have an important role in the epigenetic regulation of target cells. In this review, we summarize the research progress of EVs under the regulation of viruses, highlighting the content alteration and function of virus-regulated EVs, emphasizing their isolation methods in the context of virus infection, and potential antiviral strategies based on their use. This review would promote the understanding of the viral pathogenesis and the development of antiviral research.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
89
|
Viral Membrane Fusion Proteins and RNA Sorting Mechanisms for the Molecular Delivery by Exosomes. Cells 2021; 10:cells10113043. [PMID: 34831268 PMCID: PMC8622164 DOI: 10.3390/cells10113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Collapse
|
90
|
Hakim MS. SARS-CoV-2, Covid-19, and the debunking of conspiracy theories. Rev Med Virol 2021; 31:e2222. [PMID: 33586302 PMCID: PMC7995093 DOI: 10.1002/rmv.2222] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
The emergence of a novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has engaged considerable awareness and attention around the world. The associated disease, coronavirus disease 2019 (Covid-19), has now involved virtually all 200 countries. The total number of confirmed cases has been much more than in the two previous outbreaks of human coronaviruses, that is, SARS-CoV and Middle East respiratory syndrome coronavirus. In line with the outbreak escalation, false information about SARS-CoV-2 and its associated disease disseminated globally, particularly through online and social media. Believers in conspiracy theories promote misinformation that the virus is not contagious, is the result of laboratory manipulation or is created to gain profit by distributing new vaccines. The most dangerous effect of this widely disseminated misinformation is it will negatively influence the attitudes and behaviours for preventive measures to contain the outbreak. In this review, I discuss common conspiracy theories associated with SARS-CoV-2 and Covid-19 and consider how we can address and counterbalance these issues based on scientific information and studies.
Collapse
Affiliation(s)
- Mohamad S. Hakim
- Department of MicrobiologyFaculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
- Center for Child Health—PROFaculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
91
|
Su Q, Zhang Y, Cui Z, Chang S, Zhao P. Semen-Derived Exosomes Mediate Immune Escape and Transmission of Reticuloendotheliosis Virus. Front Immunol 2021; 12:735280. [PMID: 34659223 PMCID: PMC8517439 DOI: 10.3389/fimmu.2021.735280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Reticuloendotheliosis virus (REV) causes immune-suppression disease in poultry, leading to a significant economic burden worldwide. Recent evidence demonstrated that the REV can enter the semen and then induce artificial insemination, but how the virus gets into semen was little known. Accumulating studies indicated that exosomes serve as vehicles for virus transmission, but the role of exosomes in viral shedding through the semen remains unclear. In this study, exosomes purified from the REV-positive semen were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and viral proteins, which could also establish productive infections both in vivo and in vitro and escape from the REV-specific neutralizing antibodies. More importantly, compared with the infection caused by free virions, the exosome is more efficient for the virus to ensure effective infection and replication, which can also help the REV compromise the efficacy of the host immune response. In summary, this study demonstrated that semen-derived exosomes can medicate the transmission and immune escape of REV, implicating a novel mechanism for REV entering the semen and leading to vertical transmission.
Collapse
Affiliation(s)
- Qi Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an City, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an City, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an City, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an City, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an City, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an City, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an City, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an City, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an City, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an City, China
| |
Collapse
|
92
|
Liu B, Li Z, Huang S, Yan B, He S, Chen F, Liang Y. AAV-Containing Exosomes as a Novel Vector for Improved Gene Delivery to Lung Cancer Cells. Front Cell Dev Biol 2021; 9:707607. [PMID: 34485293 PMCID: PMC8414974 DOI: 10.3389/fcell.2021.707607] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023] Open
Abstract
Lung carcinoma is the most common type of cancer and the leading cause of cancer-related death worldwide. Among the numerous therapeutic strategies for the treatment of lung cancer, adeno-associated virus (AAV)-mediated gene transfer has been demonstrated to have the potential to effectively suppress tumor growth or reverse the progression of the disease in a number of preclinical studies. AAV vector has a safety profile; however, the relatively low delivery efficacy to particular subtypes of lung carcinoma has limited its prospective clinical translation. Exosomes are nanosized extracellular vesicles secreted from nearly all known cell types. Exosomes have a membrane-enclosed structure carrying a range of cargo molecules for efficient intercellular transfer of functional entities, thus are considered as a superior vector for drug delivery. In the present study, we developed a novel strategy to produce and purify AAV-containing exosomes (AAVExo) from AAV-packaging HEK 293T cells. The cellular uptake capacity of exosomes assisted and enhanced AAV entry into cells and protected AAV from antibody neutralization, which was a serious challenge for AAV in vivo application. We tested a list of lung cancer cell lines representing non-small-cell lung cancer and small-cell lung cancer and found that AAVExo apparently improved the gene transfer efficiency compared to conventional AAV vector. Our in vitro results were supported in vivo in a lung cancer xenograft rodent model. Additionally, we evaluated the gene delivery efficiency in the presence of neutralizing antibody on lung cancer cells. The results demonstrated that AAVExo-mediated gene transfer was not impacted, while the AAV vectors were significantly blocked by the neutralizing antibody. Taken together, we established an efficient methodology for AAVExo purification, and the purified AAVExo largely enhanced gene delivery to lung cancer cells with remarkable resistance to antibody neutralization.
