51
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
52
|
Bremner JD, Hoffman M, Afzal N, Cheema FA, Novik O, Ashraf A, Brummer M, Nazeer A, Goldberg J, Vaccarino V. The environment contributes more than genetics to smaller hippocampal volume in Posttraumatic Stress Disorder (PTSD). J Psychiatr Res 2021; 137:579-588. [PMID: 33168198 PMCID: PMC8345282 DOI: 10.1016/j.jpsychires.2020.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Studies using structural magnetic resonance imaging (MRI) volumetrics showed smaller hippocampal volume in patients with post-traumatic stress disorder (PTSD). These studies were cross-sectional and did not address whether smaller volume is secondary to stress-induced damage, or whether pre-existing factors account for the findings. The purpose of this study was to use a co-twin case control design to assess the relative contribution of genetic and environmental factors to hippocampal volume in PTSD. METHODS Monozygotic (N = 13 pairs) and dizygotic (N = 21 pairs) twins with a history of Vietnam Era military service, where one brother went to Vietnam and developed PTSD, while his brother did not go to Vietnam or develop PTSD, underwent MR imaging of the brain. Structural MRI scans were used to manually outline the left and right hippocampus on multiple coronal slices, add the areas and adjust for slice thickness to determine hippocampal volume. RESULTS Twins with Vietnam combat-related PTSD had a mean 11% smaller right hippocampal volume in comparison to their twin brothers without combat exposure or PTSD (p < .05). There was no significant interaction by zygosity, suggesting that this was not a predisposing risk factor or genetic effect. CONCLUSIONS These findings are consistent with smaller hippocampal volume in PTSD, and suggest that the effects are primarily due to environmental effects such as the stress of combat.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, USA, Radiology, and Medicine (Cardiology), USA, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA, Corresponding author. Dept of Psychiatry & Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr NE, USA. (J.D. Bremner)
| | | | - Nadeem Afzal
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Faiz A. Cheema
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Olga Novik
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Ali Ashraf
- Departments of Psychiatry and Behavioral Sciences, USA
| | | | - Ahsan Nazeer
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Jack Goldberg
- Information Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Viola Vaccarino
- Emory University School of Medicine, Atlanta GA; Atlanta VAMC, Decatur, GA, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| |
Collapse
|
53
|
Guo H, Baker G, Hartle K, Fujiwara E, Wang J, Zhang Y, Xing J, Lyu H, Li XM, Chen J. Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Med Biol Eng Comput 2021; 59:1099-1110. [PMID: 33881705 DOI: 10.1007/s11517-021-02351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
There is now a relatively large body of evidence suggesting a relationship between dysfunction of myelin and oligodendrocytes and the etiology of several neuropsychiatric disorders, including depression and schizophrenia, and also suggesting that ultrasound methods may alleviate some of the symptoms of depression. We have applied low-intensity pulsed ultrasound (LIPUS) to the brains of mice treated with the demyelinating drug cuprizone, a drug that has been used as the basis for a rodent model relevant to a number of psychiatric and neurologic disorders including depression, schizophrenia, and multiple sclerosis. Prior to conducting the studies in mice, preliminary studies were carried out on the effects of LIPUS in vitro in neuron-like SH-SY5Y cells and primary glial cells. In subsequent studies in mice, female C57BL/6 mice were restrained in plastic tubes for 20 min daily with the ultrasound transducer near the end of the tube directly above the mouse's head. LIPUS was used at an intensity of 25 mW/cm2 once daily for 22 days in control mice and in mice undergoing daily repetitive restraint stress (RRS). Behavioral or neurochemical studies were done on the mice or the brain tissue obtained from them. The studies in vitro indicated that LIPUS stimulation at an intensity of 15 mW/cm2 delivered for 5 min daily for 3 days in an enclosed sterile cell culture plate in an incubator increased the viability of SH-SY5Y and primary glial cells. In the studies in mice, LIPUS elevated levels of doublecortin, a marker for neurogenesis, in the cortex compared to levels in the RRS mice and caused a trend in elevation of brain levels of brain-derived neurotrophic factor in the hippocampus relative to control levels. LIPUS also increased sucrose preference (a measure of the attenuation of anhedonia, a common symptom of several psychiatric disorders) in the RRS model in mice. The ability of LIPUS administered daily to rescue damaged myelin and oligodendrocytes was studied in mice treated chronically with cuprizone for 35 days. LIPUS increased cortex and corpus callosum levels of myelin basic protein, a protein marker for mature oligodendrocytes, and neural/glial antigen 2, a protein marker for oligodendrocyte precursor cells, relative to levels in the cuprizone + sham animals. These results of this exploratory study suggest that future comprehensive time-related studies with LIPUS on brain chemistry and behavior related to neuropsychiatric disorders are warranted. Exploratory Study on Neurochemical Effects of Low Intensity Pulsed Ultrasound in Brains of Mice. Upper part of figure: LIPUS device and in-vitro cell experimental set-up. The center image is the LIPUS generating box; the image in the upper left shows the cell experiment set-up; the image in the upper right shows a zoomed-in sketch for the cell experiment; the image in the lower left shows the set-up of repetitive restraint stress (RRS) with a mouse; the image in the lower middle shows the set-up of LIPUS treatment of a mouse; the image in the lower right shows a zoomed-in sketch for the LIPUS treatment of a mouse.
Collapse
Affiliation(s)
- Huining Guo
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Glen Baker
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Junhui Wang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jida Xing
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Haiyan Lyu
- Department of Pharmacy, Xianyue Hospital, Xiamen, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada. .,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada. .,Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
54
|
Hosoi T, Yamawaki Y, Kimura H, Honda S, Ozawa K. Possible Involvement of MyD88 in Regulating Stress Response in Mice. Front Neurosci 2021; 15:621446. [PMID: 33790733 PMCID: PMC8006405 DOI: 10.3389/fnins.2021.621446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/22/2021] [Indexed: 01/26/2023] Open
Abstract
Myeloid differentiation primary response 88 (MyD88) is an adapter protein of the toll-like receptor (TLR) family that regulates innate immune function. Here, we identified a novel role of MyD88 in regulating stress response. MyD88 deficiency decreased immobility time in the forced swim test without affecting locomotor activity in mice. Immobilization stress-induced production of serum corticosterone was also completely inhibited by MyD88 deficiency. Stress induced decrease in glucocorticoid receptor in the hippocampus. On the other hand, stress exposure in MyD88 deficient mice did not cause decrease in its level in the hippocampus. Furthermore, immobilization stress-induced reduction of brain-derived neurotrophic factor (BDNF) levels in the hippocampus was ameliorated by MyD88 deficiency. These results suggest that MyD88 deficiency attenuates depression-like behavior by regulating corticosterone and BDNF levels. Overall, these results indicate the key role of MyD88 in regulating stress response in mice.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hitomi Kimura
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoko Honda
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
55
|
Alyamani R, Nephew B, Murgatroyd C. Intergenerational changes in hippocampal transcription in an animal model of maternal depression. Eur J Neurosci 2021; 55:2242-2252. [PMID: 33687770 DOI: 10.1111/ejn.15180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Chronic stress during early life, such as exposure to social conflict or deficits in parental care, can have persistent adverse behavioural effects. Offspring in a rodent model of maternal depression and early life stress have increased susceptibility to maternal depression themselves, suggesting a pathway by which maternal stress could be intergenerationally inherited. The overall aim of this study was to explore the genetic regulatory pathways underlying how maternal social stress and reduced care mediates stress-related behavioural changes in offspring across generations. This study investigated a social stress-based rat model of postpartum depression and the intergenerational inheritance of depressed maternal care where F0 (dams exposed to male intruder stress during lactation) and F1 offspring are directly exposed to social stress. RNASeq was used to investigate genome-wide transcriptome changes in the hippocampus of F1 and F2 generations. Transcriptome analyses revealed differential expression of 69 genes in the F1 generation and 14 in the F2 between controls versus social stress differences. Many of these genes were receptors and calcium-binding proteins in the F1 and involved in cellular oxidant detoxification in F2. The present data identify and characterize changes in the neural expression of key genes involved in the regulation of depression maintained between the generations, suggesting a potential neural pathway for the intergenerational transmission of depressed maternal care and maternal anxiety in the CSS model. Further work is needed to understand to what extent these results are due to molecular germline inheritance and/or the social propagation of deficits in maternal care.
