51
|
Cignarelli A, Giorgino F, Vettor R. Pharmacologic agents for type 2 diabetes therapy and regulation of adipogenesis. Arch Physiol Biochem 2013; 119:139-50. [PMID: 23724947 DOI: 10.3109/13813455.2013.796996] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The close link between type 2 diabetes and excess body weight highlights the need to consider the effects on weight of different treatments used for correction of hyperglycaemia. Indeed, specific currently available diabetes therapies can cause weight gain, including insulin and its analogues, sulphonylureas, and thiazolidinediones, while others, such as metformin and the GLP-1 receptor agonists, can promote weight loss. Excess body weight in patients with diabetes is largely due to expansion of adipose tissue, and these drugs could interfere with the mechanisms underlying the expansion and differentiation of adipocyte precursors. Almost all anti-diabetes drugs could also potentially affect adipocyte metabolism directly, by modulating lipogenesis, lipolysis, and fat oxidation. This review will examine the available evidence for specific effects of various anti-diabetes drugs on adipose tissue development and function with the ultimate goal of increasing our understanding of how pharmacological agents can modulate energy balance and body fat.
Collapse
Affiliation(s)
- A Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari "Aldo Moro" , Bari , Italy and
| | | | | |
Collapse
|
52
|
Yoshida H, Kanamori Y, Asano H, Hashimoto O, Murakami M, Kawada T, Matsui T, Funaba M. Regulation of brown adipogenesis by the Tgf-β family: involvement of Srebp1c in Tgf-β- and Activin-induced inhibition of adipogenesis. Biochim Biophys Acta Gen Subj 2013; 1830:5027-35. [PMID: 23850470 DOI: 10.1016/j.bbagen.2013.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/12/2013] [Accepted: 06/30/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Brown adipocytes generate heat through the expression of mitochondrial Ucp1. Compared with the information on the regulatory differentiation of white preadipocytes, the factors affecting brown adipogenesis are not as well understood. The present study examined the roles of the Tgf-β family members Bmp, Tgf-β and Activin during differentiation of HB2 brown preadipocytes. METHODS Endogenous Bmp activity and effects of exogenous Tgf-β family members were examined. Role of Srebp1c in brown adipogenesis was further explored. RESULTS Although Bmp7 has been suggested to be a potent stimulator of brown adipogenesis, it affected neither the expression of brown adipocyte-selective genes nor Ucp1 induction in response to a β adrenergic receptor agonist. Unlike in 3T3-L1 white preadipocytes, endogenous Bmp activity was not required for brown adipogenesis; treatment with inhibitors of the Bmp pathway did not affect differentiation of preadipocytes. Administration of Tgf-β1 or Activin A efficiently decreased the insulin-induced expression of brown adipocyte-selective genes. Tgf-β1 and Activin A decreased the expression of Pparγ2 and C/ebpα, suggesting the inhibition of adipogenesis. The Tgf-β- and Activin-induced inhibition of brown adipogenesis was mediated by the repression of Srebp1c expression; Tgf-β1 and Activin A blocked Srebp1c gene induction in response to the differentiation induction, and knock-down of Srebp1 expression inhibited brown adipogenesis. CONCLUSION Endogenous Bmp is dispensable for brown adipogenesis, and Srebp1c is indispensable, which is negatively regulated by Tgf-β and Activin. GENERAL SIGNIFICANCE Control of activity of the Tgf-β family is potentially useful for maintenance of energy homeostasis through manipulation of brown adipogenesis.
Collapse
Affiliation(s)
- Hirofumi Yoshida
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
White adipose tissue (WAT) is not only a lipogenic and fat storage tissue but also an important endocrine organ that regulates energy homeostasis, lipid metabolism, appetite, fertility, and immune and stress responses. Liver kinase B1 (LKB1), a tumor suppressor, is a key regulator in energy metabolism. However, the role of LKB1 in adipogenesis is unknown. The current study aimed to determine the contributions of LKB1 to adipogenesis in vivo. Using the Fabp4-Cre/loxP system, we generated adipose tissue-specific LKB1 knockout (LKB1(ad-/-)) mice. LKB1(ad-/-) mice exhibited a reduced amount of WAT, postnatal growth retardation, and early death before weaning. Further, LKB1 deletion markedly reduced the levels of insulin receptor substrate 1 (IRS1), peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and phosphorylated AMP-activated protein kinase (AMPK). Consistent with these results, overexpression of constitutively active AMPK partially ablated IRS1 degradation in LKB1-deficient cells. LKB1 deletion increased the levels of F-box/WD repeat-containing protein (Fbw) 8, the IRS1 ubiquitination E3 ligase. Silencing of Fbw8 increased IRS1 levels. Finally, promoter analysis and DNA chromatin immunoprecipitation analysis identified three sterol regulatory element (SRE) sites in the Fbw8 promoter, where SRE-binding protein 1c binds and induces the expression of Fbw8. Taken together, these data indicate that LKB1 controls IRS1-dependent adipogenesis via AMPK in WAT.
Collapse
Affiliation(s)
- Wencheng Zhang
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qilong Wang
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ping Song
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ming-Hui Zou
- Section of Molecule Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Ming-Hui Zou,
| |
Collapse
|
54
|
Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci 2013; 70:2331-49. [PMID: 23178849 PMCID: PMC11113730 DOI: 10.1007/s00018-012-1211-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 01/03/2023]
Abstract
The number of mature osteoblasts and marrow adipocytes in bone is influenced by the differentiation of the common mesenchymal progenitor cell towards one phenotype and away from the other. Consequently, factors which promote adipogenesis not only lead to fatty marrow but also inhibit osteoblastogenesis, resulting in decreased osteoblast numbers, diminished bone formation and, potentially, inadequate bone mass and osteoporosis. In addition to osteoblast and bone adipocyte numbers being influenced by this skewing of progenitor cell differentiation towards one phenotype, mature osteoblasts and adipocytes secrete factors which may evoke changes in the cell fate and function of each other. This review examines the endogenous factors, such as PPAR-γ2, Wnt, IGF-1, GH, FGF-2, oestrogen, the GP130 signalling cytokines, vitamin D and glucocorticoids, which regulate the selection between osteoblastogenesis and adipogenesis and the interrelationship between fat and bone. The role of adipokines on bone, such as adiponectin and leptin, as well as adipose-derived oestrogen, is reviewed and the role of bone as an energy regulating endocrine organ is discussed.
Collapse
Affiliation(s)
- H. Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - N. J. Crowther
- Department of Chemical Pathology, National Health Laboratory Services, University of Witwatersrand Medical School, 7 York Road, Parktown, 2193 South Africa
| | - F. S. Hough
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - W. F. Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| |
Collapse
|
55
|
Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol 2013; 92:229-36. [DOI: 10.1016/j.ejcb.2013.06.001] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 05/10/2013] [Accepted: 06/06/2013] [Indexed: 12/24/2022] Open
|
56
|
Antiobesity Effect of Codonopsis lanceolata in High-Calorie/High-Fat-Diet-Induced Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:210297. [PMID: 23818922 PMCID: PMC3683442 DOI: 10.1155/2013/210297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 11/17/2022]
Abstract
The antiobesity effects of Codonopsis lanceolata (CL) were evaluated in a high-calorie/high-fat-diet (HFD-) induced obesity rat model and 3T3-L1 cells. The Sprague-Dawley male rats were fed a normal diet (ND) or a HFD for a period of 12 weeks. The rats were subdivided into groups: ND, ND + wild Codonopsis lanceolata (wCL) (900 mg/kg/day, p.o.), ND + cultivated Codonopsis lanceolata (cCL) (900 mg/kg/day, p.o.), HFD, HFD + wCL (100, 300, or 900 mg/kg/day, p.o.), HFD + cCL (100, 300, or 900 mg/kg/day, p.o.), and HFD + sibutramine. The body weight gains of the administered HFD + CL (wCL or CCL) were lower than those of the rats fed with only the HFD group. Moreover, the weight of adipose pads and the serum levels of triglycerides, total cholesterol, and low density lipoprotein cholesterol in the group administered HDL + CL were significantly lower than in the HFD group. The inhibitory effect of lipid accumulation in 3T3-L1 cells was measured by Oil Red O staining and reverse transcription-polymerase chain reaction (RT-PCR). Treatment of 3T3-L1 cells with wCL inhibited lipid accumulation and expression of C/EBPα and PPARγ. These results suggest that CL has a great potential as a functional food with anti-obesity effects and as a therapeutic alternative in the treatment of obesity.