Collapse
Affiliation(s)
- Bin Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China.,Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhiqing Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Biying Yan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Shan He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fengyuan Chen
- Department of Pathology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| |
Collapse
|
93
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
94
|
A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics 2021; 13:pharmaceutics13091405. [PMID: 34575480 PMCID: PMC8466084 DOI: 10.3390/pharmaceutics13091405] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) subtype, exosome is an extracellular nano-vesicle that sheds from cells’ surface and originates as intraluminal vesicles during endocytosis. Firstly, it was thought to be a way for the cell to get rid of unwanted materials as it loaded selectively with a variety of cellular molecules, including RNAs, proteins, and lipids. However, it has been found to play a crucial role in several biological processes such as immune modulation, cellular communication, and their role as vehicles to transport biologically active molecules. The latest discoveries have revealed that many viruses export their viral elements within cellular factors using exosomes. Hijacking the exosomal pathway by viruses influences downstream processes such as viral propagation and cellular immunity and modulates the cellular microenvironment. In this manuscript, we reviewed exosomes biogenesis and their role in the immune response to viral infection. In addition, we provided a summary of how some pathogenic viruses hijacked this normal physiological process. Viral components are harbored in exosomes and the role of these exosomes in viral infection is discussed. Understanding the nature of exosomes and their role in viral infections is fundamental for future development for them to be used as a vaccine or as a non-classical therapeutic strategy to control several viral infections.
Collapse
|
95
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
96
|
Mosquera-Heredia MI, Morales LC, Vidal OM, Barceló E, Silvera-Redondo C, Vélez JI, Garavito-Galofre P. Exosomes: Potential Disease Biomarkers and New Therapeutic Targets. Biomedicines 2021; 9:1061. [PMID: 34440265 PMCID: PMC8393483 DOI: 10.3390/biomedicines9081061] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are extracellular vesicles released by cells, both constitutively and after cell activation, and are present in different types of biological fluid. Exosomes are involved in the pathogenesis of diseases, such as cancer, neurodegenerative diseases, pregnancy disorders and cardiovascular diseases, and have emerged as potential non-invasive biomarkers for the detection, prognosis and therapeutics of a myriad of diseases. In this review, we describe recent advances related to the regulatory mechanisms of exosome biogenesis, release and molecular composition, as well as their role in health and disease, and their potential use as disease biomarkers and therapeutic targets. In addition, the advantages and disadvantages of their main isolation methods, characterization and cargo analysis, as well as the experimental methods used for exosome-mediated drug delivery, are discussed. Finally, we present potential perspectives for the use of exosomes in future clinical practice.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (L.C.M.); (O.M.V.); (C.S.-R.)
