51
|
Zhong H, Huang RJ, Chang Y, Duan J, Lin C, Chen Y. Enhanced formation of secondary organic aerosol from photochemical oxidation during the COVID-19 lockdown in a background site in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:144947. [PMID: 33725613 PMCID: PMC8613705 DOI: 10.1016/j.scitotenv.2021.144947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has drastically affected the economic and social activities, leading to large reductions in anthropogenic emissions on a global scale. Despite the reduction of primary emissions during the lockdown period, heavy haze pollution was observed unexpectedly in megacities in North and East China. In this study, we conducted online measurements of organic aerosol in a background site before and during the lockdown in Guanzhong basin, Northwest China. The oxygenated organic aerosol (OOA) increased from 24% of total OA (3.2 ± 1.6 μg m-3) before lockdown to 54% of total OA (4.5 ± 1.3 μg m-3) during lockdown, likely due to substantial decrease of NOx emissions during lockdown which resulted in large increase of O3 and thus atmospheric oxidizing capacity. OOA showed higher mass concentrations and fractional contributions during lockdown than before lockdown, and increased with the increase of Ox in both periods. In comparison, aqueous secondary organic aerosol (aqSOA) showed high mass concentrations and fractional contributions in both polluted periods before and during lockdown with the increase of aerosol liquid water content (ALWC). The increase of aqSOA under high ALWC conditions is very likely the reason of pollution events during lockdown. Combined with trajectory analysis, the absence of Guanzhong cluster in polluted period during lockdown may play a key role in the OA variations between two polluted periods. In addition, when comparing the clusters from the same transmission directions between before lockdown and during lockdown, the OA fractions showed similar variations during lockdown in all clusters, suggesting the OA variations are widespread in northwest China.
Collapse
Affiliation(s)
- Haobin Zhong
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yunhua Chang
- KLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jing Duan
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
52
|
Chen LWA, Chow JC, Wang X, Cao J, Mao J, Watson JG. Brownness of Organic Aerosol over the United States: Evidence for Seasonal Biomass Burning and Photobleaching Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8561-8572. [PMID: 34129328 DOI: 10.1021/acs.est.0c08706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light-absorptivity of organic aerosol may play an important role in visibility and climate forcing, but it has not been assessed as extensively as black carbon (BC) aerosol. Based on multiwavelength thermal/optical analysis and spectral mass balance, this study quantifies BC for the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network while developing a brownness index (γBr) for non-BC organic carbon (OC*) to illustrate the spatiotemporal trends of light-absorbing brown carbon (BrC) content. OC* light absorption efficiencies range from 0 to 3.1 m2 gC-1 at 405 nm, corresponding to the lowest and highest BrC content of 0 and 100%, respectively. BC, OC*, and γBr explain >97% of the variability of measured spectral light absorption (405-980 nm) across 158 IMPROVE sites. Network-average OC* light absorptions at 405 nm are 50 and 28% those for BC over rural and urban areas, respectively. Larger organic fractions of light absorption occur in winter, partially due to higher organic brownness. Winter γBr exhibits a dramatic regional/urban-rural contrast consistent with anthropogenic BrC emissions from residential wood combustion. The spatial differences diminish to uniformly low γBr in summer, suggesting effective BrC photobleaching over the midlatitudes. An empirical relationship between BC, ambient temperature, and γBr is established, which can facilitate the incorporation of organic aerosol absorptivity into climate and visibility models that currently assume either zero or static organic light absorption efficiencies.
Collapse
Affiliation(s)
- Lung-Wen Antony Chen
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiaoliang Wang
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - Junji Cao
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jingqiu Mao
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska 99775, United States
| | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, United States
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
53
|
Zhao S, Yin D, Yu Y, Kang S, Ren X, Zhang J, Zou Y, Qin D. PM 1 chemical composition and light absorption properties in urban and rural areas within Sichuan Basin, southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116970. [PMID: 33780845 DOI: 10.1016/j.envpol.2021.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Sichuan Basin is encircled by high mountains and plateaus with the heights ranging from 1 km to 3 km, and is one of the most polluted regions in China. However, the dominant chemical species and light absorption properties of aerosol particles is still not clear in rural areas. Chemical composition in PM1 (airborne particulate matter with an aerodynamic diameter less than 1 μm) and light-absorbing properties were determined in Chengdu (urban) and Sanbacun (rural) in western Sichuan Basin (WSB), Southwest China. Carbonaceous aerosols and secondary inorganic ions (NH4+, NO3- and SO42-) dominate PM1 pollution, contributing more than 85% to PM1 mass at WSB. The mean concentrations of organic and elemental carbon (OC, EC), K+ and Cl- are 19.69 μg m-3, 8.00 μg m-3, 1.32 μg m-3, 1.16 μg m-3 at the rural site, which are 26.2%, 65.3%, 34.7% and 48.7% higher than those at the urban site, respectively. BrC (brown carbon) light absorption coefficient at 405 nm is 63.90 ± 27.81 M m-1 at the rural site, contributing more than half of total absorption, which is about five times higher than that at urban site (10.43 ± 4.74 M m-1). Compared with secondary OC, rural BrC light absorption more depends on primary OC from biomass and coal burning. The rural MAEBrC (BrC mass absorption efficiency) at 405 nm ranges from 0.6 to 5.1 m2 g-1 with mean value of 3.5 ± 0.8 m2 g-1, which is about three times higher than the urban site.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Pingliang Land Surface Process & Severe Weather Research Station, Pingliang, 744015, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Xiaolin Ren
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Jing Zhang
- Maerkang Meteorological Bureau, Maerkang, 624000, China
| | - Yong Zou
- Lixian Meteorological Bureau, Lixian, 624000, China
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
54
|
Hallar AG, Brown SS, Crosman E, Barsanti K, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL, Mallia DV, Martin R, Mendoza D, Oldroyd HJ, Pichugina Y, Pratt KA, Saide P, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A. Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2021; 0:1-94. [PMID: 34446943 PMCID: PMC8384125 DOI: 10.1175/bams-d-20-0017.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.
Collapse
Affiliation(s)
| | | | - Erik Crosman
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of California, Davis 95616 USA
| | - Ian Faloona
- Department of Land, Air and Water Resources, University of California, Davis
| | - Jerome Fast
- Atmospheric Science and Global Change Division, Pacific Northwest, National Laboratory, Richland, Washington, USA
| | - Heather A. Holmes
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT
| | - John Horel
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - John Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Logan Mitchell
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Jennifer Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado/ NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Viney Aneja
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | | | - Roya Bahreini
- Environmental Sciences, University of California, Riverside, CA
| | | | - Casey Bray
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | - Alan Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Dana Caulton
- Department of Atmospheric Science, University of Wyoming
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences & Department of Chemistry, University of Colorado, Boulder, CO
| | | | | | - Cassandra J. Gaston
- Department of Atmospheric Science - Rosenstiel School of Marine and Atmospheric Science, University of Miami
| | - Sebastian Hoch
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Nakul N. Karle
- Environmental Science and Engineering, The University of Texas at El Paso, TX
| | - James T. Kelly
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC
| | - Kerry Kelly
- Chemical Engineering, University of Utah, Salt Lake City, UT
| | - Neil Lareau
- Atmospheric Sciences and Environmental Sciences and Health, University of Nevada, Reno, NV
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871
| | - Roy L. Mauldin
- National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Derek V. Mallia
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Randal Martin
- Civil and Environmental Engineering, Utah State University, Utah Water Research Laboratory, Logan, UT
| | - Daniel Mendoza
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Holly J. Oldroyd
- Department of Civil and Environmental Engineering, University of California, Davis
| | | | | | - Pablo Saide
- Department of Atmospheric and Oceanic Sciences, and Institute of the Environment and Sustainability, University of California, Los Angeles
| | - Phillip J. Silva
- Food Animal Environmental Systems Research Unit, USDA-ARS, Bowling Green, KY
| | - William Simpson
- Department of Chemistry, Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160
| | - Britton B. Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
| | - Amy Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO
| |
Collapse
|
55
|
Felber T, Schaefer T, He L, Herrmann H. Aromatic Carbonyl and Nitro Compounds as Photosensitizers and Their Photophysical Properties in the Tropospheric Aqueous Phase. J Phys Chem A 2021; 125:5078-5095. [PMID: 34096724 DOI: 10.1021/acs.jpca.1c03503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary organic aerosol formation in the atmospheric aqueous/particulate phase by photosensitized reactions is currently subject to uncertainties. To understand the impact of photosensitized reactions, photophysical and -chemical properties of photosensitizers, kinetic data, and reaction mechanisms of these processes are required. The photophysical properties of acetophenones, benzaldehydes, benzophenones, and naphthalenes were investigated in aqueous solution using laser flash excitation. Quantum yields of excited photosensitizers were determined giving values between 0.06-0.80 at 298 K and pH = 5. Molar absorption coefficients (εmax(3PS*) = (0.8-13) × 104 L mol-1 cm-1), decay rate constants in water (k1st = (9.4 ± 0.5) × 102 to (2.2 ± 0.1) × 105 s-1), and quenching rate constants with oxygen (kq(O2) = (1.7 ± 0.1-4.4 ± 0.4) × 109 L mol-1 s-1) of the excited triplet states were determined at 298 K and pH = 5. Photosensitized reactions of carboxylic acids and alkenes show second-order rate constants in the range of (37 ± 7.0-0.55 ± 0.1) × 104 and (27 ± 5.0-0.04 ± 0.01) × 108 L mol-1 s-1. The results show that different compound classes act differently as a photosensitizer and can be a sink for certain organic compounds in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Tamara Felber
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Lin He
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
56
|
Characterization of Products from the Aqueous-Phase Photochemical Oxidation of Benzene-Diols. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical processing in atmospheric aqueous phases, including cloud and fog drops, might be significant in reconciling the gap between observed and modeled secondary organic aerosol (SOA) properties. In this work, we conducted a relatively comprehensive investigation of the reaction products generated from the aqueous-phase photochemical oxidation of three benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radical (·OH), triplet excited state (3C*) 3,4-dimethoxybenzaldehyde (3,4-DMB), and direct photolysis without any added oxidants. The results show that OH-initiated photo-degradation is the fastest of all the reaction systems. For the optical properties, the aqueous oxidation products generated under different reaction conditions all exhibited photo-enhancement upon illumination by simulated sunlight, and the light absorption was wavelength dependent on and increased as a function of the reaction time. The oxygen-to-carbon (O/C) ratio of the products also gradually increased against the irradiation time, indicating the persistent formation of highly oxygenated low-volatility products throughout the aging process. More importantly, aqueous-phase products from photochemical oxidation had an increased oxidative potential (OP) compared with its precursor, indicating they may more adversely impact health. The findings in this work highlight the importance of aqueous-phase photochemical oxidation, with implications for aqueous SOA formation and impacts on both the chemical properties and health effects of OA.
Collapse
|
57
|
Jiang W, Misovich MV, Hettiyadura APS, Laskin A, McFall AS, Anastasio C, Zhang Q. Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase-Chemical Evolution and Light Absorption Properties of AqSOA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5199-5211. [PMID: 33733745 DOI: 10.1021/acs.est.0c07581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Guaiacyl acetone (GA) is a phenolic carbonyl emitted in significant quantities by wood combustion that undergoes rapid aqueous-phase oxidation to produce aqueous secondary organic aerosol (aqSOA). We investigate the photosensitized oxidation of GA by an organic triplet excited state (3C*) and the formation and aging of the resulting aqSOA in wood smoke-influenced fog/cloud water. The chemical transformations of the aqSOA were characterized in situ using a high-resolution time-of-flight aerosol mass spectrometer. Additionally, aqSOA samples collected over different time periods were analyzed using high-performance liquid chromatography coupled with a photodiode array detector and a high-resolution Orbitrap mass spectrometer (HPLC-PDA-HRMS) to provide details on the molecular composition and optical properties of brown carbon (BrC) chromophores. Our results show efficient formation of aqSOA from GA, with an average mass yield around 80%. The composition and BrC properties of the aqSOA changed significantly over the course of reaction. Three generations of aqSOA products were identified via positive matrix factorization analysis of the aerosol mass spectrometry data. Oligomerization and functionalization dominated the production of the first-generation aqSOA, whereas fragmentation and ring-opening reactions controlled the formation of more oxidized second- and third-generation products. Significant formation of BrC was observed in the early stages of the photoreaction, while organic acids were produced throughout the experiment. High-molecular weight molecules (m/z > 180) with high aromaticity were identified via HPLC-PDA-HRMS and were found to account for a majority of the UV-vis absorption of the aqSOA.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Maria V Misovich
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Anusha P S Hettiyadura
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander S McFall
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
58
|
Li F, Tsona NT, Li J, Du L. Aqueous-phase oxidation of syringic acid emitted from biomass burning: Formation of light-absorbing compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144239. [PMID: 33412376 DOI: 10.1016/j.scitotenv.2020.144239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Syringic acid is a methoxyphenol model compound derived from biomass burning, and its photooxidation processes have important effects on atmospheric chemistry. However, its aqueous-phase photochemistry remains unclear. In this study, we systematically report the photooxidation of syringic acid induced by OH radicals in the aqueous phase. Employing the relative rate technique, the bimolecular rate constant for syringic acid reaction with OH radicals was acquired to be (1.1 ± 0.3) × 1010 M-1 s-1. Notably, colored products were formed as the reaction progressed. Furthermore, the UV-vis and fluorescence spectra confirmed the formation of light-absorbing organic species, and the results agreed well with previous results on atmospheric and natural humic-like substances (HULIS). The photooxidation products were detected by high performance liquid chromatography mass spectrometry (HPLC/MS), and a possible reaction mechanism was proposed. The aqueous-phase reaction of syringic acid would undergo functionalization process forming a hydroxylation product that enhances the degree of oxidation of aqueous secondary organic aerosol (aqSOA), and goes through dimerization process by C-C or C-O coupling of phenoxy radicals which may conduce to the formation of HULIS. These findings suggest that the photooxidation of syringic acid is an important pathway for highly oxygenated phenolic aqSOA formation, providing a secondary source for HULIS in a liquid phase or in deliquescent particles surrounded by a layer of water.
Collapse
Affiliation(s)
- Fenghua Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
59
|
Choudhary V, Rajput P, Gupta T. Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115932. [PMID: 33248827 DOI: 10.1016/j.envpol.2020.115932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Light-absorbing organic aerosols, also known as brown carbon (BrC), enhance the warming effect of the Earth's atmosphere. The seasonal and spatial variability of BrC absorption properties is poorly constrained and accounted for in the climate models resulting in a substantial underestimation of their radiative forcing estimates. This study reports seasonal and spatial variability of absorption properties and simple forcing efficiency of light-absorbing water-soluble organic carbon (WSOC, SFEWSOC) by utilizing current and previous field-based measurements reported mostly from Asia along with a few observations from Europe, the USA, and the Amazon rainforest. The absorption coefficient of WSOC at 365 nm (babs-365) and the concentrations of carbonaceous species at Kanpur were about an order of magnitude higher during winter than in the monsoon season owing to differences in the boundary layer height, active sources and their strengths, and amount of seasonal wet precipitation. The WSOC aerosols during winter exhibited ∼1.6 times higher light absorption capacity than in the monsoon season at Kanpur site. The assessment of spatial variability of the imaginary component of the refractive index spectrum (kλ) across South Asia has revealed that it varies from ∼1 to 2 orders of magnitude and light absorption capacity of WSOC ranges from 3 to 21 W/g. The light absorption capacity of WSOC aerosols exhibited less spatial variability across East Asia (5-13 W/g) when compared to that in the South Asia. The photochemical aging of WSOC aerosols, indicated by the enhancement in WSOC/OC ratio, was linked to degradation in their light absorption capacity, whereas the absorption Ångström exponent (AAE) remained unaffected. This study recommends the adoption of refined climate models where sampling regime specific absorption properties are calculated separately, such that these inputs can better constrain the model estimates of the global effects of BrC.
Collapse
Affiliation(s)
- Vikram Choudhary
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India.
| | - Prashant Rajput
- Centre for Environmental Health (CEH), Public Health Foundation of India, Gurugram, Haryana, 122002, India
| | - Tarun Gupta
- Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur, 208 016, India
| |
Collapse
|
60
|
Wang J, Ye J, Zhang Q, Zhao J, Wu Y, Li J, Liu D, Li W, Zhang Y, Wu C, Xie C, Qin Y, Lei Y, Huang X, Guo J, Liu P, Fu P, Li Y, Lee HC, Choi H, Zhang J, Liao H, Chen M, Sun Y, Ge X, Martin ST, Jacob DJ. Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proc Natl Acad Sci U S A 2021; 118:e2022179118. [PMID: 33593919 PMCID: PMC7923588 DOI: 10.1073/pnas.2022179118] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secondary organic aerosol (SOA) produced by atmospheric oxidation of primary emitted precursors is a major contributor to fine particulate matter (PM2.5) air pollution worldwide. Observations during winter haze pollution episodes in urban China show that most of this SOA originates from fossil-fuel combustion but the chemical mechanisms involved are unclear. Here we report field observations in a Beijing winter haze event that reveal fast aqueous-phase conversion of fossil-fuel primary organic aerosol (POA) to SOA at high relative humidity. Analyses of aerosol mass spectra and elemental ratios indicate that ring-breaking oxidation of POA aromatic species, leading to functionalization as carbonyls and carboxylic acids, may serve as the dominant mechanism for this SOA formation. A POA origin for SOA could explain why SOA has been decreasing over the 2013-2018 period in response to POA emission controls even as emissions of volatile organic compounds (VOCs) have remained flat.
Collapse
Affiliation(s)
- Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Jianhuai Ye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| | - Jian Zhao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yangzhou Wu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Weijun Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yange Zhang
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Conghui Xie
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yiming Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Yali Lei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Xiangpeng Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianping Guo
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Hyun Chul Lee
- Samsung Advance Institute of Technology, Gyeonggi-do, Suwon-si 16678, Republic of Korea
| | - Hyoungwoo Choi
- Samsung Advance Institute of Technology, Gyeonggi-do, Suwon-si 16678, Republic of Korea
| | - Jie Zhang
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
| | - Scot T Martin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Daniel J Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
61
|
Duan J, Huang RJ, Gu Y, Lin C, Zhong H, Wang Y, Yuan W, Ni H, Yang L, Chen Y, Worsnop DR, O'Dowd C. The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144077. [PMID: 33280860 DOI: 10.1016/j.scitotenv.2020.144077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Secondary organic aerosol (SOA) is an important contributor to organic aerosol (OA), however, the model simulations of SOA concentrations and oxidation states remain significant uncertainties because of inadequate cognition of its formation and aging chemistry. In this study, SOA formation and evolution processes during summer in Xi'an were investigated, based on high-resolution online measurements of non-refractory PM2.5 (NR-PM2.5) species and OA source apportionment using positive matrix factorization. The results showed that the total SOA, including less oxidized-oxygenated OA (LO-OOA), more oxidized-oxygenated OA (MO-OOA), and aqueous-phase-processed oxygenated OA (aq-OOA), on average constituted 69% of OA, and 43% of NR-PM2.5, suggesting the high atmospheric oxidation capacity and the dominance of SOA during summer in Xi'an. Photochemical oxidation processes dominated the summertime SOA formation both during non-fog-rain days and fog-rain days, which were responsible for the formation of both LO-OOA and MO-OOA. Consistently, LO-OOA and MO-OOA in total contributed 59% to OA during non-fog-rain days and 56% to OA during fog-rain days, respectively. On the contrary, aq-OOA was mainly observed during fog-rain days, which increased dramatically from 2% of OA during non-fog-rain days to 19% of OA during fog-rain days with the mass concentration increasing accordingly from 0.3 μg m-3 to 2.5 μg m-3. Episodic analyses further highlighted the persistently high RH period with high aerosol liquid water content (ALWC) was the driving factor of aq-OOA formation, and high Ox condition could further enhance its formation. Meanwhile, air masses from east and southeast were much favorable for the formation of long-time fog-rain days, which facilitated aq-OOA production during summer in Xi'an.
Collapse
Affiliation(s)
- Jing Duan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yifang Gu
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haobin Zhong
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Yuan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lu Yang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | | | - Colin O'Dowd
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway H91CF50, Ireland
| |
Collapse
|
62
|
Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program). ATMOSPHERE 2021. [DOI: 10.3390/atmos12020207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CARA program has been running since 2008 by the French reference laboratory for air quality monitoring (LCSQA) and the regional monitoring networks, to gain better knowledge—at a national level—on particulate matter (PM) chemistry and its diverse origins in urban environments. It results in strong collaborations with international-level academic partners for state-of-the-art, straightforward, and robust results and methodologies within operational air quality stakeholders (and subsequently, decision makers). Here, we illustrate some of the main outputs obtained over the last decade, thanks to this program, regarding methodological aspects (both in terms of measurement techniques and data treatment procedures) as well as acquired knowledge on the predominant PM sources. Offline and online methods are used following well-suited quality assurance and quality control procedures, notably including inter-laboratory comparison exercises. Source apportionment studies are conducted using various receptor modeling approaches. Overall, the results presented herewith underline the major influences of residential wood burning (during the cold period) and road transport emissions (exhaust and non-exhaust ones, all throughout the year), as well as substantial contributions of mineral dust and primary biogenic particles (mostly during the warm period). Long-range transport phenomena, e.g., advection of secondary inorganic aerosols from the European continental sector and of Saharan dust into the French West Indies, are also discussed in this paper. Finally, we briefly address the use of stable isotope measurements (δ15N) and of various organic molecular markers for a better understanding of the origins of ammonium and of the different organic aerosol fractions, respectively.
Collapse
|
63
|
Cheng H, Dong X, Yang Y, Feng Y, Wang T, Tahir MA, Zhang L, Fu H. Au nanoring arrays as surface enhanced Raman spectroscopy substrate for chemical component study of individual atmospheric aerosol particle. J Environ Sci (China) 2021; 100:11-17. [PMID: 33279023 DOI: 10.1016/j.jes.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 06/12/2023]
Abstract
Monolayer-ordered gold nanoring arrays were prepared by ion-sputtering method and used as surface enhanced Raman spectroscopy (SERS) substrates to test the individual atmospheric aerosols particle. Compared to other methods used for testing atmospheric aerosols particles, the collection and subsequent detection in our work is performed directly on the gold nanoring SERS substrate without any treatment of the analyte. The SERS performance can be tuned by changing the depth of the gold nanoring cavity as originating from coupling of dipolar modes at the inner and outer surfaces of the nanorings. The electric field exhibits uniform enhancement and polarization in the ordered Au nanoring substrate, which can improve the accuracy for detecting atmospheric aerosol particles. Combined with Raman mapping, the information about chemical composition of individual atmospheric aerosols particle and distribution of specific components can be presented visually. The results show the potential of SERS in enabling improved analysis of aerosol particle chemical composition, mixing state, and other related physicochemical properties.
Collapse
Affiliation(s)
- Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Xu Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yiqing Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
64
|
Sui X, Xu B, Yao J, Kostko O, Ahmed M, Yu XY. New Insights into Secondary Organic Aerosol Formation at the Air-Liquid Interface. J Phys Chem Lett 2021; 12:324-329. [PMID: 33352051 DOI: 10.1021/acs.jpclett.0c03319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air-liquid interfacial processing of volatile organic compound photooxidation has been suggested as an important source of secondary organic aerosols. However, owing to the lack of techniques for studying the air-liquid interface, the detailed interfacial mechanism remains speculative. To obviate this, we enabled in situ synchrotron-based vacuum ultraviolet single photon ionization mass spectrometry using the system for analysis at the liquid-vacuum interface microreactor to study glyoxal photooxidation at the air-liquid interface. Determination of reaction intermediates and new oxidation products, including polymers and oligomers, by mass spectral analysis and appearance energy measurements has been reported for the first time. Furthermore, an expanded reaction mechanism of photooxidation and free radical induced reactions as a source of aqueous secondary organic aerosol formation is proposed. Single photon ionization can provide new insights into interfacial chemistry.
Collapse
Affiliation(s)
- Xiao Sui
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, China
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California. 94720, United States
| | - Jenn Yao
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California. 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California. 94720, United States
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
65
|
Chen H, Samet JM, Bromberg PA, Tong H. Cardiovascular health impacts of wildfire smoke exposure. Part Fibre Toxicol 2021; 18:2. [PMID: 33413506 PMCID: PMC7791832 DOI: 10.1186/s12989-020-00394-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, wildland fires have occurred more frequently and with increased intensity in many fire-prone areas. In addition to the direct life and economic losses attributable to wildfires, the emitted smoke is a major contributor to ambient air pollution, leading to significant public health impacts. Wildfire smoke is a complex mixture of particulate matter (PM), gases such as carbon monoxide, nitrogen oxide, and volatile and semi-volatile organic compounds. PM from wildfire smoke has a high content of elemental carbon and organic carbon, with lesser amounts of metal compounds. Epidemiological studies have consistently found an association between exposure to wildfire smoke (typically monitored as the PM concentration) and increased respiratory morbidity and mortality. However, previous reviews of the health effects of wildfire smoke exposure have not established a conclusive link between wildfire smoke exposure and adverse cardiovascular effects. In this review, we systematically evaluate published epidemiological observations, controlled clinical exposure studies, and toxicological studies focusing on evidence of wildfire smoke exposure and cardiovascular effects, and identify knowledge gaps. Improving exposure assessment and identifying sensitive cardiovascular endpoints will serve to better understand the association between exposure to wildfire smoke and cardiovascular effects and the mechanisms involved. Similarly, filling the knowledge gaps identified in this review will better define adverse cardiovascular health effects of exposure to wildfire smoke, thus informing risk assessments and potentially leading to the development of targeted interventional strategies to mitigate the health impacts of wildfire smoke.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37830, USA.
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
66
|
Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proc Natl Acad Sci U S A 2020; 117:33028-33033. [PMID: 33318218 PMCID: PMC7776776 DOI: 10.1073/pnas.2010365117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To quantify the full implications of biomass burning emissions on the atmosphere, it is essential to accurately represent the emission plume after it has undergone chemical aging in the atmosphere. Atmospheric models typically consider the predominant aging pathway of biomass burning emissions to take place in the presence of sunlight (via the OH radical); however, this mechanism leads to consistent underpredictions of oxidized organic aerosol in wintertime urban areas. Here, we show, through a combination of laboratory experiments, ambient field measurements, and chemical transport modeling, that biomass burning emission plumes exposed to NO2 and O3 age rapidly without requiring any sunlight, thus providing an overlooked source of oxidized organic aerosol previously not accounted for in models. Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.
Collapse
|
67
|
Felber T, Schaefer T, Herrmann H. Five-Membered Heterocycles as Potential Photosensitizers in the Tropospheric Aqueous Phase: Photophysical Properties of Imidazole-2-carboxaldehyde, 2-Furaldehyde, and 2-Acetylfuran. J Phys Chem A 2020; 124:10029-10039. [PMID: 33202138 DOI: 10.1021/acs.jpca.0c07028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosensitized reactions of organic compounds in the atmospheric aqueous and particle phase might be potential sources for secondary organic aerosol (SOA) formation, addressed as aqueous SOA. However, data regarding the photophysical properties of photosensitizers, their kinetics, as well as reaction mechanisms of such processes in the aqueous/particle phase are scarce. The present study investigates the determination of the photophysical properties of imidazole-2-carboxaldehyde, 2-furaldehyde, and 2-acetylfuran as potential photosensitizers using laser flash excitation in aqueous solution. Quantum yields of the formation of the excited photosensitizers were obtained by a scavenging method with thiocyanate, resulting in values between 0.86 and 0.96 at 298 K and pH = 5. The time-resolved absorbance spectra of the excited photosensitizers were measured, and their molar attenuation coefficients were determined ranging between (0.30 and 1.4) × 104 L mol-1 cm-1 at their absorbance maxima (λmax = 335-440 nm). Additionally, the excited photosensitizers are quenched by water and molecular oxygen, resulting in quenching rate constants of k1st = (1.0 ± 0.2-1.8 ± 0.2) × 105 s-1 and kq(O2) = (2.1 ± 0.2-2.7 ± 0.2) × 109 L mol-1 s-1, respectively.
Collapse
Affiliation(s)
- Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
68
|
Zhang L, Luo Z, Du W, Li G, Shen G, Cheng H, Tao S. Light absorption properties and absorption emission factors for indoor biomass burning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115652. [PMID: 33254648 DOI: 10.1016/j.envpol.2020.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
The optical properties of light-absorbing carbonaceous aerosols have caused increasing concerns due to their significant impacts on local and regional climates. In this study, particles from biomass burning in home stoves were collected and evaluated for their optical properties. The absorption Ångström exponent (AAE) values ranged from 1.17 to 2.92 and negatively correlated with the modified combustion efficiency, indicatinging more brown carbon in combustion emissions with relatively low combustion efficiencies. The average contribution of brown carbon to the total aerosol absorption at 370 nm was equally as important as that of black carbon (BC), with the average relative contribution fraction of 50% varying from 10% to 84% for different biomasses. The average value of the mass absorption efficiency (MAE) of BC (MAEBC) at 880 nm was positively correlated with the ratio of organic carbon to elemental carbon, indicating the significant coating effects of organic aerosols. The MAE values of BrC at 370 nm were in the range of 1.1-11.3 m2/g, with an average of 5.1 ± 2.2 m2/g. The estimated absorption emission factors at 370 nm and 880 nm were 3.75 ± 3.45 and 0.84 ± 0.78 m2/kg, respectively. Optical property information of particles emitted from real-world biomass burning are imperative in future modeling studies of biomass burning impacts on climate. The limitation of the relatively small sample size for each subgroup fuel calls for more field- and lab-based emission characterization research.
Collapse
Affiliation(s)
- Lu Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wei Du
- Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Gang Li
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Hefa Cheng
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
69
|
Yang S, Duan F, Ma Y, Li H, Wang J, Du Z, Xu Y, Zhang T, Zhu L, Huang T, Kimoto T, Zhang L, He K. Characteristics and seasonal variations of high-molecular-weight oligomers in urban haze aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141209. [PMID: 32763608 DOI: 10.1016/j.scitotenv.2020.141209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Organic aerosols (OA) undergo sophisticated physiochemical processes in the atmosphere, playing a crucial role in extreme haze formations over the Northern China Plain. However, current understandings of the detailed composition and formation pathways are limited. In this study, high-molecular weight (HMW) species were observed in samples collected year-round in urban Beijing, especially in autumn and winter, during 2016-2017. The positive-ion-mode mass spectra of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed that higher signal intensities were obtained in the mass-to-charge (m/z) ranges of 200-500 and 800-900, with repetitive mass difference patterns of m/z 12, 14, 16, and 18. This provided sound evidence that high-molecular-weight oligomers were generated as haze episodes became exacerbated. These oligomer signal intensities were enhanced in the presence of high relative humidity, aerosol water content, and PM2.5 (particles with an aerodynamic diameter ≤ 2.5 μm) mass, proving that the multiphase reaction processes play a fundamental role in haze formation in Beijing. Our study can form a basis for improved air pollution mitigation measures aimed at OA to improve health outcomes.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Yongliang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Jiali Wang
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka 543-0024, Japan
| | - Zhenyu Du
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Yunzhi Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Huang
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka 543-0024, Japan
| | - Takashi Kimoto
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka 543-0024, Japan
| | - Lifei Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
70
|
Cheng Y, Yu QQ, Liu JM, Du ZY, Liang LL, Geng GN, Ma WL, Qi H, Zhang Q, He KB. Secondary inorganic aerosol during heating season in a megacity in Northeast China: Evidence for heterogeneous chemistry in severe cold climate region. CHEMOSPHERE 2020; 261:127769. [PMID: 32738716 DOI: 10.1016/j.chemosphere.2020.127769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The characteristics of secondary inorganic aerosol including sulfate, nitrate and ammonium (SNA) were investigated during a six-month long heating season in the Harbin-Changchun metropolitan area, i.e., China's only national-level city cluster located in the severe cold climate region. The contribution of SNA to fine particulate matter (PM2.5) tended to decrease with increasing PM2.5 concentration, opposite to the trend repeatedly observed during winter in Beijing. Heterogeneous sulfate formation was still evident when the daily average temperature was as low as below -10 °C, with the preconditions of high relative humidity (RH; above ∼80%) and high nitrogen dioxide (above ∼60 μg/m3). Both the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were enhanced at high RH, reaching ∼0.3. However, the high RH conditions were not commonly seen during the heating season, which should be responsible for the overall lack of linkage between the SNA contribution and PM2.5 temporal variation.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Qin-Qin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jiu-Meng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Zhen-Yu Du
- National Research Center for Environmental Analysis and Measurement, Environmental Development Center of the Ministry of Ecology and Environment, Beijing, China.
| | - Lin-Lin Liang
- State Key Laboratory of Severe Weather & CMA Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Guan-Nan Geng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
71
|
Zhang Y, Albinet A, Petit JE, Jacob V, Chevrier F, Gille G, Pontet S, Chrétien E, Dominik-Sègue M, Levigoureux G, Močnik G, Gros V, Jaffrezo JL, Favez O. Substantial brown carbon emissions from wintertime residential wood burning over France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140752. [PMID: 32663683 DOI: 10.1016/j.scitotenv.2020.140752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Brown carbon (BrC) is known to absorb light at subvisible wavelengths but its optical properties and sources are still poorly documented, leading to large uncertainties in climate studies. Here, we show its major wintertime contribution to total aerosol absorption at 370 nm (18-42%) at 9 different French sites. Moreover, an excellent correlation with levoglucosan (r2 = 0.9 and slope = 22.2 at 370 nm), suggesting important contribution of wood burning emissions to ambient BrC aerosols in France. At all sites, BrC peaks were mainly observed during late evening, linking to local intense residential wood burning during this time period. Furthermore, the geographic origin analysis also highlighted the high potential contribution of local and/or small-regional emissions to BrC. Focusing on the Paris region, twice higher BrC mass absorption efficiency value was obtained for less oxidized biomass burning organic aerosols (BBOA) compared to more oxidized BBOA (e.g., about 4.9 ± 0.2 vs. 2.0 ± 0.1 m2 g-1, respectively, at 370 nm). Finally, the BBOA direct radiative effect was found to be 40% higher when these two BBOA fractions are treated as light-absorbing species, compared to the non-absorbing BBOA scenario.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
| | - Alexandre Albinet
- Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Laboratoire Central de Surveillance de la Qualité de l'Air (LCSQA), F-60550 Verneuil-en-Halatte, France
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Véronique Jacob
- Univ. Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | | | | | | | | | | | | | - Griša Močnik
- Univ. of Nova Gorica, Center for Atmos. Research, Ajdovščina, Slovenia; J. Stefan Institute, Condensed Matter Physics Dpt., Ljubljana, Slovenia
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Laboratoire Central de Surveillance de la Qualité de l'Air (LCSQA), F-60550 Verneuil-en-Halatte, France.
| |
Collapse
|
72
|
Jiang H, Li J, Chen D, Tang J, Cheng Z, Mo Y, Su T, Tian C, Jiang B, Liao Y, Zhang G. Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China. ENVIRONMENT INTERNATIONAL 2020; 144:106079. [PMID: 32866733 DOI: 10.1016/j.envint.2020.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric brown carbon (BrC) is an important constituent of light-absorbing organic aerosols with many unclear issues. Here, the light-absorption properties of BrC with different polarity characteristics at a regional site of Pearl River Delta Region during 2016-2017, influenced by sources and molecular compositions, were revealed using radiocarbon analysis and Fourier transform ion cyclotron resonance mass spectrometry. Humic-like substance (HULIS), middle polar (MP), and low polar (LP) carbon fractions constitute 46 ± 17%, 30 ± 7%, and 7 ± 3% of total absorption coefficient from bulk extracts, respectively. Our results show that the absorption proportions of HULIS and MP to the total BrC absorption are higher than their mass proportions to organic carbon mass, indicating that HULIS and MP are the main light-absorbing components in water-soluble and water-insoluble organic carbon fractions, respectively. With decreases in non-fossil HULIS, MP, and LP carbon fractions (66 ± 2%, 52 ± 2%, and 36 ± 3%, respectively), the abundances of unsaturated compounds and mass absorption efficiency at 365 nm of three fractions decreased synchronously. Increases in both non-fossil carbon and levoglucosan in winter imply that the enhanced light-absorption could be attributed to elevated levels of biomass burning organic aerosols (BBOA), which increases the number of light-absorbing nitrogen-containing compounds. Moreover, the major type of potential BrC in HULIS and MP carbon fractions are oxidized BBOA, but the potential BrC chromophores in LP are mainly associated with primary BBOA. This study reveals that biomass burning has adverse effects on radiative forcing and air quality, and probably indicates the significant influences of atmospheric oxidation reactions on the forms of chromophores.
Collapse
Affiliation(s)
- Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Duohong Chen
- Guangdong Environmental Monitoring Center, Guangzhou 510308, China.
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tao Su
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Bing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
73
|
Kasthuriarachchi NY, Rivellini LH, Chen X, Li YJ, Lee AKY. Effect of Relative Humidity on Secondary Brown Carbon Formation in Aqueous Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13207-13216. [PMID: 32924450 DOI: 10.1021/acs.est.0c01239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric brown carbon (BrC) is a significant contributor to particulate light absorption. Reactions between small aldehydes and reduced nitrogen species have been shown to produce secondary BrC in atmospheric droplets. These reactions can be substantially accelerated upon droplet evaporation. Despite aqueous droplets undergoing continuous water evaporation and uptake in response to the surrounding relative humidity (RH), secondary BrC formation in these droplets under various RH conditions remains poorly understood. In this work, we investigate BrC formation from reactions of two aqueous-phase precursors, glyoxal and methylglyoxal, with ammonium sulfate or glycine in aqueous droplets after drying at a range of RH (30-90%). Our results illustrate, for the first time, that BrC production varies as a function of RH. For all four chemical reaction systems being investigated, mass absorption efficiencies (MAE, m2/g C) of aqueous aerosol products (from 270 to 512 nm wavelength range) generally increase with reducing RH to reach a maximum at ∼55-65% RH and subsequently decrease, caused by further drying. Chemical characterization using high-resolution aerosol mass spectrometry shows that the formation of nitrogen-containing organic species also follows a similar variation with RH. Our observations reveal that the acceleration of BrC production from evaporation of water may be diminished by other factors, such as limited particle-phase water content, phase transition, and volatility of reactants and products. Overall, our results highlight that intermediate RH conditions in the atmosphere may be more efficient in secondary BrC formation, indicating that the effect of RH needs to be included in atmospheric models for a more accurate representation of light-absorbing aerosol formation in aqueous droplets.
Collapse
Affiliation(s)
- Nethmi Y Kasthuriarachchi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Laura-Hélèna Rivellini
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Xi Chen
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Alex K Y Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
74
|
Moch JM, Dovrou E, Mickley LJ, Keutsch FN, Liu Z, Wang Y, Dombek TL, Kuwata M, Budisulistiorini SH, Yang L, Decesari S, Paglione M, Alexander B, Shao J, Munger JW, Jacob DJ. Global Importance of Hydroxymethanesulfonate in Ambient Particulate Matter: Implications for Air Quality. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:e2020JD032706. [PMID: 33282612 PMCID: PMC7685164 DOI: 10.1029/2020jd032706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 05/14/2023]
Abstract
Sulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO2, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS. We find that filter samples collected in Shijiazhuang, China, and examined with ion chromatography within 9 days show as much as 7.6 μg m-3 of HMS, while samples from Singapore examined 9-18 months after collection reveal ~0.6 μg m-3 of HMS. The Shijiazhuang samples show only minor traces of HMS 4 months later, suggesting that HMS had decomposed over time during sample storage. In contrast, the Singapore samples do not clearly show a decline in HMS concentration over 2 months of monitoring. Measurements from over 150 sites, primarily derived from the IMPROVE network across the United States, suggest the ubiquitous presence of HMS in at least trace amounts as much as 60 days after collection. The degree of possible HMS decomposition in the IMPROVE observations is unknown. Using the GEOS-Chem chemical transport model, we estimate that HMS may account for 10% of global particulate sulfur in continental surface air and over 25% in many polluted regions. Our results suggest that reducing emissions of HCHO and other volatile organic compounds may have a co-benefit of decreasing particulate sulfur.
Collapse
Affiliation(s)
- Jonathan M. Moch
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | - Eleni Dovrou
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Frank N. Keutsch
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMAUSA
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
| | - Tracy L. Dombek
- Analytical Sciences Division, RTI International, Research Triangle ParkDurhamNCUSA
| | - Mikinori Kuwata
- Asian School of the Environment and Earth Observatory of SingaporeNanyang Technological UniversitySingapore
- Now in the Department of Atmospheric and Oceanic Sciences, School of Physics, and BIC‐ESATPeking UniversityBeijingChina
| | - Sri Hapsari Budisulistiorini
- Asian School of the Environment and Earth Observatory of SingaporeNanyang Technological UniversitySingapore
- Now in Wolfson Atmospheric Chemistry Laboratories, Department of ChemistryUniversity of YorkYorkUK
| | - Liudongqing Yang
- Asian School of the Environment and Earth Observatory of SingaporeNanyang Technological UniversitySingapore
| | - Stefano Decesari
- Italian National Research Council ‐ Institute of Atmospheric Sciences and Climate (CNR‐ISAC)BolognaItaly
| | - Marco Paglione
- Italian National Research Council ‐ Institute of Atmospheric Sciences and Climate (CNR‐ISAC)BolognaItaly
| | - Becky Alexander
- Department of Atmospheric SciencesUniversity of WashingtonWAUSA
| | - Jingyuan Shao
- Department of Atmospheric SciencesUniversity of WashingtonWAUSA
- College of Flying TechnologyCivil Aviation University of ChinaTianjinChina
| | - J. William Munger
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Daniel J. Jacob
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| |
Collapse
|
75
|
Zhou W, Xu W, Kim H, Zhang Q, Fu P, Worsnop DR, Sun Y. A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1616-1653. [PMID: 32672265 DOI: 10.1039/d0em00212g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic emissions in Asia have significantly increased during the last two decades; as a result, the induced air pollution and its influences on radiative forcing and public health are becoming increasingly prominent. The Aerodyne Aerosol Mass Spectrometer (AMS) has been widely deployed in Asia for real-time characterization of aerosol chemistry. In this paper, we review the AMS measurements in Asia, mainly in China, Korea, Japan, and India since 2001 and summarize the key results and findings. The mass concentrations of non-refractory submicron aerosol species (NR-PM1) showed large spatial distributions with high mass loadings occurring in India and north and northwest China (60.2-81.3 μg m-3), whereas much lower values were observed in Korea, Japan, Singapore and regional background sites (7.5-15.1 μg m-3). Aerosol composition varied largely in different regions, but was overall dominated by organic aerosols (OA, 32-75%), especially in south and southeast Asia due to the impact of biomass burning. While sulfate and nitrate showed comparable contributions in urban and suburban regions in north China, sulfate dominated inorganic aerosols in south China, Japan and regional background sites. Positive matrix factorization analysis identified multiple OA factors from different sources and processes in different atmospheric environments, e.g., biomass burning OA in south and southeast Asia and agricultural seasons in China, cooking OA in urban areas, and coal combustion in north China. However, secondary OA (SOA) was a ubiquitous and dominant aerosol component in all regions, accounting for 43-78% of OA. The formation of different SOA subtypes associated with photochemical production or aqueous-phase/fog processing was widely investigated. The roles of primary emissions, secondary production, regional transport, and meteorology on severe haze episodes, and different chemical responses of primary and secondary aerosol species to source emission changes and meteorology were also demonstrated. Finally, future prospects of AMS studies on long-term and aircraft measurements, water-soluble OA, the link of OA volatility, oxidation levels, and phase state were discussed.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
76
|
Haque MM, Fang C, Schnelle-Kreis J, Abbaszade G, Liu X, Bao M, Zhang W, Zhang YL. Regional haze formation enhanced the atmospheric pollution levels in the Yangtze River Delta region, China: Implications for anthropogenic sources and secondary aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138013. [PMID: 32361103 DOI: 10.1016/j.scitotenv.2020.138013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
High-time-resolution (3-hour) PM2.5 samples were collected simultaneously from the rural and urban areas in the Yangtze River Delta region during winter. The aerosol samples were analyzed for carbonaceous components, organic tracers, water-soluble inorganic ions and stable carbon (δ13C) and nitrogen (δ15N) isotopic compositions of total carbon and total nitrogen. The values of PM2.5 and secondary organic carbon (SOC) for both sampling sites were observed 2 times higher in haze events compare to those in clear days, implying severe pollution occurred by photochemical oxidation during haze periods. The PM mass of rural samples showed similar temporal trend and significant correlation with the urban PM, reflecting pollution sources or their formation process are most likely identical. Diurnal variations of PM2.5 and carbonaceous components revealed that pollution levels increased at daytime due to the photochemical oxidation. In addition, SOC and OC were influenced by the relative humidity (RH%) and temperature (T °C), indicating that such meteorological factors play important roles in the occurrence of regional air pollution. The concentrations of levoglucosan, polycyclic aromatic hydrocarbons, hopanes, and n-alkanes were 625 ± 456 and 519 ± 301 ng m-3, 32.6 ± 24.7 and 28.7 ± 20.1 ng m-3, 1.83 ± 1.51 and 1.26 ± 1.34 ng m-3, and 302 ± 206 and 169 ± 131 ng m-3 for rural and urban samples, respectively. Levoglucosan is the most abundant organic compounds, exhibited 2-3 times higher in haze than clear days, suggesting biomass burning (BB) emission substantially affects the haze pollution in winter. Furthermore, NO3- was the dominant ionic species followed by SO42-, NH4+, Cl- and other minor species for both sites. The δ13C and δ15N values demonstrate that anthropogenic activities such as fossil fuel combustion and BB are the major sources for carbonaceous and nitrogenous aerosols. This study implies that both the regional anthropogenic emissions and meteorological conditions influenced the regional haze formation, leading enhancement of pollution levels in eastern China during winter.
Collapse
Affiliation(s)
- Md Mozammel Haque
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Cao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jürgen Schnelle-Kreis
- Helmholtz Zentrum Munchen, Joint Mass Spectrometry Ctr, Cooperat Grp Comprehens Mol Analyt, D-85764 Neuherberg, Germany
| | - Gülcin Abbaszade
- Helmholtz Zentrum Munchen, Joint Mass Spectrometry Ctr, Cooperat Grp Comprehens Mol Analyt CMA, Gmunder Str 37, D-81479 Munich, Germany
| | - Xiaoyan Liu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mengying Bao
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenqi Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan-Lin Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate And Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China; Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Metereological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
77
|
Chen Y, Li N, Li X, Tao Y, Luo S, Zhao Z, Ma S, Huang H, Chen Y, Ye Z, Ge X. Secondary organic aerosol formation from 3C ⁎-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137953. [PMID: 32213404 DOI: 10.1016/j.scitotenv.2020.137953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, we investigated aqueous-phase triplet excited states (3C⁎)-induced photo-degradation of 4-ethylguaiacol (EG) under both simulated sunlight and ultraviolet (UV) light irradiations. Through quencher experiments, the relative contributions of reactive oxygen species (ROS, such as 1O2/O2-/·OH) and 3C⁎ were calculated and results showed three reactive species, e.g., 3C⁎, 1O2 and O2-, all seemed to play important roles in the photo-degradation of EG, but contribution from ·OH was relatively minor. High steady-state 1O2 concentration after 1 h irradiation further revealed the major contribution of 1O2 to photo-degradation under Xe light irradiation. The degradation experiment under three saturated gases (air, O2 and N2) showed that the degradation rate in air-saturated condition was the largest owing to synergistic effect of 1O2 and 3C⁎. Oxidative capacity of aqueous secondary organic aerosol (aqSOA) increased with reaction time by monitoring oxygen-to‑carbon (O/C) ratio and carbon oxidation state (OSc) via an aerodyne soot particle aerosol mass spectrometer (SP-AMS). Moreover, aqSOA mass yields were calculated via SP-AMS data. The UV-vis spectral change suggested formation of light-absorbing organics at first stage under simulated sunlight irradiation. Based on the identified products and the reactive intermediates, we postulated that 3C⁎-induced oxidation might be attributed to direct reactions by 3C⁎ and 1O2, chemical reaction by ROS, as well as oligomerization via H-abstraction. To the best of our knowledge, this is the first time to explore systematically reaction pathways of 4-ethylguaiacol under 3C∗ radical on the basis of thorough analysis of products and reactive species. Our findings highlight the impacts of aqSOA from biomass burning emissions on air quality and climate change.
Collapse
Affiliation(s)
- Yantong Chen
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Nanwang Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xudong Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ye Tao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhuzi Zhao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shuaishuai Ma
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hongying Huang
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaolian Ye
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
78
|
Jaffe DA, O’Neill SM, Larkin NK, Holder AL, Peterson DL, Halofsky JE, Rappold AG. Wildfire and prescribed burning impacts on air quality in the United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:583-615. [PMID: 32240055 PMCID: PMC7932990 DOI: 10.1080/10962247.2020.1749731] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for extended periods. Fires emit particulate matter (PM) and gaseous compounds that can negatively impact human health and reduce visibility. While the overall trend in U.S. air quality has been improving for decades, largely due to implementation of the Clean Air Act, seasonal wildfires threaten to undo this in some regions of the United States. Our understanding of the health effects of smoke is growing with regard to respiratory and cardiovascular consequences and mortality. The costs of these health outcomes can exceed the billions already spent on wildfire suppression. In this critical review, we examine each of the processes that influence wildland fires and the effects of fires, including the natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry, and human health impacts. We highlight key data gaps and examine the complexity and scope and scale of fire occurrence, estimated emissions, and resulting effects on regional air quality across the United States. The goal is to clarify which areas are well understood and which need more study. We conclude with a set of recommendations for future research. IMPLICATIONS In the recent decade the area of wildfires in the United States has increased dramatically and the resulting smoke has exposed millions of people to unhealthy air quality. In this critical review we examine the key factors and impacts from fires including natural role of wildland fire, forest management, ignitions, emissions, transport, chemistry and human health.
Collapse
Affiliation(s)
- Daniel A. Jaffe
- School of STEM and Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Amara L. Holder
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David L. Peterson
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Jessica E. Halofsky
- School of Environmental and Forest Sciences, University of Washington Seattle, Seattle WA, USA
| | - Ana G. Rappold
- National Health and Environmental Effects Research Lab, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
79
|
Peng C, Yang F, Tian M, Shi G, Li L, Huang RJ, Yao X, Luo B, Zhai C, Chen Y. Brown carbon aerosol in two megacities in the Sichuan Basin of southwestern China: Light absorption properties and implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137483. [PMID: 32120102 DOI: 10.1016/j.scitotenv.2020.137483] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 05/21/2023]
Abstract
The light absorption of brown carbon (BrC) makes a significant contribution to aerosol light absorption (Abs) and affects the radiative forcing. In this study, we analyzed and evaluated the light absorption and radiative forcing of BrC samples collected from December 2016 to January 2017 in Chongqing and Chengdu in the Sichuan Basin of Southwest China. Based on a two-component model, we estimated that BrC light absorption at 405 nm was 19.9 ± 17.1 Mm-1 and 19.2 ± 12.3 Mm-1 in Chongqing and Chengdu, contributing 19.0 ± 5.0% and 17.8 ± 3.7% to Abs respectively. Higher Abs405,BrC, MAE405,BrC, and AAE405-980 values were observed during the pollution period over the clean period in both cities. The major sources of BrC were biomass burning (BB) and secondary organic aerosol in Chongqing, and coal combustion (CC) and secondary organic aerosol in Chengdu. During the pollution period, aged BrC formed from anthropogenic precursors via its aqueous reactions with NH4+ and NOx had impacts on BrC absorption in both cities. BB led to higher Abs405,BrC, MAE405,BrC, and AAE405-980 values in Chongqing than Chengdu during the pollution period. The fractional contribution of radiation absorbed by BrC relative to BC in the wavelengths of 405-445 nm was 60.2 ± 17.0% and 64.2 ± 11.6% in Chongqing and Chengdu, significantly higher than that in the range of 405-980 nm (26.2 ± 6.7% and 27.7 ± 4.6% respectively) (p < 0.001). This study is useful for understanding the characterization, sources, and impacts of BrC in the Sichuan Basin.
Collapse
Affiliation(s)
- Chao Peng
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fumo Yang
- National Engineering Research Center for Flue Gas Desulfurization, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mi Tian
- School of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Guangming Shi
- National Engineering Research Center for Flue Gas Desulfurization, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Li
- College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Xiaojiang Yao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Bin Luo
- Sichuan Environmental Monitoring Center, Chengdu 610041, China
| | - Chongzhi Zhai
- Chongqing Academy of Environmental Science, Chongqing 401147, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
80
|
Kuang Y, He Y, Xu W, Yuan B, Zhang G, Ma Z, Wu C, Wang C, Wang S, Zhang S, Tao J, Ma N, Su H, Cheng Y, Shao M, Sun Y. Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3849-3860. [PMID: 32131584 DOI: 10.1021/acs.est.9b06836] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Secondary organic aerosol (SOA) constitutes a large fraction of organic aerosol worldwide, however, the formation mechanisms in polluted environments remain poorly understood. Here we observed fast daytime growth of oxygenated organic aerosol (OOA) (with formation rates up to 10 μg m-3 h-1) during low relative humidity (RH, daytime average 38 ± 19%), high RH (53 ± 19%), and fog periods (77 ± 13%, fog occurring during nighttime with RH reaching 100%). Evidence showed that photochemical aqueous-phase SOA (aqSOA) formation dominantly contributed to daytime OOA formation during the periods with nighttime fog, while both photochemical aqSOA and gas-phase SOA (gasSOA) formation were important during other periods with the former contributing more under high RH and the latter under low RH conditions, respectively. Compared to daytime photochemical aqSOA production, dark aqSOA formation was only observed during the fog period and contributed negligibly to the increase in OOA concentrations due to fog scavenging processes. The rapid daytime aging, as indicated by the rapid decrease in m,p-xylene/ethylbenzene ratios, promoted the daytime formation of precursors for aqSOA formation, e.g., carbonyls such as methylglyoxal. Photooxidants related to aqSOA formation such as OH radical and H2O2 also bear fast daytime growth features even under low solar radiative conditions. The simultaneous increases in ultraviolet radiation, photooxidant, and aqSOA precursor levels worked together to promote the daytime photochemical aqSOA formation. We also found that biomass burning emissions can promote photochemical aqSOA formation by adding to the levels of aqueous-phase photooxidants and aqSOA precursors. Therefore, future mitigation of air pollution in a polluted environment would benefit from stricter control on biomass burning especially under high RH conditions.
Collapse
Affiliation(s)
- Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Yao He
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, P. R. China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, P. R. China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, P. R. China
| | - Caihong Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Chaomin Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Sihang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Shenyang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Jiangchuan Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, P. R. China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P. R. China
| |
Collapse
|
81
|
Zhang Q, Shen Z, Zhang L, Zeng Y, Ning Z, Zhang T, Lei Y, Wang Q, Li G, Sun J, Westerdahl D, Xu H, Cao J. Investigation of Primary and Secondary Particulate Brown Carbon in Two Chinese Cities of Xi'an and Hong Kong in Wintertime. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3803-3813. [PMID: 32150391 DOI: 10.1021/acs.est.9b05332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C═O functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C═O groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Yaling Zeng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi Ning
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Lei
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dane Westerdahl
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
82
|
Masiol M, Squizzato S, Formenton G, Khan MB, Hopke PK, Nenes A, Pandis SN, Tositti L, Benetello F, Visin F, Pavoni B. Hybrid multiple-site mass closure and source apportionment of PM 2.5 and aerosol acidity at major cities in the Po Valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135287. [PMID: 31896212 DOI: 10.1016/j.scitotenv.2019.135287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 05/20/2023]
Abstract
This study investigates the major chemical components, particle-bound water content, acidity (pH), and major potential sources of PM2.5 in major cities (Belluno, Conegliano, Vicenza, Mestre, Padua, and Rovigo) in the eastern end of the Po Valley. The measured PM2.5 mass was reconstructed using a multiple-site hybrid chemical mass closure approach that also accounts for aerosol inorganic water content (AWC) estimated by the ISORROPIA-II model. Annually, organic matter accounted for 31-45% of the PM2.5 at all sites, followed by nitrate (10-19%), crustal material (10-14%), sulfate (8-10%), ammonium (5-9%), elemental carbon (4-7%), other inorganic ions (3-4%), and trace elements (0.2-0.3%). Water represented 7-10% of measured PM2.5. The ambient aerosol pH varied from 1.5 to 4.5 with lower values in summer (average in all sites 2.2 ± 0.3) and higher in winter (3.9 ± 0.3). Six major PM2.5 sources were quantitatively identified with multiple-site positive matrix factorization: secondary sulfate (34% of PM2.5), secondary nitrate (30%), biomass burning (17%), traffic (11%), re-suspended dust (5%), and fossil fuel combustion (3%). Biomass burning accounted for ~90% of total PAHs. Inorganic aerosol acidity was driven primarily by secondary sulfate, fossil fuel combustion (decreasing pH), secondary nitrate, and biomass burning (increasing pH). Secondary nitrate was the primary driver of the inorganic AWC variability. A concentration-weighted trajectory (multiple-site) analysis was used to identify potential source areas for the various factors and modeled aerosol acidity. Eastern and Central Europe were the main source areas of secondary species. Less acidic aerosol was associated with air masses originating from Northern Europe owing to the elevated presence of the nitrate factor. More acidic particles were observed for air masses traversing the Po Valley and the Mediterranean, possibly due to the higher contributions of fossil fuel combustion factor and the loss of nitric acid due to its interaction with coarse sea-salt particles.
Collapse
Affiliation(s)
- Mauro Masiol
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), GR-26504 Patras, Greece; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy.
| | - Stefania Squizzato
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), GR-26504 Patras, Greece; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy
| | - Gianni Formenton
- Dipartimento Regionale Laboratori, Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV), IT-30174 Mestre-Venezia, Italy
| | - Md Badiuzzaman Khan
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy; Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, United States; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, United States
| | - Athanasios Nenes
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), GR-26504 Patras, Greece; Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Spyros N Pandis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH), GR-26504 Patras, Greece; Department of Chemical Engineering, University of Patras, Patras, Greece; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Laura Tositti
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum Università di Bologna, IT-40126 Bologna, Italy
| | - Francesca Benetello
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy
| | - Flavia Visin
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy
| | - Bruno Pavoni
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, IT-30170 Mestre-Venezia, Italy
| |
Collapse
|
83
|
Wang J, Wang G, Wu C, Li J, Cao C, Li J, Xie Y, Ge S, Chen J, Zeng L, Zhu T, Zhang R, Kawamura K. Enhanced aqueous-phase formation of secondary organic aerosols due to the regional biomass burning over North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113401. [PMID: 31753639 DOI: 10.1016/j.envpol.2019.113401] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
This study reveals the impact of biomass burning (BB) on secondary organic aerosols (SOA) formation in the North China Plain (NCP). Filter samples were analyzed for secondary inorganic aerosols (SIA), oxalic acid (C2) and related aqueous-phase SOA compounds (aqSOA), stable carbon isotope composition of C2 (δ13C(C2)) and aerosol liquid water content (ALWC). Based on the PM2.5 loadings, BB tracer concentrations, wildfire spots and air-mass back trajectories, we distinguished two episodes from the whole campaign, Episode I and Episode II, which were characteristic of regional and local BB, respectively. The abundances of PM2.5 and organic matter in the two events were comparable, but concentrations and fractions of SIA, aqSOA during Episode I were much higher than those during Episode II, along with heavier δ13C(C2), suggesting an enhanced aqSOA formation in the earlier period. We found that the enhancement of aqSOA formation during Episode I was caused by an increased ALWC, which was mainly driven by SIA during the regional BB event. Our work showed that intensive burning of crop residue in East Asia can sharply enhance aqSOA production on a large scale, which may have a significant impact on the regional climate and human health.
Collapse
Affiliation(s)
- Jiayuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geophysical Information System of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210041, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| | - Can Wu
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geophysical Information System of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210041, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Cong Cao
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jin Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yuning Xie
- Key Lab of Geophysical Information System of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210041, China
| | - Shuangshuang Ge
- Key Lab of Geophysical Information System of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210041, China
| | - Jianmin Chen
- Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Limin Zeng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Renjian Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0891, Japan
| |
Collapse
|
84
|
Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, Ho LWC, Zhang L, Leung KCF, Choi PCL, Bian L, Tian XY, Chan MN, Choi CHJ. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS NANO 2019; 13:14048-14069. [PMID: 31725257 DOI: 10.1021/acsnano.9b06424] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concerns over the health risks associated with airborne exposure to ultrafine particles [PM0.1, or nanoparticles (NPs)] call for a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey. We prepare a collection of polyethylene glycol-coated gold nanoparticles that bear defined functional groups commonly identified in atmospheric particulates (Au@PEG-X NPs, where X = OCH3, COOH, NH2, OH, or C12H25). Regardless of the functional group, these ∼50 nm NPs remain colloidally stable following aerosolization and incubation in bronchoalveolar lavage fluid (BALF), without pronouncedly crossing the air-blood barrier. The type of BALF proteins adhered onto the NPs is similar, but the composition of protein corona depends on functional group. By subjecting Balb/c mice to inhalation of Au@PEG-X NPs for 6 h, we demonstrate that the intrapulmonary distribution of NPs among the various types of cells (both found in BALF and isolated from the lavaged lung) and the acute inflammatory responses induced by inhalation are sensitive to the functional group of NPs and postinhalation period (0, 24, or 48 h). By evaluating the pairwise correlations between the three variables of "lung-nano" interactions (protein corona, intrapulmonary cellular-level distribution, and inflammatory response), we reveal strong statistical correlations between the (1) fractions of albumin or carbonyl reductase bound to NPs, (2) associations of inhaled NPs to neutrophils in BALF or macrophages in the lavaged lung, and (3) level of total protein in BALF. Our results provide insights into the effect of functional group on lung-nano interactions and health risks associated with inhalation of PM0.1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ken Cham-Fai Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon , Hong Kong
| | | | | | | | | | | |
Collapse
|
85
|
Sthel MS, Mothé GA, Lima MA, de Castro MPP, Esquef I, da Silva MG. Pollutant gas and particulate material emissions in ethanol production in Brazil: social and environmental impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35082-35093. [PMID: 31676940 DOI: 10.1007/s11356-019-06613-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The replacement of fossil-based fuels by renewable fuels (biofuels) was proposed in the IPCC report, as an alternative to reduce greenhouse gas emission and reach out to a low-carbon economy. On this perspective, the Brazilian government had implemented a renewable energy program based on the use of ethanol in the transport sector. This work evaluates the scenario of pollutant gas emissions and particulate material that comes from the biomass burning process involved in ethanol production cycle, in the city of Campos dos Goytacazes, Brazil. The gases and particulate material emitted by sugarcane and bagasse burning processes-the last one in energy co-generation mills-were analyzed. A laboratory-controlled burning of both samples was realized in an oven with temperature ramp from 250 to 400 °C, at a regular rate of 50 °C. The gas samples were collected directly from the oven's exhaust pipe. The particulates obtained were the residual material taken out of the burned samples: a powder with the aspect of soot. A photoacoustic spectroscopy system coupled with quantum cascade laser and electrochemical analyzers was used to measure the emission of polluting gases such as N2O, CO2, CO, NOx (NO, NO2), and SO2 in ppmv range. Fluorescent X-ray spectrometry was applied to evaluate the chemical composition of particulate material, enabling the identification of elements such as Si, Al, Ca, K, Fe, S, P, Ti, Mn, Cu, Zn, Sc, V, Cu, and Sr.
Collapse
Affiliation(s)
- Marcelo S Sthel
- Laboratory of Physical Sciences, Center for Science and Technology, North Fluminense State University, Campos dos Goytacazes, Brazil.
| | - Georgia A Mothé
- Chemistry and Technology Laboratory, Higher Institutes of Education CENSA-ISECENSA, Campos dos Goytacazes, Brazil
| | - Marcenilda A Lima
- Laboratory of Physical Sciences, Center for Science and Technology, North Fluminense State University, Campos dos Goytacazes, Brazil
| | - Maria P P de Castro
- Laboratory of Physical Sciences, Center for Science and Technology, North Fluminense State University, Campos dos Goytacazes, Brazil
| | - Israel Esquef
- Laboratory of Physical Sciences, Center for Science and Technology, North Fluminense State University, Campos dos Goytacazes, Brazil
| | - Marcelo G da Silva
- Laboratory of Physical Sciences, Center for Science and Technology, North Fluminense State University, Campos dos Goytacazes, Brazil
| |
Collapse
|
86
|
Wang Q, Ye J, Wang Y, Zhang T, Ran W, Wu Y, Tian J, Li L, Zhou Y, Hang Ho SS, Dang B, Zhang Q, Zhang R, Chen Y, Zhu C, Cao J. Wintertime Optical Properties of Primary and Secondary Brown Carbon at a Regional Site in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12389-12397. [PMID: 31553592 DOI: 10.1021/acs.est.9b03406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The light-absorbing properties of atmospheric brown carbon (BrC) are poorly understood due to its complex chemical composition. Here, a black-carbon-tracer method was coupled with source apportionments of organic aerosol (OA) to explore the light-absorbing properties of primary and secondary BrC from the North China Plain (NCP). Primary emissions of BrC contributed more to OA light absorption than secondary processes, and biomass burning OA accounted for 60% of primary BrC absorption at λ = 370 nm, followed by coal combustion OA (35%) and hydrocarbon-like OA (5%). Secondary BrC absorption was high in the early morning and later decreased due to the bleaching of chromophores. Nighttime aqueous-phase chemistry promoted the formation of secondary light-absorbing compounds and the production of strongly absorbing particles. Source analysis showed that the NCP region was the most important source for primary and secondary BrC subtypes at the study site. The mean direct radiative forcing for BrC was 0.15 W m-2 (0.11 W m-2 and 0.04 W m-2 for the primary and secondary fractions, respectively). This study provides new information on the optical properties of primary and secondary BrC and highlights the importance of atmospheric oxidation on BrC absorption.
Collapse
Affiliation(s)
- Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an 710061 , China
| | - Jianhuai Ye
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yichen Wang
- School of Humanities, Economics and Law , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Ting Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an 710061 , China
| | - Weikang Ran
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Yunfei Wu
- Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an 710061 , China
| | - Li Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Yaqing Zhou
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences , Desert Research Institute , Reno , Nevada 89512 , United States
| | - Bo Dang
- Shannxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells , Xi'an Shiyou University , Xi'an 710065 , China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE , Xi'an University of Architecture and Technology , Xi'an 710055 , China
| | - Renjian Zhang
- Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences , Chongqing 400714 , China
| | - Chongshu Zhu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an 710061 , China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an 710061 , China
| |
Collapse
|
87
|
Tong H, Zhang Y, Filippi A, Wang T, Li C, Liu F, Leppla D, Kourtchev I, Wang K, Keskinen HM, Levula JT, Arangio AM, Shen F, Ditas F, Martin ST, Artaxo P, Godoi RHM, Yamamoto CI, de Souza RAF, Huang RJ, Berkemeier T, Wang Y, Su H, Cheng Y, Pope FD, Fu P, Yao M, Pöhlker C, Petäjä T, Kulmala M, Andreae MO, Shiraiwa M, Pöschl U, Hoffmann T, Kalberer M. Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12506-12518. [PMID: 31536707 DOI: 10.1021/acs.est.9b05149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and β-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.
Collapse
Affiliation(s)
- Haijie Tong
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yun Zhang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Alexander Filippi
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Ting Wang
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Chenpei Li
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fobang Liu
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Denis Leppla
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Ivan Kourtchev
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Kai Wang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Helmi-Marja Keskinen
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Janne T Levula
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Andrea M Arangio
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- École polytechnique fédérale de Lausanne , Lausanne 1015 , Switzerland
| | - Fangxia Shen
- School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Florian Ditas
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | | | - Paulo Artaxo
- Physics Institute , University of São Paulo , São Paulo 05508-900 , Brazil
| | - Ricardo H M Godoi
- Environmental Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-980 , Brazil
| | - Carlos I Yamamoto
- Chemical Engineering Department , Federal University of Paraná , Curitiba , Paraná 81531-970 , Brazil
| | - Rodrigo A F de Souza
- School of Technology , Amazonas State University , Manaus , Amazonas 69065-020 , Brazil
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology , Institute of Earth and Environment, Chinese Academy of Sciences , Xi'an , 710061 , China
| | - Thomas Berkemeier
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yueshe Wang
- State Key Laboratory of Multiphase Flow in Power Engineering , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hang Su
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Yafang Cheng
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Christopher Pöhlker
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics Faculty of Science , University of Helsinki , FI-00014 Helsinki , Finland
| | - Meinrat O Andreae
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- Scripps Institution of Oceanography , University of California San Diego , San Diego , California 92093 , United States
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Ulrich Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University , 55128 Mainz , Germany
| | - Markus Kalberer
- Centre for Atmospheric Science, Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Department of Environmental Sciences , University of Basel , Klingelbergstrasse 27 , 4056 Basel , Switzerland
| |
Collapse
|
88
|
Piacentini D, Falasca G, Canepari S, Massimi L. Potential of PM-selected components to induce oxidative stress and root system alteration in a plant model organism. ENVIRONMENT INTERNATIONAL 2019; 132:105094. [PMID: 31484097 DOI: 10.1016/j.envint.2019.105094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Over the last years, various acellular assays have been used for the evaluation of the oxidative potential (OP) of particular matter (PM) to predict PM capacity to generate reactive oxygen (ROS) and nitrogen (RNS) species in biological systems. However, relationships among OP and PM toxicological effects on living organisms are still largely unknown. This study aims to assess the effects of atmospheric PM-selected components (brake dust - BD, pellet ash - PA, road dust - RD, certified urban dust NIST1648a - NIST, soil dust - S, coke dust - C and Saharan dust - SD) on the model plant A. thaliana development, with emphasis on their capacity to induce oxidative stress and root morphology alteration. Before growing A. thaliana in the presence of the PM-selected components, each atmospheric dust has been chemically characterized and tested for the OP through dithiothreitol (DTT), ascorbic acid (AA) and 2',7'-dichlorofluorescin (DCFH) assays. After the exposure, element bioaccumulation in the A. thaliana seedlings, i.e., in roots and shoots, was determined and both morphological and oxidative stress analyses were performed in roots. The results indicated that, except for SD and S, all the tested dusts affected A. thaliana root system morphology, with the strongest effects in the presence of the highest OPs dusts (BD, PA and NIST). Principal component analysis (PCA) revealed correlations among OPs of the dusts, element bioaccumulation and root morphology alteration, identifying the most responsible dust-associated elements affecting the plant. Lastly, histochemical analyses of NO and O2- content and distribution confirmed that BD, PA and NIST induce oxidative stress in A. thaliana, reflecting the high OPs of these dusts and ultimately leading to cell membrane lipid peroxidation.
Collapse
Affiliation(s)
- Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Silvia Canepari
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Lorenzo Massimi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy.
| |
Collapse
|
89
|
Ye Z, Qu Z, Ma S, Luo S, Chen Y, Chen H, Chen Y, Zhao Z, Chen M, Ge X. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:976-985. [PMID: 31390715 DOI: 10.1016/j.scitotenv.2019.06.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Secondary organic aerosol (SOA) species formed in atmospheric aqueous phases is recently recognized as an important contributor to fine aerosols, which is known to be a prominent human health risk factor internationally. This work, for the first time, systematically investigated aqueous-phase photochemical oxidation of 4-ethylphenol (4-EP) - a model compound from biomass burning and a surrogate of intermediate volatility organic compounds, under both ultraviolet (UV) (Hg lamp) and simulated sunlight (Xe lamp). We found that 4-EP could degrade upon hydroxal radical (OH) oxidation under UV light nearly 15 times faster than that under simulated sunlight, but large aqueous SOA (aqSOA) yields (108%-122%) were observed under both situations. AqSOA masses and oxidation states continuously increased under simulated sunlight, yet they increased first then decreased quickly under UV light. We proposed a reaction scheme based on identified products, showing that oligomerization, functionalization and fragmentation all can occur during 4-EP oxidation. Our results demonstrate that OH radical may suppress oligomerization and functionalization, but is favorable for fragmentation. Under UV light with H2O2 (high OH), fragmentation was dominant, producing more volatile and smaller molecules, and less aqSOA in later oxidation; Under simulated sunlight with H2O2 (moderate OH), functionalization that can form hydroxylated monomer was more important. Moreover, 4-EP oxidation by the organic triplet excited state (3C*) could form species with stronger visible light absorptivity than those from OH-mediated oxidation, and the absorptivity showed positive link with contents of humic-like substances.
Collapse
Affiliation(s)
- Zhaolian Ye
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhenxiu Qu
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shuaishuai Ma
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yantong Chen
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hui Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yanfang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhuzi Zhao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
90
|
He L, Schaefer T, Otto T, Kroflič A, Herrmann H. Kinetic and Theoretical Study of the Atmospheric Aqueous-Phase Reactions of OH Radicals with Methoxyphenolic Compounds. J Phys Chem A 2019; 123:7828-7838. [PMID: 31397571 DOI: 10.1021/acs.jpca.9b05696] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methoxyphenols, which are emitted through biomass burning, are an important species in atmospheric chemistry. In the present study, temperature-dependent aqueous-phase OH radical reactions of six methoxyphenols and two related phenols have been investigated through laser flash photolysis and the density functional theory. The rate constants obtained were in a range of (1.1-1.9) × 1010 L mol-1 s-1 with k(3-MC) > k(Cre) ≈ k(Syr) ≈ k(MEP) > k(Res) > k(3-MP) > k(2-EP) ≈ k(2-MP). We derived the parameters of these reactions from the obtained T-dependent rate constants and found a mean Arrhenius activation energy of 16.9 kJ mol-1. The diffusion rate constants were calculated for each case and compared to the measured ones. Generally, the rate constants are found to be close to fully diffusion-controlled (kdiff = (1.4-1.5) × 1010 L mol-1 s-1 for all reactions). A structure-function relationship was established through the measurement result, which could be used for predicting unknown rate constants of other phenolic compounds. All of these findings are expected to enhance the predictive capabilities of models, such as the chemical aqueous-phase radical mechanism.
Collapse
Affiliation(s)
- Lin He
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Tobias Otto
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Ana Kroflič
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany.,Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany.,School of Environmental Science and Engineering , Shandong University , Binhai Road 72 , 266237 Qingdao , China
| |
Collapse
|
91
|
Wang N, Jing B, Wang P, Wang Z, Li J, Pang S, Zhang Y, Ge M. Hygroscopicity and Compositional Evolution of Atmospheric Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6225-6234. [PMID: 30938517 DOI: 10.1021/acs.est.8b07052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-soluble organic acid salts are important components of atmospheric aerosols. Despite their importance, it is still not clear how water-soluble organic acid salts influence interactions between aerosols and water vapor in the atmosphere. In this study, the hygroscopic behaviors and chemical compositions of aerosol particles containing water-soluble organic acid salt ((CH2) n(COONa)2, n = 0, 1, 2) and (NH4)2SO4 were measured using in situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The ammonium depletion due to release of gaseous NH3 was found in mixed aerosols composed of (CH2) n(COONa)2 ( n = 1, 2) and (NH4)2SO4 upon dehydration. The ammonium loss could modify the aerosol composition, resulting in the formation of corresponding organic acid and monosodium dicarboxylate in mixed particles with high and low (NH4)2SO4 content, respectively. Due to the weaker hydrolysis of oxalate anions, the ammonium depletion was not observed for the Na2C2O4/(NH4)2SO4 mixtures. The changes in the particle composition led to the decreased water uptake upon hydration as compared to that upon dehydration. Our findings reveal that interactions between water-soluble organic acid salts and (NH4)2SO4 in aqueous aerosols may affect the repartition of NH3 between the condensed and gas phases, thus modifying composition and physicochemical properties of aerosols as well as relevant chemical processes.
Collapse
Affiliation(s)
- Na Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Bo Jing
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Zhen Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiarong Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Shufeng Pang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yunhong Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , People's Republic of China
| |
Collapse
|
92
|
Liu JM, Du ZY, Gordon M, Liang LL, Ma YL, Zheng M, Cheng Y, He KB. The characteristics of carbonaceous aerosol in Beijing during a season of transition. CHEMOSPHERE 2018; 212:1010-1019. [PMID: 30286530 DOI: 10.1016/j.chemosphere.2018.08.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Carbonaceous aerosol was measured during fall of 2010 in Beijing. Daily variation of organic carbon (OC) was found to coincide with that of relative humidity (RH), and the OC to elemental carbon (EC) ratios were more than doubled during the more humid periods (RH above 0.75) compared to other conditions. This large increase in OC/EC could not be explained by the variations of primary biomass burning emissions but was accompanied by a five-fold increase in the sulfate to EC ratio. It was then inferred that secondary organic aerosol (SOA) formation was enhanced under the more humid conditions, presumably through aqueous-phase processes. This enhanced SOA formation might be partially associated with particles externally mixed with black carbon, as indicated by the RH-dependent relationships between aerosol optical attenuation and EC loading. In addition, organic aerosols exhibited different properties between the more humid and the other periods, such that they were less volatile and charred more significantly during thermal-optical analysis in the former case. These differences coincided with the evidence of enhanced SOA formation under the more humid conditions. This study highlights the necessity of incorporating aqueous-phase chemistry into air quality models for SOA.
Collapse
Affiliation(s)
- Jiu-Meng Liu
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Zhen-Yu Du
- National Research Center for Environmental Analysis and Measurement, Beijing, China
| | - Mark Gordon
- Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada
| | - Lin-Lin Liang
- State Key Laboratory of Severe Weather and Key Laboratory for Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Yong-Liang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Mei Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yuan Cheng
- School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
93
|
Tomaz S, Cui T, Chen Y, Sexton KG, Roberts JM, Warneke C, Yokelson RJ, Surratt JD, Turpin BJ. Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11027-11037. [PMID: 30153017 DOI: 10.1021/acs.est.8b03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the gas-phase chemical composition of biomass burning (BB) emissions and their role in aqueous secondary organic aerosol (aqSOA) formation through photochemical cloud processing. A high-resolution time-of-flight chemical ionization mass spectrometer using iodide reagent ion chemistry detected more than 100 gas-phase compounds from the emissions of 30 different controlled burns during the 2016 Fire Influence on Regional and Global Environments Experiment (FIREX) at the Fire Science Laboratory. Compounds likely to partition to cloudwater were selected based on high atomic oxygen-to-carbon ratio and abundance. Water solubility was confirmed by detection of these compounds in water after mist chamber collection during controlled burns and analysis using ion chromatography and electrospray ionization interfaced to high-resolution time-of-flight mass spectrometry. Known precursors of aqSOA were found in the primary gaseous BB emissions (e.g., phenols, acetate, and pyruvate). Aqueous OH oxidation of the complex biomass burning mixtures led to rapid depletion of many compounds (e.g., catechol, levoglucosan, methoxyphenol) and formation of others (e.g., oxalate, malonate, mesoxalate). After 150 min of oxidation (approximatively 1 day of cloud processing), oxalate accounted for 13-16% of total dissolved organic carbon. Formation of known SOA components suggests that cloud processing of primary BB emissions forms SOA.
Collapse
Affiliation(s)
- Sophie Tomaz
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kenneth G Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - James M Roberts
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
| | - Carsten Warneke
- Chemical Sciences Division , NOAA Earth System Research Laboratory , Boulder , Colorado 80305 , United States
- Cooperative Institute for Research in Environmental Sciences , University of Colorado , Boulder , Colorado 80309 , United States
| | - Robert J Yokelson
- Department of Chemistry and Biochemistry , University of Montana , Missoula , Montana 59812 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
94
|
Liu C, Zeng C. Heterogeneous kinetics of methoxyphenols in the OH-initiated reactions under different experimental conditions. CHEMOSPHERE 2018; 209:560-567. [PMID: 29945049 DOI: 10.1016/j.chemosphere.2018.06.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Methoxyphenols as the potential tracers for wood smoke emissions, are emitted into the atmosphere in large quantities but their atmospheric chemical behaviors have not been well characterized. In this work, heterogeneous kinetics of methoxyphenols in the OH-initiated reactions was investigated using a flow reactor under different experimental conditions. The average second-order rate constants (k2) of vanillic acid (VA), coniferyl aldehyde (CA), and syringaldehyde (SA) were (4.72 ± 0.51) × 10-12, (10.59 ± 0.50) × 10-12, (12.25 ± 0.60) × 10-12 cm3 molecule-1 s-1, respectively, obtained at relative humidity (RH) and temperature of 40% and 25 °C. In addition, the results showed that high temperature played a positive role in promoting these reactions while high RH had an inhibiting impact. The k2 values of VA, CA, and SA at 40% RH and different temperature followed the Arrhenius expressions, i.e., k2 = (2.45 ± 0.40) × 10-10exp [-(1170.73 ± 47.35)/T], k2 = (6.40 ± 0.26) × 10-10exp [-(1516.16 ± 13.71)/T], and k2 = (1.02 ± 0.13) × 10-9exp [-(1310.79 ± 36.75)/T], respectively. Based on the determined rate constants, the atmospheric lifetimes of these three methoxyphenols ranged from 0.54 to 2.18 d under different conditions. The experimental results indicate that OH radicals might play an important role in controlling the atmospheric lifetimes of methoxyphenols, and also help to further cognize the chemical behaviors of methoxyphenols in the atmosphere.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China.
| | - Chenghua Zeng
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, PR China
| |
Collapse
|
95
|
Yuan Q, Lai S, Song J, Ding X, Zheng L, Wang X, Zhao Y, Zheng J, Yue D, Zhong L, Niu X, Zhang Y. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:884-893. [PMID: 29793196 DOI: 10.1016/j.envpol.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOAI), monoterpenes (SOAM), sesquiterpenes (SOAS) and aromatics (SOAA) in fine particulate matter (PM2.5) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOAI, SOAM and SOAS tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOAA tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOAI formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOAM and SOAS formation in summer rather than in other seasons. The influence of atmospheric oxidants (Ox) was found to be an important factor of the formation of SOAM tracers during the enhancement periods in autumn and winter. The formation of SOAS tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and Ox as well as [NO2][O3] suggest the involvement of both ozone (O3) and nitrogen dioxide (NO2) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes.
Collapse
Affiliation(s)
- Qi Yuan
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Senchao Lai
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Junwei Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Lishan Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Junyu Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Liuju Zhong
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yingyi Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China.
| |
Collapse
|
96
|
Borisova T. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Front Physiol 2018; 9:728. [PMID: 29997517 PMCID: PMC6028719 DOI: 10.3389/fphys.2018.00728] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
Nerve cells take a special place among other cells in organisms because of their unique function mechanism. The plasma membrane of nerve cells from the one hand performs a classical barrier function, thereby being foremost targeted during contact with micro- and nano-sized particles, and from the other hand it is very intensively involved in nerve signal transmission, i.e., depolarization-induced calcium-dependent compound exocytosis realized via vesicle fusion following by their retrieval and calcium-independent permanent neurotransmitter turnover via plasma membrane neurotransmitter transporters that utilize Na+/K+ electrochemical gradient as a driving force. Worldwide traveling air pollution particulate matter is now considered as a possible trigger factor for the development of a variety of neuropathologies. Micro- and nano-sized particles can reach the central nervous system during inhalation avoiding the blood-brain barrier, thereby making synaptic neurotransmission extremely sensitive to their influence. Neurosafety of environmental, engineered and planetary particles is difficult to predict because they possess other features as compared to bulk materials from which the particles are composed of. The capability of the particles to absorb heavy metals and organic neurotoxic molecules from the environment, and moreover, spontaneously interact with proteins and lipids in organisms and form biomolecular corona can considerably change the particles' features. The absorption capability occasionally makes them worldwide traveling particulate carriers for delivery of environmental neurotoxic compounds to the brain. Discrepancy of the experimental data on neurotoxicity assessment of micro- and nano-sized particles can be associated with a variability of systems, in which neurotoxicity was analyzed and where protein components of the incubation media forming particle biocorona can significantly distort and even eliminate factual particle effects. Specific synaptic mechanisms potentially targeted by environmental, engineered and planetary particles, general principles of particle neurosafety and its failure were discussed. Particle neurotoxic potential depends on their composition, size, shape, surface properties, stability in organisms and environment, capability to absorb neurotoxic compounds, form dust and interrelate with different biomolecules. Changes in these parameters can break primary particle neurosafety.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
97
|
Witkowski B, Jurdana S, Gierczak T. Limononic Acid Oxidation by Hydroxyl Radicals and Ozone in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3402-3411. [PMID: 29444406 DOI: 10.1021/acs.est.7b04867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Kinetics and mechanism of limononic acid (3-isopropenyl-6-oxoheptanoic acid, LA) oxidation by hydroxyl radicals (OH) and ozone (O3) were studied in the aqueous phase at 298 ± 2 K. These reactions were investigated using liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The rate coefficients determined for LA + OH reaction were: 1.3 ± 0.3 × 1010 M-1 s-1 at pH = 2 and 5.7 ± 0.6 × 109 M-1 s-1 at pH = 10. The rate coefficient determined for LA ozonolysis was 4.2 ± 0.2 × 104 M-1 s-1 at pH = 2. The calculated Henry's law constant (H) for LA was ca. 6.3 × 106 M × atm-1, thereby indicating that in fogs and clouds with LWC = 0.3-0.5 g × m-3 LA will reside entirely in the aqueous phase. Calculated atmospheric lifetimes due to reaction with OH and O3 strongly indicate that aqueous-phase oxidation can be important for LA under realistic atmospheric conditions. Under acidic conditions, the aqueous-phase oxidation of LA by OH will dominate over reaction with O3, whereas the opposite is more likely when pH ≥ 4.5. The aqueous-phase oxidation of LA produced keto-limononic acid and a number of low-volatility products, such as hydroperoxy-LA and α-hydroxyhydroperoxides.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Sara Jurdana
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
98
|
Ferrero L, Močnik G, Cogliati S, Gregorič A, Colombo R, Bolzacchini E. Heating Rate of Light Absorbing Aerosols: Time-Resolved Measurements, the Role of Clouds, and Source Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3546-3555. [PMID: 29474062 DOI: 10.1021/acs.est.7b04320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Light absorbing aerosols (LAA) absorb sunlight and heat the atmosphere. This work presents a novel methodology to experimentally quantify the heating rate (HR) induced by LAA into an atmospheric layer. Multiwavelength aerosol absorption measurements were coupled with spectral measurements of the direct, diffuse and surface reflected radiation to obtain highly time-resolved measurements of HR apportioned in the context of LAA species (black carbon, BC; brown carbon, BrC; dust), sources (fossil fuel, FF; biomass burning, BB), and as a function of cloudiness. One year of continuous and time-resolved measurements (5 min) of HR were performed in the Po Valley. We experimentally determined (1) the seasonal behavior of HR (winter 1.83 ± 0.02 K day-1; summer 1.04 ± 0.01 K day-1); (2) the daily cycle of HR (asymmetric, with higher values in the morning than in the afternoon); (3) the HR in different sky conditions (from 1.75 ± 0.03 K day-1 in clear sky to 0.43 ± 0.01 K day-1 in complete overcast); (4) the apportionment to different sources: HRFF (0.74 ± 0.01 K day-1) and HRBB (0.46 ± 0.01 K day-1); and (4) the HR of BrC (HRBrC: 0.15 ± 0.01 K day-1, 12.5 ± 0.6% of the total) and that of BC (HRBC: 1.05 ± 0.02 K day-1; 87.5 ± 0.6% of the total).
Collapse
Affiliation(s)
- Luca Ferrero
- POLARIS Research Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
- GEMMA Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
| | - Griša Močnik
- Aerosol d.o.o. , Kamniška 41 , SI-1000 Ljubljana , Slovenia
- Department of Condensed Matter Physics , Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Sergio Cogliati
- GEMMA Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
- Remote Sensing of Environmental Dynamics Lab., Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
| | - Asta Gregorič
- Aerosol d.o.o. , Kamniška 41 , SI-1000 Ljubljana , Slovenia
- Center for Atmospheric Research , University of Nova Gorica , SI-5000 Nova Gorica , Slovenia
| | - Roberto Colombo
- GEMMA Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
- Remote Sensing of Environmental Dynamics Lab., Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
| | - Ezio Bolzacchini
- POLARIS Research Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
- GEMMA Centre, Department of Earth and Environmental Sciences , University of Milano-Bicocca , 20126 , Milano , Italy
| |
Collapse
|
99
|
Black Carbon Aerosol in Rome (Italy): Inference of a Long-Term (2001–2017) Record and Related Trends from AERONET Sun-Photometry Data. ATMOSPHERE 2018. [DOI: 10.3390/atmos9030081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
Xu J, Wang Q, Deng C, McNeill VF, Fankhauser A, Wang F, Zheng X, Shen J, Huang K, Zhuang G. Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1177-1187. [PMID: 29037494 DOI: 10.1016/j.envpol.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
There is growing evidence suggesting that organic aerosols play an important role in the evolution of severe haze episodes. However, long-term investigations of the different characteristics of carbonaceous aerosols during haze and non-haze days are insufficient. In this work, hourly measurements of organic carbon (OC) and elemental carbon (EC) in PM2.5 were conducted in Shanghai, a megacity in Eastern China, over the course of a year from July 2013 to June 2014. Both OC and EC exhibited a bimodal diel pattern and were highly dependent on the wind speed and direction. The concentration-weighted trajectory (CWT) analysis illustrated that primary OC (POC) and EC were largely associated with regional and long-range transport. Secondary OC (SOC) formation was the strongest during the harvest season owing to significant biomass burning emissions from the adjacent Yangtze River Delta and farther agricultural regions. Compared to OC (6.7 μg m-3) and EC (2.0 μg m-3) in the non-haze days, higher levels of both OC (15.6 μg m-3) and EC (7.7 μg m-3) were observed in the haze days as expected, but with lower OC/EC ratios in the haze days (2.4) than in non-haze days (4.6). The proportion of POC and EC in PM2.5 remained relatively constant as a function of PM2.5 mass loadings, while that of SOC significantly decreased on the highly polluted days. It is concluded that the haze pollution in urban Shanghai was influenced more by the primary emissions (POC and EC), while the role of SOC in triggering haze was limited.
Collapse
Affiliation(s)
- Jian Xu
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
| | - Qiongzhen Wang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Alison Fankhauser
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Fengwen Wang
- Department of Environmental Science, College of Resources and Environmental Science, Chongqing University, Chongqing 400030, China
| | - Xianjue Zheng
- Hangzhou Environmental Monitoring Center, Hangzhou, Zhejiang 310007, China
| | - Jiandong Shen
- Hangzhou Environmental Monitoring Center, Hangzhou, Zhejiang 310007, China
| | - Kan Huang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China.
| | - Guoshun Zhuang
- Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|