Collapse
|
57
|
Zhou CJ, Huang S, Liu JQ, Qiu SQ, Xie FY, Song HP, Li YS, Hou SZ, Lai XP. Sweet tea leaves extract improves leptin resistance in diet-induced obese rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:386-392. [PMID: 23147498 DOI: 10.1016/j.jep.2012.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/04/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
AIM OF THE STUDY Dietary obesity is usually characterized by leptin resistance and abnormal lipid metabolism. Lithocarpus polystachyus Rehd.(Sweet Tea) leaf is a kind of Chinese folkloric medicine, and it has been widely used for obesity, diabetes, and hypertension in South China. The present study is aimed at investigating the pharmacological mechanism of the anti-hyperleptinaemia effects of Sweet Tea leaves extract in high fat diet-induced obese rats. MATERIALS AND METHODS We induced high fat diet obesity for 14 weeks to test the corrective effects of three ST doses (75, 150 and 300 mg/kg per day) for 8 weeks. At the end of the experiment, body weight, fasting blood glucose and serum lipids, superoxide dismutase (SOD), malondialdehyde (MDA), fasting serum insulin and leptin, C-reactive protein, adiponectin and resistin levels were measured, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) was also calculated. mRNA gene expression of PPARγ (peroxisome proliferator-activated receptor γ) and C/EBPα(CCAAT/enhancer-binding protein α) in epididymal adipose tissue of DIO control and experimental groups were evaluated. RESULTS Sweet Tea leaves extract could significantly decrease the levels of serum lipids, attenuate body weight gain and lower circulating leptin and insulin levels, ameliorate the state of oxidative stress, raise serum adiponectin, reduce circulating CRP and resistin levels, and depress the expression of PPARγ and C/EBPα in epididymal adipose tissue of obese rats. CONCLUSION The present findings suggest that ST can effectively attenuate the leptin resistance at least through anti-hyperlipidemic activity and thus has the therapeutic potential in treating hyperlipidemia and hyperleptinaemia related to dietary obesity.
Collapse
|
58
|
Peverelli E, Ermetici F, Corbetta S, Gozzini E, Avagliano L, Zappa MA, Bulfamante G, Beck-Peccoz P, Spada A, Mantovani G. PKA regulatory subunit R2B is required for murine and human adipocyte differentiation. Endocr Connect 2013; 2:196-207. [PMID: 24145613 PMCID: PMC3847920 DOI: 10.1530/ec-13-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ADIPOGENESIS IS A COMPLEX PROCESS MODULATED BY SEVERAL FACTORS, INCLUDING CAMP SIGNALING. THE MAIN CAMP TARGET IS PROTEIN KINASE A (PKA), A TETRAMERIC ENZYME WITH FOUR REGULATORY SUBUNITS SHOWING TISSUE-SPECIFIC EXPRESSION AND FUNCTION: PRKAR2B is the main regulatory subunit in adipose tissue in mice and in adult humans. This study aimed to evaluate the expression of PKA regulatory subunits in human adipose tissue during fetal development and to investigate their role in the differentiation of 3T3-L1 and primary human preadipocytes. The expression of PKA regulatory subunits was evaluated in fetal adipose tissue (immunohistochemistry) and in cultured 3T3-L1 and primary human preadipocytes (western blot analysis). Cultured cells were transiently transfected with siRNA against PRKAR2B and induced to differentiate. Differentiation was evaluated by intracellular triglyceride staining (Oil Red O) and expression of molecular markers of adipocyte differentiation. In this study, we found that PRKAR2B is the main regulatory subunit in human adipose tissue during fetal development, from 12 weeks of gestation to the end of gestation, as well as in 3T3-L1 and primary human preadipocytes. The expression of PRKAR2B increases progressively during in vitro differentiation. The silencing of PRKAR2B abolishes the increase in the expression of peroxisome proliferator-activated receptor gamma (PPARγ (PPARG)), fatty acid synthase, aP2 (FABP4), and lipoprotein lipase, as well as intracellular triglyceride accumulation, resulting in impaired adipocyte differentiation in both mouse and human cell systems. In conclusion, PRKAR2B is the key PKA regulatory subunit involved in mouse and human adipose tissue development. The physiological increase in the expression of PRKAR2B is an essential event in adipogenesis in both mice and humans, and it might represent a possible target for future strategies for obesity treatment.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
| | - Federica Ermetici
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
- Diabetology and Metabolic Disease UnitIRCCS Policlinico San DonatoSan Donato MilaneseItaly
| | - Sabrina Corbetta
- Endocrinology Unit, IRCCS Policlinico S.Donato, Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Ettore Gozzini
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
| | - Laura Avagliano
- Department of Health Sciences, Unit of Human Pathology – San Paolo Hospital Medical SchoolUniversity of MilanMilanoItaly
| | - Marco A Zappa
- Surgical DepartmentOspedale Sacra Famiglia FatebenefratelliErbaItaly
| | - Gaetano Bulfamante
- Department of Health Sciences, Unit of Human Pathology – San Paolo Hospital Medical SchoolUniversity of MilanMilanoItaly
| | - Paolo Beck-Peccoz
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
| | - Anna Spada
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community HealthUniversity of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoPad.Granelli Via F. Sforza 3520122, MilanItaly
- Correspondence should be addressed to G Mantovani
| |
Collapse
|
59
|
Du B, Cawthorn WP, Su A, Doucette CR, Yao Y, Hemati N, Kampert S, McCoin C, Broome DT, Rosen CJ, Yang G, MacDougald OA. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J Biol Chem 2012; 288:3036-47. [PMID: 23250756 DOI: 10.1074/jbc.m112.440370] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differentiation of adipocytes from preadipocytes contributes to adipose tissue expansion in obesity. Impaired adipogenesis may underlie the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mechanistically, a well defined transcriptional network coordinates adipocyte differentiation. The family of paired-related homeobox transcription factors, which includes Prrx1a, Prrx1b, and Prrx2, is implicated with regulation of mesenchymal cell fate, including myogenesis and skeletogenesis; however, whether these proteins impact adipogenesis remains to be addressed. In this study, we identify Prrx1a and Prrx1b as negative regulators of adipogenesis. We show that Prrx1a and Prrx1b are down-regulated during adipogenesis in vitro and in vivo. Stable knockdown of Prrx1a/b enhances adipogenesis, with increased expression of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α and FABP4 and increased secretion of the adipokines adiponectin and chemerin. Although stable low-level expression of Prrx1a, Prrx1b, or Prrx2 does not affect 3T3-L1 adipogenesis, transient overexpression of Prrx1a or Prrx1b inhibits peroxisome proliferator-activated receptor-γ activity. Prrx1 knockdown decreases expression of Tgfb2 and Tgfb3, and inhibition of TGFβ signaling during adipogenesis mimics the effects of Prrx1 knockdown. These data support the hypothesis that endogenous Prrx1 restrains adipogenesis by regulating expression of TGFβ ligands and thereby activating TGFβ signaling. Finally, we find that expression of Prrx1a or Prrx1b in adipose tissue increases during obesity and strongly correlates with Tgfb3 expression in BL6 mice. These observations suggest that increased Prrx1 expression may promote TGFβ activity in adipose tissue and thereby contribute to aberrant adipocyte function during obesity.
Collapse
Affiliation(s)
- Baowen Du
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kang SI, Shin HS, Kim HM, Yoon SA, Kang SW, Ko HC, Kim SJ. Callophyllis japonicaextract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2012.734257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
61
|
Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance. Proc Nutr Soc 2012; 71:622-33. [PMID: 22914223 DOI: 10.1017/s0029665112000730] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1β produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.
Collapse
|
62
|
Yang G, Jia Z, Aoyagi T, McClain D, Mortensen RM, Yang T. Systemic PPARγ deletion impairs circadian rhythms of behavior and metabolism. PLoS One 2012; 7:e38117. [PMID: 22899986 PMCID: PMC3416825 DOI: 10.1371/journal.pone.0038117] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
Compelling evidence from both human and animal studies suggests a physiological link between the circadian rhythm and metabolism but the underlying mechanism is still incompletely understood. We examined the role of PPARγ, a key regulator of energy metabolism, in the control of physiological and behavioral rhythms by analyzing two strains of whole-body PPARγ null mouse models. Systemic inactivation of PPARγ was generated constitutively by using Mox2-Cre mice (MoxCre/flox) or inducibly by using the tamoxifen system (EsrCre/flox/TM). Circadian variations in oxygen consumption, CO2 production, food and water intake, locomotor activity, and cardiovascular parameters were all remarkably suppressed in MoxCre/flox mice. A similar phenotype was observed in EsrCre/flox/TM mice, accompanied by impaired rhythmicity of the canonical clock genes in adipose tissues and liver but not skeletal muscles or the kidney. PPARγ inactivation in isolated preadipocytes following exposure to tamoxifen led to a similar blockade of the rhythmicity of the clock gene expression. Together, these results support an essential role of PPARγ in the coordinated control of circadian clocks and metabolic pathways.
Collapse
Affiliation(s)
- Guangrui Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Zhanjun Jia
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Toshinori Aoyagi
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Donald McClain
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Richard M. Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|
63
|
Skelhorne-Gross G, Reid AL, Apostoli AJ, Di Lena MA, Rubino RE, Peterson NT, Schneider M, SenGupta SK, Gonzalez FJ, Nicol CJB. Stromal adipocyte PPARγ protects against breast tumorigenesis. Carcinogenesis 2012; 33:1412-20. [PMID: 22581835 DOI: 10.1093/carcin/bgs173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ regulates the expression of genes essential for fat storage, primarily through its activity in adipocytes. It also has a role in carcinogenesis. PPARγ normally stops the in vivo progression of 7,12-dimethylbenz[a]anthracene (DMBA)-mediated breast tumours as revealed with PPARγ haploinsufficient mice. Since many cell types associated with the mammary gland express PPARγ, each with unique signal patterns, this study aimed to define which tissues are required for PPARγ-dependent antitumour effects. Accordingly, adipocyte-specific PPARγ knockout (PPARγ-A KO) mice and their wild-type (PPARγ-WT) controls were generated, and treated with DMBA for 6 weeks to initiate breast tumorigenesis. On week 7, mice were randomized to continue on normal chow diet or one supplemented with rosiglitazone (ROSI), and followed for 25 weeks for tumour outcomes. In PPARγ-A KO versus PPARγ-WT mice, malignant mammary tumour incidence was significantly higher and mammary tumour latency was decreased. DMBA + ROSI treatment reduced average mammary tumour volumes by 50%. Gene expression analyses of mammary glands by quantitative real-time polymerase chain reaction and immunofluorescence indicated that untreated PPARγ-A KOs had significantly decreased BRCA1 expression in mammary stromal adipocytes. Compared with PPARγ-WT mice, serum leptin levels in PPARγ-A KOs were also significantly higher throughout the study. Together, these data are the first to suggest that in vivo PPARγ expression in mammary stromal adipocytes attenuates breast tumorigenesis through BRCA1 upregulation and decreased leptin secretion. This study supports a protective effect of activating PPARγ as a novel chemopreventive therapy for breast cancer.
Collapse
Affiliation(s)
- Graham Skelhorne-Gross
- Department of Pathology and Molecular Medicine, Richardson Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Smink JJ, Leutz A. Instruction of mesenchymal cell fate by the transcription factor C/EBPβ. Gene 2012; 497:10-7. [PMID: 22306325 DOI: 10.1016/j.gene.2012.01.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/13/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) plays a role in the differentiation of a large variety of cell types. C/EBPβ was initially described as an early inducer of adipocyte differentiation, however, recent data have shown that this is not the only mesenchymal cell lineage where C/EBPβ has an instructive function. Mouse models and tissue culture studies have now established a regulatory role of C/EBPβ in osteoblast and in chondrocyte differentiation. These three different cell lineages are derived from the same precursor, the mesenchymal stem cell (MSC). This review will focus on the emerging role of C/EBPβ and its different protein isoforms in various mesenchymal cell lineages and its function in adipocyte, chondrocyte and osteoblast differentiation. Moreover, the mesenchymal stem cell has attracted the attention of regenerative medicine in recent years, and the possible role of C/EBPβ in this respect will be discussed.
Collapse
Affiliation(s)
- Jeske J Smink
- Max Delbrueck Center for Molecular Medicine, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | | |
Collapse
|
65
|
Abstract
Thiazolidinedione (TZD) is a powerful insulin sensitizer in the treatment of type 2 diabetes. It acts as a ligand to the nuclear receptor PPARγ (peroxisome proliferator-activated receptor-gamma) and induces transcription of PPARγ responsive genes. TZD controls lipid synthesis and storage in adipose tissue, liver and many other tissues through PPARγ. Derivatives of TZD, such as rosiglitazone (Avandia) and pioglitazone (Actos), are more powerful than metformin or berberine in insulin sensitization. Although they have common side effects such as weight gain and edema, these did not influence the side effects in general. However, recent findings of risk for congestive heart failure and bladder cancer have indeed significantly impaired their future in many countries. European countries have prohibited those drugs and in 2011, US will terminate application of rosiglitazone in clinics and hospitals. The multiple country actions may mark the end of TZD era. As a result, there is a strong demand for identification of TZD substitute in the treatment of type 2 diabetes. In this regard, literature about PPARγ ligands and potential TZD substitute are reviewed in this article. Histone deacetylase (HDAC) inhibitor is emphasized as a new class of insulin sensitizer here. Regulators of SIRT1, CREB, NO, p38, ERK and Cdk5 are discussed in the activation of PPARγ.
Collapse
|
66
|
Drira R, Chen S, Sakamoto K. Oleuropein and hydroxytyrosol inhibit adipocyte differentiation in 3 T3-L1 cells. Life Sci 2011; 89:708-16. [PMID: 21945192 DOI: 10.1016/j.lfs.2011.08.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/30/2011] [Accepted: 08/10/2011] [Indexed: 01/10/2023]
Abstract
AIMS Oleuropein and hydroxytyrosol, which are antioxidant molecules found in olive leaves and oil, have been reported to exert several biochemical and pharmacological effects. These polyphenols are able to prevent low-density lipoprotein oxidation and protect cells against several diseases. Here, we studied the effect of these compounds on adipocyte differentiation in 3 T3-L1. MAIN METHODS To perform this study, 3 T3-L1 preadipocytes viability was analysed via Trypan blue and MTT assays, and triglycerides were stained with Oil Red O. Adipogenesis related genes expression were checked by RT-PCR and qRT-PCR. Also, cells counting and flow cytometry were used to analyse the mitotic cell cycle during the adipogenesis clonal expansion phase. RESULTS Oleuropein and hydroxytyrosol dose-dependently suppressed intracellular triglyceride accumulation during adipocyte differentiation without effect on cell viability. PPARγ, C/EBPα and SREBP-1c transcription factors and their downstream targets genes (GLUT4, CD36 and FASN) were down-regulated after treatment by oleuropein and hydroxytyrosol. At 200 and 300 μmol/L oleuropein or 100 and 150 μmol/L hydroxytyrosol, the greatest effect on the adipogenesis process was observed during the early stages of differentiation. Flow cytometry revealed both polyphenols to inhibit the division of 3T3-L1 preadipocytes during mitotic clonal expansion and cause cell cycle delay. Furthermore, oleuropein and its derivate hydroxytyrosol decreased the transcriptional activity of SREBP-1c in a stable transfected 3T3-L1 cell line. SIGNIFICANCE These findings indicate that both compounds are able to prevent 3T3-L1 differentiation by inhibition of the mitotic clonal expansion and downregulation of the adipogenesis related genes.
Collapse
Affiliation(s)
- Riadh Drira
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
67
|
Ros Pérez M, Medina-Gómez G. [Obesity, adipogenesis and insulin resistance]. ACTA ACUST UNITED AC 2011; 58:360-9. [PMID: 21778123 DOI: 10.1016/j.endonu.2011.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/12/2011] [Accepted: 05/11/2011] [Indexed: 12/25/2022]
Abstract
Insulin resistance precedes the development of type 2 diabetes mellitus and is also a common denominator in the so-called metabolic syndrome. Although the cause of insulin resistance has not been fully elucidated, it seems clear that lifestyle changes, including little physical exercise and constant access to food, particularly in developed and economically emergent countries, as well as genetic factors, appear to have triggered the escalating incidence of diseases related to insulin resistance, including type 2 diabetes and metabolic syndrome. Obesity is considered as a risk factor for developing insulin resistance. Increased adipose tissue has been related to an increased production of pro-inflammatory cytokines which, together with fatty acids, appear to be responsible for the development of insulin resistance. Thus, a greater or lesser expansibility or ability of adipose tissue to store lipids also appears to play a significant role in the development of insulin resistance because overcoming of this capacity, which is variable in each case, would result in leaking of lipids to other tissues where they could interfere with insulin signaling. This article reviews various molecular mechanisms related to the development of insulin resistance and its relationship to expansibility of adipose tissue and obesity.
Collapse
Affiliation(s)
- Manuel Ros Pérez
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Alcorcón, Madrid, España
| | | |
Collapse
|
68
|
Slawik M, Vidal-Puig AJ. Adipose tissue expandability and the metabolic syndrome. GENES AND NUTRITION 2011; 2:41-5. [PMID: 18850138 DOI: 10.1007/s12263-007-0014-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Marc Slawik
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
69
|
PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Res 2011; 2008:243791. [PMID: 18309368 PMCID: PMC2246065 DOI: 10.1155/2008/243791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship.
Collapse
|
70
|
Stienstra R, Duval C, Müller M, Kersten S. PPARs, Obesity, and Inflammation. PPAR Res 2011; 2007:95974. [PMID: 17389767 PMCID: PMC1783744 DOI: 10.1155/2007/95974] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/13/2006] [Accepted: 11/13/2006] [Indexed: 01/12/2023] Open
Abstract
The worldwide prevalence of obesity and related metabolic disorders is rising rapidly, increasing the burden on our healthcare system. Obesity is often accompanied by excess fat storage in tissues other than adipose tissue, including liver and skeletal muscle, which may lead to local insulin resistance and may stimulate inflammation, as in steatohepatitis. In addition, obesity changes the morphology and composition of adipose tissue, leading to changes in protein production and secretion. Some of these secreted proteins, including several proinflammatory mediators, may be produced by macrophages resident in the adipose tissue. The changes in inflammatory status of adipose tissue and liver with obesity feed a growing recognition that obesity represents a state of chronic low-level inflammation. Various molecular mechanisms have been implicated in obesity-induced inflammation, some of which are modulated by the peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors involved in the regulation of numerous biological processes, including lipid and glucose metabolism, and overall energy homeostasis. Importantly, PPARs also modulate the inflammatory response, which makes them an interesting therapeutic target to mitigate obesity-induced inflammation and its consequences. This review will address the role of PPARs in obesity-induced inflammation specifically in adipose tissue, liver, and the vascular wall.
Collapse
Affiliation(s)
- Rinke Stienstra
- Nutrition, Metabolism and Genomics Group and Nutrigenomics Consortium, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Caroline Duval
- Nutrition, Metabolism and Genomics Group and Nutrigenomics Consortium, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group and Nutrigenomics Consortium, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group and Nutrigenomics Consortium, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
- *Sander Kersten:
| |
Collapse
|
71
|
Barak Y, Kim S. Genetic manipulations of PPARs: effects on obesity and metabolic disease. PPAR Res 2011; 2007:12781. [PMID: 17389768 PMCID: PMC1791068 DOI: 10.1155/2007/12781] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 12/18/2022] Open
Abstract
The interest in genetic manipulations of PPARs is as old as their discovery as receptors of ligands with beneficial clinical activities. Considering the effects of PPAR ligands on critical aspects of systemic physiology, including obesity, lipid metabolism, insulin resistance, and diabetes, gene knockout (KO) in mice is the ideal platform for both hypothesis testing and discovery of new PPAR functions in vivo. With the fervent pursuit of the magic bullet to eradicate the obesity epidemic, special emphasis has been placed on the impacts of PPARs on obesity and its associated diseases. As detailed in this review, understanding how PPARs regulate gene expression and basic metabolic pathways is a necessary intermediate en route to deciphering their effects on obesity. Over a decade and dozens of genetic modifications of PPARs into this effort, valuable lessons have been learned, but we are left with more questions to be answered. These lessons and future prospects are the subject of this review.
Collapse
Affiliation(s)
- Yaacov Barak
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- *Yaacov Barak:
| | - Suyeon Kim
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
72
|
Kang SI, Ko HC, Shin HS, Kim HM, Hong YS, Lee NH, Kim SJ. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes. Biochem Biophys Res Commun 2011; 409:769-74. [PMID: 21621511 DOI: 10.1016/j.bbrc.2011.05.086] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 11/26/2022]
Abstract
Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.
Collapse
Affiliation(s)
- Seong-Il Kang
- Department of Biology, Jeju National University, Jejusi, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Sugii S, Evans RM. Epigenetic codes of PPARγ in metabolic disease. FEBS Lett 2011; 585:2121-8. [PMID: 21605560 PMCID: PMC3129683 DOI: 10.1016/j.febslet.2011.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 01/03/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-regulated nuclear hormone receptor, plays critical roles in metabolism and adipogenesis. PPARγ ligands such as thiazolidinediones (TZDs) exert insulin sensitizing and anti-inflammatory effects primarily through action on adipocytes, and are thus widely used to treat metabolic syndrome, especially type II diabetes. A number of PPARγ interacting partners have been identified, many of which are known epigenetic regulators, including enzymes for histone acetylation/deacetylation and histone methylation/demethylation. However, their functional roles in the PPARγ transcriptional pathway are not well defined. Recent advances in ChIP-based and deep sequencing technology are revealing previously underappreciated epigenomic mechanisms and therapeutic potentials of this nuclear receptor pathway.
Collapse
Affiliation(s)
- Shigeki Sugii
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Singapore Bioimaging Consortium and Duke-NUS Graduate Medical School, 11 Biopolis Way #02-02, Singapore 138667
| | - Ronald M. Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA
- Corresponding author. Fax #: +1-858-455-1349.
| |
Collapse
|
74
|
Ding N, Gao Y, Wang N, Li H. Functional analysis of the chicken PPARγ gene 5′-flanking region and C/EBPα-mediated gene regulation. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:297-303. [DOI: 10.1016/j.cbpb.2011.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
|
75
|
Vacca M, Degirolamo C, Mariani-Costantini R, Palasciano G, Moschetta A. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:562-87. [PMID: 21755605 DOI: 10.1002/wsbm.137] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a cluster of different diseases, namely central obesity, hypertension, hyperglycemia, and dyslipidemia, together with a pro-thrombotic and pro-inflammatory state. These metabolic abnormalities are often associated with an increased risk for cardiovascular disease (CVD) and cancer. Dietary and lifestyle modifications are currently believed more effective than pharmacological therapies in the management of MS patients. Nevertheless, the relatively low grade of compliance of patients to these recommendations, as well as the failure of current therapies, highlights the need for the discovery of new pharmacological and nutraceutic approaches. A deeper knowledge of the patho-physiological events that initiate and support the MS is mandatory. Lipid-sensing nuclear receptors (NRs) are the master transcriptional regulators of lipid and carbohydrate metabolism and inflammatory responses, thus standing as suitable targets. This review focuses on the physiological relevance of the NRs (peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor) in the control of whole-body homeostasis, with a special emphasis on lipid and glucose metabolism, and on the relationships between metabolic unbalances, systemic inflammation, and the onset of CVD. Future perspectives and possible clinical applications are also presented.
Collapse
Affiliation(s)
- Michele Vacca
- Clinica Medica Augusto Murri, Aldo Moro University of Bari, and Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | | | | | |
Collapse
|
76
|
Kang SI, Kim MH, Shin HS, Kim HM, Hong YS, Park JG, Ko HC, Lee NH, Chung WS, Kim SJ. A water-soluble extract of Petalonia binghamiae inhibits the expression of adipogenic regulators in 3T3-L1 preadipocytes and reduces adiposity and weight gain in rats fed a high-fat diet. J Nutr Biochem 2010; 21:1251-7. [PMID: 20332066 DOI: 10.1016/j.jnutbio.2009.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/18/2022]
Abstract
We previously showed that an ethanolic extract of the edible brown algae Petalonia binghamiae promotes the differentiation of 3T3-L1 preadipocytes and decreases hyperglycemia in streptozotocin-induced diabetic mice. Here, we report that a water-soluble extract of P. binghamiae thalli, prepared by enzymatic digestion, inhibits preadipocyte differentiation and adipogenesis in a dose-dependent manner. In differentiating 3T3-L1 preadipocytes, the extract (designated PBEE) decreased the expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding proteins α and β, and fatty acid-binding protein aP2. It also inhibited the mitotic clonal expansion process of adipocyte differentiation, and it inhibited insulin-stimulated uptake of glucose into mature 3T3-L1 adipocytes by reducing phosphorylation of insulin receptor substrate-1. In rats with high-fat diet (HFD)-induced obesity, PBEE exhibited potent anti-obesity effects. In this animal model, increases in body weight and fat storage were suppressed by the addition of PBEE to the drinking water at 500 mg/L for 30 days. PBEE supplementation reduced serum levels of glutamic pyruvic and glutamic oxaloacetic transaminases and increased the serum level of high-density lipoprotein cholesterol. Moreover, it significantly decreased the accumulation of lipid droplets in liver tissue, suggesting a protective effect against HFD-induced hepatic steatosis. Taken together, these data demonstrate that PBEE inhibits preadipocyte differentiation and adipogenesis in cultured cells and in rodent models of obesity.
Collapse
Affiliation(s)
- Seong-Il Kang
- Department of Biology, Jeju National University, Jejusi, Jeju 690-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Pendse AA, Johnson LA, Tsai YS, Maeda N. Pparg-P465L mutation worsens hyperglycemia in Ins2-Akita female mice via adipose-specific insulin resistance and storage dysfunction. Diabetes 2010; 59:2890-7. [PMID: 20724579 PMCID: PMC2963548 DOI: 10.2337/db10-0673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The dominant-negative P467L mutation in peroxisome proliferator activated receptor-γ (PPARγ) was identified in insulin-resistant patients with hyperglycemia and lipodystrophy. In contrast, mice carrying the corresponding Pparg-P465L mutation have normal insulin sensitivity, with mild hyperinsulinemia. We hypothesized that murine Pparg-P465L mutation leads to covert insulin resistance, which is masked by hyperinsulinemia and increased pancreatic islet mass, to retain normal plasma glucose. RESEARCH DESIGN AND METHODS We introduced in Pparg(P465L/+) mice an Ins2-Akita mutation that causes improper protein folding and islet apoptosis to lower plasma insulin. RESULTS Unlike Ins2(Akita/+) littermates, male Pparg(P465L/+)Ins2(Akita/+) mice have drastically reduced life span with enhanced type 1 diabetes. Hyperglycemia in Ins2(Akita/+) females is mild. However, Pparg(P465L/+)Ins2(Akita/+) females have aggravated hyperglycemia, smaller islets, and reduced plasma insulin. In an insulin tolerance test, they showed smaller reduction in plasma glucose, indicating impaired insulin sensitivity. Although gluconeogenesis is enhanced in Pparg(P465L/+)Ins2(Akita/+) mice compared with Ins2(Akita/+), exogenous insulin equally suppressed gluconeogenesis in hepatocytes, suggesting that Pparg(P465L/+)Ins2(Akita/+) livers are insulin sensitive. Expression of genes regulating insulin sensitivity and glycogen and triglyceride contents suggest that skeletal muscles are equally insulin sensitive. In contrast, adipose tissue and isolated adipocytes from Pparg(P465L/+)Ins2(Akita/+) mice have impaired glucose uptake in response to exogenous insulin. Pparg(P465L/+)Ins2(Akita/+) mice have smaller fat depots composed of larger adipocytes, suggesting impaired lipid storage with subsequent hepatomegaly and hypertriglyceridemia. CONCLUSIONS PPARg-P465L mutation worsens hyperglycemia in Ins2(Akita/+) mice primarily because of adipose-specific insulin resistance and altered storage function. This underscores the important interplay between insulin and PPARγ in adipose tissues in diabetes.
Collapse
Affiliation(s)
- Avani A. Pendse
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lance A. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Corresponding author: Nobuyo Maeda,
| |
Collapse
|
78
|
Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A. PPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues. PPAR Res 2010; 2010:409168. [PMID: 20871817 PMCID: PMC2943117 DOI: 10.1155/2010/409168] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/08/2010] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most extensively studied ligand-inducible transcription factors (TFs), able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, atherosclerosis, inflammation, and cancer. Its protein isoforms, the wide number of PPARγ target genes, ligands, and coregulators contribute to determine the complexity of its function. In addition, the presence of genetic variants is likely to affect expression levels of target genes although the impact of PPARG gene variations on the expression of target genes is not fully understood. The introduction of massively parallel sequencing platforms-in the Next Generation Sequencing (NGS) era-has revolutionized the way of investigating the genetic causes of inherited diseases. In this context, DNA-Seq for identifying-within both coding and regulatory regions of PPARG gene-novel nucleotide variations and haplotypes associated to human diseases, ChIP-Seq for defining a PPARγ binding map, and RNA-Seq for unraveling the wide and intricate gene pathways regulated by PPARG, represent incredible steps toward the understanding of PPARγ in health and disease.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | | | - Francesca Letizia
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | - Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| | - Amelia Casamassimi
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
- Department of General Pathology, 1st School of Medicine, Second University of Naples, 80138 Naples, Italy
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), CNR, 80131 Naples, Italy
| |
Collapse
|
79
|
Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol 2010; 6:657-91. [PMID: 20932114 PMCID: PMC3246744 DOI: 10.2217/fca.10.86] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
80
|
Luconi M, Cantini G, Serio M. Peroxisome proliferator-activated receptor gamma (PPARgamma): Is the genomic activity the only answer? Steroids 2010; 75:585-94. [PMID: 19900469 DOI: 10.1016/j.steroids.2009.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear hormone receptor superfamily of transcription factors, widely expressed in the organism, including adipose, vascular and immune cells. Besides the well-known role in lipid/glycidic homeostasis, PPARgamma has also recently emerged as a key regulator of inflammatory and immune responses. Besides the natural ligands, more potent synthetic agonists of PPARgamma have been developed, including thiazolidinediones (TZDs), currently used in type 2 diabetes treatment, which also exert anti-inflammatory and anti-neoplastic effects. PPARgamma mechanism of action has focused considerable attention over the years. This receptor was initially shown to act on gene expression through a direct transcription and an indirect transrepression activity, mainly associated with metabolic and anti-inflammatory effects. Different post-translational modifications of the receptor can modulate PPARgamma activity. More recently, rapid nongenomic activity of TZDs affecting post-translation modifications of extranuclear proteins involved in cell signaling, has been reported. In particular, PPARgamma can physically interact with protein kinases resulting in a compartment specific recruitment and activity modulation of these enzymes. Among them, ERK can be positively/negatively regulated by PPARgamma ligands, as in endothelial cells, where TZDs exert anti-inflammatory effects through a novel mechanism involving a rapid inhibition of ERK1/2 phosphorylation/activation. Finally, some of the TZD anti-tumor effects seem to be PPARgamma-independent, raising the possibility that alternative receptors can act through extranuclear nongenomic pathways. In conclusion, different mechanisms of action of PPARgamma seem to coexist in an interacting functional network in the cell, concurring in mediating both pharmacological and natural ligand effects.
Collapse
Affiliation(s)
- Michaela Luconi
- DENOthe Center of Excellence for Research, Transfer and High Education: Endocrinology Unit, Dept. Clinical Physiopathology, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | | | | |
Collapse
|
81
|
Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod 2010; 83:168-76. [PMID: 20427759 DOI: 10.1095/biolreprod.110.083550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance and affects 2%-8% of all pregnancies. Among other complications, GDM can lead to the development of type 2 diabetes mellitus (DM 2) in both mother and child. Peroxisome proliferator-activated receptors (PPARs) are major regulators of glucose and lipid metabolism. Furthermore, PPARs are mediators of inflammation and angiogenesis and are involved in the maternal adaptational dynamics during pregnancy to serve the requirements of the growing fetus. PPARs were originally named for their ability to induce hepatic peroxisome proliferation in mice in response to xenobiotic stimuli. The expression of three PPAR isoforms, alpha, beta/delta, and gamma, have been described. Each of them is encoded by different genes; however, they share 60%-80% homology in their ligand-binding and DNA-binding domains. PPARs are involved in trophoblast differentiation, invasion, metabolism, and parturition and are expressed in invasive extravillous trophoblast and villous trophoblast cells. Nuclear receptors, to which PPARs belong, are promising targets for disease-specific treatment strategies because they act as transcription factors controlling cellular processes at the level of gene expression and may produce selective alterations in downstream gene expression. To date, PPAR agonists are therapeutically used in patients with DM 2 and in patients with reproductive disorders such as polycystic ovary syndrome. Because of safety concerns and limited data, PPAR agonists are not yet included in GDM-related treatment strategies. Our objective herein is to review newly emerging generations of selective PPAR modulators and panagonists, which may have potent therapeutic implications in the context of GDM.
Collapse
Affiliation(s)
- Petra Arck
- Center for Internal Medicine, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
82
|
Urs S, Venkatesh D, Tang Y, Henderson T, Yang X, Friesel RE, Rosen CJ, Liaw L. Sprouty1 is a critical regulatory switch of mesenchymal stem cell lineage allocation. FASEB J 2010; 24:3264-73. [PMID: 20410440 DOI: 10.1096/fj.10-155127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Development of bone and adipose tissue are linked processes arising from a common progenitor cell, but having an inverse relationship in disease conditions such as osteoporosis. Cellular differentiation of both tissues relies on growth factor cues, and we focus this study on Sprouty1 (Spry1), an inhibitor of growth factor signaling. We tested whether Spry1 can modify the development of fat cells through its activity in regulating growth factors known to be important for adipogenesis. We utilized conditional expression and genetic-null mouse models of Spry1 in adipocytes using the fatty acid binding promoter (aP2). Conditional deletion of Spry1 results in 10% increased body fat and decreased bone mass. This phenotype was rescued on Spry1 expression, which results in decreased body fat and increased bone mass. Ex vivo bone marrow experiments indicate Spry1 in bone marrow and adipose progenitor cells favors differentiation of osteoblasts at the expense of adipocytes by suppressing CEBP-beta and PPARgamma while up regulating TAZ. Age and gender-matched littermates expressing only Cre recombinase were used as controls. Spry1 is a critical regulator of adipocyte differentiation and mesenchymal stem cell (MSC) lineage allocation, potentially acting through regulation of CEBP-beta and TAZ.
Collapse
Affiliation(s)
- Sumithra Urs
- Maine Medical Center Research Institute, 81 Research Dr., Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Liu S, Wang Y, Wang L, Wang N, Li Y, Li H. Transdifferentiation of fibroblasts into adipocyte-like cells by chicken adipogenic transcription factors. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:502-8. [PMID: 20398782 DOI: 10.1016/j.cbpa.2010.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 11/25/2022]
Abstract
Adipocyte differentiation is a complex process that is regulated mainly by a cascade of transcription factors. Among these, CCAAT/enhancer binding protein (C/EBP)alpha, peroxisome proliferator-activated receptor (PPAR)gamma and sterol regulatory element-binding protein-1 (SREBP-1) have been identified as key regulators of adipocyte differentiation. In mammals, ectopic expression of adipogenic transcription factors C/EBPalpha, PPARgamma and SREBP-1 can induce transdifferentiation of a variety of different cell types into adipocyte-like cells. However, in birds, whether C/EBPalpha, PPARgamma and SREBP-1 can induce transdifferentiation is unknown. The current study was designed to investigate whether chicken embryo fibroblasts (CEFs) can be induced to transdifferentiate into adipocyte-like cells by the ectopic expression of chicken C/EBPalpha, PPARgamma and SREBP-1 via retrovirus-mediated gene transfer. The results showed that any one of these three adipogenic transcription factors was sufficient to trigger the adipogenic program in CEFs, as demonstrated by accumulation of cytoplasmic lipid droplets and expression of the adipocyte marker gene (adipocyte fatty acid binding protein, A-FABP). This suggests that C/EBPalpha, PPARgamma and SREBP-1 play a crucial role in chicken adipogenesis.
Collapse
Affiliation(s)
- Shuang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
We are in the midst of a dire, unprecedented, and global epidemic of obesity and secondary sequelae, most prominently diabetes and hyperlipidemia. Underlying this epidemic is the most hated of cells, adipocytes, and their inherent dynamic ability to expand and renew. This capacity highlights a heretofore undefined stem compartment. Recent in vivo studies, relying upon lineage tracing and flow cytometry methods, have begun to unravel the identity of adipose stem cells, their niche, and the dynamism central to adipose expansion. Thus, the field is moving in a direction that may allow us to manipulate adipose stem cells to beneficial therapeutic ends.
Collapse
|
85
|
Boiani R, Cinti S, Savage DB, Vidal-Puig A, O'Rahilly S. Abdominal subcutaneous adipose tissue morphology in a patient with a dominant-negative mutation (P467L) in the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG) gene. Nutr Metab Cardiovasc Dis 2010; 20:e11-2. [PMID: 20153617 DOI: 10.1016/j.numecd.2009.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 10/28/2009] [Indexed: 11/24/2022]
|
86
|
Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res 2010; 2009:818945. [PMID: 20182551 PMCID: PMC2826877 DOI: 10.1155/2009/818945] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/30/2009] [Accepted: 12/02/2009] [Indexed: 12/25/2022] Open
Abstract
PPARγ activation in type 2 diabetic patients results in a marked improvement in insulin and glucose parameters, resulting from an improvement of whole-body insulin sensitivity. Adipose tissue is the major mediator of PPARγ action on insulin sensitivity. PPARγ activation in mature adipocytes induces the expression of a number of genes involved in the insulin signaling cascade, thereby improving insulin sensitivity. PPARγ is the master regulator of adipogenesis, thereby stimulating the production of small insulin-sensitive adipocytes. In addition to its importance in adipogenesis, PPARγ plays an important role in regulating lipid, metabolism in mature adipocytes by increasing fatty acid trapping. Finally, adipose tissue produces several cytokines that regulate energy homeostasis, lipid and glucose metabolism. Disturbances in the production of these factors may contribute to metabolic abnormalities, and PPARγ activation is also associated with beneficial effects on expression and secretion of a whole range of cytokines.
Collapse
|
87
|
Medina-Gómez G, Vidal-Puig A. [Adipose tissue as a therapeutic target in obesity]. ACTA ACUST UNITED AC 2010; 56:404-11. [PMID: 19959150 DOI: 10.1016/s1575-0922(09)72710-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023]
Abstract
Obesity is characterized by an increase of adipose tissue as a result of a positive imbalance between food intake and energy expenditure. Recent studies have indicated that adipocyte function is more complex than expected, since these cells have multiple functions and are integrated in a homeostatic network to optimize energy resources. As metabolic sensors in the body, adipocytes and the surrounding stromal vascular cells produce and secrete autocrine, paracrine and endocrine factors, able to regulate aspects involved in the development of adipocytes, as well as effects in peripheral organs important for metabolism. Regulation of these endocrine factors could lead to new therapeutic approaches targeted at aspects related to adipogenesis, preadipocyte proliferation and differentiation, inflammatory cytokine release and secretion, adipose tissue vascularization, and regulation of lipid metabolism or, alternatively, regulation of energy dissipation in mitochondria. In the study of the mechanisms of adipogenesis and remodulation of adipose tissue with respect to adipocyte size and function, an alternative and unorthodox strategy to improve obesity-associated metabolic complications could consist of increasing the storage capacity of adipose tissue to prevent a toxic response known as lipotoxicity.
Collapse
Affiliation(s)
- Gema Medina-Gómez
- Departamento de Bioquímica y Fisiología, Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Alarcón, Madrid, España.
| | | |
Collapse
|
88
|
Wang YX. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 2010; 20:124-37. [PMID: 20101262 DOI: 10.1038/cr.2010.13] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.
Collapse
Affiliation(s)
- Yong-Xu Wang
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
89
|
PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A 2009; 106:22504-9. [PMID: 20018750 DOI: 10.1073/pnas.0912487106] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although peroxisome proliferator-activated receptor gamma (PPARgamma) agonists such as thiazolidinediones (TZDs) are widely used to treat type 2 diabetes, how its activation in individual tissues contributes to TZD's therapeutic action remains controversial. As TZDs are known to have receptor-independent effects, we sought to establish gain-of-function animal models to delineate the receptor's insulin-sensitizing actions. Unexpectedly, we find that selective activation of PPARgamma in adipocytes, but not in macrophages, is sufficient for whole-body insulin sensitization equivalent to systemic TZD treatment. In addition to improved adipokine, inflammatory, and lipid profiles, PPARgamma activation in mature adipocytes normalizes serum insulin without increased adipogenesis. Co-culture studies indicated that PPARgamma-activated adipocytes broadly suppress induction of inflammatory cytokines and C-X-C family chemokines in macrophages. Collectively, these data describe an "adipocentric" model in which adipose activation of PPARgamma is sufficient for complete insulin sensitization and suggest a specific application for fat selective PPARgamma modulators in diabetic therapy.
Collapse
|
90
|
PAYNE VA, AU WS, LOWE CE, RAHMAN SM, FRIEDMAN JE, O’RAHILLY S, ROCHFORD JJ. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem J 2009; 425:215-23. [PMID: 19811452 PMCID: PMC2913385 DOI: 10.1042/bj20091112] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARgamma (peroxisome-proliferator-activated receptor gamma), the generation of an endogenous PPARgamma ligand and the expression of several genes critical for lipid biosynthesis. Despite its significance, the regulation of SREBP1c expression during adipogenesis is not well characterized. We have noted that in several models of adipogenesis, SREBP1c expression closely mimics that of known C/EBPbeta (CCAAT/enhancer-binding protein beta) targets. Inhibition of C/EBP activity during adipogenesis by expressing either the dominant-negative C/EBPbeta LIP (liver-enriched inhibitory protein) isoform, the co-repressor ETO (eight-twenty one/MTG8) or using siRNAs (small interfering RNAs) targeting either C/EBPbeta or C/EBPdelta significantly impaired early SREBP1c induction. Furthermore, ChIP (chromatin immunoprecipitation) assays identified specific sequences in the SREBP1c promoter to which C/EBPbeta and C/EBPdelta bind in intact cells, demonstrating that these factors may directly regulate SREBP1c expression. Using cells in which C/EBPalpha expression is inhibited using shRNA (short hairpin RNA) and ChIP assays we show that C/EBPalpha replaces C/EBPbeta and C/EBPdelta as a regulator of SREBP1c expression in maturing adipocytes. These results provide novel insight into the induction of SREBP1c expression during adipogenesis. Moreover, the findings of the present study identify an important additional mechanism via which the C/EBP transcription factors may control a network of gene expression regulating adipogenesis, lipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Victoria A. PAYNE
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| | - Wo-Shing AU
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| | - Christopher E. LOWE
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| | - Shaikh M. RAHMAN
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A
| | - Jacob E. FRIEDMAN
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A
| | - Stephen O’RAHILLY
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| | - Justin J. ROCHFORD
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K
| |
Collapse
|
91
|
Argmann C, Dobrin R, Heikkinen S, Auburtin A, Pouilly L, Cock TA, Koutnikova H, Zhu J, Schadt EE, Auwerx J. Ppargamma2 is a key driver of longevity in the mouse. PLoS Genet 2009; 5:e1000752. [PMID: 19997628 PMCID: PMC2780700 DOI: 10.1371/journal.pgen.1000752] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022] Open
Abstract
Aging involves a progressive physiological remodeling that is controlled by both genetic and environmental factors. Many of these factors impact also on white adipose tissue (WAT), which has been shown to be a determinant of lifespan. Interrogating a transcriptional network for predicted causal regulatory interactions in a collection of mouse WAT from F2 crosses with a seed set of 60 known longevity genes, we identified a novel transcriptional subnetwork of 742 genes which represent thus-far-unknown longevity genes. Within this subnetwork, one gene was Pparg (Nr1c3), an adipose-enriched nuclear receptor previously not associated with longevity. In silico, both the PPAR signaling pathway and the transcriptional signature of Pparγ agonist rosiglitazone overlapped with the longevity subnetwork, while in vivo, lowered expression of Pparg reduced lifespan in both the lipodystrophic Pparg1/2-hypomorphic and the Pparg2-deficient mice. These results establish Pparγ2 as one of the determinants of longevity and suggest that lifespan may be rather determined by a purposeful genetic program than a random process. The progression of aging is controlled by both genetic and environmental factors. Many of these factors are present also in adipose tissue, which itself has been shown to determine lifespan. Applying advanced bioinformatics methods on a large mouse gene expression data set, we identified Pparg (Nr1c3), an important metabolic controller that regulates the expression of many other genes particularly in adipose tissue, to be associated with longevity. This association was verified in experimental mouse models where the lowered expression of Pparg reduced lifespan. In addition to Pparg, our analysis identified >700 potential novel aging genes in mouse adipose tissue. More generally, these findings suggest that lifespan may not be a random process but controlled by a purposeful genetic program.
Collapse
Affiliation(s)
- Carmen Argmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | - Radu Dobrin
- Rosetta Inpharmatics, Seattle, Washington, United States of America
| | - Sami Heikkinen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
- A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | - Terrie-Anne Cock
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
| | | | - Jun Zhu
- Rosetta Inpharmatics, Seattle, Washington, United States of America
| | - Eric E. Schadt
- Rosetta Inpharmatics, Seattle, Washington, United States of America
| | - Johan Auwerx
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Illkirch, France
- Institut Clinique de la Souris, Illkirch, France
- Ecole polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
92
|
Kim J, Bagchi IC, Bagchi MK. Control of ovulation in mice by progesterone receptor-regulated gene networks. Mol Hum Reprod 2009; 15:821-8. [PMID: 19815644 DOI: 10.1093/molehr/gap082] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mid-cycle surge of luteinizing hormone (LH) induces ovulation, a process during which a fertilizable oocyte is released from a mature ovarian follicle. Although ovulation is a physiologically well-characterized event, the underlying molecular pathways remain poorly understood. Progesterone receptor (PGR), which mediates the biological effects of the steroid hormone progesterone, has emerged as a key regulator of ovulation in mice. The development of a progesterone-receptor-null (Pgr-null) mouse model confirmed a critical role of this hormone in ovulation because in these mutant mice, mature pre-ovulatory follicles fail to release the oocytes. This animal model has thus presented a unique opportunity to study the molecular pathways underlying ovulation. Gene-expression profiling experiments by several groups, using the ovaries of Pgr-null mice, revealed novel gene networks, which act downstream of PGR to control ovulation. These genes encode diverse molecules such as proteases, transcription factors, cell-adhesion molecules, modulators of vascular activities and regulators of inflammation. Functional analyses using gene-knockout mouse models have confirmed that some of these factors play critical roles during ovulation. The knowledge gained from these studies has helped us to understand better the molecular mechanisms that facilitate the release of oocytes from pre-ovulatory follicles. Further analysis of the role of molecular regulators of ovulation will help identify useful molecular targets that would allow the development of improved contraceptives and new therapeutics for anovulatory infertility.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Department of Molecular and Integrative Physiology, Center for Research in Reproduction and Infertility, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
93
|
Stewart MD, Wong J. Nuclear receptor repression: regulatory mechanisms and physiological implications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:235-59. [PMID: 20374706 DOI: 10.1016/s1877-1173(09)87007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to associate with corepressors and to inhibit transcription is an intrinsic property of most members of the nuclear receptor (NR) superfamily. NRs induce transcriptional repression by recruiting multiprotein corepressor complexes. Nuclear receptor corepressor (NCoR) and silencing mediator of retinoic and thyroid receptors (SMRT) are the most well characterized corepressor complexes and mediate repression for virtually all NRs. In turn, corepressor complexes repress transcription because they either contain or associate with chromatin modifying enzymes. These include histone deacetylases, histone H3K4 demethylases, histone H3K9 or H3K27 methyltransferases, and ATP-dependent chromatin remodeling factors. Two types of NR-interacting corepressors exist. Ligand-independent corepressors, like NCoR/SMRT, bind to unliganded or antagonist-bound NRs, whereas ligand-dependent corepressors (LCoRs) associate with NRs in the presence of agonist. Therefore, LCoRs may serve to attenuate NR-mediated transcriptional activation. Somewhat unexpectedly, classical coactivators may also function as "corepressors" to mediate repression by agonist-bound NRs. In this chapter, we will discuss the various modes and mechanisms of repression by NRs as well as discuss the known physiological functions of NR-mediated repression.
Collapse
Affiliation(s)
- M David Stewart
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
94
|
Tsai YS, Tsai PJ, Jiang MJ, Chou TY, Pendse A, Kim HS, Maeda N. Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol 2009; 23:1787-98. [PMID: 19749155 DOI: 10.1210/me.2009-0073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mutations and polymorphisms in PPARG have been linked to adiposity and partial lipodystrophy in humans. However, how disturbances in PPARG lead to depot-specific effects on adipose tissue, as shown by the characteristic aberrant fat distribution in patients, remains unclear. By manipulating the 3'-untranslated region of the Pparg gene, we have generated mice with peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression ranging from 25% to 100% normal. Basal levels of PPAR gamma transcripts between 50% and approximately 100% had no significant effect on body weight, fat mass, and insulin sensitivity. In contrast, mice with 25% normal PPAR gamma expression exhibited reduced body weight and total fat mass, insulin resistance, and dyslipidemia. Interestingly, fat mass was selectively reduced in perigonadal depot without significant changes in inguinal and other depots. Expression of adipogenic factor CCAAT enhancer binding protein-alpha and some other metabolic genes containing peroxisome proliferator response element were reduced in a perigonadal depot-specific fashion. This was further associated with depot-specific reduction in the expression of adipokines, increased expression of TNFalpha, and increased ectopic lipid deposition in muscles. Together, these results underscore the differential sensitivity of the individual fat depots on PPAR gamma availability as an underlying mechanism of partial lipodystrophy.
Collapse
Affiliation(s)
- Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
95
|
Queiroz JCFD, Alonso-Vale MIC, Curi R, Lima FB. Controle da adipogênese por ácidos graxos. ACTA ACUST UNITED AC 2009; 53:582-94. [DOI: 10.1590/s0004-27302009000500011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/09/2009] [Indexed: 11/22/2022]
Abstract
A obesidade é um dos principais problemas de saúde pública. Indivíduos obesos são mais suscetíveis a desenvolver doenças cardiovasculares e diabetes melito tipo 2. A obesidade resulta do aumento no tamanho e no número de adipócitos. O balanço entre adipogênese e adiposidade determina o grau de obesidade do indivíduo. Adipócitos maduros secretam adipocinas, tais como TNFα, IL-6, leptina e adiponectina, e lipocina, o ácido palmitoleico ω-7. A produção de adipocinas é maior na obesidade, o que contribui para o estabelecimento de resistência periférica à insulina. O conhecimento dos eventos moleculares que regulam a diferenciação dos pré-adipócitos e de células-tronco mesenquimais em adipócitos (adipogênese) é importante para o entendimento da gênese da obesidade. A ativação do fator de transcrição PPARγ é essencial na adipogênese. Certos ácidos graxos são ligantes de PPARγ e podem, assim, controlar a adipogênese. Além disso, alguns ácidos graxos atuam como moléculas sinalizadoras em adipócitos, regulando sua diferenciação ou morte. Dessa forma, a composição lipídica da dieta e os agonistas de PPARγ podem regular o balanço entre adipogênese e morte de adipócitos e, portanto, a obesidade.
Collapse
|
96
|
Ito M, Ito J, Kitazawa H, Shimamura K, Fukami T, Tokita S, Shimokawa K, Yamada K, Kanatani A, Uemura D. (-)-Ternatin inhibits adipogenesis and lipid metabolism in 3T3-L1 cells. Peptides 2009; 30:1074-81. [PMID: 19463739 DOI: 10.1016/j.peptides.2009.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 01/21/2023]
Abstract
(-)-Ternatin, a highly N-methylated cyclic peptide, inhibits fat accumulation in 3T3-L1 cells and reduces fat mass in mice. However, the mechanism for its anti-adipogenic effect has remained unknown. To examine the mechanism used by (-)-ternatin to inhibit adipocyte differentiation, we examined the effects of (-)-ternatin and [l-Ala(4)]ternatin, an inactive analog of (-)-ternatin, on the expression of adipocyte markers and lipogenic enzymes. We found that (-)-ternatin potently reduced mRNA expression of several adipocyte markers in a dose-dependent manner, whereas [l-Ala(4)]ternatin showed no effects. At the immediate early phase, (-)-ternatin, but not [l-Ala(4)]ternatin, reduced the expression of Srebp1c, Fas, Acc2 and C/EBP-alpha while showing no effects on C/EBP-beta and C/EBP-delta. These results suggest that (-)-ternatin affects the mid-to late differentiation stages of adipocytes. Consistent with the decreased expression of lipogenic enzymes, (-)-ternatin potently inhibited triglyceride synthesis. Intriguingly, (-)-ternatin also inhibited triglyceride synthesis in rat primary hepatocytes, suggesting that the potential action sites for (-)-ternatin are shared by adipocytes and liver. Although the target molecule of (-)-ternatin remains unknown, our data suggest that (-)-ternatin and its potential target might provide a new therapeutic approach to metabolic disorders.
Collapse
Affiliation(s)
- Masahiko Ito
- Tsukuba Research Institute, BANYU Pharmaceutical Co, Ltd, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab 2009; 20:107-14. [PMID: 19269847 DOI: 10.1016/j.tem.2008.11.005] [Citation(s) in RCA: 622] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 01/05/2023]
Abstract
The obesity epidemic has focused attention on adipose tissue and the development of fat cells (i.e. adipocytes), which is known as adipogenesis. Peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding proteins have emerged as master regulators of adipogenesis, and recent genome-wide studies have indicated widespread overlap in their transcriptional targets. In addition, new evidence has implicated many other factors as positive and negative regulators of adipocyte development. This review highlights recent advances in the field of adipogenesis, including newly identified determinants of brown adipocytes, the function of which is to burn rather than store energy. Improved understanding of brown and white adipocyte origins and the integrative biology of adipogenesis might lead to more effective strategies for the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- Martina I Lefterova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and The Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
98
|
Bazuine M, Stenkula KG, Cam M, Arroyo M, Cushman SW. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. ACTA ACUST UNITED AC 2009; 4:231-243. [PMID: 20126301 DOI: 10.2217/clp.09.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipocytes provide an organism with fuel in times of caloric deficit, and are an important type of endocrine cell in the maintenance of metabolic homeostasis. In addition, as a lipid-sink, adipocytes serve an equally important role in the protection of organs from the damaging effects of ectopic lipid deposition. For the organism, it is of vital importance to maintain adipocyte viability, yet the fat depot is a demanding extracellular environment with high levels of interstitial free fatty acids and associated lipotoxic effects. These surroundings are less than beneficial for the overall health of any resident cell, adipocyte and preadipocyte alike. In this review, we discuss the process of adipogenesis and the potential involvement of the p53 tumor-suppressor protein in alleviating some of the cellular stress experienced by these cells. In particular, we discuss p53-mediated mechanisms that prevent damage caused by reactive oxygen species and the effects of lipotoxicity. We also suggest the potential for two p53 target genes, START domain-containing protein 4 (StARD4) and oxysterol-binding protein (OSBP), with the concomitant synthesis of the signaling molecule oxysterol, to participate in adipogenesis.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Experimental Diabetes, Metabolism & Nutrition Section, Diabetes Branch, NIDDK, NIH, Building 10-CRC, Room 5W-5816, 10 Center Drive, Bethesda, MD 20892, USA, Tel.: +1 301 496 7354, ,
| | | | | | | | | |
Collapse
|
99
|
Kilroy GE, Zhang X, Floyd ZE. PPAR-gamma AF-2 domain functions as a component of a ubiquitin-dependent degradation signal. Obesity (Silver Spring) 2009; 17:665-73. [PMID: 19148122 PMCID: PMC2750041 DOI: 10.1038/oby.2008.616] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) functions as the "master switch" in adipocyte development and is important in regulating glucose metabolism. PPAR-gamma is rapidly degraded in adipocytes by the ubiquitin proteasome pathway under basal and ligand-activated conditions. Proteasome inhibition increases PPAR-gamma activity, indicating disposal of PPAR-gamma by the ubiquitin proteasome system regulates PPAR-gamma activity. However, the signals and factors required for recognition of PPAR-gamma by the ubiquitin proteasome pathway are unknown. To begin understanding how the ubiquitin-proteasome pathway interacts with PPAR-gamma, we designed a series of constructs containing each PPAR-gamma domain expressed as a fusion protein with the GAL4 DNA-binding domain. The ability of each PPAR-gamma domain to alter the stability of the GAL4 DNA-binding domain and to undergo ubiquitylation was assessed via western blot analysis. In addition, luciferase reporter assays were used to assay PPAR-gamma transcriptional activity. Using this approach, we determined that the AF-1 and ligand-binding domains (LBDs) of PPAR-gamma are targeted to the proteasome for degradation. However, only the LBD is conjugated to ubiquitin. The AF-2 helix of the LBD is required for maximum ubiquitylation, but is not essential for ligand-dependent ubiquitin conjugation. Finally, luciferase reporter assays show a fully functional ubiquitin system is required for PPAR-gamma activation. These results indicate that the ubiquitin-proteasome pathway is an integral determinant of PPAR-gamma activity, targeting PPAR-gamma for proteasomal degradation via ubiquitin independent and ubiquitin dependent mechanisms.
Collapse
Affiliation(s)
- Gail E Kilroy
- Ubiquitin Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | |
Collapse
|
100
|
|