Collapse
Affiliation(s)
- Reema Alyamani
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Ben Nephew
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
56
|
Czéh B, Simon M. Benefits of animal models to understand the pathophysiology of depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110049. [PMID: 32735913 DOI: 10.1016/j.pnpbp.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a potentially life-threatening mental disorder imposing severe social and economic burden worldwide. Despite the existence of effective antidepressant treatment strategies the exact pathophysiology of the disease is still unknown. Large number of animal models of MDD have been developed over the years, but all of them suffer from significant shortcomings. Despite their limitations these models have been extensively used in academic research and drug development. The aim of this review is to highlight the benefits of animal models of MDD. We focus here on recent experimental data where animal models were used to examine current theories of this complex disease. We argue, that despite their evident imperfections, these models provide invaluable help to understand cellular and molecular mechanisms contributing to the development of MDD. Furthermore, animal models are utilized in research to find clinically useful biomarkers. We discuss recent neuroimaging and microRNA studies since these investigations yielded promising candidates for biomarkers. Finally, we briefly summarize recent progresses in drug development, i.e. the FDA approval of two novel antidepressant drugs: S-ketamine and brexanolone (allopregnanolone). Deeper understanding of the exact molecular and cellular mechanisms of action responsible for the antidepressant efficacy of these rapid acting drugs could aid us to design further compounds with similar effectiveness, but less side effects. Animal studies are likely to provide valuable help in this endeavor.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| |
Collapse
|
57
|
Kataoka Y. [Imaging and Manipulation of Stem and Progenitor Cells for Revealing the Novel Mechanism of Local Tissue Maintenance in the Brain]. YAKUGAKU ZASSHI 2021; 141:343-348. [PMID: 33642502 DOI: 10.1248/yakushi.20-00198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been investigating the physiological and pathological roles of stem cells and progenitor cells in the central nervous system using multimodal imaging methods, including positron emission tomography (PET), in vivo optical imaging, and light as well as electron microscopy. Furthermore, we generated transgenic rats for selective ablation of these cells. Imaging studies have demonstrated the proliferation and dynamics of neural stem cells in neurogenic regions and glial progenitor cells expressing a chondroitin sulfate proteoglycan (neuron-glial antigen 2; NG2) in the brain of adult rodents. Glial progenitor cells change their direction of differentiation into mature oligodendrocytes or astrocytes by neural activity following their proliferation. This phenomenon was thought to control the local tissue structure for maintenance of moderate neural activity. Furthermore, selective ablation of glial progenitor cells in the brain induced defects of neurons via neuroinflammation with microglial activation and proinflammatory cytokine production in the region. Thus, we have proposed a novel concept that glial progenitor cells regulate the neuro-immune system in the central nervous system, in addition to their role as germinal cells, giving rise to mature glial cells. Neuroinflammation is associated with the onset and progression of depression, chronic fatigue syndrome, and neurodegenerative diseases, including Alzheimer's disease. Anti-inflammatory effects of glial progenitor cells might bring about the possibility of these cells as the new therapeutic targets for such neurological disorders.
Collapse
Affiliation(s)
- Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Biosystems Dynamics Research.,Multi-modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center
| |
Collapse
|
58
|
Eliwa H, Brizard B, Le Guisquet AM, Hen R, Belzung C, Surget A. Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology 2021; 124:105097. [PMID: 33302237 PMCID: PMC8715720 DOI: 10.1016/j.psyneuen.2020.105097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
Major depressive disorder is a common debilitating mental health problem that represents one of the leading causes of disability. Up to date, the therapeutic targets and approaches are still limited. Adult hippocampal neurogenesis (AHN) has been proposed as a critical contributor to the pathophysiology and treatment of depression, altering the hippocampal control over stress response at network, neuroendocrine and behavioral levels. These findings together have suggested that manipulating AHN may be a promising therapeutic strategy for depression. To investigate this question, we assessed whether increasing adult neurogenesis would be sufficient to produce antidepressant-like effects at behavioral and neuroendocrine levels in a mouse model of depression; the unpredictable chronic mild stress (UCMS). For this purpose, we used a bi-transgenic mouse line (iBax) in which AHN increase was induced by deletion of the pro-apoptotic gene Bax from the neural progenitors following the tamoxifen-dependent action of CreERT2 recombinases. UCMS induced a syndrome that is reminiscent of depression-like states, including anhedonia (cookie test), physical changes (coat deterioration, reduced weight gain), anxiety-like behaviors (higher latency in the novelty-supressed feeding -NSF- test), passive stress-coping behaviors (immobility in the forced swim test -FST-) and a blunted hypothalamo-pituitary-adrenal (HPA) axis reactivity to acute stress in addition to AHN decrease. Tamoxifen injection reversed the AHN decrease as well as partly counteracted UCMS effects on the cookie test and HPA axis but not for the coat state, weight gain, NSF test and FST. Taken together, our results suggest that a strategy directing at increasing AHN may be able to alleviate some depression-related behavioral and neuroendocrine dimensions of UCMS, such as anhedonia and HPA axis reactivity deficits, but may be hardly sufficient to produce a complete recovery.
Collapse
Affiliation(s)
- Hoda Eliwa
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Department of Cell Biology, Medical Research Institute, Alexandria University, Egypt
| | - Bruno Brizard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - René Hen
- Departments of Neuroscience, Psychiatry, & Pharmacology, Columbia University, New York, NY, USA; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
59
|
Tamura JK, Carvalho IP, Leanna LMW, Feng JN, Rosenblat JD, Mansur R, Lee Y, Cha DS, Teopiz K, Ahmad Z, Nasri F, Kim J, McIntyre RS. Management of cognitive impairment in bipolar disorder: a systematic review of randomized controlled trials. CNS Spectr 2021:1-22. [PMID: 33706820 DOI: 10.1017/s1092852921000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cognitive impairment is common in bipolar disorder and is emerging as a therapeutic target to enhance quality of life and function. A systematic search was conducted on PubMed, PsycInfo, Cochrane, clinicaltrials.gov, and Embase databases for blinded or open-label randomized controlled trials evaluating the pro-cognitive effects of pharmacological, neurostimulation, or psychological interventions for bipolar disorder. Twenty-two trials were identified, evaluating a total of 16 different pro-cognitive interventions. The methodological quality of the identified trials were assessed using the Cochrane Risk of Bias tool. Currently, no intervention (i.e., pharmacologic, neurostimulation, cognitive remediation) has demonstrated robust and independent pro-cognitive effects in adults with bipolar disorder. Findings are preliminary and methodological limitations limit the interpretation of results. Methodological considerations including, but not limited to, the enrichment with populations with pre-treatment cognitive impairment, as well as the inclusion of individuals who are in remission are encouraged. Future trials may also consider targeting interventions to specific cognitive subgroups and the use of biomarkers of cognitive function.
Collapse
Affiliation(s)
- Jocelyn K Tamura
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Isabelle P Carvalho
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Lui M W Leanna
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Jia Nuo Feng
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Danielle S Cha
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Kayla Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Zara Ahmad
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Jiin Kim
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| |
Collapse
|
60
|
Tai HH, Cha J, Vedaei F, Dunlop BW, Craighead WE, Mayberg HS, Choi KS. Treatment-Specific Hippocampal Subfield Volume Changes With Antidepressant Medication or Cognitive-Behavior Therapy in Treatment-Naive Depression. Front Psychiatry 2021; 12:718539. [PMID: 35002790 PMCID: PMC8739262 DOI: 10.3389/fpsyt.2021.718539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Hippocampal atrophy has been consistently reported in major depressive disorder with more recent focus on subfields. However, literature on hippocampal volume changes after antidepressant treatment has been limited. The first-line treatments for depression include antidepressant medication (ADM) or cognitive-behavior therapy (CBT). To understand the differential effects of CBT and ADM on the hippocampus, we investigated the volume alterations of hippocampal subfields with treatment, outcome, and chronicity in treatment-naïve depression patients. Methods: Treatment-naïve depressed patients from the PReDICT study were included in this analysis. A total of 172 patients who completed 12 weeks of randomized treatment with CBT (n = 45) or ADM (n = 127) were included for hippocampal subfield volume analysis. Forty healthy controls were also included for the baseline comparison. Freesurfer 6.0 was used to segment 26 hippocampal substructures and bilateral whole hippocampus from baseline and week 12 structural MRI scans. A generalized linear model with covariates of age and gender was used for group statistical tests. A linear mixed model for the repeated measures with covariates of age and gender was used to examine volumetric changes over time and the contributing effects of treatment type, outcome, and illness chronicity. Results: Of the 172 patients, 85 achieved remission (63/127 ADM, 22/45 CBT). MDD patients showed smaller baseline volumes than healthy controls in CA1, CA3, CA4, parasubiculum, GC-ML-DG, Hippocampal Amygdala Transition Area (HATA), and fimbria. Over 12 weeks of treatment, further declines in the volumes of CA1, fimbria, subiculum, and HATA were observed regardless of treatment type or outcome. CBT remitters, but not ADM remitters, showed volume reduction in the right hippocampal tail. Unlike ADM remitters, ADM non-responders had a decline in volume in the bilateral hippocampal tails. Baseline volume of left presubiculum (regardless of treatment type) and right fimbria and HATA in CBT patients were correlated with a continuous measure of clinical improvement. Chronicity of depression had no effect on any measures of hippocampal subfield volumes. Conclusion: Two first-line antidepressant treatments, CBT and ADM, have different effects on hippocampal tail after 12 weeks. This finding suggests that remission achieved via ADM may protect against progressive hippocampal atrophy by altering neuronal plasticity or supporting neurogenesis. Studies with multimodal neuroimaging, including functional and structural analysis, are needed to assess further the impact of two different antidepressant treatments on hippocampal subfields.
Collapse
Affiliation(s)
- Hua-Hsin Tai
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Faezeh Vedaei
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
61
|
Tianeptine Enhances Energy-related Processes in the Hippocampal Non-synaptic Mitochondria in a Rat Model of Depression. Neuroscience 2020; 451:111-125. [DOI: 10.1016/j.neuroscience.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
62
|
Petermann M, Kronenberg G, Mosienko V, Bader M, Alenina N, Hellweg R, Klempin F. Alterations in BDNF Protein Concentrations in the Hippocampus do not Explain the Pro-Neurogenic Effect of Citalopram on Adult Neurogenesis. PHARMACOPSYCHIATRY 2020; 54:101-105. [PMID: 33197939 DOI: 10.1055/a-1291-8079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) has been implicated in the pro-neurogenic effect of selective serotonin reuptake inhibitors. In this study, we used Tph2 -/- mice lacking brain serotonin to dissect the interplay between BDNF and the serotonin system in mediating the effects of antidepressant pharmacotherapy on adult neurogenesis in the hippocampus. METHODS Besides citalopram (CIT), we tested tianeptine (TIA), an antidepressant whose mechanism of action is not well understood. Specifically, we examined cell survival and endogenous concentrations of BDNF following daily injection of the drugs. RESULTS Twenty-one days of CIT, but not of TIA, led to a significant increase in the survival of newly generated cells in the dentate gyrus of wild-type mice, without a significant effect on BDNF protein levels by either treatment. In Tph2 -/- mice, adult neurogenesis was consistently increased. Furthermore, Tph2 -/- mice showed increased BDNF protein levels, which were not affected by TIA but were significantly reduced by CIT. DISCUSSION We conclude that the effects of CIT on adult neurogenesis are not explained by changes in BDNF protein concentrations in the hippocampus.
Collapse
Affiliation(s)
- Markus Petermann
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Golo Kronenberg
- University of Leicester and Leicestershire Partnership NHS Trust, Leicester, UK.,Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,current address: University of Exeter, College of Medicine and Health, EX4 4PS, Exeter, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Charité-University Medicine Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Friederike Klempin
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
63
|
Short predictable stress promotes resistance to anxiety behavior and increases dendritic spines in prefrontal cortex and hippocampus. Brain Res 2020; 1746:147020. [DOI: 10.1016/j.brainres.2020.147020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
64
|
Wang J, Xu S, Chen X, Wang L, Li J, Li G, Zhang B. Antidepressant effect of EGCG through the inhibition of hippocampal neuroinflammation in chronic unpredictable mild stress-induced depression rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
65
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
66
|
Meknatkhah S, Dashti PS, Raminfard S, Rad HS, Mousavi MS, Riazi GH. The Changes in 1H-MRS Metabolites in Cuprizone-Induced Model of Multiple Sclerosis: Effects of Prior Psychological Stress. J Mol Neurosci 2020; 71:804-809. [PMID: 32915417 DOI: 10.1007/s12031-020-01702-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022]
Abstract
Stress is considered as an important risk factor in the progression and the onset of many disorders such as multiple sclerosis. However, metabolite changes as a result of demyelination under the detrimental effects of stress are not well understood. Thus, 36 female Wistar rats (i.e., groups (1) no-cuprizone (Cont), (2) no-stress + cuprizone-treated (Cup), (3) physical stress + cuprizone-treated (P-Cup), (4) psychological stress + cuprizone-treated (Psy-Cup), (5) physical stress + no-cuprizone-treated (P), (6) psychological stress + no-cuprizone-treated (Psy)) were used in this study. Following induction of repetitive stress, cuprizone treatment was carried out for 6 weeks to instigate demyelination in all groups except the control animal. Relative metabolite concentrations of the brain were investigated by single-voxel proton magnetic resonance spectroscopy (reporting N-acetyl-aspartate (NAA), glycerophosphocholine with phosphocholine (tCho) relative to total creatine (tCr)). According to 1H-MRS, rats in the Cup group indicated a reduction in NAA/ tCr (p < 0.001) as well as tCho/ tCr (p < 0.05) compared with that in the Cont group. In contrast, in both stress + cuprizone-treated groups, NAA/tCr and tCho/tCr ratios remarkably increased versus the Cup group (p < 0.001) and the Cont group (p < 0.001 for the Psy-Cup group and p < 0.05 for the P-Cup group). Both P and Psy groups revealed normal metabolite concentrations similar to the Cont group 6 weeks post stress. Seemingly, in the case of cuprizone alone, decreased level of metabolites is mainly relevant to neuronal cell impairments. Meanwhile, as a result of oxidative stress enhancement due to stress exposure, oligodendrocyte becomes the main victim indicating the increased level of metabolite ratios.
Collapse
Affiliation(s)
- Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Pouya Sharif Dashti
- College of Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Samira Raminfard
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Quantitative Medical Imaging Systems Group (QMISG) Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh-Sadat Mousavi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
67
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
68
|
Mori M, Murata Y, Tsuchihashi M, Hanakita N, Terasaki F, Harada H, Kawanabe S, Terada K, Matsumoto T, Ohe K, Mine K, Enjoji M. Continuous psychosocial stress stimulates BMP signaling in dorsal hippocampus concomitant with anxiety-like behavior associated with differential modulation of cell proliferation and neurogenesis. Behav Brain Res 2020; 392:112711. [PMID: 32461130 DOI: 10.1016/j.bbr.2020.112711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in the hippocampus regulates psychiatric behaviors and hippocampal neurogenesis in non-stress conditions; however, stress-induced changes in hippocampal BMP signaling have not yet been reported. Therefore, we sought to examine whether psychosocial stress, which induces psychiatric symptoms, affects hippocampal BMP signaling. A total of 32 male Sprague-Dawley rats were exposed to a psychosocial stress using a Resident/Intruder paradigm for ten consecutive days. Subsequently, rats were subjected to a battery of behavioral tests (novelty-suppressed feeding test, sucrose preference test, and forced swimming test) for the evaluation of adult neurogenesis and activity of BMP signaling in the dorsal and ventral hippocampus. Repeated social defeat promoted anxiety-like behaviors, but neither anhedonia nor behavioral despair. Socially defeated rats exhibited an increase in the number of Ki-67-positive cells, decrease in the number of doublecortin (DCX)-positive cells, and decrease only in the dorsal hippocampus of the ratio of DCX-positive to Ki-67-positive cells, a proxy for newly-born cell maturation speed and survival. In contrast, no differences were observed in the number of 5-Bromo-2'-deoxyuridine (BrdU)-positive cells, indicating survival of newly-born cells both in the dorsal and ventral hippocampus. Furthermore, psychosocial stress significantly increased the BMP-4 and phosphorylated Smad1/5/9 expression levels specifically in the dorsal hippocampus. Our findings suggest that repeated psychosocial stress activates BMP signaling and differently affects cell proliferation and neurogenesis exclusively in the dorsal hippocampus, potentially exacerbating anxiety-related symptoms. Targeting BMP signaling is a potential therapeutic strategy for psychiatric disorders.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mariko Tsuchihashi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Naoko Hanakita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumie Terasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shunsuke Kawanabe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
69
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
70
|
Family Income Mediates the Effect of Parental Education on Adolescents' Hippocampus Activation During an N-Back Memory Task. Brain Sci 2020; 10:brainsci10080520. [PMID: 32764344 PMCID: PMC7464386 DOI: 10.3390/brainsci10080520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: Hippocampus, a medial temporal lobe structure, has significant implications in memory formation and learning. Although hippocampus activity is believed to be affected by socioeconomic status (SES), limited knowledge exists on which SES indicators influence hippocampus function. Purpose: This study explored the separate and combined effects of three SES indicators, namely parental education, family income, and neighborhood income, on adolescents’ hippocampus activation during an N-Back memory task. As some of the effects of parental education may be through income, we also tested if the effect of parental education on hippocampus activation during our N-Back memory task is mediated by family or neighborhood income. Methods: The Adolescent Brain Cognitive Development (ABCD) study is a national multi-center investigation of American adolescents’ brain development. Functional magnetic resonance imaging (fMRI) data of a total sample of 3067 9–10-year-old adolescents were used. The primary outcome was left- hippocampus activation during the N-Back memory task (mean beta weight for N-Back run 1 2 back versus 0 back contrast in left hippocampus). The independent variable was parental education. Family income and neighborhood income were two possible mediators. Age, sex, and marital status were the covariates. To test mediation, we used hierarchical linear regression models first without and then with our mediators. Full mediation was defined according to Kenny. The Sobel test was used to confirm statistical mediation. Results: In the absence of family and neighborhood income in the model, higher parental educational attainment was associated with lower level of left hippocampus activation during the N-Back memory task. This effect was significant while age, sex, and marital status were controlled. The association between parental educational attainment and hippocampus activation during the N-Back memory task was no more significant when we controlled for family and neighborhood income. Instead, family income was associated with hippocampus activation during the N-Back memory task. These findings suggested that family income fully mediates the effect of parental educational attainment on left hippocampus activation during the N-Back memory task. Conclusions: The effect of parental educational attainment on adolescents’ hippocampus activation during an N-Back memory task is fully explained by family income. That means low family income is why adolescents with low-educated parents show highlighted hippocampus activation during an N-Back memory task. Given the central role of the hippocampus in learning and memory and as income is a modifiable factor by tax and economic policies, income-redistribution policies, fair taxation, and higher minimum wage may have implications for promotion of adolescent equality and social justice. There is a need to focus on family-level economic needs across all levels of neighborhood income.
Collapse
|
71
|
Lyons CE, Bartolomucci A. Stress and Alzheimer's disease: A senescence link? Neurosci Biobehav Rev 2020; 115:285-298. [PMID: 32461080 PMCID: PMC7483955 DOI: 10.1016/j.neubiorev.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Chronic stress has been shown to promote numerous aging-related diseases, and to accelerate the aging process itself. Of particular interest is the impact of stress on Alzheimer's disease (AD), the most prevalent form of dementia. The vast majority of AD cases have no known genetic cause, making it vital to identify the environmental factors involved in the onset and progression of the disease. Age is the greatest risk factor for AD, and measures of biological aging such as shorter telomere length, significantly increase likelihood for developing AD. Stress is also considered a crucial contributor to AD, as indicated by a formidable body of research, although the mechanisms underlying this association remain unclear. Here we review human and animal literature on the impact of stress on AD and discuss the mechanisms implicated in the interaction. In particular we will focus on the burgeoning body of research demonstrating that senescent cells, which accumulate with age and actively drive a number of aging-related diseases, may be a key mechanism through which stress drives AD.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, United States; Graduate Program in Neuroscience, University of Minnesota, United States.
| | | |
Collapse
|
72
|
Joss D, Lazar SW, Teicher MH. Effects of a mindfulness based behavioral intervention for young adults with childhood maltreatment history on hippocampal morphometry: a pilot MRI study with voxel-based morphometry. Psychiatry Res Neuroimaging 2020; 301:111087. [PMID: 32413812 PMCID: PMC7395365 DOI: 10.1016/j.pscychresns.2020.111087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 01/15/2023]
Abstract
Childhood maltreatment has long lasting impacts on neural development of the hippocampus, which is important for learning and memory. The present study aimed to assess the effects of a mindfulness based intervention on hippocampal morphometry and episodic memory in this population. We administered MRI, psychological questionnaires and an episodic memory task to 21 participants (5 males) before and after a mindfulness-based behavioral intervention, compared to 21 participants (7 males) on the waiting list. Changes in Gray Matter Volume (GMV) in bilateral hippocampi were analyzed with Voxel-Based Morphometry (VBM). One cluster was identified in the right hippocampus with a group by time interaction effect that consisted of 130 contiguous voxels but fell short of significance with full FDR correction (p = 0.077). GMV in this cluster increased by 0.76% in the mindfulness group and decreased by 0.78% in the control group. Within the mindfulness group, changes in hippocampal GMV were negatively associated with changes in perceived stress and depression severity and positively associated with enhancement in performance accuracy on the episodic memory task. Findings from this pilot study suggest that a mindfulness-based intervention may lead to an increase in partial hippocampal GMV with associated symptom reduction and improvement in episodic memory.
Collapse
Affiliation(s)
- Diane Joss
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Massachusetts General Hospital, USA; Department of Psychiatry, Harvard Medical School, Boston, USA.
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, USA; Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Martin H Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, USA
| |
Collapse
|
73
|
Kochalska K, Oakden W, Słowik T, Chudzik A, Pankowska A, Łazorczyk A, Kozioł P, Andres-Mach M, Pietura R, Rola R, Stanisz GJ, Orzylowska A. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress. Nutr Res 2020; 82:44-57. [PMID: 32961399 DOI: 10.1016/j.nutres.2020.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.
Collapse
Affiliation(s)
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Tymoteusz Słowik
- Center of Experimental Medicine, Medical University of Lublin, Lublin, Poland
| | - Agata Chudzik
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Lublin, Poland
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Anna Orzylowska
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
74
|
Nagy SA, Vranesics A, Varga Z, Csabai D, Bruszt N, Bali ZK, Perlaki G, Hernádi I, Berente Z, Miseta A, Dóczi T, Czéh B. Stress-Induced Microstructural Alterations Correlate With the Cognitive Performance of Rats: A Longitudinal in vivo Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:474. [PMID: 32581670 PMCID: PMC7283577 DOI: 10.3389/fnins.2020.00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. In vivo detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas. Objective: Our aim was to examine the temporal dynamics of stress-induced structural changes with repeated in vivo DTI scans and correlate them with behavioral alterations. Methods: Out of 32 young adult male rats, 16 were exposed to daily immobilization stress for 3 weeks. Four DTI measurements were done: one before the stress exposure (baseline), two scans during the stress (acute and chronic phases), and a last one 2 weeks after the end of the stress protocol (recovery). We used a 4.7T small-animal MRI system and examined 18 gray and white matter structures calculating the following parameters: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). T2-weighted images were used for volumetry. Cognitive performance and anxiety levels of the animals were assessed in the Morris water maze, novel object recognition, open field, and elevated plus maze tests. Results: Reduced FA and increased MD and RD values were found in the corpus callosum and external capsule of stressed rats. Stress increased RD in the anterior commissure and reduced MD and RD in the amygdala. We observed time-dependent changes in several DTI parameters as the rats matured, but we found no evidence of stress-induced volumetric alterations in the brains. Stressed rats displayed cognitive impairments and we found numerous correlations between the cognitive performance of the animals and between various DTI metrics of the inferior colliculus, corpus callosum, anterior commissure, and amygdala. Conclusions: Our data provide further support to the translational value of DTI studies and suggest that chronic stress exposure results in similar white matter microstructural alterations that have been documented in stress-related psychiatric disorders. These DTI findings imply microstructural abnormalities in the brain, which may underlie the cognitive deficits that are often present in stress-related mental disorders.
Collapse
Affiliation(s)
- Szilvia Anett Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anett Vranesics
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Research Group for Experimental Diagnostic Imaging, Medical School, University of Pécs, Pécs, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zsófia Varga
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dávid Csabai
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Nóra Bruszt
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Kristóf Bali
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Grastyán Translational Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| | - István Hernádi
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Physiology, Medical School, University of Pécs, Pécs, Hungary.,Grastyán Translational Research Centre, University of Pécs, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Berente
- Research Group for Experimental Diagnostic Imaging, Medical School, University of Pécs, Pécs, Hungary.,Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Dóczi
- MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
75
|
D'Alessio L, Korman GP, Sarudiansky M, Guelman LR, Scévola L, Pastore A, Obregón A, Roldán EJA. Reducing Allostatic Load in Depression and Anxiety Disorders: Physical Activity and Yoga Practice as Add-On Therapies. Front Psychiatry 2020; 11:501. [PMID: 32581876 PMCID: PMC7287161 DOI: 10.3389/fpsyt.2020.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
The allostatic load (AL) index constitutes a useful tool to objectively assess the biological aspects of chronic stress in clinical practice. AL index has been positively correlated with cumulative chronic stress (physical and psychosocial stressors) and with a high risk to develop pathological conditions (e.g., metabolic syndrome, cardiovascular pathology, inflammatory disorders) and the so-called stress-related psychiatric disorders, including anxiety and depressive disorders. Chronic stress has negative effects on brain neuroplasticity, especially on hippocampal neurogenesis and these effects may be reversed by antidepressant treatments. Several evidences indicate that non-pharmacological interventions based on physical activity and yoga practice may add synergizing benefits to classical treatments (antidepressant and benzodiazepines) for depression and anxiety, reducing the negative effects of chronic stress. The aim of this review is to provide a general overview of current knowledge on AL and chronic stress in relation to depression and anxiety, physical activity and yoga practice.
Collapse
Affiliation(s)
- Luciana D'Alessio
- Universidad de Buenos Aires, Facultad de Medicina, IBCN-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Guido Pablo Korman
- Universidad de Buenos Aires, Facultad de Psicología, CAEA-CONICET, Buenos Aires, Argentina
| | - Mercedes Sarudiansky
- Universidad de Buenos Aires, Facultad de Psicología, CAEA-CONICET, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Facultad de Medicina, CEFYBO-CONICET, Buenos Aires, Argentina
| | - Laura Scévola
- Universidad de Buenos Aires, Hospital Ramos Mejía, Buenos Aires, Argentina
| | | | - Amilcar Obregón
- Dirección Médica y Científica, Gador SA, Buenos Aires, Argentina
| | | |
Collapse
|
76
|
Dafsari FS, Jessen F. Depression-an underrecognized target for prevention of dementia in Alzheimer's disease. Transl Psychiatry 2020; 10:160. [PMID: 32433512 PMCID: PMC7239844 DOI: 10.1038/s41398-020-0839-1] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
It is broadly acknowledged that the onset of dementia in Alzheimer's disease (AD) may be modifiable by the management of risk factors. While several recent guidelines and multidomain intervention trials on prevention of cognitive decline address lifestyle factors and risk diseases, such as hypertension and diabetes, a special reference to the established risk factor of depression or depressive symptoms is systematically lacking. In this article we review epidemiological studies and biological mechanisms linking depression with AD and cognitive decline. We also emphasize the effects of antidepressive treatment on AD pathology including the molecular effects of antidepressants on neurogenesis, amyloid burden, tau pathology, and inflammation. We advocate moving depression and depressive symptoms into the focus of prevention of cognitive decline and dementia. We constitute that early treatment of depressive symptoms may impact on the disease course of AD and affect the risk of developing dementia and we propose the need for clinical trials.
Collapse
Affiliation(s)
- Forugh S Dafsari
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany.
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- German Center for Neurodegenerative Disease (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| |
Collapse
|
77
|
Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB. Melatonin Reverses the Depression-associated Behaviour and Regulates Microglia, Fractalkine Expression and Neurogenesis in Adult Mice Exposed to Chronic Mild Stress. Neuroscience 2020; 440:316-336. [PMID: 32417342 DOI: 10.1016/j.neuroscience.2020.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Depression may be precipitated by the negative impact of chronic stress, which is considered to play a key role in this neuropsychiatric disorder. Interestingly, depressed patients show decreased levels of melatonin. This hormone acts pro-neurogenic and exhibits anti-depressant effects in rodent models of predictive antidepressant-like effects. However, the benefits of melatonin in reversing the deleterious effects of chronic mild stress on the alterations in behaviour and in the neurogenic niche of the hippocampus in male BALB/c mice are unknown. In this study, we compared the effects of melatonin (2.5 mg/kg) and citalopram (5 mg/kg), an antidepressant drug belonging to the selective serotonin reuptake inhibitors, in male BALB/c mice exposed to chronic mild stress (CMS). We also investigated the potential effects of melatonin and citalopram on microglial cells, hippocampal neurogenesis and peripheral cytokine profiles. Melatonin and citalopram induced similar antidepressant-like activities that occurred with some of the the following findings: (1) reversal of the morphological alterations in microglia; (2) reversal of the decreased immunoreactivity to CX3CL1 and CX3CR1 in the dentate gyrus; (3) positive regulation of cell proliferation, survival and complexity of the dendritic trees of doublecortin-cells; and (4) modifications of peripheral CX3CL1 expression. This outcome is consistent with the hypothesis about the antidepressant-like effect of melatonin and supports its relevance as a modulator of the niche in the dentate gyrus.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Leonardo Ortiz-López
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Andrea Granados-Juárez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Erika Monserrat Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calz. México-Xochimilco 101, 14370 Ciudad de México, Mexico
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370 Ciudad de México, Mexico.
| |
Collapse
|
78
|
Hakimi N, Jodeiri A, Mirbagheri M, Setarehdan SK. Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy. Comput Biol Med 2020; 121:103810. [PMID: 32568682 DOI: 10.1016/j.compbiomed.2020.103810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Stress is known as one of the major factors threatening human health. A large number of studies have been performed in order to either assess or relieve stress by analyzing the brain and heart-related signals. METHOD In this study, a method based on the Convolutional Neural Network (CNN) approach is proposed to assess stress induced by the Montreal Imaging Stress Task. The proposed model is trained on the heart rate signal derived from functional Near-Infrared Spectroscopy (fNIRS), which is referred to as HRF. In this regard, fNIRS signals of 20 healthy volunteers were recorded using a configuration of 23 channels located on the prefrontal cortex. The proposed deep learning system consists of two main parts where in the first part, the one-dimensional convolutional neural network is employed to build informative activation maps, and then in the second part, a stack of deep fully connected layers is used to predict the stress existence probability. Thereafter, the employed CNN method is compared with the Dense Neural Network, Support Vector Machine, and Random Forest regarding various classification metrics. RESULTS Results clearly showed the superiority of CNN over all other methods. Additionally, the trained HRF model significantly outperforms the model trained on the filtered fNIRS signals, where the HRF model could achieve 98.69 ± 0.45% accuracy, which is 10.09% greater than the accuracy obtained by the fNIRS model. CONCLUSIONS Employment of the proposed deep learning system trained on the HRF measurements leads to higher stress classification accuracy than the accuracy reported in the existing studies where the same experimental procedure has been done. Besides, the proposed method suggests better stability with lower variation in prediction. Furthermore, its low computational cost opens up the possibility to be applied in real-time monitoring of stress assessment.
Collapse
Affiliation(s)
- Naser Hakimi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands; Artinis Medical Systems B.V., Elst, the Netherlands.
| | - Ata Jodeiri
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahya Mirbagheri
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - S Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
79
|
Abstract
The search for more effective treatments for depression is a long-standing primary objective in both psychiatry and translational neuroscience. From initial models centered on neurochemical deficits, such as the monoamine hypothesis, research toward this goal has shifted toward a focus on network and circuit models to explain how key nodes in the limbic system and beyond interact to produce persistent shifts in affective states. To build these models, researchers have turned to two complementary approaches: neuroimaging studies in human patients (and their healthy counterparts) and neurophysiology studies in animal models, facilitated in large part by optogenetic and chemogenetic techniques. As the authors discuss, functional neuroimaging studies in humans have included largely task-oriented experiments, which have identified brain regions differentially activated during processing of affective stimuli, and resting-state functional MRI experiments, which have identified brain-wide networks altered in depressive states. Future work in this area will build on a multisite approach, assembling large data sets across diverse populations, and will also leverage the statistical power afforded by longitudinal imaging studies in patient samples. Translational studies in rodents have used optogenetic and chemogenetic tools to identify not just nodes but also connections within the networks of the limbic system that are both critical and permissive for the expression of motivated behavior and affective phenotypes. Future studies in this area will exploit mesoscale imaging and multisite electrophysiology recordings to construct network models with cell-type specificity and high statistical power, identifying candidate circuit and molecular pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Timothy Spellman
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York
| |
Collapse
|
80
|
Abstract
SummaryThe first effective antidepressants (monoamine oxidase inhibitors and tricyclic antidepressants) relied on their ability to augment serotonin and noradrenaline levels at the synapse. Forty years later, the same biological model led to the supremacy of the serotonergic hypothesis to explain not only the pathophysiology of depressive illness, but also the neuropharmacological basis for obsessive compulsive disorder, phobias, posttraumatic stress disorder, and even generalized anxiety disorder. It could be argued that the blinkered view of depression as a solely serotonergic phenomenon has not only restrained and limited research into other potential systems, but has also slowed down the discovery of putative antidepressant drugs. While some might argue that the hypothalamic-pituitary-adrenal (HPA) axis explains an individual’s sensitivity to depression, there are others who equally claim that the most likely explanations are to be found in the neuropsychopharmacology of the immune system or even through reductions in hippocampal volume. There is a richness of possibilities regarding the mechanisms for antidepressant activity embracing theoretical, pharmacological and clinical data. However, the methods by which putative antidepressants are assessed and their clinical efficacy demonstrated are not always robust. That current clinical comparisons of antidepressants rarely show major differences in efficacy between existing molecules could be taken as an indication that “all drugs are the same” or perhaps, more insightfully, as an indication that the ubiquitous Hamilton depression (HAM-D) rating scales are not sensitive to inter-drug differences, even though pronounced pharmacodynamic differences between molecules are easily demonstrated. Any advances in the development of new antidepressants will have to find not only original compounds but also unique psychometric tests by which the drugs can be assessed in a sensitive, reliable, and valid manner.
Collapse
Affiliation(s)
- I Hindmarch
- HPRU Medical Research Centre, University of Surrey, Egerton Road, Guildford, Surrey, UK
| |
Collapse
|
81
|
Onder E, Tural U, Aker T. A comparative study of fluoxetine, moclobemide, and tianeptine in the treatment of posttraumatic stress disorder following an earthquake. Eur Psychiatry 2020; 21:174-9. [PMID: 15964747 DOI: 10.1016/j.eurpsy.2005.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 03/24/2005] [Indexed: 12/31/2022] Open
Abstract
Abstract.PurposeAlthough antidepressant drugs have been proven as an effective treatment for posttraumatic stress disorder (PTSD), there are few comparative studies of antidepressants that are acting on different neurotransmitters. The main aim of this study is to compare the efficacy of different class of antidepressant drugs on the PTSD.Subjects/materials and methods. –In this open label study, the patients who met DSM-IV criteria for PTSD were randomly assigned to flexible doses of fluoxetine, moclobemide, or tianeptine. After the first assessment, consecutive assessments were performed at the end of weeks 2, 4, 8, and 12 using clinician administered PTSD scale (CAPS) and Clinical Global Impression of Severity (CGI-S). Changes in the total score of CAPS and sub-scale scores of symptom clusters (re-experience, avoidance, and hyperarousal) were the main output of efficacy. All statistics were based on intention-to-treat and last-observation-carried-forward (LOCF) principles.Results.Thirty-eight patients were assigned to fluoxetine, 35 patients were assigned to moclobemide, and 30 patients were assigned to tianeptine group. Gender distributions and mean ages of the treatment groups were not significantly different. Drop-out rates due to an adverse events or unknown reasons were not significantly different among fluoxetine (18.4%), moclobemide (14.3%), and tianeptine (20.0%) groups. All three treatments has led to a significant improvement in PTSD severity assessed with CAPS total score (ANOVA P < 0.001). Similarly, total scores of re-experiencing, avoidance, and hyperarousal clusters that are subscales of CAPS were significantly reduced by all three treatments (with ANOVA all P values < 0.001). There was not significant difference in terms of treatment effect between three groups.Discussion. –Treatment groups showed very similar improvement on all ratings scales. The findings support that fluoxetine, moclobemide, and tianeptine are all effective in the treatment of PTSD. Different mechanisms of action for these antidepressant drugs might result in the same common neurochemical end point. However, further studies using different classes of antidepressant drugs are needed.
Collapse
Affiliation(s)
- E Onder
- Center for Psychological Trauma, Medical School of Kocaeli University, Kocaeli, Turkey
| | | | | |
Collapse
|
82
|
Ahammed K, Ahmed MU. QUANTIFICATION OF MENTAL STRESS USING COMPLEXITY ANALYSIS OF EEG SIGNALS. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2020. [DOI: 10.4015/s1016237220500118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detection of mental stress has been receiving great attention from the researchers for many years. Many studies have analyzed electroencephalogram signals in order to estimate mental stress using linear methods. In this paper, a novel nonlinear stress assessment method based on multivariate multiscale entropy has been introduced. Since the multivariate multiscale entropy method characterizes the complexity of nonlinear time series, this research determines the mental stress of human during cognitive workload using complexity of electroencephalogram (EEG) signals. To perform this work, 36 subjects including 9 men and 27 women were participated in the cognitive workload experiment. Multivariate multiscale entropy method has been applied to electroencephalogram data collected from those subjects for estimating mental stress in terms of complexity. The complexity feature of brain electroencephalogram signals collected during resting and cognitive workload has shown statistically significant ([Formula: see text]) differences across brain regions and mental tasks which can be implemented practically for building stress detection system. In addition, the complexity profile of electroencephalogram signals has shown that higher stress is reflected in good counting compared to bad counting. Moreover, the support vector machine (SVM) has shown promising classification between resting and mental counting states by providing 80% sensitivity, 100% specificity and 90% classification accuracy.
Collapse
Affiliation(s)
- Kawser Ahammed
- Department of Electrical and Electronic Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh
| | - Mosabber Uddin Ahmed
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
83
|
Han Y, Wang W, Jia J, Sun X, Kuang D, Tong P, Li N, Lu C, Zhang H, Dai J. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. Exp Biol Med (Maywood) 2020; 245:945-955. [PMID: 32216464 DOI: 10.1177/1535370220915180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT We constructed the transcriptomic network in adipose tissue in lean, moderate obesity and severe obesity groups of tree shrew for the first time. Compared to other laboratory animal models, the tree shrew is a prospective laboratory animal that has a closer genetic association with primates than with rodents. It is widely used in biomedical researches. Enrichment analyses revealed several molecular biological processes were involved in the ribosome, lysosome, and ubiquitin-mediated proteolysis process. These results provided insights into new targets for the prevention and therapy of obesity and a novel research model for obesity.
