51
|
Mammen A, Simpson PJ, Mamman A, Simpson JP, Nighorn A, Imanishi Y, Palczewski K, Ronnett GV, Moon C. Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling. Biochem Biophys Res Commun 2004; 322:1131-9. [PMID: 15336960 DOI: 10.1016/j.bbrc.2004.07.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Indexed: 01/28/2023]
Abstract
Intracellular Ca2+ plays an important role in a variety of second messenger cascades. The function of Ca2+ is mediated, in part, by Ca2+-binding proteins such as calmodulin, calretinin, calbindin, neurocalcin, recoverin, and visinin-like proteins (VILIPs). These proteins are highly expressed in rat olfactory receptor neurons (ORNs) and are localized to distinct intracellular regions. In the present study, we have identified another Ca2+-binding protein, hippocalcin, in the rat olfactory epithelium (OE). Olfactory/brain hippocalcin shows high sequence homology with hippocalcins expressed in mice and humans. Hippocalcin was predominantly localized to the olfactory cilia, the site of the initial events of olfactory signal transduction, and was found to regulate the activity of ciliary adenylate cyclases (ACs) and particulate guanylyl cyclases (GCs) in a Ca2+-dependent manner. These data indicate that hippocalcin is expressed in rat ORNs, and is likely to regulate second messenger cascades in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Alex Mammen
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Spehr M, Schwane K, Riffell JA, Barbour J, Zimmer RK, Neuhaus EM, Hatt H. Particulate Adenylate Cyclase Plays a Key Role in Human Sperm Olfactory Receptor-mediated Chemotaxis. J Biol Chem 2004; 279:40194-203. [PMID: 15271985 DOI: 10.1074/jbc.m403913200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human sperm chemotaxis is a critical component of the fertilization process, but the molecular basis for this behavior remains unclear. Recent evidence shows that chemotactic responses depend on activation of the sperm olfactory receptor, hOR17-4. Certain floral scents, including bourgeonal, activate hOR17-4, trigger pronounced Ca(2+) fluxes, and evoke chemotaxis. Here, we provide evidence that hOR17-4 activation is coupled to a cAMP-mediated signaling cascade. Multidimensional protein identification technology was used to identify potential components of a G-protein-coupled cAMP transduction pathway in human sperm. These products included various membrane-associated adenylate cyclase (mAC) isoforms and the G(olf)-subunit. Using immunocytochemistry, specific mAC isoforms were localized to particular cell regions. Whereas mAC III occurred in the sperm head and midpiece, mAC VIII was distributed predominantly in the flagellum. In contrast, G(olf) was found mostly in the flagellum and midpiece. The observed spatial distribution patterns largely correspond to the spatiotemporal character of hOR17-4-induced Ca(2+) changes. Behavioral and Ca(2+) signaling responses of human sperm to bourgeonal were bioassayed in the presence, or absence, of the adenylate cyclase antagonist SQ22536. This specific agent inhibits particulate AC, but not soluble AC, activation. Upon incubation with SQ22536, cells ceased to exhibit Ca(2+) signaling, chemotaxis, and hyperactivation (faster swim speed and flagellar beat rate) in response to bourgeonal. Particulate AC is therefore required for induction of hOR17-4-mediated human sperm behavior and represents a promising target for future design of contraceptive drugs.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Yadav M, Roach SK, Schorey JS. Increased mitogen-activated protein kinase activity and TNF-alpha production associated with Mycobacterium smegmatis- but not Mycobacterium avium-infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic AMP/protein kinase A pathways. THE JOURNAL OF IMMUNOLOGY 2004; 172:5588-97. [PMID: 15100302 DOI: 10.4049/jimmunol.172.9.5588] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies have shown the mitogen-activated protein kinases (MAPKs) to be activated in macrophages upon infection with Mycobacterium, and that expression of TNF-alpha and inducible NO synthase by infected macrophages was dependent on MAPK activation. Additional analysis demonstrated a diminished activation of p38 and extracellular signal-regulated kinase (ERK)1/2 in macrophages infected with pathogenic strains of Mycobacterium avium compared with infections with the fast-growing, nonpathogenic Mycobacterium smegmatis and Mycobacterium phlei. However, the upstream signals required for MAPK activation and the mechanisms behind the differential activation of the MAPKs have not been defined. In this study, using bone marrow-derived macrophages from BALB/c mice, we determined that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase II pathway in both M. smegmatis- and M. avium-infected macrophages. However, in macrophages infected with M. smegmatis but not M. avium, we observed a marked increase in cAMP production that remained elevated for 8 h postinfection. This M. smegmatis-induced cAMP production was also dependent on the calmodulin/calmodulin kinase pathway. Furthermore, stimulation of the cAMP/protein kinase A pathway in M. smegmatis-infected cells was required for the prolonged ERK1/2 activation and the increased TNF-alpha production observed in these infected macrophages. Our studies are the first to demonstrate an important role for the calmodulin/calmodulin kinase and cAMP/protein kinase A pathways in macrophage signaling upon mycobacterial infection and to show how cAMP production can facilitate macrophage activation and subsequent cytokine production.
Collapse
Affiliation(s)
- Mahesh Yadav
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
54
|
Abstract
Nine membrane-bound members of the mammalian adenylate cyclase family have been identified. The least characterized and most divergent in sequence of the nine adenylate cyclase isoforms is AC9. Stimulation by Galpha(s) and inhibition by Ca2+/calcineurin are two modes of regulation that have been reported for AC9. We explored the possibility of additional modes of regulation of human AC9. We now report that quinpirole activation of the inhibitory G protein-coupled D2L dopamine receptor inhibits Galpha(s) stimulation of AC9 by approximately 50%. The effects of quinpirole were reversed by the D2 antagonist spiperone and by pertussis toxin pretreatment. We also report the first evidence for regulation of AC9 by protein kinase C (PKC). Specifically, phorbol ester activation of PKC significantly attenuated (approximately 50%) Galpha(s)-stimulated AC9 activity. The effect of PKC activation on AC9 was reversed by the PKC inhibitor bisindolylmaleimide. Galpha(s)-stimulated cyclic accumulation was reduced more by simultaneous addition of both quinpirole and phorbol 12-myristate 13-acetate than by either drug alone. Additional studies investigated the role of glycosylation on AC9 activity. The results show that blocking glycosylation of AC9 significantly attenuates Galpha(s) stimulation. In contrast, the ability of PKC and Galpha(i/o) to negatively regulate AC9 did not seem to be affected by the glycosylation state of AC9. These observations demonstrate the diverse regulatory features of AC9 and the ability of AC9 to integrate multiple signals.
Collapse
Affiliation(s)
- Medhane G Cumbay
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
55
|
Sobolewski A, Jourdan KB, Upton PD, Long L, Morrell NW. Mechanism of cicaprost-induced desensitization in rat pulmonary artery smooth muscle cells involves a PKA-mediated inhibition of adenylyl cyclase. Am J Physiol Lung Cell Mol Physiol 2004; 287:L352-9. [PMID: 15107293 DOI: 10.1152/ajplung.00270.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6.
Collapse
Affiliation(s)
- Anastasia Sobolewski
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | |
Collapse
|
56
|
Cooper DMF. Regulation and organization of adenylyl cyclases and cAMP. Biochem J 2003; 375:517-29. [PMID: 12940771 PMCID: PMC1223734 DOI: 10.1042/bj20031061] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/26/2003] [Indexed: 11/17/2022]
Abstract
Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
57
|
Matthews HR, Reisert J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 2003; 13:469-75. [PMID: 12965295 DOI: 10.1016/s0959-4388(03)00097-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure of olfactory receptor cells to odour stimulates the influx of Ca(2+) through cyclic nucleotide-gated channels into the small volume within the cilia, the site of olfactory transduction. The consequent rise in intraciliary Ca(2+) concentration has two opposing effects: activation of an unusual excitatory Cl(-) conductance, and negative feedback actions on various stages of the odour transduction mechanism. Recent studies are beginning to unravel how Ca(2+) performs this dual function, and how the spatial and temporal dynamics of Ca(2+) modulate the odour response. The feedback actions of Ca(2+) on different elements of the transduction cascade seem to occur on different timescales, and are therefore responsible for shaping different parts of the receptor current response to odour stimulation.
Collapse
Affiliation(s)
- Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
58
|
Ostrom RS, Naugle JE, Hase M, Gregorian C, Swaney JS, Insel PA, Brunton LL, Meszaros JG. Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem 2003; 278:24461-8. [PMID: 12711600 DOI: 10.1074/jbc.m212659200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibroblasts regulate formation of extracellular matrix in the heart, playing key roles in cardiac remodeling and hypertrophy. In this study, we sought to characterize cross-talk between Gq and Gs signaling pathways and its impact on modulating collagen synthesis by cardiac fibroblasts. Angiotensin II (ANG II) activates cell proliferation and collagen synthesis but also potentiates cyclic AMP (cAMP) production stimulated by beta-adrenergic receptors (beta-AR). The potentiation of beta-AR-stimulated cAMP production by ANG II is reduced by phospholipase C inhibition and enhanced by overexpression of Gq. Ionomycin and thapsigargin increased intracellular Ca2+ levels and potentiated isoproterenol- and forskolin-stimulated cAMP production, whereas chelation of Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid/AM inhibited such potentiation. Inhibitors of tyrosine kinases, protein kinase C, or Gbetagamma did not alter this cross-talk. Immunoblot analyses showed prominent expression of adenylyl cyclase 3 (AC3), a Ca2+-activated isoform, along with AC2, AC4, AC5, AC6, and AC7. Of those isoforms, only AC3 and AC5/6 proteins were detected in caveolin-rich fractions. Overexpression of AC6 increased betaAR-stimulated cAMP accumulation but did not alter the size of the ANG II potentiation, suggesting that the cross-talk is AC isoform-specific. Isoproterenol-mediated inhibition of serum-stimulated collagen synthesis increased from 31 to 48% in the presence of ANG II, indicating that betaAR-regulated collagen synthesis increased in the presence of ANG II. These data indicate that ANG II potentiates cAMP formation via Ca2+-dependent activation of AC activity, which in turn attenuates collagen synthesis and demonstrates one functional consequence of cross-talk between Gq and Gs signaling pathways in cardiac fibroblasts.
Collapse
Affiliation(s)
- Rennolds S Ostrom
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Horner K, Livera G, Hinckley M, Trinh K, Storm D, Conti M. Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev Biol 2003; 258:385-96. [PMID: 12798295 DOI: 10.1016/s0012-1606(03)00134-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intracellular levels of cAMP play a critical role in the meiotic arrest of mammalian oocytes. However, it is debated whether this second messenger is produced endogenously by the oocytes or is maintained at levels inhibitory to meiotic resumption via diffusion from somatic cells. Here, we demonstrate that adenylyl cyclase genes and corresponding proteins are expressed in rodent oocytes. The mRNA coding for the AC3 isoform of adenylyl cyclase was detected in rat and mouse oocytes by RT-PCR and by in situ hybridization. The expression of AC3 protein was confirmed by immunocytochemistry and immunofluorescence analysis in oocytes in situ. Cyclic AMP accumulation in denuded oocytes was increased by incubation with forskolin, and this stimulation was abolished by increasing intraoocyte Ca(2+) with the ionophore A23187. The Ca(2+) effects were reversed by an inhibitor of Ca(2+), calmodulin-dependent kinase II. These regulations of cAMP levels indicate that the major cyclase that produces cAMP in the rat oocyte has properties identical to those of recombinant or endogenous AC3 expressed in somatic cells. Furthermore, mouse oocytes deficient in AC3 show signs of a defect in meiotic arrest in vivo and accelerated spontaneous maturation in vitro. Collectively, these data provide evidence that an adenylyl cyclase is functional in rodent oocytes and that its activity is involved in the control of oocyte meiotic arrest.
Collapse
Affiliation(s)
- Kathleen Horner
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
60
|
Iwatsubo K, Tsunematsu T, Ishikawa Y. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy. Expert Opin Ther Targets 2003; 7:441-51. [PMID: 12783579 DOI: 10.1517/14728222.7.3.441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.
Collapse
Affiliation(s)
- Kousaku Iwatsubo
- Department of Physiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
61
|
Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 2003; 278:15922-6. [PMID: 12609998 DOI: 10.1074/jbc.m212475200] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
"Soluble" adenylyl cyclase (sAC) is a widely expressed source of cAMP in mammalian cells that is evolutionarily, structurally, and biochemically distinct from the G protein-responsive transmembrane adenylyl cyclases. In contrast to transmembrane adenylyl cyclases, sAC is insensitive to heterotrimeric G protein regulation and forskolin stimulation and is uniquely modulated by bicarbonate ions. Here we present the first report detailing kinetic analysis and biochemical properties of purified recombinant sAC. We confirm that bicarbonate regulation is conserved among mammalian sAC orthologs and demonstrate that bicarbonate stimulation is consistent with an increase in the V(max) of the enzyme with little effect on the apparent K(m) for substrate, ATP-Mg(2+). Bicarbonate can further increase sAC activity by relieving substrate inhibition. We also identify calcium as a direct modulator of sAC activity. In contrast to bicarbonate, calcium stimulates sAC activity by decreasing its apparent K(m) for ATP-Mg(2+). Because of their different mechanisms, calcium and bicarbonate synergistically activate sAC; therefore, small changes of either calcium or bicarbonate will lead to significant changes in cellular cAMP levels.
Collapse
Affiliation(s)
- Tatiana N Litvin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
62
|
Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 2003; 6:519-25. [PMID: 12665798 DOI: 10.1038/nn1039] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
It is commonly assumed that odorants are detected by the main olfactory epithelium (MOE) and pheromones are sensed through the vomeronasal organ (VNO). The complete loss of MOE-mediated olfaction in type-3 adenylyl cyclase knockout mice (AC3-/-) allowed us to examine chemosensory functions of the VNO in the absence of signaling through the MOE. Here we report that AC3-/- mice are able to detect certain volatile odorants via the VNO. These same odorants elicited electro-olfactogram transients in the VNO and MOE of wild-type mice, but only VNO responses in AC3-/- mice. This indicates that some odorants are detected through an AC3-independent pathway in the VNO.
Collapse
Affiliation(s)
- Kien Trinh
- Molecular and Cellular Biology Program and Department of Pharmacology, University of Washington, Box 357750, 1959 NE Pacific St., Seattle, Washington 98195, USA
| | | |
Collapse
|
63
|
Davis SF, Linn CL. Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina. Am J Physiol Cell Physiol 2003; 284:C1193-204. [PMID: 12676655 DOI: 10.1152/ajpcell.00256.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the mechanism that links activation of N-methyl-D-aspartate (NMDA) receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low-calcium saline or dialyzed with the calcium chelator BAPTA to determine that calcium influx through NMDA channels is required for sodium channel modulation. To determine whether calcium influx through NMDA channels triggers calcium-induced calcium release (CICR), cells were loaded with the calcium-sensitive dye calcium green 2 and changes in relative fluorescence were measured in response to NMDA. Responses were compared with measurements obtained when caffeine depleted stores. Voltage-clamp studies demonstrated that CICR modulated sodium channels in a manner similar to that of NMDA. Blocking NMDA receptors with AP-7, blocking CICR with ruthenium red, depleting stores with caffeine, or dialyzing cells with calmodulin antagonists W-5 or peptide 290-309 all prevented sodium channel modulation. These results support the hypothesis that NMDA modulation of voltage-gated sodium channels in horizontal cells requires CICR and activation of a calmodulin-dependent signaling pathway.
Collapse
Affiliation(s)
- Scott F Davis
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
64
|
Wang H, Storm DR. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system. Mol Pharmacol 2003; 63:463-8. [PMID: 12606751 DOI: 10.1124/mol.63.3.463] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene disruption studies have shown that the Ca(2+)-stimulated adenylyl cyclases, AC1 and AC8, are critical for some forms of synaptic plasticity, including long-term potentiation as well as long-term memory formation (LTM). It is hypothesized that these enzymes are required for LTM to support the increased expression of a family of genes regulated through the cAMP/Ca(2+) response element-binding protein/cAMP response element transcriptional pathway. In contrast to AC1 and AC8, AC3 is a Ca(2+)-inhibited adenylyl cyclase that plays an essential role in olfactory signal transduction. Coupling of odorant receptors to AC3 stimulates cAMP transients that function as the major second messenger for olfactory signaling. These cAMP transients are caused, at least in part, by Ca(2+) inhibition of AC3, which is mediated through calmodulin-dependent protein kinase II. The unique structure and regulatory properties of these adenylyl cyclases make them attractive drug target sites for modulation of a number of physiological processes including memory formation and olfaction.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
65
|
Chignard N, Mergey M, Veissière D, Poupon R, Capeau J, Parc R, Paul A, Housset C. Bile salts potentiate adenylyl cyclase activity and cAMP-regulated secretion in human gallbladder epithelium. Am J Physiol Gastrointest Liver Physiol 2003; 284:G205-12. [PMID: 12421748 DOI: 10.1152/ajpgi.00292.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluid and ion secretion in the gallbladder is mainly triggered by the intracellular second messenger cAMP. We examined the action of bile salts on the cAMP-dependent pathway in the gallbladder epithelium. Primary cultures of human gallbladder epithelial cells were exposed to agonists of the cAMP pathway and/or to bile salts. Taurochenodeoxycholate and tauroursodeoxycholate increased forskolin-induced cAMP accumulation to a similar extent, without affecting cAMP basal levels. This potentiating effect was abrogated after PKC inhibition, whereas both taurochenodeoxycholate and tauroursodeoxycholate induced PKC-alpha and -delta translocation to cell membranes. Consistent with a PKC-mediated stimulation of cAMP production, the expression of six adenylyl cyclase isoforms, including PKC-regulated isoforms 5 and 7, was identified in human gallbladder epithelial cells. cAMP-dependent chloride secretion induced by isoproterenol, a beta-adrenergic agonist, was significantly increased by taurochenodeoxycholate and by tauroursodeoxycholate. In conclusion, endogenous and therapeutic bile salts via PKC regulation of adenylyl cyclase activity potentiate cAMP production in the human gallbladder epithelium. Through this action, bile salts may increase fluid secretion in the gallbladder after feeding.
Collapse
Affiliation(s)
- Nicolas Chignard
- Institut National de la Santé et de la Recherche Médicale, Hôpital Saint-Antoine, 75012 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Ostrom RS, Liu X, Head BP, Gregorian C, Seasholtz TM, Insel PA. Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Mol Pharmacol 2002; 62:983-92. [PMID: 12391260 DOI: 10.1124/mol.62.5.983] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse transcription-polymerase chain reaction detected expression of AC3, AC5, and AC6 mRNA, whereas immunoblot analysis indicated expression of AC3 and AC5/6 protein primarily in caveolin-rich membrane (cav) fractions relative to noncaveolin (noncav) fractions. Beta(1)-adrenergic receptors (AR), beta(2)AR, and G(s) were detected in both cav and noncav fractions, whereas the prostanoid receptors EP(2)R and EP(4)R were excluded from cav fractions. We used an adenoviral construct to increase AC6 expression. Overexpressed AC6 localized only in noncav fractions. Two-fold overexpression of AC6 caused enhancement of forskolin-, isoproterenol- and prostaglandin E(2)-stimulated cAMP formation but no changes in basal levels of cAMP. At higher levels of AC6 overexpression, basal and adenosine receptor-stimulated cAMP levels were increased. Stimulation of cAMP levels by agents that increase Ca(2+) in native cells was consistent with the expression of AC3, but overexpression of AC6, which is inhibited by Ca(2+), blunted the Ca(2+)-stimulable cAMP response. These data indicate that: 1) RASMC express multiple AC isoforms that localize in both caveolin-rich and noncaveolin domains, 2) expression of AC6 in non-caveolin-rich membranes can increase basal levels of cAMP and response to several stimulatory agonists, and 3) Ca(2+)-mediated regulation of cAMP formation depends upon expression of different AC isoforms in RASMC. Compartmentation of GPCRs and AC is different in cardiomyocytes than in RASMC, indicating that targeting of these components to caveolin-rich membranes can be cell-specific. Moreover, our results imply that the colocalization of GPCRs and the AC isoforms they activate need not occur in caveolin-rich fractions.
Collapse
Affiliation(s)
- Rennolds S Ostrom
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Moldrich RX, Apricó K, Diwakarla S, O'Shea RD, Beart PM. Astrocyte mGlu(2/3)-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology 2002; 43:189-203. [PMID: 12213273 DOI: 10.1016/s0028-3908(02)00111-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Signal transduction mechanisms of group II metabotropic glutamate receptors (mGlu(2/3)) remains a matter of some controversy, therefore we sought to gain new insights into its regulation by studying cAMP production in cultured neurons and astrocytes, and by examining inter-relationships of mGlu(2/3)-induced signalling with cellular calcium and various signalling cascades. mGlu(2/3) agonists 2R,4R-4-aminopyrrolidine-2,4-dicarboxylic acid (2R,4R-APDC) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited 10 microM forskolin-stimulated production of cAMP in murine cortical neurons, striatal neurons and forebrain astrocytes in the absence of extracellular Ca(2+). These agonists potentiated cAMP production in the presence of 1.8 mM Ca(2+) in astrocytes only. This potentiation was dependent on the extracellular Ca(2+) concentration (0.001-10 mM) and inhibited by the mGlu(2/3) antagonist LY341495 (1 microM), adenosine deaminase (1 U/ml) and the adenosine A(2A) receptor antagonist ZM241385 (1 microM). Pre-incubation with the phospholipase C (PLC) inhibitor U73122 (10 microM), L-type Ca(2+)-channel blockers nifedipine (1 microM) and nimodipine (1 microM), the calmodulin kinase II (CaMKII) inhibitor KN-62 (10 microM) or pertussis toxin (100 ng/ml) inhibited this potentiation. In the absence of 1.8 mM Ca(2+), thapsigargin (1 microM) facilitated the potentiation of cAMP production. Measurement of the Ca(2+)-binding dye Fluo-3/AM showed that, compared to Ca(2+)-free conditions, thapsigargin and 1.8 mM Ca(2+) elevated [Ca(2+)](i) in astrocytes; the latter effect being prevented by L-type Ca(2+)-channel blockers. Potentiation of cAMP production was also demonstrated when astrocytes were stimulated with the beta-adrenoceptor agonist isoprenaline (10 microM) in the presence of 1.8 mM Ca(2+), but not with the adenosine agonist NECA (10 microM) or the group I mGlu receptor agonist DHPG (100 microM). BaCl(2) (1.8 mM) in place of Ca(2+) did not facilitate forskolin-stimulated mGlu(2/3)-potentiation of cAMP. In short, this study in astrocytes demonstrates that under physiological Ca(2+) and adenylate cyclase stimulation an elevation of cAMP production is achieved that is mediated by PLC/IP(3)- and CaMKII-dependent pathways and results in the release of endogenous adenosine which acts at G(s) protein-coupled A(2A) receptors. These findings provide new insights into mGlu(2/3) signalling in astrocytes versus neurons, and which could determine the functional phenotypy of astrocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
- Randal X Moldrich
- Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
68
|
Wang Z, Wilson GF, Griffith LC. Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila eag potassium channel. J Biol Chem 2002; 277:24022-9. [PMID: 11980904 DOI: 10.1074/jbc.m201949200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of neuronal excitability is believed to be an important mechanism of plasticity in the nervous system. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been postulated to regulate the ether à go-go (eag) potassium channel in Drosophila. Inhibition of CaMKII and mutation of the eag gene both cause hyperexcitability at the larval neuromuscular junction (NMJ) and memory formation defects in the adult. In this study, we identify a single site, threonine 787, as the major CaMKII phosphorylation site in Eag. This site can be phosphorylated by CaMKII both in a heterologous cell system and in vivo at the larval NMJ. Expression of Eag in Xenopus oocytes was used to assess the function of phosphorylation. Injection of either a specific CaMKII inhibitor peptide or lavendustin C, another CaMKII inhibitor, reduced Eag current amplitude acutely. Mutation of threonine 787 to alanine also reduced amplitude. Moreover, both CaMKII inhibition and the alanine mutation accelerated inactivation. The reduction in current amplitudes and the accelerated inactivation of dephosphorylated Eag channels would result in decreased outward potassium currents and hyperexcitability at presynaptic terminals and, thus, are consistent with the NMJ phenotype observed when CaMKII is inhibited. These results show that Eag is a substrate of CaMKII and suggest that direct modulation of potassium channels may be an important function of this kinase.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | |
Collapse
|
69
|
Lin TH, Lai HL, Kao YY, Sun CN, Hwang MJ, Chern Y. Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains. J Biol Chem 2002; 277:15721-8. [PMID: 11877398 DOI: 10.1074/jbc.m111537200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that phosphorylation of Ser(10) of the N terminus domain of the type VI adenylyl cyclase (ACVI) partly mediated protein kinase C (PKC)-induced inhibition of ACVI. We now report that phosphorylation of the other two cytosolic domains (C1 and C2), which form the catalytic core complex of ACVI, also contributes to PKC-mediated inhibition. In vitro phosphorylation by PKC of the recombinant C1a and C2 domains, and of the synthetic peptides representing potential PKC phosphorylation sites, suggests that Ser(568) and Ser(674) of the C1 domain and Thr(931) of the C2 domain might act as substrates for PKC. We next created several full-length ACVI mutants in which one or more of the four likely PKC phosphorylation sites (Ser(10), Ser(568), Ser(674), and Thr(931)) were mutated to alanine. Simultaneous mutation of at least two of the three likely residues located in the N and C1 domains (Ser(10), Ser(568), and Ser(674)) was required to render ACVI variants completely insensitive to PKC treatment. In contrast, a single mutation of Thr(931) was sufficient to create a functional ACVI mutant that exhibited no detectable PKC-mediated inhibition, demonstrating the essentiality of Thr(931) to PKC-mediated regulation. Based on these results, we propose that the three cytosolic domains of ACVI might form a regulatory complex. Phosphorylation of this regulatory complex at different sites might induce a fine-tuning of the catalytic core complex and subsequently lead to alternation in the catalytic activity of ACVI.
Collapse
Affiliation(s)
- Ting-Hui Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Scott T Wong
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
71
|
Scholich K, Pierre S, Patel TB. Protein associated with Myc (PAM) is a potent inhibitor of adenylyl cyclases. J Biol Chem 2001; 276:47583-9. [PMID: 11590159 DOI: 10.1074/jbc.m107816200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using the yeast two-hybrid assay and the second of the two large cytosolic domains of type V adenylyl cyclase (ACV) as bait, we identified a small region (amino acids 1028-1231) in the protein associated with Myc (PAM) as an interaction site for ACV. This small region of PAM as well as purified full-length PAM inhibited the activity of ACV. Additionally, full-length PAM was a very potent inhibitor of ACI and AC activities in S49 cyc(-) cells and HeLa cells with IC(50) values in the pm and low nm range. Moreover, the regulator of chromatin condensation 1-like domain of PAM (amino acids 446-1062) was sufficient and as potent as full-length PAM at inhibiting the activity of ACV. Interestingly, full-length PAM did not inhibit ACII activity that was stimulated by either forskolin of Galpha(s). When endogenous levels of PAM in HeLa cells were decreased using antisense oligodeoxynucleotides, the basal cAMP content was elevated, and the dose-response curve for vasoactive intestinal peptide-elicited cAMP accumulation in HeLa cells was shifted to the left. Therefore, we conclude that PAM is a very potent, novel inhibitor of specific isoforms of AC. Furthermore, the regulator of chromatin condensation 1-like domain of PAM is sufficient to exert the effects of the full-length protein on AC and decreases in endogenous PAM levels in HeLa cells can modulate both basal and agonist stimulated cAMP accumulation.
Collapse
Affiliation(s)
- K Scholich
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Ave., Memphis, TN 38163, USA
| | | | | |
Collapse
|
72
|
Wetzel CH, Spehr M, Hatt H. Phosphorylation of voltage-gated ion channels in rat olfactory receptor neurons. Eur J Neurosci 2001; 14:1056-64. [PMID: 11683897 DOI: 10.1046/j.0953-816x.2001.01722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In olfactory receptor neurons (ORNs), ligand-odorant receptor interactions cause G protein-mediated activation of adenylate cyclase and a subsequent increase in concentration of the intracellular messenger cAMP. Odorant-evoked elevation in cAMP is thought to directly activate a cation-selective cyclic nucleotide-gated channel, which causes external Ca2+ influx, leading to membrane depolarization and the generation of action potentials. Our data show that in freshly dissociated rat ORNs, odorant-induced elevation in cAMP also activates cAMP-dependent protein kinase (PKA), which is then able to phosphorylate various protein targets in the olfactory signal transduction pathway, specifically voltage-gated sodium and calcium channels. The presence of PKI (PKA inhibitor peptide) blocked the modulatory action of cAMP on voltage-gated ion channels. By modulating the input/output properties of the sensory neurons, this mechanism could take part in the complex adaptation process in odorant perception. In addition, we found modulation of voltage-gated sodium and calcium channel currents by 5-hydroxytryptamine and the dopamine D1 receptor agonist SKF 38393. These findings suggest that in situ ORNs might also be a target for efferent modulation.
Collapse
Affiliation(s)
- C H Wetzel
- Department of Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | |
Collapse
|
73
|
Wu GC, Lai HL, Lin YW, Chu YT, