51
|
Murray CH, Frohlich J, Haggarty CJ, Tare I, Lee R, de Wit H. Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine. Neuropsychopharmacology 2024; 49:1120-1128. [PMID: 38287172 PMCID: PMC11109226 DOI: 10.1038/s41386-024-01809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of Los Angeles, California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076, Tübingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, California; 2811 Wilshire Blvd # 510, Santa Monica, CA, 90403, USA
| | - Connor J Haggarty
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
52
|
Vohryzek J, Luppi AI, Atasoy S, Deco G, Carhart-Harris RL, Timmermann C, Kringelbach ML. Time-resolved coupling between connectome harmonics and subjective experience under the psychedelic DMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596410. [PMID: 38853985 PMCID: PMC11160714 DOI: 10.1101/2024.05.30.596410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
- Division of Information Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Robin L. Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
53
|
Rogers SA, Heller EA, Corder G. Psilocybin-enhanced fear extinction linked to bidirectional modulation of cortical ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578811. [PMID: 38352491 PMCID: PMC10862786 DOI: 10.1101/2024.02.04.578811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The serotonin 2 receptor (5HT2R) agonist psilocybin displays rapid and persistent therapeutic efficacy across neuropsychiatric disorders characterized by cognitive inflexibility. However, the impact of psilocybin on patterns of neural activity underlying sustained changes in behavioral flexibility has not been characterized. To test the hypothesis that psilocybin enhances behavioral flexibility by altering activity in cortical neural ensembles, we performed longitudinal single-cell calcium imaging in the retrosplenial cortex across a five-day trace fear learning and extinction assay. A single dose of psilocybin induced ensemble turnover between fear learning and extinction days while oppositely modulating activity in fear- and extinction- active neurons. The acute suppression of fear-active neurons and delayed recruitment of extinction-active neurons were predictive of psilocybin-enhanced fear extinction. A computational model revealed that acute inhibition of fear-active neurons by psilocybin is sufficient to explain its neural and behavioral effects days later. These results align with our hypothesis and introduce a new mechanism involving the suppression of fear-active populations in the retrosplenial cortex.
Collapse
Affiliation(s)
- Sophie A. Rogers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A. Heller
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
54
|
Yu Z, Burback L, Winkler O, Xu L, Dennett L, Vermetten E, Greenshaw A, Li XM, Milne M, Wang F, Cao B, Winship IR, Zhang Y, Chan AW. Alterations in brain network connectivity and subjective experience induced by psychedelics: a scoping review. Front Psychiatry 2024; 15:1386321. [PMID: 38807690 PMCID: PMC11131165 DOI: 10.3389/fpsyt.2024.1386321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Intense interest surrounds current research on psychedelics, particularly regarding their potential in treating mental health disorders. Various studies suggest a link between the subjective effects produced by psychedelics and their therapeutic efficacy. Neuroimaging evidence indicates an association of changes in brain functional connectivity with the subjective effects of psychedelics. We conducted a review focusing on psychedelics and brain functional connectivity. The review focused on four psychedelic drugs: ayahuasca, psilocybin and LSD, and the entactogen MDMA. We conducted searches in databases of MEDLINE, Embase, APA PsycInfo and Scopus from inception to Jun 2023 by keywords related to functional connectivity and psychedelics. Using the PRISMA framework, we selected 24 articles from an initial pool of 492 for analysis. This scoping review and analysis investigated the effects of psychedelics on subjective experiences and brain functional connectivity in healthy individuals. The studies quantified subjective effects through psychometric scales, revealing significant experiences of altered consciousness, mood elevation, and mystical experiences induced by psychedelics. Neuroimaging results indicated alterations in the functional connectivity of psychedelics, with consistent findings across substances of decreased connectivity within the default mode network and increased sensory and thalamocortical connectivity. Correlations between these neurophysiological changes and subjective experiences were noted, suggesting a brain network basis of the psychedelics' neuropsychological impact. While the result of the review provides a potential neural mechanism of the subjective effects of psychedelics, direct clinical evidence is needed to advance their clinical outcomes. Our research serves as a foundation for further exploration of the therapeutic potential of psychedelics.
Collapse
Affiliation(s)
- Zijia Yu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Olga Winkler
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Lujie Xu
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Liz Dennett
- Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Centre, Leiden, Netherlands
| | - Andrew Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Michaela Milne
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Institute of Human Nutrition at the Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Fei Wang
- Nanjing Medical University Affiliated Brain Hospital, Nanjing, Jiangsu, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Allen W. Chan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
55
|
Schmid Y, Bershad AK. Altered States and Social Bonds: Effects of MDMA and Serotonergic Psychedelics on Social Behavior as a Mechanism Underlying Substance-Assisted Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:490-499. [PMID: 38341085 PMCID: PMC11378972 DOI: 10.1016/j.bpsc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
There has been renewed interest in the use of 3,4-methylenedioxy-methamphetamine (MDMA) and serotonergic psychedelics in the treatment of multiple psychiatric disorders. Many of these compounds are known to produce prosocial effects, but how these effects relate to therapeutic efficacy and the extent to which prosocial effects are unique to a particular drug class is unknown. In this article, we present a narrative overview and compare evidence for the prosocial effects of MDMA and serotonergic psychedelics to elucidate shared mechanisms that may underlie the therapeutic process. We discuss 4 categories of prosocial effects: altered self-image, responses to social reward, responses to negative social input, and social neuroplasticity. While both categories of drugs alter self-perception, MDMA may do so in a way that is less related to the experience of mystical-type states than serotonergic psychedelics. In the case of social reward, evidence supports the ability of MDMA to enhance responses and suggests that serotonergic psychedelics may also do so, but more research is needed in this area. Both drug classes consistently dampen reactivity to negative social stimuli. Finally, preclinical evidence supports the ability of both drug classes to induce social neuroplasticity, promoting adaptive rewiring of neural circuits, which may be helpful in trauma processing. While both MDMA and serotonergic psychedelics produce prosocial effects, they differ in the mechanisms through which they do this. These differences affect the types of psychosocial interventions that may work best with each compound.
Collapse
Affiliation(s)
- Yasmin Schmid
- Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel and University of Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anya K Bershad
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
56
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
57
|
Lewis EC, Jaeger A, Girn M, Omene E, Brendle M, Argento E. Exploring psychedelic-assisted therapy in the treatment of functional seizures: A review of underlying mechanisms and associated brain networks. J Psychopharmacol 2024; 38:407-416. [PMID: 38654554 PMCID: PMC11102649 DOI: 10.1177/02698811241248395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Functional seizures (FS), the most common subtype of functional neurological disorder (FND), cause serious neurological disability and significantly impact quality of life. Characterized by episodic disturbances of functioning that resemble epileptic seizures, FS coincide with multiple comorbidities and are treated poorly by existing approaches. Novel treatment approaches are sorely needed. Notably, mounting evidence supports the safety and efficacy of psychedelic-assisted therapy (PAT) for several psychiatric conditions, motivating investigations into whether this efficacy also extends to neurological disorders. Here, we synthesize past empirical findings and frameworks to construct a biopsychosocial mechanistic argument for the potential of PAT as a treatment for FS. In doing so, we highlight FS as a well-defined cohort to further understand the large-scale neural mechanisms underpinning PAT. Our synthesis is guided by a complexity science perspective which we contend can afford unique mechanistic insight into both FS and PAT, as well as help bridge these two domains. We also leverage this perspective to propose a novel analytic roadmap to identify markers of FS diagnostic specificity and treatment success. This endeavor continues the effort to bridge clinical neurology with psychedelic medicine and helps pave the way for a new field of psychedelic neurology.
Collapse
Affiliation(s)
- Evan Cole Lewis
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Manesh Girn
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Madeline Brendle
- Numinus Wellness Inc., Vancouver, BC, Canada
- Health Outcomes Division, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - Elena Argento
- Numinus Wellness Inc., Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
58
|
Yao Y, Guo D, Lu TS, Liu FL, Huang SH, Diao MQ, Li SX, Zhang XJ, Kosten TR, Shi J, Bao YP, Lu L, Han Y. Efficacy and safety of psychedelics for the treatment of mental disorders: A systematic review and meta-analysis. Psychiatry Res 2024; 335:115886. [PMID: 38574699 DOI: 10.1016/j.psychres.2024.115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
We aim to systematically review and meta-analyze the effectiveness and safety of psychedelics [psilocybin, ayahuasca (active component DMT), LSD and MDMA] in treating symptoms of various mental disorders. Web of Science, Embase, EBSCO, and PubMed were searched up to February 2024 and 126 articles were finally included. Results showed that psilocybin has the largest number of articles on treating mood disorders (N = 28), followed by ayahuasca (N = 7) and LSD (N = 6). Overall, psychedelics have therapeutic effects on mental disorders such as depression and anxiety. Specifically, psilocybin (Hedges' g = -1.49, 95% CI [-1.67, -1.30]) showed the strongest therapeutic effect among four psychedelics, followed by ayahuasca (Hedges' g = -1.34, 95% CI [-1.86, -0.82]), MDMA (Hedges' g = -0.83, 95% CI [-1.33, -0.32]), and LSD (Hedges' g = -0.65, 95% CI [-1.03, -0.27]). A small amount of evidence also supports psychedelics improving tobacco addiction, eating disorders, sleep disorders, borderline personality disorder, obsessive-compulsive disorder, and body dysmorphic disorder. The most common adverse event with psychedelics was headache. Nearly a third of the articles reported that no participants reported lasting adverse effects. Our analyses suggest that psychedelics reduce negative mood, and have potential efficacy in other mental disorders, such as substance-use disorders and PTSD.
Collapse
Affiliation(s)
- Yuan Yao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dan Guo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tang-Sheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fang-Lin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shi-Hao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Meng-Qi Diao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Xiu-Jun Zhang
- School of Psychology, College of Public Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, China
| | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Yan-Ping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No.2018RU006).
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
59
|
Avram M, Müller F, Preller KH, Razi A, Rogg H, Korda A, Holze F, Vizeli P, Ley L, Liechti ME, Borgwardt S. Effective Connectivity of Thalamocortical Interactions Following d-Amphetamine, LSD, and MDMA Administration. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:522-532. [PMID: 37532129 DOI: 10.1016/j.bpsc.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND While the exploration of serotonergic psychedelics as psychiatric medicines deepens, so does the pressure to better understand how these compounds act on the brain. METHODS We used a double-blind, placebo-controlled, crossover design and administered lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), and d-amphetamine in 25 healthy participants. By using spectral dynamic causal modeling, we mapped substance-induced changes in effective connectivity between the thalamus and different cortex types (unimodal vs. transmodal) derived from a previous study with resting-state functional magnetic resonance imaging data. Due to the distinct pharmacological modes of action of the 3 substances, we were able to investigate specific effects mainly driven by different neurotransmitter systems on thalamocortical and corticothalamic interactions. RESULTS Compared with placebo, all 3 substances increased the effective connectivity from the thalamus to specific unimodal cortices, whereas the influence of these cortices on the thalamus was reduced. These results indicate increased bottom-up and decreased top-down information flow between the thalamus and some unimodal cortices. However, for the amphetamines, we found the opposite effects when examining the effective connectivity with transmodal cortices, including parts of the salience network. Intriguingly, LSD increased the effective connectivity from the thalamus to both unimodal and transmodal cortices, indicating a breach in the hierarchical organization of ongoing brain activity. CONCLUSIONS The results advance our knowledge about the action of psychedelics on the brain and refine current models aiming to explain the underlying neurobiological processes.
Collapse
Affiliation(s)
- Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.
| | - Felix Müller
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Helena Rogg
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
60
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
61
|
Powers A, Angelos P, Bond A, Farina E, Fredericks C, Gandhi J, Greenwald M, Hernandez-Busot G, Hosein G, Kelley M, Mourgues C, Palmer W, Rodriguez-Sanchez J, Seabury R, Toribio S, Vin R, Weleff J, Benrimoh D. A computational account of the development and evolution of psychotic symptoms. ARXIV 2024:arXiv:2404.10954v1. [PMID: 38699166 PMCID: PMC11065053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The mechanisms of psychotic symptoms like hallucinations and delusions are often investigated in fully-formed illness, well after symptoms emerge. These investigations have yielded key insights, but are not well-positioned to reveal the dynamic forces underlying symptom formation itself. Understanding symptom development over time would allow us to identify steps in the pathophysiological process leading to psychosis, shifting the focus of psychiatric intervention from symptom alleviation to prevention. We propose a model for understanding the emergence of psychotic symptoms within the context of an adaptive, developing neural system. We will make the case for a pathophysiological process that begins with cortical hyperexcitability and bottom-up noise transmission, which engenders inappropriate belief formation via aberrant prediction error signaling. We will argue that this bottom-up noise drives learning about the (im)precision of new incoming sensory information because of diminished signal-to-noise ratio, causing an adaptive relative over-reliance on prior beliefs. This over-reliance on priors predisposes to hallucinations and covaries with hallucination severity. An over-reliance on priors may also lead to increased conviction in the beliefs generated by bottom-up noise and drive movement toward conversion to psychosis. We will identify predictions of our model at each stage, examine evidence to support or refute those predictions, and propose experiments that could falsify or help select between alternative elements of the overall model. Nesting computational abnormalities within longitudinal development allows us to account for hidden dynamics among the mechanisms driving symptom formation and to view established symptomatology as a point of equilibrium among competing biological forces.
Collapse
Affiliation(s)
- Albert Powers
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Philip Angelos
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Alexandria Bond
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Emily Farina
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Carolyn Fredericks
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jay Gandhi
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Maximillian Greenwald
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | | | - Gabriel Hosein
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Megan Kelley
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Catalina Mourgues
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - William Palmer
- Yale University Department of Psychology, New Haven, CT USA
| | | | - Rashina Seabury
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Silmilly Toribio
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Raina Vin
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - Jeremy Weleff
- Yale University School of Medicine and the Connecticut Mental Health Center, New Haven, CT, USA
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
62
|
Tolle HM, Farah JC, Mallaroni P, Mason NL, Ramaekers JG, Amico E. The unique neural signature of your trip: Functional connectome fingerprints of subjective psilocybin experience. Netw Neurosci 2024; 8:203-225. [PMID: 38562294 PMCID: PMC10898784 DOI: 10.1162/netn_a_00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
The emerging neuroscientific frontier of brain fingerprinting has recently established that human functional connectomes (FCs) exhibit fingerprint-like idiosyncratic features, which map onto heterogeneously distributed behavioral traits. Here, we harness brain-fingerprinting tools to extract FC features that predict subjective drug experience induced by the psychedelic psilocybin. Specifically, in neuroimaging data of healthy volunteers under the acute influence of psilocybin or a placebo, we show that, post psilocybin administration, FCs become more idiosyncratic owing to greater intersubject dissimilarity. Moreover, whereas in placebo subjects idiosyncratic features are primarily found in the frontoparietal network, in psilocybin subjects they concentrate in the default mode network (DMN). Crucially, isolating the latter revealed an FC pattern that predicts subjective psilocybin experience and is characterized by reduced within-DMN and DMN-limbic connectivity, as well as increased connectivity between the DMN and attentional systems. Overall, these results contribute to bridging the gap between psilocybin-mediated effects on brain and behavior, while demonstrating the value of a brain-fingerprinting approach to pharmacological neuroimaging.
Collapse
Affiliation(s)
- Hanna M. Tolle
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Juan Carlos Farah
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Enrico Amico
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
63
|
Singer B, Meling D, Hirsch-Hoffmann M, Michels L, Kometer M, Smigielski L, Dornbierer D, Seifritz E, Vollenweider FX, Scheidegger M. Psilocybin enhances insightfulness in meditation: a perspective on the global topology of brain imaging during meditation. Sci Rep 2024; 14:7211. [PMID: 38531905 PMCID: PMC10966054 DOI: 10.1038/s41598-024-55726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, for the first time, we explored a dataset of functional magnetic resonance images collected during focused attention and open monitoring meditation before and after a five-day psilocybin-assisted meditation retreat using a recently established approach, based on the Mapper algorithm from topological data analysis. After generating subject-specific maps for two groups (psilocybin vs. placebo, 18 subjects/group) of experienced meditators, organizational principles were uncovered using graph topological tools, including the optimal transport (OT) distance, a geometrically rich measure of similarity between brain activity patterns. This revealed characteristics of the topology (i.e. shape) in space (i.e. abstract space of voxels) and time dimension of whole-brain activity patterns during different styles of meditation and psilocybin-induced alterations. Most interestingly, we found that (psilocybin-induced) positive derealization, which fosters insightfulness specifically when accompanied by enhanced open-monitoring meditation, was linked to the OT distance between open-monitoring and resting state. Our findings suggest that enhanced meta-awareness through meditation practice in experienced meditators combined with potential psilocybin-induced positive alterations in perception mediate insightfulness. Together, these findings provide a novel perspective on meditation and psychedelics that may reveal potential novel brain markers for positive synergistic effects between mindfulness practices and psilocybin.
Collapse
Affiliation(s)
- Berit Singer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Daniel Meling
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Hirsch-Hoffmann
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Michael Kometer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lukasz Smigielski
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Dario Dornbierer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
64
|
Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB. The mechanistic divide in psychedelic neuroscience: An unbridgeable gap? Neurotherapeutics 2024; 21:e00322. [PMID: 38278658 DOI: 10.1016/j.neurot.2024.e00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
In recent years, psychedelics have generated considerable excitement and interest as potential novel therapeutics for an array of conditions, with the most advanced evidence base in the treatment of certain severe and/or treatment-resistant psychiatric disorders. An array of clinical and pre-clinical evidence has informed our current understanding of how psychedelics produce profound alterations in consciousness. Mechanisms of psychedelic action include receptor binding and downstream cellular and transcriptional pathways, with long-term impacts on brain structure and function-from the level of single neurons to large-scale circuits. In this perspective, we first briefly review and synthesize separate lines of research on potential mechanistic processes underlying the acute and long-term effects of psychedelic compounds, with a particular emphasis on highlighting current theoretical models of psychedelic drug action and their relationships to therapeutic benefits for psychiatric and brain-based disorders. We then highlight an existing area of ongoing controversy we argue is directly informed by theoretical models originating from disparate levels of inquiry, and we ultimately converge on the notion that bridging the current chasm in explanatory models of psychedelic drug action across levels of inquiry (molecular, cellular, circuit, and psychological/behavioral) through innovative methods and collaborative efforts will ultimately yield the comprehensive understanding needed to fully capitalize on the potential therapeutic properties of these compounds.
Collapse
Affiliation(s)
- Bryan R Barksdale
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Manoj K Doss
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
65
|
Frautschi PC, Singh AP, Stowe NA, Yu JPJ. Multimodal Neuroimaging of the Effect of Serotonergic Psychedelics on the Brain. AJNR Am J Neuroradiol 2024; 45:ajnr.A8118. [PMID: 38360790 DOI: 10.3174/ajnr.a8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/17/2024]
Abstract
The neurobiological mechanisms underpinning psychiatric disorders such as treatment-resistant major depression, post-traumatic stress disorder, and substance use disorders, remain unknown. Psychedelic compounds, such as psilocybin, lysergic acid diethylamide, and N,N-dimethyltryptamine, have emerged as potential therapies for these disorders because of their hypothesized ability to induce neuroplastic effects and alter functional networks in the brain. Yet, the mechanisms underpinning the neurobiological treatment response remain obscure. Quantitative neuroimaging is uniquely positioned to provide insight into the neurobiological mechanisms of these emerging therapies and quantify the patient treatment response. This review aims to synthesize our current state-of-the-art understanding of the functional changes occurring in the brain following psilocybin, lysergic acid diethylamide, or N,N-dimethyltryptamine administration in human participants with fMRI and PET. We further aim to disseminate our understanding of psychedelic compounds as they relate to neuroimaging with the goal of improved diagnostics and treatment of neuropsychiatric illness.
Collapse
Affiliation(s)
- Paloma C Frautschi
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ajay P Singh
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - John-Paul J Yu
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering (J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Psychiatry (J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
66
|
Mediano PAM, Rosas FE, Timmermann C, Roseman L, Nutt DJ, Feilding A, Kaelen M, Kringelbach ML, Barrett AB, Seth AK, Muthukumaraswamy S, Bor D, Carhart-Harris RL. Effects of External Stimulation on Psychedelic State Neurodynamics. ACS Chem Neurosci 2024; 15:462-471. [PMID: 38214686 PMCID: PMC10853937 DOI: 10.1021/acschemneuro.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 01/13/2024] Open
Abstract
Recent findings have shown that psychedelics reliably enhance brain entropy (understood as neural signal diversity), and this effect has been associated with both acute and long-term psychological outcomes, such as personality changes. These findings are particularly intriguing, given that a decrease of brain entropy is a robust indicator of loss of consciousness (e.g., from wakefulness to sleep). However, little is known about how context impacts the entropy-enhancing effect of psychedelics, which carries important implications for how it can be exploited in, for example, psychedelic psychotherapy. This article investigates how brain entropy is modulated by stimulus manipulation during a psychedelic experience by studying participants under the effects of lysergic acid diethylamide (LSD) or placebo, either with gross state changes (eyes closed vs open) or different stimuli (no stimulus vs music vs video). Results show that while brain entropy increases with LSD under all of the experimental conditions, it exhibits the largest changes when subjects have their eyes closed. Furthermore, brain entropy changes are consistently associated with subjective ratings of the psychedelic experience, but this relationship is disrupted when participants are viewing a video─potentially due to a "competition" between external stimuli and endogenous LSD-induced imagery. Taken together, our findings provide strong quantitative evidence of the role of context in modulating neural dynamics during a psychedelic experience, underlining the importance of performing psychedelic psychotherapy in a suitable environment.
Collapse
Affiliation(s)
- Pedro A. M. Mediano
- Department
of Computing, Imperial College London, London SW7 2AZ, U.K.
- Department
of Psychology, University of Cambridge, Cambridge CB2 3EB, U.K.
| | - Fernando E. Rosas
- Department
of Informatics, University of Sussex, Brighton BN1 9RH, U.K.
- Centre
for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Complexity Science, Imperial College
London, London SW7 2AZ, U.K.
- Centre for
Eudaimonia and Human Flourishing, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Christopher Timmermann
- Centre
for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Leor Roseman
- Centre
for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - David J. Nutt
- Centre
for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, U.K.
| | | | | | - Morten L. Kringelbach
- Centre for
Eudaimonia and Human Flourishing, University
of Oxford, Oxford OX1 2JD, U.K.
- Department
of Psychiatry, University of Oxford, Oxford OX1 2JD, U.K.
- Center
for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - Adam B. Barrett
- Sussex
Center for Consciousness Science and Department of Informatics, University of Sussex, Brighton BN1 9RH, U.K.
| | - Anil K. Seth
- Sussex
Center for Consciousness Science and Department of Informatics, University of Sussex, Brighton BN1 9RH, U.K.
- CIFAR Program on Brain, Mind, and Consciousness, Toronto M5G 1M1, Canada
| | - Suresh Muthukumaraswamy
- School
of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Daniel Bor
- Department
of Psychology, University of Cambridge, Cambridge CB2 3EB, U.K.
- Department
of Psychology, Queen Mary University of
London, London E1 4NS, U.K.
| | - Robin L. Carhart-Harris
- Centre
for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, U.K.
- Psychedelics
Division, Neuroscape, University of California
San Francisco, San Francisco, California 94117-1080, United States
| |
Collapse
|
67
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
68
|
Shenyan O, Lisi M, Greenwood JA, Skipper JI, Dekker TM. Visual hallucinations induced by Ganzflicker and Ganzfeld differ in frequency, complexity, and content. Sci Rep 2024; 14:2353. [PMID: 38287084 PMCID: PMC10825158 DOI: 10.1038/s41598-024-52372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
Visual hallucinations can be phenomenologically divided into those of a simple or complex nature. Both simple and complex hallucinations can occur in pathological and non-pathological states, and can also be induced experimentally by visual stimulation or deprivation-for example using a high-frequency, eyes-open flicker (Ganzflicker) and perceptual deprivation (Ganzfeld). Here we leverage the differences in visual stimulation that these two techniques involve to investigate the role of bottom-up and top-down processes in shifting the complexity of visual hallucinations, and to assess whether these techniques involve a shared underlying hallucinatory mechanism despite their differences. For each technique, we measured the frequency and complexity of the hallucinations produced, utilising button presses, retrospective drawing, interviews, and questionnaires. For both experimental techniques, simple hallucinations were more common than complex hallucinations. Crucially, we found that Ganzflicker was more effective than Ganzfeld at eliciting simple hallucinations, while complex hallucinations remained equivalent across the two conditions. As a result, the likelihood that an experienced hallucination was complex was higher during Ganzfeld. Despite these differences, we found a correlation between the frequency and total time spent hallucinating in Ganzflicker and Ganzfeld conditions, suggesting some shared mechanisms between the two methodologies. We attribute the tendency to experience frequent simple hallucinations in both conditions to a shared low-level core hallucinatory mechanism, such as excitability of visual cortex, potentially amplified in Ganzflicker compared to Ganzfeld due to heightened bottom-up input. The tendency to experience complex hallucinations, in contrast, may be related to top-down processes less affected by visual stimulation.
Collapse
Affiliation(s)
- Oris Shenyan
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| | - Matteo Lisi
- Department of Psychology, Royal Holloway University, London, UK
| | - John A Greenwood
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Jeremy I Skipper
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Tessa M Dekker
- Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
69
|
Ruffini G, Lopez-Sola E, Vohryzek J, Sanchez-Todo R. Neural Geometrodynamics, Complexity, and Plasticity: A Psychedelics Perspective. ENTROPY (BASEL, SWITZERLAND) 2024; 26:90. [PMID: 38275498 PMCID: PMC11154528 DOI: 10.3390/e26010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
We explore the intersection of neural dynamics and the effects of psychedelics in light of distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We call this framework neural geometrodynamics for its parallels with general relativity's description of the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of "fast time" dynamics are shaped by the structure of a differential equation and its connectivity parameters, which themselves evolve over "slow time" driven by state-dependent and state-independent plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in an "ultraslow" time scale. Psychedelics flatten the neural landscape, leading to heightened entropy and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking increases in complexity with a disruption of functional integration. We highlight the relationship between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid, or "canalized" neural dynamics result in an ultrastable confined repertoire, allowing slower plastic changes to consolidate them further. However, under the influence of psychedelics, the destabilizing emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute effects of these substances and their potential long-term impacts on neural structure and function.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, Universitat Pompeu Fabra, 08018 Barcelona, Spain;
| |
Collapse
|
70
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
71
|
Beans C. If psychedelics heal, how do they do it? Proc Natl Acad Sci U S A 2024; 121:e2321906121. [PMID: 38170743 PMCID: PMC10786285 DOI: 10.1073/pnas.2321906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
|
72
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
73
|
Ivan VE, Tomàs-Cuesta DP, Esteves IM, Curic D, Mohajerani M, McNaughton BL, Davidsen J, Gruber AJ. The Nonclassic Psychedelic Ibogaine Disrupts Cognitive Maps. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:275-283. [PMID: 38298796 PMCID: PMC10829624 DOI: 10.1016/j.bpsgos.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 02/02/2024] Open
Abstract
Background The ability of psychedelic compounds to profoundly alter mental function has been long known, but the underlying changes in cellular-level information encoding remain poorly understood. Methods We used two-photon microscopy to record from the retrosplenial cortex in head-fixed mice running on a treadmill before and after injection of the nonclassic psychedelic ibogaine (40 mg/kg intraperitoneally). Results We found that the cognitive map, formed by the representation of position encoded by ensembles of individual neurons in the retrosplenial cortex, was destabilized by ibogaine when mice had to infer position between tactile landmarks. This corresponded with increased neural activity rates, loss of correlation structure, and increased responses to cues. Ibogaine had surprisingly little effect on the size-frequency distribution of network activity events, suggesting that signal propagation within the retrosplenial cortex was largely unaffected. Conclusions Taken together, these data support proposals that compounds with psychedelic properties disrupt representations that are important for constraining neocortical activity, thereby increasing the entropy of neural signaling. Furthermore, the loss of expected position encoding between landmarks recapitulated effects of hippocampal impairment, suggesting that disruption of cognitive maps or other hippocampal processing may be a contributing mechanism of discoordinated neocortical activity in psychedelic states.
Collapse
Affiliation(s)
- Victorita E. Ivan
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David P. Tomàs-Cuesta
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ingrid M. Esteves
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Davor Curic
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bruce L. McNaughton
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California
| | - Joern Davidsen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Aaron J. Gruber
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
74
|
Burback L, Brémault-Phillips S, Nijdam MJ, McFarlane A, Vermetten E. Treatment of Posttraumatic Stress Disorder: A State-of-the-art Review. Curr Neuropharmacol 2024; 22:557-635. [PMID: 37132142 PMCID: PMC10845104 DOI: 10.2174/1570159x21666230428091433] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
This narrative state-of-the-art review paper describes the progress in the understanding and treatment of Posttraumatic Stress Disorder (PTSD). Over the last four decades, the scientific landscape has matured, with many interdisciplinary contributions to understanding its diagnosis, etiology, and epidemiology. Advances in genetics, neurobiology, stress pathophysiology, and brain imaging have made it apparent that chronic PTSD is a systemic disorder with high allostatic load. The current state of PTSD treatment includes a wide variety of pharmacological and psychotherapeutic approaches, of which many are evidence-based. However, the myriad challenges inherent in the disorder, such as individual and systemic barriers to good treatment outcome, comorbidity, emotional dysregulation, suicidality, dissociation, substance use, and trauma-related guilt and shame, often render treatment response suboptimal. These challenges are discussed as drivers for emerging novel treatment approaches, including early interventions in the Golden Hours, pharmacological and psychotherapeutic interventions, medication augmentation interventions, the use of psychedelics, as well as interventions targeting the brain and nervous system. All of this aims to improve symptom relief and clinical outcomes. Finally, a phase orientation to treatment is recognized as a tool to strategize treatment of the disorder, and position interventions in step with the progression of the pathophysiology. Revisions to guidelines and systems of care will be needed to incorporate innovative treatments as evidence emerges and they become mainstream. This generation is well-positioned to address the devastating and often chronic disabling impact of traumatic stress events through holistic, cutting-edge clinical efforts and interdisciplinary research.
Collapse
Affiliation(s)
- Lisa Burback
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | - Mirjam J. Nijdam
- ARQ National Psychotrauma Center, Diemen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
75
|
Nutt DJ, Peill JM, Weiss B, Godfrey K, Carhart-Harris RL, Erritzoe D. Psilocybin and Other Classic Psychedelics in Depression. Curr Top Behav Neurosci 2024; 66:149-174. [PMID: 37955822 DOI: 10.1007/7854_2023_451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Psychedelic drugs such as psilocybin and ketamine are returning to clinical research and intervention across several disorders including the treatment of depression. This chapter focusses on psychedelics that specifically target the 5-HT2A receptor such as psilocybin and DMT. These produce plasma-concentration related psychological effects such as hallucinations and out of body experiences, insightful and emotional breakthroughs as well as mystical-type experiences. When coupled with psychological support, effects can produce a rapid improvement in mood among people with depression that can last for months. In this chapter, we summarise the scientific studies to date that explore the use of psychedelics in depressed individuals, highlighting key clinical, psychological and neuroimaging features of psychedelics that may account for their therapeutic effects. These include alterations in brain entropy that disrupt fixed negative ruminations, a period of post-treatment increased cognitive flexibility, and changes in self-referential psychological processes. Finally, we propose that the brain mechanisms underlying the therapeutic effect of serotonergic psychedelics might be distinct from those underlying classical serotonin reuptake-blocking antidepressants.
Collapse
Affiliation(s)
- D J Nutt
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.
| | - J M Peill
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - B Weiss
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - K Godfrey
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - R L Carhart-Harris
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - D Erritzoe
- Centres for Neuropsychopharmacology & Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
76
|
Abstract
Cannabis and classic psychedelics are controlled substances with emerging evidence of efficacy in the treatment of a variety of psychiatric illnesses. Cannabis has largely not been regarded as having psychedelic effects in contemporary literature, despite many examples of historical use along with classic psychedelics to attain altered states of consciousness. Research into the "psychedelic" effects of cannabis, and delta-9-tetrahydrocannabinol (THC) in particular, could prove helpful for assessing potential therapeutic indications and elucidating the mechanism of action of both cannabis and classic psychedelics. This review aggregates and evaluates the literature assessing the capacity of cannabis to yield the perceptual changes, aversiveness, and mystical experiences more typically associated with classic psychedelics such as psilocybin. This review also provides a brief contrast of neuroimaging findings associated with the acute effects of cannabis and psychedelics. The available evidence suggests that high-THC cannabis may be able to elicit psychedelic effects, but that these effects may not have been observed in recent controlled research studies due to the doses, set, and settings commonly used. Research is needed to investigate the effects of high doses of THC in the context utilized in therapeutic studies of psychedelics aimed to occasion psychedelic and/or therapeutic experiences. If cannabis can reliably generate psychedelic experiences under these conditions, high-THC dose cannabis treatments should be explored as potential adjunctive treatments for psychiatric disorders and be considered as an active comparator in clinical trials involving traditional psychedelic medications.
Collapse
Affiliation(s)
- David Wolinsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Frederick Streeter Barrett
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic and Consciousness Research, Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
77
|
Rodrigues-Ribeiro L, Resende BL, Pinto Dias ML, Lopes MR, de Barros LLM, Moraes MA, Verano-Braga T, Souza BR. Neuroproteomics: Unveiling the Molecular Insights of Psychiatric Disorders with a Focus on Anxiety Disorder and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:103-128. [PMID: 38409418 DOI: 10.1007/978-3-031-50624-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Anxiety and depression are two of the most common mental disorders worldwide, with a lifetime prevalence of up to 30%. These disorders are complex and have a variety of overlapping factors, including genetic, environmental, and behavioral factors. Current pharmacological treatments for anxiety and depression are not perfect. Many patients do not respond to treatment, and those who do often experience side effects. Animal models are crucial for understanding the complex pathophysiology of both disorders. These models have been used to identify potential targets for new treatments, and they have also been used to study the effects of environmental factors on these disorders. Recent proteomic methods and technologies are providing new insights into the molecular mechanisms of anxiety disorder and depression. These methods have been used to identify proteins that are altered in these disorders, and they have also been used to study the effects of pharmacological treatments on protein expression. Together, behavioral and proteomic research will help elucidate the factors involved in anxiety disorder and depression. This knowledge will improve preventive strategies and lead to the development of novel treatments.
Collapse
Affiliation(s)
- Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Lopes Resende
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Luiza Pinto Dias
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Megan Rodrigues Lopes
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Luppi Monteiro de Barros
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Muiara Aparecida Moraes
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.
- Department of Physiology and Biophysics, Proteomics Group (NPF), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Bruno Rezende Souza
- Department of Physiology and Biophysics, Laboratory of Neurodevelopment and Evolution (NeuroDEv), Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
78
|
Jerotic K, Vuust P, Kringelbach ML. Psychedelia: The interplay of music and psychedelics. Ann N Y Acad Sci 2024; 1531:12-28. [PMID: 37983198 DOI: 10.1111/nyas.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Music and psychedelics have been intertwined throughout the existence of Homo sapiens, from the early shamanic rituals of the Americas and Africa to the modern use of psychedelic-assisted therapy for a variety of mental health conditions. Across such settings, music has been highly prized for its ability to guide the psychedelic experience. Here, we examine the interplay between music and psychedelics, starting by describing their association with the brain's functional hierarchy that is relied upon for music perception and its psychedelic-induced manipulation, as well as an exploration of the limited research on their mechanistic neural overlap. We explore music's role in Western psychedelic therapy and the use of music in indigenous psychedelic rituals, with a specific focus on ayahuasca and the Santo Daime Church. Furthermore, we explore work relating to the evolution and onset of music and psychedelic use. Finally, we consider music's potential to lead to altered states of consciousness in the absence of psychedelics as well as the development of psychedelic music. Here, we provide an overview of several perspectives on the interaction between psychedelic use and music-a topic with growing interest given increasing excitement relating to the therapeutic efficacy of psychedelic interventions.
Collapse
Affiliation(s)
- Katarina Jerotic
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|
79
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
80
|
Dai R, Huang Z, Larkin TE, Tarnal V, Picton P, Vlisides PE, Janke E, McKinney A, Hudetz AG, Harris RE, Mashour GA. Psychedelic concentrations of nitrous oxide reduce functional differentiation in frontoparietal and somatomotor cortical networks. Commun Biol 2023; 6:1284. [PMID: 38114805 PMCID: PMC10730842 DOI: 10.1038/s42003-023-05678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Despite the longstanding use of nitrous oxide and descriptions of its psychological effects more than a century ago, there is a paucity of neurobiological investigation of associated psychedelic experiences. We measure the brain's functional geometry (through analysis of cortical gradients) and temporal dynamics (through analysis of co-activation patterns) using human resting-state functional magnetic resonance imaging data acquired before and during administration of 35% nitrous oxide. Both analyses demonstrate that nitrous oxide reduces functional differentiation in frontoparietal and somatomotor networks. Importantly, the subjective psychedelic experience induced by nitrous oxide is inversely correlated with the degree of functional differentiation. Thus, like classical psychedelics acting on serotonin receptors, nitrous oxide flattens the functional geometry of the cortex and disrupts temporal dynamics in association with psychoactive effects.
Collapse
Affiliation(s)
- Rui Dai
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tony E Larkin
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vijay Tarnal
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Paul Picton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Phillip E Vlisides
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ellen Janke
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amy McKinney
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard E Harris
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
81
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
82
|
Lynn SJ, McDonald CW, Sleight FG, Mattson RE. Cross-validation of the ego dissolution scale: implications for studying psychedelics. Front Neurosci 2023; 17:1267611. [PMID: 38116073 PMCID: PMC10729006 DOI: 10.3389/fnins.2023.1267611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Ego dissolution, variously called Ego-Loss, self-loss, and ego disintegration, is a hallmark of psychedelic drug use. We cross-validated the 10-item Ego Dissolution Scale, which we developed to assess ego dissolution in everyday life, and we included comparator variables that expanded our original assessment of construct validity. Methods Undergraduate college student volunteers (N = 527) completed the measures online. Results We replicated the original two factor structure (i.e., subfactors: Ego-Loss and Unity/connectedness with others, the world, universe), and we determined that the total score (Cronbach's α = 0.79) and subfactors (Ego-Loss = 78; Unity = 0.83) possessed adequate-to-good reliability and strong convergent validity (e.g., mindfulness, hallucination-predisposition, sleep variables, personality variables, positive/negative affect transliminality, dissociation/depersonalization), while neuroticism, social desirability did not correlate highly with ego dissolution. We identified distinct patterns of relations of measures associated with the Ego-Loss vs. Unity subfactors. Discussion We discuss the implications of the use of the EDS for studying everyday aspects of ego dissolution, the long-term effects of psychedelic use, and the value of using the scale in conjunction with measures of the acute effects of psychedelics.
Collapse
Affiliation(s)
- Steven Jay Lynn
- Psychology Department, Binghamton University, State University of New York, Binghamton, NY, United States
| | | | | | | |
Collapse
|
83
|
Wojtas A. The possible place for psychedelics in pharmacotherapy of mental disorders. Pharmacol Rep 2023; 75:1313-1325. [PMID: 37934320 PMCID: PMC10661751 DOI: 10.1007/s43440-023-00550-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs. The prototypical representative of the aforementioned class is ketamine, an NMDA receptor antagonist capable of alleviating the symptoms of depression shortly after the drug administration. This discovery led to a paradigm shift, focusing on amino-acidic neurotransmitters and growth factors. Alas, the drug is not perfect, as its therapeutic effect diminishes circa 2 weeks after administration. Furthermore, it is not devoid of some severe side effects. However, there seems to be another, more efficient, and safer way to target the glutamatergic system. Hallucinogenic agonists of the 5-HT2A receptor, commonly known as psychedelics, are nowadays being reconsidered in clinical practice, shedding their infamous 1970s stigma. More and more clinical studies prove their clinical efficacy and rapid onset after a single administration while bearing fewer side effects. This review focuses on the current state-of-the-art literature and most recent clinical studies concerning the use of psychedelic drugs in the treatment of mental disorders. Specifically, the antidepressant potential of LSD, psilocybin, DMT, and 5-MeO-DMT will be discussed, together with a brief summary of other possible applications.
Collapse
Affiliation(s)
- Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
84
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
85
|
Pouyan N, Younesi Sisi F, Kargar A, Scheidegger M, McIntyre RS, Morrow JD. The effects of Lysergic Acid Diethylamide (LSD) on the Positive Valence Systems: A Research Domain Criteria (RDoC)-Informed Systematic Review. CNS Drugs 2023; 37:1027-1063. [PMID: 37999867 PMCID: PMC10703966 DOI: 10.1007/s40263-023-01044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES The renewed interest in psychedelic research provides growing evidence of potentially unique effects on various aspects of reward processing systems. Using the Research Domain Criteria (RDoC) framework, as proposed by the National Institute of Mental Health, we aim to synthesize the existing literature concerning the impact of lysergic acid diethylamide (LSD) on the RDoC's Positive Valence Systems (PVS) domain, and to identify potential avenues for further research. METHODS Two LSD-related terms (lysergic acid diethylamide and LSD) and 13 PVS-related terms (reward, happiness, bliss, motivation, reinforcement learning, operant, conditioning, satisfaction, decision making, habit, valence, affect, mood) were used to search electronic databases such as PubMed, Scopus, PsychINFO, and Web of Science for relevant articles. A manual search of the reference list resulted in nine additional articles. After screening, articles and data were evaluated and included based on their relevance to the objective of investigating the effects of LSD on the PVS. Articles and data were excluded if they did not provide information about the PVS, were observational in nature, lacked comparators or reference groups, or were duplicates. A risk of bias assessment was performed using the National Toxicology Program's Office of Health Assessment and Translation (NTP OHAT) risk of bias (RoB) tool. Data from the included articles were collected and structured based on the RDoC bio-behavioral matrix, specifically focusing on the PVS domain and its three constituent constructs: reward responsiveness, reward learning, and reward valuation. RESULTS We reviewed 28 clinical studies with 477 participants. Lysergic acid diethylamide, assessed at self-report (23 studies), molecular (5 studies), circuit (4 studies), and paradigm (3 studies) levels, exhibited dose-dependent mood improvement (20 short-term and 3 long-term studies). The subjective and neural effects of LSD were linked to the 5-HT2A receptor (molecular). Animal studies (14 studies) suggested LSD could mildly reinforce conditioned place preference without aversion and reduce responsiveness to other rewards. Findings on reward learning were inconsistent but hinted at potential associative learning enhancements. Reward valuation measures indicated potential reductions in effort expenditure for other reinforcers. CONCLUSION Our findings are consistent with our previous work, which indicated classical psychedelics, primarily serotonin 2A receptor agonists, enhanced reward responsiveness in healthy individuals and patient populations. Lysergic acid diethylamide exhibits a unique profile in the reward learning and valuation constructs. Using the RDoC-based framework, we identified areas for future research, enhancing our understanding of the impact of LSD on reward processing. However, applying RDoC to psychedelic research faces limitations due to diverse study designs that were not initially RDoC-oriented. Limitations include subjective outcome measure selection aligned with RDoC constructs and potential bias in synthesizing varied studies. Additionally, some human studies were open-label, introducing potential bias compared to randomized, blinded studies.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Michigan Psychedelic Center (M-PsyC), and Chronic Pain and Fatigue Research Center (CPFRC), University of Michigan Medical School, Ann Arbor, MI, USA.
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Aracell Zist Darou pharmaceutical, Tehran, Iran.
| | - Farnaz Younesi Sisi
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Kargar
- Cognitive Neurology and Neuropsychiatry Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Clinical Pharmacy, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jonathan D Morrow
- Neuroscience Graduate Program, and Program in Biomedical Sciences (PIBS), University of Michigan Medical School, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
86
|
Bayne T, Frohlich J, Cusack R, Moser J, Naci L. Consciousness in the cradle: on the emergence of infant experience. Trends Cogn Sci 2023; 27:1135-1149. [PMID: 37838614 PMCID: PMC10660191 DOI: 10.1016/j.tics.2023.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/16/2023]
Abstract
Although each of us was once a baby, infant consciousness remains mysterious and there is no received view about when, and in what form, consciousness first emerges. Some theorists defend a 'late-onset' view, suggesting that consciousness requires cognitive capacities which are unlikely to be in place before the child's first birthday at the very earliest. Other theorists defend an 'early-onset' account, suggesting that consciousness is likely to be in place at birth (or shortly after) and may even arise during the third trimester. Progress in this field has been difficult, not just because of the challenges associated with procuring the relevant behavioral and neural data, but also because of uncertainty about how best to study consciousness in the absence of the capacity for verbal report or intentional behavior. This review examines both the empirical and methodological progress in this field, arguing that recent research points in favor of early-onset accounts of the emergence of consciousness.
Collapse
Affiliation(s)
- Tim Bayne
- Monash University, Melbourne, VIC, Australia; Brain, Mind, and Consciousness Program, Canadian Institute for Advanced Research, Toronto, Canada.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany; Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Rhodri Cusack
- Thomas Mitchell Professor of Cognitive Neuroscience, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia Moser
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Lorina Naci
- Trinity College Institute of Neuroscience and Global Brain Health Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
87
|
Delli Pizzi S, Chiacchiaretta P, Sestieri C, Ferretti A, Tullo MG, Della Penna S, Martinotti G, Onofrj M, Roseman L, Timmermann C, Nutt DJ, Carhart-Harris RL, Sensi SL. LSD-induced changes in the functional connectivity of distinct thalamic nuclei. Neuroimage 2023; 283:120414. [PMID: 37858906 DOI: 10.1016/j.neuroimage.2023.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
The role of the thalamus in mediating the effects of lysergic acid diethylamide (LSD) was recently proposed in a model of communication and corroborated by imaging studies. However, a detailed analysis of LSD effects on nuclei-resolved thalamocortical connectivity is still missing. Here, in a group of healthy volunteers, we evaluated whether LSD intake alters the thalamocortical coupling in a nucleus-specific manner. Structural and resting-state functional Magnetic Resonance Imaging (MRI) data were acquired in a placebo-controlled study on subjects exposed to acute LSD administration. Structural MRI was used to parcel the thalamus into its constituent nuclei based on individual anatomy. Nucleus-specific changes of resting-state functional MRI (rs-fMRI) connectivity were mapped using a seed-based approach. LSD intake selectively increased the thalamocortical functional connectivity (FC) of the ventral complex, pulvinar, and non-specific nuclei. Functional coupling was increased between these nuclei and sensory cortices that include the somatosensory and auditory networks. The ventral and pulvinar nuclei also exhibited increased FC with parts of the associative cortex that are dense in serotonin type 2A receptors. These areas are hyperactive and hyper-connected upon LSD intake. At subcortical levels, LSD increased the functional coupling among the thalamus's ventral, pulvinar, and non-specific nuclei, but decreased the striatal-thalamic connectivity. These findings unravel some LSD effects on the modulation of subcortical-cortical circuits and associated behavioral outputs.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Leor Roseman
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychedelics Division, Neuroscape, Neurology, University of California San Francisco
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| |
Collapse
|
88
|
Harduf A, Panishev G, Harel EV, Stern Y, Salomon R. The bodily self from psychosis to psychedelics. Sci Rep 2023; 13:21209. [PMID: 38040825 PMCID: PMC10692325 DOI: 10.1038/s41598-023-47600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The sense of self is a foundational element of neurotypical human consciousness. We normally experience the world as embodied agents, with the unified sensation of our selfhood being nested in our body. Critically, the sense of self can be altered in psychiatric conditions such as psychosis and altered states of consciousness induced by psychedelic compounds. The similarity of phenomenological effects across psychosis and psychedelic experiences has given rise to the "psychotomimetic" theory suggesting that psychedelics simulate psychosis-like states. Moreover, psychedelic-induced changes in the sense of self have been related to reported improvements in mental health. Here we investigated the bodily self in psychedelic, psychiatric, and control populations. Using the Moving Rubber Hand Illusion, we tested (N = 75) patients with psychosis, participants with a history of substantial psychedelic experiences, and control participants to see how psychedelic and psychiatric experience impacts the bodily self. Results revealed that psychosis patients had reduced Body Ownership and Sense of Agency during volitional action. The psychedelic group reported subjective long-lasting changes to the sense of self, but no differences between control and psychedelic participants were found. Our results suggest that while psychedelics induce both acute and enduring subjective changes in the sense of self, these are not manifested at the level of the bodily self. Furthermore, our data show that bodily self-processing, related to volitional action, is disrupted in psychosis patients. We discuss these findings in relation to anomalous self-processing across psychedelic and psychotic experiences.
Collapse
Affiliation(s)
- Amir Harduf
- The Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat-Gan, Israel
- The Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Gabriella Panishev
- The Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Eiran V Harel
- Beer Yaakov-Ness Ziona Mental Health Center, Beer Yaakov, Israel
| | - Yonatan Stern
- The Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat-Gan, Israel
- Department of Cognitive Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Roy Salomon
- Department of Cognitive Sciences, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
89
|
Holas P, Kamińska J. Mindfulness meditation and psychedelics: potential synergies and commonalities. Pharmacol Rep 2023; 75:1398-1409. [PMID: 37926796 PMCID: PMC10661803 DOI: 10.1007/s43440-023-00551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
There has been increasing scientific and clinical interest in studying psychedelic and meditation-based interventions in recent years, both in the context of improving mental health and as tools for understanding the mind. Several authors suggest neurophysiological and phenomenological parallels and overlaps between psychedelic and meditative states and suggest synergistic effects of both methods. Both psychedelic-assisted therapy and meditation training in the form of mindfulness-based interventions have been experimentally validated with moderate to large effects as alternative treatments for a variety of mental health problems, including depression, addictions, and anxiety disorders. Both demonstrated significant post-acute and long-term decreases in clinical symptoms and enhancements in well-being in healthy participants, in addition. Postulated shared salutogenic mechanisms, include, among others the ability to alter self-consciousness, present-moment awareness and antidepressant action via corresponding neuromodulatory effects. These shared mechanisms between mindfulness training and psychedelic intervention have led to scientists theorizing, and recently demonstrating, positive synergistic effects when both are used in combination. Research findings suggest that these two approaches can complement each other, enhancing the positive effects of both interventions. However, more theoretical accounts and methodologically sound research are needed before they can be extended into clinical practice. The current review aims to discuss the theoretical rationale of combining psychedelics with mindfulness training, including the predictive coding framework as well as research findings regarding synergies and commonalities between mindfulness training and psychedelic intervention. In addition, suggestions how to combine the two modalities are provided.
Collapse
Affiliation(s)
- Paweł Holas
- Faculty of Psychology, University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
90
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
91
|
Chowdhury A, van Lutterveld R, Laukkonen RE, Slagter HA, Ingram DM, Sacchet MD. Investigation of advanced mindfulness meditation "cessation" experiences using EEG spectral analysis in an intensively sampled case study. Neuropsychologia 2023; 190:108694. [PMID: 37777153 PMCID: PMC10843092 DOI: 10.1016/j.neuropsychologia.2023.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Mindfulness meditation is a contemplative practice informed by Buddhism that targets the development of present-focused awareness and non-judgment of experience. Interest in mindfulness is burgeoning, and it has been shown to be effective in improving mental and physical health in clinical and non-clinical contexts. In this report, for the first time, we used electroencephalography (EEG) combined with a neurophenomenological approach to examine the neural signature of "cessation" events, which are dramatic experiences of complete discontinuation in awareness similar to the loss of consciousness, which are reported to be experienced by very experienced meditators, and are proposed to be evidence of mastery of mindfulness meditation. We intensively sampled these cessations as experienced by a single advanced meditator (with over 23,000 h of meditation training) and analyzed 37 cessation events collected in 29 EEG sessions between November 12, 2019, and March 11, 2020. Spectral analyses of the EEG data surrounding cessations showed that these events were marked by a large-scale alpha-power decrease starting around 40 s before their onset, and that this alpha-power was lowest immediately following a cessation. Region-of-interest (ROI) based examination of this finding revealed that this alpha-suppression showed a linear decrease in the occipital and parietal regions of the brain during the pre-cessation time period. Additionally, there were modest increases in theta power for the central, parietal, and right temporal ROIs during the pre-cessation timeframe, whereas power in the Delta and Beta frequency bands were not significantly different surrounding cessations. By relating cessations to objective and intrinsic measures of brain activity (i.e., EEG power) that are related to consciousness and high-level psychological functioning, these results provide evidence for the ability of experienced meditators to voluntarily modulate their state of consciousness and lay the foundation for studying these unique states using a neuroscientific approach.
Collapse
Affiliation(s)
- Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Remko van Lutterveld
- Brain Research and Innovation Centre, Dutch Ministry of Defence and Department of Psychiatry, University Medical Center, Utrecht, the Netherlands.
| | - Ruben E Laukkonen
- Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia.
| | - Heleen A Slagter
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands; Institute for Brain and Behavior, Vrije Universiteit Amsterdam, the Netherlands.
| | | | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
92
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
93
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
94
|
Masi M. An evidence-based critical review of the mind-brain identity theory. Front Psychol 2023; 14:1150605. [PMID: 37965649 PMCID: PMC10641890 DOI: 10.3389/fpsyg.2023.1150605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
In the philosophy of mind, neuroscience, and psychology, the causal relationship between phenomenal consciousness, mentation, and brain states has always been a matter of debate. On the one hand, material monism posits consciousness and mind as pure brain epiphenomena. One of its most stringent lines of reasoning relies on a 'loss-of-function lesion premise,' according to which, since brain lesions and neurochemical modifications lead to cognitive impairment and/or altered states of consciousness, there is no reason to doubt the mind-brain identity. On the other hand, dualism or idealism (in one form or another) regard consciousness and mind as something other than the sole product of cerebral activity pointing at the ineffable, undefinable, and seemingly unphysical nature of our subjective qualitative experiences and its related mental dimension. Here, several neuroscientific findings are reviewed that question the idea that posits phenomenal experience as an emergent property of brain activity, and argue that the premise of material monism is based on a logical correlation-causation fallacy. While these (mostly ignored) findings, if considered separately from each other, could, in principle, be recast into a physicalist paradigm, once viewed from an integral perspective, they substantiate equally well an ontology that posits mind and consciousness as a primal phenomenon.
Collapse
Affiliation(s)
- Marco Masi
- Independent Researcher, Knetzgau, Germany
| |
Collapse
|
95
|
Rieser NM, Gubser LP, Moujaes F, Duerler P, Lewis CR, Michels L, Vollenweider FX, Preller KH. Psilocybin-induced changes in cerebral blood flow are associated with acute and baseline inter-individual differences. Sci Rep 2023; 13:17475. [PMID: 37838755 PMCID: PMC10576760 DOI: 10.1038/s41598-023-44153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Research into the use of psilocybin for the treatment of psychiatric disorders is a growing field. Nevertheless, robust brain-behavior relationships linking psilocybin-induced brain changes to subjective drug-induced effects have not been established. Furthermore, it is unclear if the acute neural effects are dependent on individual heterogeneity in baseline characteristics. To address this, we assessed the effects of three oral doses of psilocybin vs. placebo on cerebral blood flow (CBF) using arterial spin labeling in healthy participants (N = 70; n = 31, 0.16 mg/kg; n = 10, 0.2 mg/kg; n = 29, 0.215 mg/kg). First, we quantified psilocybin-induced changes in relative and absolute CBF. Second, in an exploratory analysis, we assessed whether individual baseline characteristics and subjective psychedelic experience are associated with changes in CBF. Psychological and neurobiological baseline characteristics correlated with the psilocybin-induced reduction in relative CBF and the psilocybin-induced subjective experience. Furthermore, the psilocybin-induced subjective experience was associated with acute changes in relative and absolute CBF. The results demonstrated that inter-individual heterogeneity in the neural response to psilocybin is associated with baseline characteristics and shed light on the mechanisms underlying the psychedelic-induced altered state. Overall, these findings help guide the search for biomarkers, paving the way for a personalized medicine approach within the framework of psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Nathalie M Rieser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland.
| | - Ladina P Gubser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Flora Moujaes
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Patricia Duerler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Candace R Lewis
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, Zurich, Switzerland
| |
Collapse
|
96
|
Buchborn T, Kettner HS, Kärtner L, Meinhardt MW. The ego in psychedelic drug action - ego defenses, ego boundaries, and the therapeutic role of regression. Front Neurosci 2023; 17:1232459. [PMID: 37869510 PMCID: PMC10587586 DOI: 10.3389/fnins.2023.1232459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023] Open
Abstract
The ego is one of the most central psychological constructs in psychedelic research and a key factor in psychotherapy, including psychedelic-assisted forms of psychotherapy. Despite its centrality, the ego-construct remains ambiguous in the psychedelic literature. Therefore, we here review the theoretical background of the ego-construct with focus on its psychodynamic conceptualization. We discuss major functions of the ego including ego boundaries, defenses, and synthesis, and evaluate the role of the ego in psychedelic drug action. According to the psycholytic paradigm, psychedelics are capable of inducing regressed states of the ego that are less protected by the ego's usual defensive apparatus. In such states, core early life conflicts may emerge that have led to maladaptive ego patterns. We use the psychodynamic term character in this paper as a potential site of change and rearrangement; character being the chronic and habitual patterns the ego utilizes to adapt to the everyday challenges of life, including a preferred set of defenses. We argue that in order for psychedelic-assisted therapy to successfully induce lasting changes to the ego's habitual patterns, it must psycholytically permeate the characterological core of the habits. The primary working principle of psycholytic therapy therefore is not the state of transient ego regression alone, but rather the regressively favored emotional integration of those early life events that have shaped the foundation, development, and/or rigidification of a person's character - including his or her defense apparatus. Aiming for increased flexibility of habitual ego patterns, the psycholytic approach is generally compatible with other forms of psychedelic-assisted therapy, such as third wave cognitive behavioral approaches.
Collapse
Affiliation(s)
- Tobias Buchborn
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hannes S. Kettner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Kärtner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
97
|
Hirschfeld T, Prugger J, Majić T, Schmidt TT. Dose-response relationships of LSD-induced subjective experiences in humans. Neuropsychopharmacology 2023; 48:1602-1611. [PMID: 37161078 PMCID: PMC10516880 DOI: 10.1038/s41386-023-01588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Lysergic acid diethylamide (LSD) is a potent classic serotonergic psychedelic, which facilitates a variety of altered states of consciousness. Here we present the first meta-analysis establishing dose-response relationship estimates of the altered states of consciousness induced by LSD. Data extracted from articles identified by a systematic literature review following PRISMA guidelines were obtained from the Altered States Database. The psychometric data comprised ratings of subjective effects from standardized and validated questionnaires: the Altered States of Consciousness Rating Scale (5D-ASC, 11-ASC) and the Mystical Experience Questionnaire (MEQ30). We performed meta-regression analyses using restricted cubic splines for data from studies with LSD doses of up to 200 μg base. Most scales revealed a sigmoid-like increase of effects, with a plateauing at around 100 μg. The most strongly modulated factors referred to changes in perception and illusory imagination, followed by positively experienced ego-dissolution, while only small effects were found for Anxiety and Dread of Ego Dissolution. The considerable variability observed in most factors and scales points to the role of non-pharmacological factors in shaping subjective experiences. The established dose-response relationships may be used as general references for future experimental and clinical research on LSD to compare observed with expected subjective effects and to elucidate phenomenological differences between psychedelics.
Collapse
Affiliation(s)
- Tim Hirschfeld
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johanna Prugger
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
- International Graduate Program Medical Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tomislav Majić
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry und Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo T Schmidt
- Psychedelic Substances Research Group, Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
98
|
Kanen JW, Luo Q, Rostami Kandroodi M, Cardinal RN, Robbins TW, Nutt DJ, Carhart-Harris RL, den Ouden HEM. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med 2023; 53:6434-6445. [PMID: 36411719 PMCID: PMC10600934 DOI: 10.1017/s0033291722002963] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide (LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such as LSD have been suggested to have therapeutic actions through their effects on learning. The behavioural effects of LSD in humans, however, remain incompletely understood. Here we examined how LSD affects probabilistic reversal learning (PRL) in healthy humans. METHODS Healthy volunteers received intravenous LSD (75 μg in 10 mL saline) or placebo (10 mL saline) in a within-subjects design and completed a PRL task. Participants had to learn through trial and error which of three stimuli was rewarded most of the time, and these contingencies switched in a reversal phase. Computational models of reinforcement learning (RL) were fitted to the behavioural data to assess how LSD affected the updating ('learning rates') and deployment of value representations ('reinforcement sensitivity') during choice, as well as 'stimulus stickiness' (choice repetition irrespective of reinforcement history). RESULTS Raw data measures assessing sensitivity to immediate feedback ('win-stay' and 'lose-shift' probabilities) were unaffected, whereas LSD increased the impact of the strength of initial learning on perseveration. Computational modelling revealed that the most pronounced effect of LSD was the enhancement of the reward learning rate. The punishment learning rate was also elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploration. Reinforcement sensitivity differed by phase. CONCLUSIONS Increased RL rates suggest LSD induced a state of heightened plasticity. These results indicate a potential mechanism through which revision of maladaptive associations could occur in the clinical application of LSD.
Collapse
Affiliation(s)
- Jonathan W. Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200241, China
| | - Mojtaba Rostami Kandroodi
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David J. Nutt
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin L. Carhart-Harris
- Neuroscape Psychedelics Division, University of California San Francisco, San Francisco, California, USA
| | - Hanneke E. M. den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
99
|
Wall MB, Harding R, Zafar R, Rabiner EA, Nutt DJ, Erritzoe D. Neuroimaging in psychedelic drug development: past, present, and future. Mol Psychiatry 2023; 28:3573-3580. [PMID: 37759038 PMCID: PMC10730398 DOI: 10.1038/s41380-023-02271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Psychedelic therapy (PT) is an emerging paradigm with great transdiagnostic potential for treating psychiatric disorders, including depression, addiction, post-traumatic stress disorder, and potentially others. 'Classic' serotonergic psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), which have a key locus of action at the 5-HT2A receptor, form the main focus of this movement, but substances including ketamine, 3,4-Methylenedioxymethamphetamine (MDMA) and ibogaine also hold promise. The modern phase of development of these treatment modalities in the early 21st century has occurred concurrently with the wider use of advanced human neuroscientific research methods; principally neuroimaging. This can potentially enable assessment of drug and therapy brain effects with greater precision and quantification than any previous novel development in psychiatric pharmacology. We outline the major trends in existing data and suggest the modern development of PT has benefitted greatly from the use of neuroimaging. Important gaps in existing knowledge are identified, namely: the relationship between acute drug effects and longer-term (clinically-relevant) effects, the precise characterisation of effects at the 5-HT2A receptor and relationships with functional/clinical effects, and the possible impact of these compounds on neuroplasticity. A road-map for future research is laid out, outlining clinical studies which will directly address these three questions, principally using combined Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) methods, plus other adjunct techniques. Multimodal (PET/MRI) studies using modern PET techniques such as the 5-HT2A-selective ligand [11 C]Cimbi-36 (and other ligands sensitive to neuroplasticity changes) alongside MRI measures of brain function would provide a 'molecular-functional-clinical bridge' in understanding. Such results would help to resolve some of these questions and provide a firmer foundation for the ongoing development of PT.
Collapse
Affiliation(s)
- Matthew B Wall
- Invicro, London, UK.
- Faculty of Medicine, Imperial College London, London, UK.
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK.
| | - Rebecca Harding
- Clinical Psychopharmacology Unit, Faculty of Brain Sciences, University College London, London, UK
| | - Rayyan Zafar
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | | | - David J Nutt
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| | - David Erritzoe
- Faculty of Medicine, Imperial College London, London, UK
- Centre for Psychedelic research and Neuropsychopharmacology, Imperial College London, London, UK
| |
Collapse
|
100
|
Panda R, Vanhaudenhuyse A, Piarulli A, Annen J, Demertzi A, Alnagger N, Chennu S, Laureys S, Faymonville ME, Gosseries O. Altered Brain Connectivity and Network Topological Organization in a Non-ordinary State of Consciousness Induced by Hypnosis. J Cogn Neurosci 2023; 35:1394-1409. [PMID: 37315333 DOI: 10.1162/jocn_a_02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in 9 healthy participants during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six ROIs (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions; (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions); and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. This higher network integration and segregation was measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.
Collapse
Affiliation(s)
| | | | | | - Jitka Annen
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Naji Alnagger
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Steven Laureys
- University of Liège, Belgium
- University Hospital of Liège, Belgium
- Laval University, Québec, Canada
| | | | - Olivia Gosseries
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| |
Collapse
|