Collapse
Affiliation(s)
- Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | | | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Huatang Zhang
- Chongqing Research Center of Biomedicine and Medical Equipment, Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| |
Collapse
|
84
|
Chakraborty S, Tripathi SJ, Srikumar B, Raju T, Shankaranarayana Rao B. N-acetyl cysteine ameliorates depression-induced cognitive deficits by restoring the volumes of hippocampal subfields and associated neurochemical changes. Neurochem Int 2020; 132:104605. [DOI: 10.1016/j.neuint.2019.104605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
85
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
86
|
Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res 2020; 1727:146546. [DOI: 10.1016/j.brainres.2019.146546] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
87
|
Inflammation-induced behavioral changes is driven by alterations in Nrf2-dependent apoptosis and autophagy in mouse hippocampus: Role of fluoxetine. Cell Signal 2019; 68:109521. [PMID: 31881324 DOI: 10.1016/j.cellsig.2019.109521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
Abstract
Inflammation has been associated with the progression of many neurological diseases. Peripheral inflammation has also been vaguely linked to depression-like symptoms in animal models, but the underlying pathways that orchestrate inflammation-induced behavioral or molecular changes in the brain are still elusive. We have recently shown that intraperitoneal injections of lipopolysaccharide (LPS) to Swiss albino mice triggers systemic inflammation, leading to an activated immune response along with changes in monoamine levels in the brain. Herein we pinpoint the fundamental pathways linking peripheral inflammation and depression-like behavior in a mouse model, thereby identifying suitable targets of intervention to combat the situation. We show that LPS-induced peripheral inflammation provoked a depression-like behavior in mice and a distinct pro-inflammatory bias in the hippocampus, as evident from increased microglial activation and elevated levels of pro-inflammatory cytokines IL-6 and TNF-α, and activation of NFκB-p65 pathway. Significant alterations in Nrf2-dependent cellular redox status, coupled with altered autophagy and increased apoptosis were noticed in the hippocampus of LPS-exposed mice. We and others have previously shown that, fluoxetine (an anti-depressant) has effective anti-inflammatory and antioxidant properties by virtue of its abilities to regulate NFκB and Nrf2 signaling. We observed that treatment with fluoxetine or the Nrf2 activator tBHQ (tert-butyl hydroquinone), could reverse depression-like-symptoms and mitigate alterations in autophagy and cell death pathways in the hippocampus by activating Nrf2-dependent gene expressions. Taken together, the data suggests that systemic inflammation potentiates Nrf2-dependent changes in cell death and autophagy pathway in the hippocampus, eventually leading to major pathologic sequelae associated with depression. Therefore, targeting Nrf2 could be a novel approach in combatting depression and ameliorating its associated pathogenesis.
Collapse
|
88
|
Astrocyte control of glutamatergic activity: Downstream effects on serotonergic function and emotional behavior. Neuropharmacology 2019; 166:107914. [PMID: 32045742 DOI: 10.1016/j.neuropharm.2019.107914] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/28/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide, with a poorly known pathophysiology and sub-optimal treatment, based on serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors. We review existing theories on MDD, paying special attention to the role played by the ventral anterior cingulate cortex (vACC) or its rodent equivalent, infralimbic cortex (IL), which tightly control the activity of brainstem monoamine neurons (including raphe 5-HT neurons) via descending afferents. Further, astrocytes regulate excitatory synapse activity via glutamate reuptake through astrocytic transporters EAAT1 and EAAT2 (GLAST and GLT-1 in rodents), and alterations of astrocyte number/function have been reported in MDD patients and suicide victims. We recently assessed the impact of reducing GLAST/GLT-1 function in IL on emotional behavior and serotonergic function in rodents. The acute pharmacological blockade of GLT-1 with dihydrokainate (DHK) in rat IL evoked an antidepressant-like effect mediated by local AMPA-R activation and a subsequent enhancement of serotonergic function. No effects were produced by DHK microinfusion in prelimbic cortex (PrL). In the second model, a moderate small interfering RNAs (siRNA)-induced reduction of GLAST and GLT-1 expression in mouse IL markedly increased local glutamatergic neurotransmission and evoked a depressive-like phenotype (reversed by citalopram and ketamine), and reduced serotonergic function and BDNF expression in cortical/hippocampal areas. As for DHK, siRNA microinfusion in PrL did not evoke behavioral/neurochemical effects. Overall, both studies support a critical role of the astrocyte-neuron communication in the control of excitatory neurotransmission in IL, and subsequently, on emotional behavior, via the downstream associated changes on serotonergic function.
Collapse
|
89
|
McAllister BB, Pochakom A, Fu S, Dyck RH. Effects of social defeat stress and fluoxetine treatment on neurogenesis and behavior in mice that lack zinc transporter 3 (ZnT3) and vesicular zinc. Hippocampus 2019; 30:623-637. [DOI: 10.1002/hipo.23185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Brendan B. McAllister
- Department of PsychologyUniversity of Calgary Calgary Alberta Canada
- Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Angela Pochakom
- Department of PsychologyUniversity of Calgary Calgary Alberta Canada
- Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Selena Fu
- Department of PsychologyUniversity of Calgary Calgary Alberta Canada
- Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| | - Richard H. Dyck
- Department of PsychologyUniversity of Calgary Calgary Alberta Canada
- Hotchkiss Brain InstituteUniversity of Calgary Calgary Alberta Canada
| |
Collapse
|
90
|
Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, López MG, Leal RB, Kaster MP, Rodrigues ALS. Protective Effects of Ursolic Acid Against Cytotoxicity Induced by Corticosterone: Role of Protein Kinases. Neurochem Res 2019; 44:10.1007/s11064-019-02906-1. [PMID: 31713091 DOI: 10.1007/s11064-019-02906-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Nicolle Platt
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Isabella A Heinrich
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuela G López
- Department of Pharmacology, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo B Leal
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil.
| |
Collapse
|
91
|
Metabolic effects induced by chronic stress in the amygdala of diabetic rats: A study based on ex vivo 1H NMR spectroscopy. Brain Res 2019; 1723:146377. [DOI: 10.1016/j.brainres.2019.146377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
|
92
|
Abdulla ZI, Pennington JL, Gutierrez A, Skelton MR. Creatine transporter knockout mice (Slc6a8) show increases in serotonin-related proteins and are resilient to learned helplessness. Behav Brain Res 2019; 377:112254. [PMID: 31542396 DOI: 10.1016/j.bbr.2019.112254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Approximately 20% of adults in the U.S. will experience an affective disorder during their life. While it is well established that serotonin (5-HT) is a crucial factor in mood, impaired cellular bioenergetics are also implicated. Creatine (Cr), through the Cr/Phospho-Cr (PCr) shuttle, maintains high ATP concentrations in the neuron. This system may be implicated in the etiology of affective disorders, as reduced Cr, PCr, and ATP are often seen in the brains of affected patients. To address this issue, Cr transporter (Crt) deficient male mice (Slc6a8-/y) and female mice heterozygous for Crt expression (Slc6a8+/-) were used to evaluate how a Cr deficient system would alter affective-like behaviors. Slc6a8-/y and Slc6a8+/- mice had faster escape latencies in learned helplessness, indicating a potential resilience to behavioral despair. Slc6a8-/y had decrease latency to immobility in the tail-suspension test and Slc6a8+/- had increased open entries in elevated zero maze, but all other variables matched those of wildtype mice, however. Slc6a8-/y mice have increased 5-hydroxyindoleacetic acid content in the hippocampus and striatum and increased monoamine oxidase protein and tryptophan hydroxylase-2 protein content in the hippocampus, while 5-HT levels are unchanged. This indicates an alteration to the 5-HTergic system in Cr deficient mice. Our results indicate that Cr plays a complex role in affective disorders and 5-HT, warranting further investigation.
Collapse
Affiliation(s)
- Zuhair I Abdulla
- Department of Pediatrics, University of Cincinnati College of Medicine, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jordan L Pennington
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Arnold Gutierrez
- Department of Pediatrics, University of Cincinnati College of Medicine, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Matthew R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|
93
|
Zhang FH, Wang ZM, Liu YT, Huang JS, Liang S, Wu HH, Xu YT. Bioactivities of serotonin transporter mediate antidepressant effects of Acorus tatarinowii Schott. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111967. [PMID: 31128148 DOI: 10.1016/j.jep.2019.111967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acrorus tatarinowii Schott has been widely used in the treatments of neuropsychiatric and digestive disorders in clinical practices of traditional Chinese medicine for thousands of years. Both clinical and preclinical studies demonstrated antidepressant effects of A. tatarinowii. However, the possible action mechanisms of antidepressant effects of A. tatarinowii remain unraveled. AIM OF THE STUDY The present study aimed to investigate the roles of serotonin transporter (SERT) in antidepressant effects of A. tatarinowii. MATERIALS AND METHODS Antidepressant effects of water extract of A. tatarinowii were evaluated by forced swimming test (FST), tail suspension test (TST) and locomotor activity test. The water extract was analyzed by ultra high performance liquid chromatography (UPLC) method. Two major fractions of A. tatarinowii, petroleum ether extract and water extract after petroleum ether processed, were prepared and analyzed by UPLC method. Further, volatile oil extracted by ether extraction, solid phase micro-extraction (SPME) and hydro-distillation were compared and analyzed by gas chromatography-mass spectrometer (GC-MS) method. Finally, major constituents of water extract of A. tatarinowii were isolated by preparative high performance liquid chromatography (HPLC) and identified by extensive spectroscopic analyses. Effects of all of the above mentioned samples on SERT activity were tested by a high content assay (HCA). RESULTS Results of FST, TST and locomotor activity confirmed that water extract of A. tatarinowii significantly decreased mice immobility time but did not change mice locomotor activity. UPLC analysis results revealed that the water extract contained trace amount of β-asarone (0.0004206%) and α-asarone (0.0001918%). HCA results demonstrated that the water extract significantly enhanced SERT activity at 100 μg/mL. Further, GC-MS and UPLC analyses revealed that petroleum ether extract contained high content of β-asarone (45.63%) and α-asarone (12.50%). GC-MS analysis results demonstrated that the volatile oil extracted by ether extraction, SPME and hydro-distillation contained similar major components. HCA results verified that the petroleum ether extract significantly enhanced SERT activity at 1.56 μg/mL. Moreover, UPLC analysis of water extract after petroleum ether processed did not show any characteristic peaks. HCA results demonstrated that this extract significantly inhibited SERT activity at 50-100 μg/mL. Finally, phytochemistry investigation on the water extract of A. tatarinowii afforded seven constituents including veratric acid (9), anisic acid (7), 3,4,5-trimethoxybenzoic acid (3), trans-isoferulic acid (2), 2,4,5-trimethoxybenzoic acid (11), 4-hydroxybenzoic acid (6) and syringic acid (13). Their structures were established on the basis of nuclear magnetic resonance (NMR) and mass spectrometer (MS) data and comparative UPLC analyses. HCA results demonstrated the major components of the water extract of A. tatarinowii demonstrated SERT enhancement/inhibition activities. CONCLUSIONS This study first systematically demonstrated the roles of SERT activity in antidepressant effects of A. tatarinowii, including water extract, major fractions and main constituents. These results revealed that A. tatarinowii could regulate SERT activities in bidirectional ways.
Collapse
Affiliation(s)
- Feng-Hong Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Zhi-Mei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yan-Ting Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Ji-Sheng Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Shuang Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Hong-Hua Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China.
| | - Yan-Tong Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chemistry and Analysis of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China.
| |
Collapse
|
94
|
Sakurai M, Kurachi J, Sakai Y, Morimoto M. Nippostrongylus brasiliensis infection inhibits hippocampal neurogenesis in mice. Neuropathology 2019; 39:425-433. [PMID: 31502307 DOI: 10.1111/neup.12596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 11/29/2022]
Abstract
The brain has long been considered a site of "immune privilege"; however, recent evidence indicates the presence of brain-immune interactions in physiological and pathological conditions. Neurogenesis, a process of generating functionally integrated neurons, occurs in the adult brain of mammals. The adult neurogenesis predominantly takes place in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ). Several studies have shown that an immune reaction or alteration could affect adult neurogenesis activity, suggesting a link between the immune system and adult neurogenesis. Helminth infection is one of the activators of Th2 immune response. However, the influence of this type of immune reaction on adult neurogenesis is not well studied. In this study, we evaluated adult neurogenesis in mice infected with the helminth Nippostrongylus brasiliensis (Nb). Immunohistochemically, the number of both doublecortin-positive cells and doublecortin/5-bromodeoxyuridine (BrdU)-double-positive cells was decreased in the SGZ of Nb-infected mice by day 9 after infection. However, the total number of BrdU-positive newborn cells in the SGZ did not change. In no significant alterations were detected in the SVZ of infected mice. In addition, using reverse transcription-quantitative polymerase chain reaction, we observed no significant changes in the expression levels of neurotropic factors important for neurogenesis in the hippocampus. In conclusion, our results indicate that adult neurogenesis in SGZ, but not in SVZ, is inhibited by Nb infection. Th2 immune response might have a suppressive effect on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junya Kurachi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Up until the latter part of the previous century, the monoamine theory guided our understanding of psychiatric disorders, notably depressive illness in its various phenotypic manifestations. The purpose of this review is to provide an overview of newer theories that allow a deeper understanding of brain dysfunction and neuropsychiatric disease entities such as depressive illness. One such key theory is the theory of inflammation as a result of stress-induced immune system activation. RECENT FINDINGS Stress activates the hypothalamic-pituitary-adrenal axis and the sympathetic branch of the autonomic nervous system [sympathetic branch (SNS)] with a concomitant reduction in vagal tone. This homeostatic imbalance makes a simultaneous dual contribution to the resulting proinflammatory state of depression. SNS stimulation results in upregulation of proinflammatory signaling, whereas diminution in parasympathetic tone affects the body's immune response. The resulting proinflammatory status has been closely associated with multiple organ dysfunction and comorbid conditions. SUMMARY The advent of innovative theories about the pathophysiology of psychiatric disorders has ushered in a new era on the basis of the role of the immune system and inflammation in mediating depression in its multifaceted manifestations. Extensive studies have confirmed the proinflammatory status in depression and causal relationships with neurotransmitter dysregulation. Equally importantly the role the autonomic nervous system plays in this complex and multifactorial interplay of body systems is being increasingly elucidated.
Collapse
|
96
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
97
|
Kious BM, Kondo DG, Renshaw PF. Creatine for the Treatment of Depression. Biomolecules 2019; 9:E406. [PMID: 31450809 PMCID: PMC6769464 DOI: 10.3390/biom9090406] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Depressed mood, which can occur in the context of major depressive disorder, bipolar disorder, and other conditions, represents a serious threat to public health and wellness. Conventional treatments are not effective for a significant proportion of patients and interventions that are often beneficial for treatment-refractory depression are not widely available. There is, therefore, an immense need to identify novel antidepressant strategies, particularly strategies that target physiological pathways that are distinct from those addressed by conventional treatments. There is growing evidence from human neuroimaging, genetics, epidemiology, and animal studies that disruptions in brain energy production, storage, and utilization are implicated in the development and maintenance of depression. Creatine, a widely available nutritional supplement, has the potential to improve these disruptions in some patients, and early clinical trials indicate that it may have efficacy as an antidepressant agent.
Collapse
Affiliation(s)
- Brent M Kious
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Douglas G Kondo
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
98
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
99
|
Saboory E, Mohammadi S, Dindarian S, Mohammadi H. Prenatal stress and elevated seizure susceptibility: Molecular inheritable changes. Epilepsy Behav 2019; 96:122-131. [PMID: 31132613 DOI: 10.1016/j.yebeh.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal stress (PS), seizure is a common complication with no fully explained cause. In this study, the association between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that prone the brain for seizure, especially the hypothalamic-pituitary-adrenal (HPA) axis, are also discussed in detail by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described, and the underlying mechanisms of this change are expanded. As the effects of PS may be life-lasting, it is possible to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
100
|
Abstract
A theoretical framework is proposed to gain insight into the pathogenesis of major depressive disorder (MDD). Despite being a relatively weak argument, the neurogenesis theory is suggested to compensate for the limitations of the monoamine theory. In the adult hippocampus, neurogenesis is functionally related to regulation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes, cognitive functions and other aspects that contribute to etiological factors that lead to MDD and promote recovery from MDD. Despite a lack of investigation into neurogenesis and antidepressant action, it is proposed that chronic administration of antidepressant(s) can induce the recruitment and integration of newborn neurons into the dentate gyrus and, ultimately, lead to the remission of MDD. The extant body of literature indicates that the suppression of neurogenesis per se may be associated with an impaired response to antidepressant treatment rather than with the induction of depressive-like behaviors. Moreover, recent studies have shown that increasing the survival rate and incorporation of new neurons can alleviate depressive-like behaviors and promote stress resilience. According to the neurogenic reserve hypothesis, hippocampal neurogenesis supports specific cortical functions, including executive functions, pattern separation and contextual information processing, control over the HPA axis and behavioral coping mechanisms in response to stressful situations. Therefore, hippocampal neurogenesis may be a promising biological indicator of stress resilience and antidepressant response in patients with MDD.
Collapse
Affiliation(s)
- Seon-Cheol Park
- Department of Psychiatry, Inje University Haeundae Paik Hospital, 875, Haeun-daero, Haeundae-gu, Busan, 48108, Republic of Korea.
| |
Collapse
|