51
|
Li Y, Xing Z, Yu T, Pao A, Daadi M, Yu YE. Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions. Genes (Basel) 2021; 12:genes12081215. [PMID: 34440389 PMCID: PMC8393392 DOI: 10.3390/genes12081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.
Collapse
Affiliation(s)
- Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Marcel Daadi
- Regenerative Medicine and Aging Unit, Texas Biomedical Research Institute, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA;
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence:
| |
Collapse
|
52
|
Postolache L, Monier A, Lhoir S. Neuro-Ophthalmological Manifestations in Children with Down Syndrome: Current Perspectives. Eye Brain 2021; 13:193-203. [PMID: 34321946 PMCID: PMC8311006 DOI: 10.2147/eb.s319817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/11/2021] [Indexed: 12/03/2022] Open
Abstract
Down syndrome, caused by an extra copy of all or part of chromosome 21, is the most prevalent intellectual disability of genetic origin. Among numerous comorbidities which are part of the phenotype of individuals with Down syndrome, ocular problems appear to be highly prevalent. Neuro-ophthalmological manifestations, such as ocular alignment and motility disturbances, amblyopia, hypoaccommodation or optic nerve abnormalities, and other organic ocular anomalies frequently reported in Down syndrome, may lead to an overall decrease in visual acuity. Although numerous studies have reported ocular anomalies related to Down syndrome, it remains challenging to determine the impact of each anomaly upon the decreased visual acuity, as most such individuals have more than one ocular problem. Even in children with Down syndrome and no apparent ocular defect, visual acuity has been found to be reduced compared with typically developing children. Pediatric ophthalmological examination is a critical component of a multidisciplinary approach to prevent and treat ocular complications and improve the visual outcome in children with Down syndrome. This narrative review aims to provide a better understanding of the neuro-ophthalmological manifestations and discuss the current ophthalmological management in children with Down syndrome.
Collapse
Affiliation(s)
- Lavinia Postolache
- Department of Pediatric Ophthalmology, Queen Fabiola University Children's Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Monier
- Department of Pediatric Neurology, Queen Fabiola University Children's Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Lhoir
- Department of Pediatric Ophthalmology, Queen Fabiola University Children's Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
53
|
Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia. J Clin Med 2021; 10:jcm10132909. [PMID: 34209847 PMCID: PMC8268765 DOI: 10.3390/jcm10132909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) subjects are more likely to develop the clinical features of Alzheimer's disease (AD) very early in the disease process due to the additional impact of neuroinflammation and because of activation of innate immunity. Many factors involved in the neuropathology of AD in DS, including epigenetic factors, innate immunity and impaired haematopoiesis, contribute significantly towards the pathophysiology and the enhanced ageing processes seen in DS and as a consequence of the triplication of genes RUNX1, S100β and OLIG2, together with the influence of proteins that collectively protect from cellular defects and inflammation, which include hepcidin, ferritin, IL-6 and TREM2. This study is aimed at determining whether genetic variants and inflammatory proteins are involved in haematopoiesis and cellular processes in DS compared with age-matched control participants, particularly with respect to neuroinflammation and accelerated ageing. Serum protein levels from DS, AD and control participants were measured by enzyme-linked immunosorbent assay (ELISA). Blood smears and post-mortem brain samples from AD and DS subjects were analysed by immunohistochemistry. RUNX1 mRNA expression was analysed by RT-PCR and in situ hybridisation in mouse tissues. Our results suggest that hepcidin, S100β and TREM2 play a critical role in survival and proliferation of glial cells through a common shared pathway. Blood smear analysis showed the presence of RUNX1 in megakaryocytes and platelets, implying participation in myeloid cell development. In contrast, hepcidin was expressed in erythrocytes and in platelets, suggesting a means of possible entry into the brain parenchyma via the choroid plexus (CP). The gene product of RUNX1 and hepcidin both play a critical role in haematopoiesis in DS. We propose that soluble TREM2, S100β and hepcidin can migrate from the periphery via the CP, modulate the blood-brain immune axis in DS and could form an important and hitherto neglected avenue for possible therapeutic interventions to reduce plaque formation.
Collapse
|
54
|
Gomes FDC, Mattos MF, Goloni-Bertollo EM, Pavarino ÉC. Alzheimer's Disease in the Down Syndrome: An Overview of Genetics and Molecular Aspects. Neurol India 2021; 69:32-41. [PMID: 33642267 DOI: 10.4103/0028-3886.310062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The overexpression of the amyloid precursor protein (APP) gene, encoded on chromosome 21, has been associated in Down syndrome (DS) with the development of early-onset Alzheimer's disease (EOAD). The increase in APP levels leads to an overproduction of amyloid-β (Aβ) peptide that accumulates in the brain. In response to this deposition, microglial cells are active and generate cascade events that include release cytokines and chemokine. The prolonged activation microglial cells induce neuronal loss, production of reactive oxygen species, neuron death, neuroinflammation, and consequently the development of Alzheimer's disease (AD). The intrinsically deficient immune systems in people with DS result in abnormalities in cytokine levels, which possibly contribute to the development of neurodegenerative disorders such as AD. Knowledge about the biomarkers involved in the process of neurodegeneration and neuroinflamation is important for understanding the mechanisms involved in the incidence and the precocity of AD in individuals with DS.
Collapse
Affiliation(s)
- Fabiana de C Gomes
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil
| | - Marlon F Mattos
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil
| | - Eny M Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil
| | - Érika C Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São José do Rio Preto - SP, Brazil
| |
Collapse
|
55
|
Ma W, Liu Y, Ma H, Ren Z, Yan J. Cis-acting: A pattern of lncRNAs for gene regulation in induced pluripotent stem cells from patients with Down syndrome determined by integrative analysis of lncRNA and mRNA profiling data. Exp Ther Med 2021; 22:701. [PMID: 34007310 PMCID: PMC8120638 DOI: 10.3892/etm.2021.10133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS), caused by the trisomy of chromosome 21, is one of the common chromosomal disorders, the main clinical manifestations of which are delayed nervous development and intellectual disability. Long non-coding RNAs (lncRNAs) have critical roles in various biological processes, including cell growth, cell cycle regulation and differentiation. The roles of abnormally expressed lncRNAs have been previously reported; however, the biological functions and regulatory patterns of lncRNAs in DS have remained largely elusive. The aim of the present study was to perform a whole-genome-wide identification of lncRNAs and mRNAs associated with DS. In addition, global expression profiling analysis of DS-induced pluripotent stem cells was performed and differentially expressed (DE) lncRNAs and mRNAs were screened. Furthermore, the target genes and functions of the DE lncRNAs were predicted using Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis. The results revealed that the majority of the lncRNAs exerted functions in DS via cis-acting target genes. In addition, the results of the enrichment analysis indicated that these target genes were mainly involved in nervous and muscle development in DS. In conclusion, this integrative analysis using lncRNA and mRNA profiling provided novel insight into the pathogenesis of DS and it may promote the diagnosis and development of novel therapeutics for this disease.
Collapse
Affiliation(s)
- Wenbo Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, P.R. China
| | - Yanna Liu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, P.R. China
| | - Houshi Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, P.R. China
| | - Zhaorui Ren
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, P.R. China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, P.R. China
| | - Jingbin Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, P.R. China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, P.R. China
| |
Collapse
|
56
|
Wu D, Zhang Y, Cheng B, Mori S, Reeves RH, Gao FJ. Time-dependent diffusion MRI probes cerebellar microstructural alterations in a mouse model of Down syndrome. Brain Commun 2021; 3:fcab062. [PMID: 33937769 PMCID: PMC8063586 DOI: 10.1093/braincomms/fcab062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The cerebellum is a complex system with distinct cortical laminar organization. Alterations in cerebellar microstructure are common and associated with many factors such as genetics, cancer and ageing. Diffusion MRI (dMRI) provides a non-invasive tool to map the brain structural organization, and the recently proposed diffusion-time (td )-dependent dMRI further improves its capability to probe the cellular and axonal/dendritic microstructures by measuring water diffusion at multiple spatial scales. The td -dependent diffusion profile in the cerebellum and its utility in detecting cerebellar disorders, however, are not yet elucidated. Here, we first deciphered the spatial correspondence between dMRI contrast and cerebellar layers, based on which the cerebellar layer-specific td -dependent dMRI patterns were characterized in both euploid and Ts65Dn mice, a mouse model of Down syndrome. Using oscillating gradient dMRI, which accesses diffusion at short td 's by modulating the oscillating frequency, we detected subtle changes in the apparent diffusivity coefficient of the cerebellar internal granular layer and Purkinje cell layer of Ts65Dn mice that were not detectable by conventional pulsed gradient dMRI. The detection sensitivity of oscillating gradient dMRI increased with the oscillating frequency at both the neonatal and adult stages. The td -dependence, quantified by ΔADC map, was reduced in Ts65Dn mice, likely associated with the reduced granule cell density and abnormal dendritic arborization of Purkinje cells as revealed from histological evidence. Our study demonstrates superior sensitivity of short-td diffusion using oscillating gradient dMRI to detect cerebellar microstructural changes in Down syndrome, suggesting the potential application of this technique in cerebellar disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bei Cheng
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Feng J Gao
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
57
|
Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the Olig Family on Neurodevelopmental Disorders. Front Neurosci 2021; 15:659601. [PMID: 33859549 PMCID: PMC8042229 DOI: 10.3389/fnins.2021.659601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and strictly regulate cellular specification and differentiation. Extensive studies have established functional roles of Olig1 and Olig2 in directing neuronal and glial formation during different stages in development. Recently, Olig2 overexpression was implicated in neurodevelopmental disorders down syndrome (DS) and autism spectrum disorder (ASD) but its influence on cognitive and intellectual defects remains unknown. In this review, we summarize the biological functions of the Olig family and how it uniquely promotes cellular diversity in the CNS. This is followed up with a discussion on how abnormal Olig2 expression impacts brain development and function in DS and ASD. Collectively, the studies described here emphasize vital features of the Olig members and their distinctive potential roles in neurodevelopmental disease states.
Collapse
Affiliation(s)
- Jenny Szu
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alexandre Wojcinski
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| |
Collapse
|
58
|
Santoro SL, Campbell A, Cottrell C, Donelan K, Majewski B, Oreskovic NM, Patsiogiannis V, Torres A, Skotko BG. Piloting the use of global health measures in a Down syndrome clinic. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2021; 34:1108-1117. [PMID: 33759305 PMCID: PMC8830489 DOI: 10.1111/jar.12866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE People with Down syndrome (DS) have a unique medical profile which may impact views of health. We aimed to explore the use of global health measures in DS. METHODS Prospective survey in the Mass General Hospital Down Syndrome Program (MGH DSP) from December 2018 to July 2019 with Patient Reported Outcomes Measurement Information System (PROMIS)® instruments of global health. Analyses included use of scoring manuals, descriptive statistics and dependent samples t test. RESULTS Seventeen adolescents, 48 adults with DS and 88 caregivers returned surveys; 137 were complete. Incomplete responses and notes showed limitations of the instruments in this population. Global health T-scores did not differ from the available comparative standardized scores to these measures from PROMIS® reference population (p > 0.05). CONCLUSIONS In the MGH DSP, pilot global health instruments were completed by some adults with DS and caregivers, with some limitations and scores similar to the PROMIS® reference population.
Collapse
Affiliation(s)
- Stephanie L Santoro
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ashlee Campbell
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Clorinda Cottrell
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Karen Donelan
- Survey Research and Implementation Unit, Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ben Majewski
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Nicolas M Oreskovic
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Vasiliki Patsiogiannis
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Amy Torres
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Brian G Skotko
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
59
|
Toussaint N, Redhead Y, Vidal-García M, Lo Vercio L, Liu W, Fisher EMC, Hallgrímsson B, Tybulewicz VLJ, Schnabel JA, Green JBA. A landmark-free morphometrics pipeline for high-resolution phenotyping: application to a mouse model of Down syndrome. Development 2021; 148:dev188631. [PMID: 33712441 PMCID: PMC7969589 DOI: 10.1242/dev.188631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Characterising phenotypes often requires quantification of anatomical shape. Quantitative shape comparison (morphometrics) traditionally uses manually located landmarks and is limited by landmark number and operator accuracy. Here, we apply a landmark-free method to characterise the craniofacial skeletal phenotype of the Dp1Tyb mouse model of Down syndrome and a population of the Diversity Outbred (DO) mouse model, comparing it with a landmark-based approach. We identified cranial dysmorphologies in Dp1Tyb mice, especially smaller size and brachycephaly (front-back shortening), homologous to the human phenotype. Shape variation in the DO mice was partly attributable to allometry (size-dependent shape variation) and sexual dimorphism. The landmark-free method performed as well as, or better than, the landmark-based method but was less labour-intensive, required less user training and, uniquely, enabled fine mapping of local differences as planar expansion or shrinkage. Its higher resolution pinpointed reductions in interior mid-snout structures and occipital bones in both the models that were not otherwise apparent. We propose that this landmark-free pipeline could make morphometrics widely accessible beyond its traditional niches in zoology and palaeontology, especially in characterising developmental mutant phenotypes.
Collapse
Affiliation(s)
- Nicolas Toussaint
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Yushi Redhead
- Centre for Craniofacial Biology & Regeneration, King's College London, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Lucas Lo Vercio
- Department of Cell Biology & Anatomy, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Victor L J Tybulewicz
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Julia A Schnabel
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Jeremy B A Green
- Centre for Craniofacial Biology & Regeneration, King's College London, UK
| |
Collapse
|
60
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
61
|
Takizawa H, Takahashi M, Maki K. Three-Dimensional Assessment of Craniofacial Features in Patients With Down Syndrome During the Mixed Dentition Period: A Case-Control Study. Cleft Palate Craniofac J 2021; 59:177-184. [PMID: 33685243 DOI: 10.1177/1055665621998181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Down syndrome (DS) is a common congenital chromosomal disorder related to trisomy 21. Lateral cephalometric radiography studies have shown that patients with DS have characteristic craniofacial morphology; however, no 3-dimensional analysis studies have been performed to investigate the craniofacial features, including volumetric aspects, of patients with DS. The present study was performed to evaluate the craniofacial features, including volumetric aspects, of patients with DS and to compare these findings with control participants using cone beam computed tomography (CBCT). MATERIALS AND METHODS The study sample consisted of 12 patients with DS and 12 control participants. All participants were examined by means of CBCT; the resulting images were used for evaluation of maxillary and mandibular volume, cranial base, and craniofacial measurements. Differences between patients with DS and control participants were statistically analyzed using Student t test. RESULTS Compared to control participants, patients with DS exhibited statistically significant reductions in maxillary and mandibular volumes. Both sagittal and axial cranial base linear measurements were shorter in patients with DS than in control participants. In contrast, the cranial base angle was enhanced in patients with DS, compared with control participants. Moreover, condylion (Co)-gnathion, anterior nasal spine-menton, and Co-subspinale (point A) measurements were shorter in patients with DS than in control participants; the sella-nasion-mandibular plane angle was significantly reduced in patients with DS, compared with control participants. CONCLUSION Our results suggest that patients with DS have distinct skeletal volume and craniofacial morphology features, relative to individuals without DS.
Collapse
Affiliation(s)
- Hideomi Takizawa
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
62
|
Duchon A, Del Mar Muniz Moreno M, Martin Lorenzo S, Silva de Souza MP, Chevalier C, Nalesso V, Meziane H, Loureiro de Sousa P, Noblet V, Armspach JP, Brault V, Herault Y. Multi-influential genetic interactions alter behaviour and cognition through six main biological cascades in Down syndrome mouse models. Hum Mol Genet 2021; 30:771-788. [PMID: 33693642 PMCID: PMC8161522 DOI: 10.1093/hmg/ddab012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability caused by the presence of an additional copy of human chromosome 21 (Hsa21). To provide novel insights into genotype–phenotype correlations, we used standardized behavioural tests, magnetic resonance imaging and hippocampal gene expression to screen several DS mouse models for the mouse chromosome 16 region homologous to Hsa21. First, we unravelled several genetic interactions between different regions of chromosome 16 and how they contribute significantly to altering the outcome of the phenotypes in brain cognition, function and structure. Then, in-depth analysis of misregulated expressed genes involved in synaptic dysfunction highlighted six biological cascades centred around DYRK1A, GSK3β, NPY, SNARE, RHOA and NPAS4. Finally, we provide a novel vision of the existing altered gene–gene crosstalk and molecular mechanisms targeting specific hubs in DS models that should become central to better understanding of DS and improving the development of therapies.
Collapse
Affiliation(s)
- Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Maria Del Mar Muniz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Marcia Priscilla Silva de Souza
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | | | - Vincent Noblet
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Jean-Paul Armspach
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), department of translational medicine and neurogenetics 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France.,Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), CELPHEDIA, PHENOMIN, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
63
|
Muskens IS, Li S, Jackson T, Elliot N, Hansen HM, Myint SS, Pandey P, Schraw JM, Roy R, Anguiano J, Goudevenou K, Siegmund KD, Lupo PJ, de Bruijn MFTR, Walsh KM, Vyas P, Ma X, Roy A, Roberts I, Wiemels JL, de Smith AJ. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat Commun 2021; 12:821. [PMID: 33547282 PMCID: PMC7865055 DOI: 10.1038/s41467-021-21064-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Down syndrome is associated with genome-wide perturbation of gene expression, which may be mediated by epigenetic changes. We perform an epigenome-wide association study on neonatal bloodspots comparing 196 newborns with Down syndrome and 439 newborns without Down syndrome, adjusting for cell-type heterogeneity, which identifies 652 epigenome-wide significant CpGs (P < 7.67 × 10-8) and 1,052 differentially methylated regions. Differential methylation at promoter/enhancer regions correlates with gene expression changes in Down syndrome versus non-Down syndrome fetal liver hematopoietic stem/progenitor cells (P < 0.0001). The top two differentially methylated regions overlap RUNX1 and FLI1, both important regulators of megakaryopoiesis and hematopoietic development, with significant hypermethylation at promoter regions of these two genes. Excluding Down syndrome newborns harboring preleukemic GATA1 mutations (N = 30), identified by targeted sequencing, has minimal impact on the epigenome-wide association study results. Down syndrome has profound, genome-wide effects on DNA methylation in hematopoietic cells in early life, which may contribute to the high frequency of hematological problems, including leukemia, in children with Down syndrome.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Thomas Jackson
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Natalina Elliot
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Priyatama Pandey
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Ritu Roy
- Computational Biology and Informatics, University of California San Francisco, San Francisco, CA, USA
| | - Joaquin Anguiano
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Katerina Goudevenou
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Anindita Roy
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA.
| |
Collapse
|
64
|
Mitsogiannis MD, Pancho A, Aerts T, Sachse SM, Vanlaer R, Noterdaeme L, Schmucker D, Seuntjens E. Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Front Cell Dev Biol 2021; 8:624181. [PMID: 33585465 PMCID: PMC7876293 DOI: 10.3389/fcell.2020.624181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Down Syndrome (DS) Cell Adhesion Molecules (DSCAMs) are transmembrane proteins of the immunoglobulin superfamily. Human DSCAM is located within the DS critical region of chromosome 21 (duplicated in Down Syndrome patients), and mutations or copy-number variations of this gene have also been associated to Fragile X syndrome, intellectual disability, autism, and bipolar disorder. The DSCAM paralogue DSCAM-like 1 (DSCAML1) maps to chromosome 11q23, implicated in the development of Jacobsen and Tourette syndromes. Additionally, a spontaneous mouse DSCAM deletion leads to motor coordination defects and seizures. Previous research has revealed roles for DSCAMs in several neurodevelopmental processes, including synaptogenesis, dendritic self-avoidance, cell sorting, axon growth and branching. However, their functions in embryonic mammalian forebrain development have yet to be completely elucidated. In this study, we revealed highly dynamic spatiotemporal patterns of Dscam and Dscaml1 expression in definite cortical layers of the embryonic mouse brain, as well as in structures and ganglionic eminence-derived neural populations within the embryonic subpallium. However, an in-depth histological analysis of cortical development, ventral forebrain morphogenesis, cortical interneuron migration, and cortical-subcortical connectivity formation processes in Dscam and Dscaml1 knockout mice (Dscam del17 and Dscaml1 GT ) at several embryonic stages indicated that constitutive loss of Dscam and Dscaml1 does not affect these developmental events in a significant manner. Given that several Dscam- and Dscaml1-linked neurodevelopmental disorders are associated to chromosomal region duplication events, we furthermore sought to examine the neurodevelopmental effects of Dscam and Dscaml1 gain of function (GOF). In vitro, ex vivo, and in vivo GOF negatively impacted neural migration processes important to cortical development, and affected the morphology of maturing neurons. Overall, these findings contribute to existing knowledge on the molecular etiology of human neurodevelopmental disorders by elucidating how dosage variations of genes encoding adhesive cues can disrupt cell-cell or cell-environment interactions crucial for neuronal migration.
Collapse
Affiliation(s)
- Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sonja M. Sachse
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Department of Neurosciences, VIB-KU Leuven Center for Brain & Disease Research, Katholieke Universiteit Leuven, Leuven, Belgium
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Lee YH, Im E, Hyun M, Park J, Chung KC. Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. J Biol Chem 2021; 296:100245. [PMID: 33380426 PMCID: PMC7948726 DOI: 10.1074/jbc.ra120.015574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD). One of the pathological hallmarks of AD is insoluble deposits of neurofibrillary tangles (NFTs) that consist of hyperphosphorylated tau. The human DYRK1A gene is mapped to chromosome 21, and the protein is associated with the formation of inclusion bodies in AD. For example, DYRK1A directly phosphorylates multiple serine and threonine residues of tau, including Thr212. However, the mechanism underpinning DYRK1A involvement in Trisomy 21-related pathological tau aggregation remains unknown. Here, we explored a novel regulatory mechanism of DYRK1A and subsequent tau pathology through a phosphatase. Using LC-MS/MS technology, we analyzed multiple DYRK1A-binding proteins, including PPM1B, a member of the PP2C family of Ser/Thr protein phosphatases, in HEK293 cells. We found that PPM1B dephosphorylates DYRK1A at Ser258, contributing to the inhibition of DYRK1A activity. Moreover, PPM1B-mediated dephosphorylation of DYRK1A reduced tau phosphorylation at Thr212, leading to inhibition of toxic tau oligomerization and aggregation. In conclusion, our study demonstrates that DYRK1A autophosphorylates Ser258, the dephosphorylation target of PPM1B, and PPM1B negatively regulates DYRK1A activity. This finding also suggests that PPM1B reduces the toxic formation of phospho-tau protein via DYRK1A modulation, possibly providing a novel cellular protective mechanism to regulate toxic tau-mediated neuropathology in AD of DS.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Minju Hyun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Joongkyu Park
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
66
|
|
67
|
Tungate AS, Conners FA. Executive function in Down syndrome: A meta-analysis. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 108:103802. [PMID: 33341075 DOI: 10.1016/j.ridd.2020.103802] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Executive function (EF) refers to a set of cognitive processes involved in goal-oriented behavior-especially inhibition, attention shifting, and working memory. EF has been identified as a probable area of difficulty in Down syndrome (DS), but the exact nature of the difficulty has not been well-established. AIMS The meta-analysis sought to confirm or disconfirm EF as an area of difficulty in DS and elucidate an EF profile. METHODS AND PROCEDURES A random-effects meta-analysis was conducted on 57 studies that compared a group with DS to a typically developing (TD) mental age matched group on one or more executive function tasks. Heterogeneity was examined and moderators analyzed. OUTCOMES AND RESULTS The overall mean weighted effect size was large (d = -0.87), indicating poorer EF in groups with DS vs TD groups. Heterogeneity was significant, and moderator analysis revealed an EF profile with a very large effect for verbal WM/STM, a large effect for shifting, and moderate effects for inhibition and nonverbal WM/STM. Skewness analysis suggested that mean effect sizes might have been dampened, especially for WM/STM and shifting. CONCLUSIONS AND IMPLICATIONS Individuals with DS display a pronounced difficulty in EFs; implications for interventions and future research are discussed.
Collapse
Affiliation(s)
- Andrew S Tungate
- The University of Alabama, Department of Psychology, Box 870348, Tuscaloosa, AL, 35487-0348, USA.
| | - Frances A Conners
- The University of Alabama, Department of Psychology, Box 870348, Tuscaloosa, AL, 35487-0348, USA
| |
Collapse
|
68
|
Takahashi T, Sakai N, Iwasaki T, Doyle TC, Mobley WC, Nishino S. Detailed evaluation of the upper airway in the Dp(16)1Yey mouse model of Down syndrome. Sci Rep 2020; 10:21323. [PMID: 33288820 PMCID: PMC7721723 DOI: 10.1038/s41598-020-78278-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
A high prevalence of obstructive sleep apnea (OSA) has been reported in Down syndrome (DS) owing to the coexistence of multiple predisposing factors related to its genetic abnormality, posing a challenge for the management of OSA. We hypothesized that DS mice recapitulate craniofacial abnormalities and upper airway obstruction of human DS and can serve as an experimental platform for OSA research. This study, thus, aimed to quantitatively characterize the upper airway as well as craniofacial abnormalities in Dp(16)1Yey (Dp16) mice. Dp16 mice demonstrated craniofacial hypoplasia, especially in the ventral part of the skull and the mandible, and rostrally positioned hyoid. These changes were accompanied with a shorter length and smaller cross-sectional area of the upper airway, resulting in a significantly reduced upper airway volume in Dp16 mice. Our non-invasive approach, a combination of computational fluid dynamics and high-resolution micro-CT imaging, revealed a higher negative pressure inside the airway of Dp16 mice compared to wild-type littermates, showing the potential risk of upper airway collapse. Our study indicated that Dp16 mice can be a useful model to examine the pathophysiology of increased upper airway collapsibility of DS and to evaluate the efficacy of therapeutic interventions for breathing and sleep anomalies.
Collapse
Affiliation(s)
- Tatsunori Takahashi
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3155 Porter Drive, Room 2141, Palo Alto, CA, 94304, USA.,Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY, 10461, USA
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3155 Porter Drive, Room 2141, Palo Alto, CA, 94304, USA.
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, Kagoshima, 8908544, Japan
| | - Timothy C Doyle
- The Neuroscience Community Labs, Wu Tsai Neurosciences Institute, Stanford University, 318 Campus Drive, Suite S170, Stanford, CA, 94305, USA
| | - William C Mobley
- Department of Neurosciences, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 3155 Porter Drive, Room 2141, Palo Alto, CA, 94304, USA
| |
Collapse
|
69
|
Mahernia S, Sarvari S, Fatahi Y, Amanlou M. The Role of HSA21 Encoded Mirna in Down Syndrome Pathophysiology:Opportunities in miRNA-Targeted Pharmacotherapy and Diagnosis of the Down Syndrome. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Trisomy 21 is the most prevalent aneuploidy disorder among live-born children worldwide. Itresults from the presence of an extra copy of chromosome 21 which leads to a wide spectrum ofpathophysiological abnormalities and intellectual disabilities. Nevertheless human chromosome21 (HSA21) possess protein non-coding regions where HAS-21 derived-microRNA genes aretranscribed from. In turn, these HSA21-derived miRNAs curb protein translation of severalgenes which are essential to meet memory and cognitive abilities. From the genetics andmolecular biology standpoints, dissecting the mechanistic relationship between DS pathology/symptoms and five chromosome 21-encoded miRNAs including miR-99a, let-7c, miR-125b-2,miR-155 and miR-802 seems pivotal for unraveling novel therapeutic targets. Recently,several studies have successfully carried out small molecule inhibition of miRNAs function,maturation, and biogenesis. One might assume in the case of DS trisomy, the pharmacologicalinhibition of these five overexpressed miRNAs might open new avenues for amelioration of theDS symptoms and complications. In this review, we primarily elucidated the role of HSA21-encoded miRNAs in the DS pathology which in turn introduced and addressed importanttherapeutic targets. Moreover, we reviewed relevant pharmaceutical efforts that based theirgoals on inhibition of these pathological miRNAs at their different biogenesis steps. We havealso discussed the challenges that undermine and question the reliability of miRNAs as noneinvasivebiomarkers in prenatal diagnosis.
Collapse
Affiliation(s)
- Shabnam Mahernia
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences,Tehran, Iran
| |
Collapse
|
70
|
Moyer AJ, Gardiner K, Reeves RH. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet 2020; 37:444-459. [PMID: 33097276 DOI: 10.1016/j.tig.2020.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Human chromosome 21 (Hsa21) contains more than 500 genes, making trisomy 21 one of the most complex genetic perturbations compatible with life. The ultimate goal of Down syndrome (DS) research is to design therapies that improve quality of life for individuals with DS by understanding which subsets of Hsa21 genes contribute to DS-associated phenotypes throughout the lifetime. However, the complexity of DS pathogenesis has made developing appropriate animal models an ongoing challenge. Here, we examine lessons learned from a variety of model systems, including yeast, nematode, fruit fly, and zebrafish, and discuss emerging methods for creating murine models that better reflect the genetic basis of trisomy 21.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katheleen Gardiner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA (retired)
| | - Roger H Reeves
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
71
|
Down syndrome iPSC model: endothelial perspective on tumor development. Oncotarget 2020; 11:3387-3404. [PMID: 32934781 PMCID: PMC7486695 DOI: 10.18632/oncotarget.27712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
Trisomy 21 (T21), known as Down syndrome (DS), is a widely studied chromosomal abnormality. Previous studies have shown that DS individuals have a unique cancer profile. While exhibiting low solid tumor prevalence, DS patients are at risk for hematologic cancers, such as acute megakaryocytic leukemia and acute lymphoblastic leukemia. We speculated that endothelial cells are active players in this clinical background. To this end, we hypothesized that impaired DS endothelial development and functionality, impacted by genome-wide T21 alterations, potentially results in a suboptimal endothelial microenvironment with the capability to prevent solid tumor growth. To test this hypothesis, we assessed molecular and phenotypic differences of endothelial cells differentiated from Down syndrome and euploid iPS cells. Microarray, RNA-Seq, and bioinformatic analyses revealed that most significantly expressed genes belong to angiogenic, cytoskeletal rearrangement, extracellular matrix remodeling, and inflammatory pathways. Interestingly, the majority of these genes are not located on Chromosome 21. To substantiate these findings, we carried out functional assays. The obtained phenotypic results correlated with the molecular data and showed that Down syndrome endothelial cells exhibit decreased proliferation, reduced migration, and a weak TNF-α inflammatory response. Based on this data, we provide a set of genes potentially associated with Down syndrome’s elevated leukemic incidence and its unfavorable solid tumor microenvironment—highlighting the potential use of these genes as therapeutic targets in translational cancer research.
Collapse
|
72
|
Galat Y, Perepitchka M, Elcheva I, Iannaccone S, Iannaccone PM, Galat V. iPSC-derived progenitor stromal cells provide new insights into aberrant musculoskeletal development and resistance to cancer in down syndrome. Sci Rep 2020; 10:13252. [PMID: 32764607 PMCID: PMC7414019 DOI: 10.1038/s41598-020-69418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a congenital disorder caused by trisomy 21 (T21). It is associated with cognitive impairment, muscle hypotonia, heart defects, and other clinical anomalies. At the same time, individuals with Down syndrome have lower prevalence of solid tumor formation. To gain new insights into aberrant DS development during early stages of mesoderm formation and its possible connection to lower solid tumor prevalence, we developed the first model of two types of DS iPSC-derived stromal cells. Utilizing bioinformatic and functional analyses, we identified over 100 genes with coordinated expression among mesodermal and endothelial cell types. The most significantly down-regulated processes in DS mesodermal progenitors were associated with decreased stromal progenitor performance related to connective tissue organization as well as muscle development and functionality. The differentially expressed genes included cytoskeleton-related genes (actin and myosin), ECM genes (Collagens, Galectin-1, Fibronectin, Heparan Sulfate, LOX, FAK1), cell cycle genes (USP16, S1P complexes), and DNA damage repair genes. For DS endothelial cells, our analysis revealed most down-regulated genes associated with cellular response to external stimuli, cell migration, and immune response (inflammation-based). Together with functional assays, these results suggest an impairment in mesodermal development capacity during early stages, which likely translates into connective tissue impairment in DS patients. We further determined that, despite differences in functional processes and characteristics, a significant number of differentially regulated genes involved in tumorigenesis were expressed in a highly coordinated manner across endothelial and mesodermal cells. These findings strongly suggest that microRNAs (miR-24-4, miR-21), cytoskeleton remodeling, response to stimuli, and inflammation can impact resistance to tumorigenesis in DS patients. Furthermore, we also show that endothelial cell functionality is impaired, and when combined with angiogenic inhibition, it can provide another mechanism for decreased solid tumor development. We propose that the same processes, which specify the basis of connective tissue impairment observed in DS patients, potentially impart a resistance to cancer by hindering tumor progression and metastasis. We further establish that cancer-related genes on Chromosome 21 are up-regulated, while genome-wide cancer-related genes are down-regulated. These results suggest that trisomy 21 induces a modified regulation and compensation of many biochemical pathways across the genome. Such downstream interactions may contribute toward promoting tumor resistant mechanisms.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Division of Hematology and Oncology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- ARTEC Biotech Inc, Chicago, IL, USA.
| |
Collapse
|
73
|
de Campos Gomes F, de Melo-Neto JS, Goloni-Bertollo EM, Pavarino ÉC. Trends and predictions for survival and mortality in individuals with Down syndrome in Brazil: A 21-year analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2020; 64:551-560. [PMID: 32378275 DOI: 10.1111/jir.12735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Regional heterogeneities and sociodemographic characteristics affect mortality and population survival in Brazil. However, for individuals with Down syndrome (DS) this information remains unknown. In this study, we analysed survival and mortality rates among DS individuals in the five Brazilian geographic regions. In addition, we investigated whether there is an association between mortality and sociodemographic factors across administrative regions. METHODS Data between 1996 and 2016, comprising 10 028 records of deaths of individuals with DS, were collected from database records of the Department of Informatics of the Unified Health System. Data on race/ethnicity, sex, age and years of schooling were defined for the association analyses. Survival data were analysed according to the Kaplan-Meier method and Cox regression model. RESULTS The number of deaths among people with DS has increased in recent years. Children are more susceptible to death, especially in the first years of life. Individuals living in the northern region, Indigenous women and people with no years of schooling have higher mortality. In the Southeast and South region, for White and Yellow, survival is related to a higher level of education. Ethnic factors and years of schooling influence risk for mortality across the administrative regions. CONCLUSIONS These findings show that sociodemographic characteristics affect survival and are associated with the risk of mortality for people with DS. In addition, this suggests that differences in access to health services among Brazilian regions, especially in the first years of life, may affect the survival of individuals with DS.
Collapse
Affiliation(s)
- F de Campos Gomes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, Brazil
| | - J S de Melo-Neto
- Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - E M Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, Brazil
| | - É C Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
74
|
Kazuki Y, Gao FJ, Li Y, Moyer AJ, Devenney B, Hiramatsu K, Miyagawa-Tomita S, Abe S, Kazuki K, Kajitani N, Uno N, Takehara S, Takiguchi M, Yamakawa M, Hasegawa A, Shimizu R, Matsukura S, Noda N, Ogonuki N, Inoue K, Matoba S, Ogura A, Florea LD, Savonenko A, Xiao M, Wu D, Batista DA, Yang J, Qiu Z, Singh N, Richtsmeier JT, Takeuchi T, Oshimura M, Reeves RH. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. eLife 2020; 9:56223. [PMID: 32597754 PMCID: PMC7358007 DOI: 10.7554/elife.56223] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we “clone” the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan.,Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yicong Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Moyer
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Benjamin Devenney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan.,Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Shoko Takehara
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Masato Takiguchi
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Miho Yamakawa
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Japan
| | - Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoko Matsukura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Liliana D Florea
- Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| | - Alena Savonenko
- Departments of Pathology and Neurology, John Hopkins University School of Medicine, Baltimore, United States
| | - Meifang Xiao
- Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, United States
| | - Dan Wu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Denise As Batista
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, United States
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nandini Singh
- Department of Anthropology, Penn State University, State College, United States
| | - Joan T Richtsmeier
- Division of Biosignaling, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takashi Takeuchi
- Department of Anthropology, California State University, Sacramento, United States
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Japan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
75
|
Lopes JBP, Miziara IM, Galli M, Cimolin V, Oliveira CS. Effect of Transcranial Direct Current Stimulation Combined With Xbox-Kinect Game Experience on Upper Limb Movement in Down Syndrome: A Case Report. Front Bioeng Biotechnol 2020; 8:514. [PMID: 32548102 PMCID: PMC7273846 DOI: 10.3389/fbioe.2020.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to enhance local synaptic efficacy and modulate the electrical activity of the cortex in neurological disorders. Researchers have sought to combine this type of stimulation with well-established therapeutic modalities, such as motor training involving Xbox Kinect games, which has demonstrated promising results. Thus, this study aimed to determine whether tDCS can enhance upper limb motor training in an eight-year-old child with Down Syndrome (DS) (cognitive age: five years, based on the Wechsler Intelligence Scale for Children). The evaluations consisted of three-dimensional analysis of upper limb kinematics during a reaching task performed before, after10 session, and one month after the intervention. The intervention protocol involved 1 20-min sessions of tDCS over the primary motor cortex at an intensity of 1 mA during Xbox Kinect game training involving an upper limb motor task. The analysis of the kinematic data revealed that in the pre-intervention evaluation, the dominant limb executed the task slowly and over a long path. These aspects improved at the post-intervention and follow-up evaluations, as demonstrated by the shorter total movement duration (3.05 vs. 1.58 vs. 1.52 s, respectively). Similar changes occurred with the non-dominant upper limb; a significant increase in movement velocity at the post-intervention and follow-up evaluations was observed (0.53 vs. 0.54 vs. 0.85 m/s, respectively). The present case report offers preliminary data from a protocol study, and the results confirm the notion that anodal tDCS combined with upper limb motor training leads to improvements in different kinematic variables.
Collapse
Affiliation(s)
- Jamile Benite Palma Lopes
- Health Sciences Program, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo, Brazil
- Undergraduate Department, Faculty of Taquaritinga - FTGA, Taquaritinga, Brazil
| | - Isabela Marques Miziara
- Undergraduate Department, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
- Undergraduate Department, Faculty of Electrical and Biomedical Engineering, Federal University of Pará, Belém, Brazil
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Santos Oliveira
- Program in Human Movement and Rehabilitation Center of Anápolis, Anápolis, Brazil
- Master's and Doctoral Program in Health Sciences, São Paulo Santa Casa School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
76
|
Arian SE, Erfani H, Westerfield LE, Buffie A, Nassef S, Gibbons WE, Van den Veyver IB. Prenatal testing in pregnancies conceived by in vitro fertilization with pre-implantation genetic testing. Prenat Diagn 2020; 40:846-851. [PMID: 32297346 DOI: 10.1002/pd.5711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/26/2020] [Accepted: 03/28/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Women with pregnancies resulting from in vitro fertilization (IVF) with normal pre-implantation genetic testing for aneuploidy (PGT-A) are advised to undergo prenatal screening and testing during pregnancy. It is not well known how many follow these recommendations. Our objective was to study prenatal testing decisions made by women with pregnancies conceived through IVF with PGT-A. METHODS We performed a retrospective review of women who received genetic counseling during pregnancies conceived through IVF with normal PGT-A. We excluded those who received genetic counseling preconceptionally prior to IVF. Statistical analysis included descriptive statistics and after testing for normality by the Kolmogorov-Smirnov test, independent t test, Mann-Whitney U test, or Chi-square/Fisher's exact test. RESULTS Data from 83 women were included. Of these, 53 (63.9%) had at least one of the following prenatal tests: first trimester combined screening (16.9%), non-invasive prenatal screening (NIPS) (45.8%), second trimester serum screening (6%), and invasive diagnostic testing (6%). 10.8% had more than one of the above tests and 36.1% declined all tests. CONCLUSION Almost two-thirds of women who were pregnant after IVF with normal PGT-A had prenatal aneuploidy screening or testing. Future prospective studies with larger cohorts are needed to further ascertain decision making in this population.
Collapse
Affiliation(s)
- Sara E Arian
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, USA
| | - Hadi Erfani
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Lauren E Westerfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alexandra Buffie
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.,Present address: Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salma Nassef
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William E Gibbons
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
77
|
Bontempi P, Cisterna B, Malatesta M, Nicolato E, Mucignat-Caretta C, Zancanaro C. A smaller olfactory bulb in a mouse model of Down syndrome. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
78
|
Martínez de Lagrán M. Mapping behavioral landscapes in Down syndrome animal models. PROGRESS IN BRAIN RESEARCH 2020; 251:145-179. [DOI: 10.1016/bs.pbr.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
79
|
Positive Rate of Noninvasive Prenatal Screening for Pregnancies with Fetal Congenital Heart Disease and Its Impact on Pregnancy Outcome. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
80
|
Mowery CT, Reyes JM, Cabal-Hierro L, Higby KJ, Karlin KL, Wang JH, Kimmerling RJ, Cejas P, Lim K, Li H, Furusawa T, Long HW, Pellman D, Chapuy B, Bustin M, Manalis SR, Westbrook TF, Lin CY, Lane AA. Trisomy of a Down Syndrome Critical Region Globally Amplifies Transcription via HMGN1 Overexpression. Cell Rep 2019; 25:1898-1911.e5. [PMID: 30428356 PMCID: PMC6321629 DOI: 10.1016/j.celrep.2018.10.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted. How trisomy 21 contributes to Down syndrome phenotypes, including increased leukemia risk, is not well understood. Mowery et al. use per-cell normalization approaches to reveal global transcriptional amplification in Down syndrome models. HMGN1 overexpression is sufficient to induce these alterations and promotes lineage-associated transcriptional programs, signaling, and B cell progenitor phenotypes.
Collapse
Affiliation(s)
- Cody T Mowery
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jaime M Reyes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kelly J Higby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kristen L Karlin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Jarey H Wang
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert J Kimmerling
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hubo Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Takashi Furusawa
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Bustin
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Scott R Manalis
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas F Westbrook
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
81
|
Cannavo C, Tosh J, Fisher EMC, Wiseman FK. Using mouse models to understand Alzheimer's disease mechanisms in the context of trisomy of chromosome 21. PROGRESS IN BRAIN RESEARCH 2019; 251:181-208. [PMID: 32057307 DOI: 10.1016/bs.pbr.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
People who have Down syndrome are at significantly elevated risk of developing early onset Alzheimer's disease that causes dementia (AD-DS). Here we review recent progress in modeling the development of AD-DS in mouse models. These studies provide insight into mechanisms underlying Alzheimer's disease and generate new clinical research questions. In addition, they suggest potential new targets for disease prevention therapies.
Collapse
Affiliation(s)
- Claudia Cannavo
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom.
| |
Collapse
|
82
|
Vizitiu AC, Stambouli D, Pavel AG, Muresan MC, Anastasiu DM, Bejinar C, Alexa A, Marian C, Sirbu IO, Sima L. Mature miR-99a Upregulation in the Amniotic Fluid Samples from Female Fetus Down Syndrome Pregnancies: A Pilot Study. ACTA ACUST UNITED AC 2019; 55:medicina55110728. [PMID: 31703316 PMCID: PMC6915350 DOI: 10.3390/medicina55110728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Background and Objective: Although Down syndrome is the most frequent aneuploidy, its pathogenic molecular mechanisms are not yet fully understood. The aim of our study is to quantify-by qRT-PCR-the expression levels of both the mature forms and the pri-miRNAs of the microRNAs resident on chromosome 21 (miR(21)) in the amniotic fluid samples from Down syndrome singleton pregnancies and to estimate the impact of the differentially expressed microRNAs on Down syndrome fetal heart and amniocytes transcriptomes. Materials and methods: We collected amniotic fluid samples harvested by trained obstetricians as part of the second trimester screening/diagnostic procedure for aneuploidies to assess the trisomy 21 status by QF-PCR and karyotyping. Next, we evaluated-by Taqman qRT-PCR-the expression levels of both the mature forms and the pri-miRNA precursors of the microRNAs resident on chromosome 21 in amniotic fluid samples from singleton Down syndrome and euploid pregnancies. Further, we combined miRWalk 3.0 microRNA target prediction with GEO DataSets analysis to estimate the impact of hsa-miR-99a abnormal expression on Down syndrome heart and amniocytes transcriptome. Results: We found a statistically significant up-regulation of the mature form of miR-99a, but not pri-miR-99a, in the amniotic fluid samples from Down syndrome pregnancies with female fetuses. GATHER functional enrichment analysis of miRWalk3.0-predicted targets from Down syndrome amniocytes and fetal hearts transcriptome GEODataSets outlined both focal adhesion and cytokine-cytokine receptor interaction signaling as novel signaling pathways impacted by miR-99a and associated with cardiac defects in female Down syndrome patients. Conclusions: The significant overexpression of miR-99a, but not pri-miR-99a, points towards an alteration of the post-transcriptional mechanisms of hsa-miR-99a maturation and/or stability in the female trisomic milieu, with a potential impact on signaling pathways important for proper development of the heart.
Collapse
Affiliation(s)
- Anda-Cornelia Vizitiu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Eftimie Murgu Nr. 2, Timisoara 300041, Romania;
| | - Danae Stambouli
- CytoGenomic Medical Laboratory, Calea Floreasca Nr. 35, Sector 1, Bucharest 014451, Romania; (D.S.); (A.-G.P.)
| | - Anca-Gabriela Pavel
- CytoGenomic Medical Laboratory, Calea Floreasca Nr. 35, Sector 1, Bucharest 014451, Romania; (D.S.); (A.-G.P.)
| | - Maria-Cezara Muresan
- Obstetrics and Gynecology Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania (D.M.A.)
| | - Diana Maria Anastasiu
- Obstetrics and Gynecology Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania (D.M.A.)
| | - Cristina Bejinar
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania; (C.B.); (A.A.); (C.M.)
| | - Anda Alexa
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania; (C.B.); (A.A.); (C.M.)
| | - Catalin Marian
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania; (C.B.); (A.A.); (C.M.)
| | - Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania; (C.B.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +40-756-136-272
| | - Laurentiu Sima
- Surgical Semiology Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, Timisoara 300041, Romania;
| |
Collapse
|
83
|
|
84
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
85
|
Stamoulis G, Garieri M, Makrythanasis P, Letourneau A, Guipponi M, Panousis N, Sloan-Béna F, Falconnet E, Ribaux P, Borel C, Santoni F, Antonarakis SE. Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance. Nat Commun 2019; 10:4495. [PMID: 31582743 PMCID: PMC6776538 DOI: 10.1038/s41467-019-12273-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Aneuploidy is a major source of gene dosage imbalance due to copy number alterations (CNA), and viable human trisomies are model disorders of altered gene expression. We study gene and allele-specific expression (ASE) of 9668 single-cell fibroblasts from trisomy 21 (T21) discordant twins and from mosaic T21, T18, T13 and T8. We examine 928 single cells with deep scRNAseq. Expected and observed overexpression of trisomic genes in trisomic vs. diploid bulk RNAseq is not detectable in trisomic vs. diploid single cells. Instead, for trisomic genes with low-to-average expression, their altered gene dosage is mainly due to the higher fraction of trisomic cells simultaneously expressing these genes, in agreement with a stochastic 2-state burst-like model of transcription. These results, confirmed in a further analysis of 8740 single fibroblasts with shallow scRNAseq, suggest that the specific transcriptional profile of each gene contributes to the phenotypic variability of trisomies. We propose an improved model to understand the effects of CNA and, generally, of gene regulation on gene dosage imbalance.
Collapse
Affiliation(s)
- Georgios Stamoulis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
- Biomedical Research Institute Academy of Athens, Athens, Greece
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Michel Guipponi
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland
| | - Nikolaos Panousis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Frédérique Sloan-Béna
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Pascale Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne - CHUV, Lausanne, 1011, Switzerland.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Geneva, Switzerland.
- Geneva University Hospitals, Service of Genetic Medicine, 1211 Geneva 4, Geneva, Switzerland.
- iGE3 Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
86
|
Campagna L, McCracken KG, Lovette IJ. Gradual evolution towards flightlessness in steamer ducks. Evolution 2019; 73:1916-1926. [PMID: 31106403 DOI: 10.1111/evo.13758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Flightlessness in birds is the product of changes in suites of characters-including increased body size and reduced anterior limbs-that have evolved repeatedly and independently under similar ecological conditions (generally insularity). It remains unknown whether this phenotypic convergence extends to the genomic level, partially because many losses of flight occurred long ago (such as in penguins or ratites), thus complicating the study of the genetic pathways to flightlessness. Here, we use genome sequencing to study the evolution of flightlessness in a group of ducks that are current and dynamic exemplars of this major functional transition. These recently diverged Tachyeres steamer ducks differ in their ability to fly: one species is predominantly flighted and three are mainly flightless. Through a genome-wide association analysis, we identify two narrow candidate genomic regions implicated in the morphological changes that led to flightlessness, and reconstruct the number of times flightlessness has evolved in Tachyeres. The strongest association is with DYRK1A, a gene that when knocked out in mice leads to alterations in growth and bone morphogenesis. These findings, together with phylogenetic and demographic analyses, imply that the genomic changes leading to flightlessness in Tachyeres may have evolved once, and that this trait remains functionally polymorphic in two species.
Collapse
Affiliation(s)
- Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Kevin G McCracken
- Department of Biology, Rosenstiel School of Marine and Atmospheric Sciences, and Human Genetics and Genomics, University of Miami, Coral Gables, Florida, 33146
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
87
|
Vitamin D3 increases the Caspase-3 p12, MTHFR, and P-glycoprotein reducing amyloid-β42 in the kidney of a mouse model for Down syndrome. Life Sci 2019; 231:116537. [DOI: 10.1016/j.lfs.2019.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
|
88
|
Pelleri MC, Cicchini E, Petersen MB, Tranebjærg L, Mattina T, Magini P, Antonaros F, Caracausi M, Vitale L, Locatelli C, Seri M, Strippoli P, Piovesan A, Cocchi G. Partial trisomy 21 map: Ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol Genet Genomic Med 2019; 7:e797. [PMID: 31237416 PMCID: PMC6687668 DOI: 10.1002/mgg3.797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is characterized by the presence of an extra full or partial human chromosome 21 (Hsa21). An invaluable model to define genotype-phenotype correlations in DS is the study of the extremely rare cases of partial (segmental) trisomy 21 (PT21), the duplication of only a delimited region of Hsa21 associated or not to DS. A systematic retrospective reanalysis of 125 PT21 cases described up to 2015 allowed the creation of the most comprehensive PT21 map and the identification of a 34-kb highly restricted DS critical region (HR-DSCR) as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS. We reanalyzed at higher resolution three cases previously published and we accurately searched for any new PT21 reports in order to verify whether HR-DSCR limits could prospectively be confirmed and possibly refined. METHODS Hsa21 partial duplications of three PT21 subjects were refined by adding array-based comparative genomic hybridization data. Seven newly described PT21 cases fulfilling stringent cytogenetic and clinical criteria have been incorporated into the PT21 integrated map. RESULTS The PT21 map now integrates fine structure of Hsa21 sequence intervals of 132 subjects onto a common framework fully consistent with the presence of a duplicated HR-DSCR, on distal 21q22.13 sub-band, only in DS subjects and not in non-DS individuals. No documented exception to the HR-DSCR model was found. CONCLUSIONS The findings presented here further support the association of the HR-DSCR with the diagnosis of DS, representing an unbiased validation of the original model. Further studies are needed to identify and characterize genetic determinants presumably located in the HR-DSCR and functionally associated to the critical manifestations of DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Michael B. Petersen
- Department of GeneticsAalborg University HospitalAalborgDenmark
- Department of Clinical GeneticsAalborg UniversityAalborgDenmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics/RigshospitaletThe Kennedy CentreGlostrupDenmark
- University of Copenhagen, Institute of Clinical Medicine, The Panum InstituteCopenhagen NDenmark
| | - Teresa Mattina
- Department of PediatricsMedical Genetics University of CataniaItaly
| | - Pamela Magini
- Medical Genetics UnitSt. Orsola‐Malpighi PolyclinicBologna (BO)Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | | | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| |
Collapse
|
89
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|
90
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
91
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|
92
|
Yusof HH, Lee HC, Seth EA, Wu X, Hewitt CA, Scott HS, Cheah PS, Li YM, Chau DM, Ling KH. Expression Profiling of Notch Signalling Pathway and Gamma-Secretase Activity in the Brain of Ts1Cje Mouse Model of Down Syndrome. J Mol Neurosci 2019; 67:632-642. [PMID: 30758748 PMCID: PMC8824580 DOI: 10.1007/s12031-019-01275-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 01/23/2023]
Abstract
Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.
Collapse
Affiliation(s)
- Hadri Hadi Yusof
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Han-Chung Lee
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eryse Amira Seth
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Xiangzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chelsee A Hewitt
- Department of Pathology, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An Alliance Between SA Pathology and the University of South Australia, SA Pathology, Adelaide, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Pike-See Cheah
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - De-Ming Chau
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics & Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
93
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
94
|
Ahmed P H, V V, More RP, Viswanath B, Jain S, Rao MS, Mukherjee O. INDEX-db: The Indian Exome Reference Database (Phase I). J Comput Biol 2019; 26:225-234. [PMID: 30615482 PMCID: PMC6441288 DOI: 10.1089/cmb.2018.0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deep sequencing-based genetic mapping has greatly enhanced the ability to catalog variants with plausible disease association. Confirming how these identified variants contribute to specific disease conditions, across human populations, poses the next challenge. Differential selection pressure may impact the frequency of genetic variations, and thus detection of association with disease conditions, across populations. To understand genotype to phenotype correlations, it thus becomes important to first understand the spectrum of genetic variation within a population by creating a reference map. In this study, we report the development of phase I of a new database of genetic variations called INDian EXome database (INDEX-db), from the Indian population, with an aim to establish a centralized database of integrated information. This could be useful for researchers involved in studying disease mechanisms at clinical, genetic, and cellular levels.
Collapse
Affiliation(s)
- Husayn Ahmed P
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| | - Vidhya V
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | - Ravi Prabhakar More
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS-TIFR), Bengaluru, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Mahendra S. Rao
- Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bengaluru, India
| | - Odity Mukherjee
- Address correspondence to: Dr. Odity Mukherjee, Investigator & Chief Technologist, Accelerator Program for Discovery in Brain Disorders Using Stem Cells (ADBS), Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Biology and Regenerative Medicine (InStem), Bellary Road, Bengaluru–560065, Karnataka, India
| |
Collapse
|
95
|
Gong Y, Wang K, Xiao SP, Mi P, Li W, Shang Y, Dou F. Overexpressed TTC3 Protein Tends to be Cleaved into Fragments and Form Aggregates in the Nucleus. Neuromolecular Med 2019; 21:85-96. [PMID: 30203323 DOI: 10.1007/s12017-018-8509-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/01/2022]
Abstract
Human tetratricopeptide repeat domain 3 (TTC3) is a gene on 21q22.2 within the Down syndrome critical region (DSCR). Earlier studies suggest that TTC3 may be an important regulator in individual development, especially in neural development. As an E3 ligase, TTC3 binds to phosphorylated Akt and silence its activity via proteasomal cascade. Several groups also reported the involvement of TTC3 in familial Alzheimer's disease recently. In addition, our previous work shows that TTC3 also regulates the degradation of DNA polymerase gamma and over-expressed TTC3 protein tends to form insoluble aggregates in cells. In this study, we focus on the solubility and intracellular localization of TTC3 protein. Over-expressed TTC3 tends to form insoluble aggregates over time. The proteasome inhibitor MG132 treatment resulted in more TTC3 aggregates in a short period of time. We fused the fluorescent protein to either terminus of the TTC3 protein and found that the intracellular localization of fluorescent signals are different between the N-terminal tagged and C-terminal tagged proteins. Western blotting revealed that the TTC3 protein is cleaved into fragments of different sizes at multiple sites. The N-terminal sub-fragments of TTC3 are prone to from nuclear aggregates and the TTC3 nuclear import is mediated by signals within the N-terminal 1 to 650 residues. Moreover, over-expressed TTC3 induced a considerable degree of cytotoxicity, and its N-terminal sub-fragments are more potent inhibitors of cell proliferation than full-length protein. Considering the prevalent proteostasis dysregulation in neurodegenerative diseases, these findings may relate to the pathology of such diseases.
Collapse
Affiliation(s)
- Yueqing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Kun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Sheng-Ping Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Panying Mi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Shang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
96
|
Belluscio V, Bergamini E, Salatino G, Marro T, Gentili P, Iosa M, Morelli D, Vannozzi G. Dynamic balance assessment during gait in children with Down and Prader-Willi syndromes using inertial sensors. Hum Mov Sci 2019; 63:53-61. [DOI: 10.1016/j.humov.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
|
97
|
Kurabayashi N, Nguyen MD, Sanada K. Triple play of DYRK1A kinase in cortical progenitor cells of Trisomy 21. Neurosci Res 2019; 138:19-25. [PMID: 30227164 DOI: 10.1016/j.neures.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Down syndrome (DS) also known as Trisomy 21 is a genetic disorder that occurs in ∼1 in 800 live births. The disorder is caused by the triplication of all or part of human chromosome 21 and therefore, is thought to arise from the increased dosage of genes found within chromosome 21. The manifestations of the disease include among others physical growth delays and intellectual disability. A prominent anatomical feature of DS is the microcephaly that results from altered brain development. Recent studies using mouse models of DS have shed new light on DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), a gene located on human chromosome 21 that plays a critical role in neocortical development. The present review summarizes effects of the increased dosage of DYRK1A on the proliferative, neurogenic and astrogliogenic potentials of cortical neural progenitor cells, and relates these findings to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, University of Calgary, Departments of Clinical Neurosciences, Cell Biology & Anatomy, Biochemistry & Molecular Biology, 3330 Hospital Drive NW, HMR 151, Calgary, Alberta T2N4N1, Canada
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
98
|
Van Horne BS, Caughy MO, Canfield M, Case AP, Greeley CS, Morgan R, Mitchell LE. First-time maltreatment in children ages 2-10 with and without specific birth defects: A population-based study. CHILD ABUSE & NEGLECT 2018; 84:53-63. [PMID: 30053644 DOI: 10.1016/j.chiabu.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
Children with disabilities are at an increased risk for maltreatment. However, little is known about the risk of maltreatment in children with specific types of birth defects. This study was conducted to determine whether the risk and predictors of maltreatment in children 2 to 10 years of age differ between those without and with specific birth defects: Down syndrome, cleft lip with/without cleft palate, and spina bifida. State administrative and United States Census data were linked to identify study groups, variables of interest, and outcome measures. Kaplan-Meier and multivariate Cox proportional hazard analyses were used to identify study groups and variables associated with an increased risk for maltreatment. The prevalence of substantiated maltreatment was consistently highest among children with cleft lip with/without cleft palate. After adjusting for birth-level factors, children with Down syndrome and cleft lip with/without cleft palate were 34% and 26% more likely to have been maltreated than those without birth defects, respectively. In all three birth defect groups, the risk of medical neglect was higher (relative risks ranged from 3 to 11) than in the unaffected group. The factors associated with increased risk for maltreatment were similar across all groups. Of note, parity, maternal education, and maternal Medicaid use at birth were all associated with greater than 2-fold increased risk for maltreatment. Our findings suggest that the families of children with birth defects may need support services throughout early childhood to help families cope with the needs of their children and reduce the risk of maltreatment.
Collapse
Affiliation(s)
- Bethanie S Van Horne
- University of Texas Health Science Center at Houston, School of Public Health, 1200 Pressler St. Houston, TX 77030, United States.
| | - Margaret O Caughy
- University of Texas Health Science Center at Houston, School of Public Health, 1200 Pressler St. Houston, TX 77030, United States
| | - Mark Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, P.O. Box 149347, Austin, TX 78714-9347, United States.
| | - Amy P Case
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, P.O. Box 149347, Austin, TX 78714-9347, United States.
| | - Christopher S Greeley
- University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin St. Houston, TX 77030, United States.
| | - Robert Morgan
- University of Texas Health Science Center at Houston, School of Public Health, 1200 Pressler St. Houston, TX 77030, United States.
| | - Laura E Mitchell
- University of Texas Health Science Center at Houston, School of Public Health, 1200 Pressler St. Houston, TX 77030, United States.
| |
Collapse
|
99
|
Julien DP, Chan AW, Barrios J, Mathiaparanam J, Douglass A, Wolman MA, Sagasti A. Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. J Neurogenet 2018; 32:336-352. [PMID: 30204029 DOI: 10.1080/01677063.2018.1493479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb. Using targeted genome editing to create transgenic reporters and loss-of-function mutant alleles, we discovered that dscamb is expressed broadly throughout the brain, spinal cord, and peripheral nervous system, but is not required for overall structural organization of the brain. Despite the absence of obvious anatomical defects, homozygous dscamb mutants were deficient in their ability to ingest food and rarely survived to adulthood. Thus, we have discovered a novel function for dscamb in feeding behavior. The mutant and transgenic lines generated in these studies will provide valuable tools for identifying the molecular and cellular bases of these behaviors.
Collapse
Affiliation(s)
- Donald P Julien
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Alex W Chan
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Joshua Barrios
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Jaffna Mathiaparanam
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Adam Douglass
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Marc A Wolman
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Alvaro Sagasti
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| |
Collapse
|
100
|
Biró O, Rigó J, Nagy B. Noninvasive prenatal testing for congenital heart disease - cell-free nucleic acid and protein biomarkers in maternal blood. J Matern Fetal Neonatal Med 2018; 33:1044-1050. [PMID: 30078353 DOI: 10.1080/14767058.2018.1508437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Context: Congenital heart disease (CHD) is the most common fetal malformation. Prenatal ultrasonography is routinely applied for the screening of CHD but many factors influence its diagnostic accuracy. The introduction of new biomarkers could facilitate the identification of high-risk pregnancies.Objective: In our review, our aim was to collect expression studies of cell-free nucleic acids and proteins in maternal circulation. Syndromic CHDs which can be detected by noninvasive prenatal testing (NIPT) techniques were also discussed.Methods: PubMed and Web of Science databases were screened for studies where the levels of potential CHD biomarkers were measured in maternal blood samples. Available NIPT tests were collected from the providers' resources.Results: There are nine CHD-associated chromosomal abnormalities, five aneuploidies, and four microdeletions, which are included in NIPT panels. We found eight articles from which five included the analysis of specific cell-free RNA expression and three measurements of protein levels.Conclusions: Most of the common heart-related chromosomal aberrations can be diagnosed by NIPT. Specific cell-free RNAs and circulating proteins seem to be potential biomarkers for fetal CHDs. The application of these new biomarkers could improve the detection rate at early pregnancy, making it possible to provide optimal perinatal and perioperative management.
Collapse
Affiliation(s)
- Orsolya Biró
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - János Rigó
- First Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, University of Debrecen, Debrecen, Hungary
| |
Collapse
|