| |
Collapse
|
97
|
Zhang X, Zhang Y, Pan J, Zhu M, Liang Z, Shen Z, Dai K, Yan B, Dai Y, Xue R, Cao G, Hu X, Gong C. Proteomic analysis of the exosomes secreted from Ctenopharyngodon idellus kidney cells infected with grass carp reovirus reveals their involvement in the cellular responses to viral infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:857-867. [PMID: 33745109 DOI: 10.1007/s10695-021-00939-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exosomes are small membrane-enclosed vesicles secreted by various types of cells. Exosomes not only participate in different physiological processes in cells, but also involve in the cellular responses to viral infection. Grass carp reovirus (GCRV) is a non-enveloped virus with segmented, double-stranded RNA genome. Nowadays, the exact role of exosomes in regulating the life cycle of GCRV infection is still unclear. In this study, the exosomes secreted from Ctenopharyngodon idellus kidney (CIK) cells infected or uninfected with GCRV were isolated, and the differential protein expression profiles were analyzed by proteomic technologies. A total of 1297 proteins were identified in the isolated exosomes. The differentially abundant proteins were further analyzed with functional categories, and numerous important pathways were regulated by exosomes in GCRV-infected CIK cells. These exosomal proteins were estimated to interact with the genes (proteins) of the top 10 most enriched signaling pathways. Furthermore, GW4869 exosome inhibitor suppressed the expression level of VP7 in GCRV-infected cells, suggesting that exosomes play a crucial role in the life cycle of GCRV infection. These findings could shed new lights on understanding the functional roles of exosomes in the cellular responses to GCRV infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Bingyu Yan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yaping Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China.
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China.
- Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
98
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
99
|
Yu T, Yang Q, Tian F, Chang H, Hu Z, Yu B, Han L, Xing Y, Jiu Y, He Y, Zhong J. Glycometabolism regulates hepatitis C virus release. PLoS Pathog 2021; 17:e1009746. [PMID: 34297778 PMCID: PMC8301660 DOI: 10.1371/journal.ppat.1009746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
HCV cell-culture system uses hepatoma-derived cell lines for efficient virus propagation. Tumor cells cultured in glucose undergo active aerobic glycolysis, but switch to oxidative phosphorylation for energy production when cultured in galactose. Here, we investigated whether modulation of glycolysis in hepatocytes affects HCV infection. We showed HCV release, but not entry, genome replication or virion assembly, is significantly blocked when cells are cultured in galactose, leading to accumulation of intracellular infectious virions within multivesicular body (MVB). Blockade of the MVB-lysosome fusion or treatment with pro-inflammatory cytokines promotes HCV release in galactose. Furthermore, we found this glycometabolic regulation of HCV release is mediated by MAPK-p38 phosphorylation. Finally, we showed HCV cell-to-cell transmission is not affected by glycometabolism, suggesting that HCV cell-to-supernatant release and cell-to-cell transmission are two mechanistically distinct pathways. In summary, we demonstrated glycometabolism regulates the efficiency and route of HCV release. We proposed HCV may exploit the metabolic state in hepatocytes to favor its spread through the cell-to-cell transmission in vivo to evade immune response. Hepatitis C virus (HCV) is a positive-stranded RNA virus that causes acute and chronic hepatitis and hepatocellular carcinoma. HCV infectious cycle comprises viral entry, uncoating, translation and replication of viral RNA, assembly into new virions and release. Establishment of HCV cell culture system (HCVcc) has yielded many insights into complete HCV infectious cycle in Huh7 cell and Huh7-derived human hepatoma cell lines. However, because hepatoma-derived cell lines and hepatocytes vary in metabolism, HCV infectious cycle in tumor cell lines and the patient’s liver may also be different. Therefore, we explored the alterations of HCV infectious cycle by forcing the tumor cell lines to switch their glycometabolic pathways. We found that HCV release can be blocked by culturing cells in galactose-containing medium, leading to accumulation of intracellular infectious virions within MVB. Moreover, we provided new evidence to suggest that HCV cell-to-cell transmission may be mechanistically distinct from cell-to-supernatant release. Finally, we proposed a new concept that HCV release from hepatocytes into circulation may be naturally inefficient due to the metabolic state in liver that may favor more HCV cell-to-cell transmission. This strategy would allow HCV to effectively evade neutralizing antibodies to establish persistent infection.
Collapse
Affiliation(s)
- Tao Yu
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Yang
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangling Tian
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Zhenzheng Hu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Bowen Yu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
| | - Lin Han
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
| | - Yifan Xing
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Cell Biology and Imaging Study of Pathogen Host Interaction Unit, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
- Cell Biology and Imaging Study of Pathogen Host Interaction Unit, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Yongning He
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jin Zhong
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
100
|
Kerviel A, Zhang M, Altan-Bonnet N. A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations. Annu Rev Cell Dev Biol 2021; 37:171-197. [PMID: 34270326 DOI: 10.1146/annurev-cellbio-040621-032416] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mengyang Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|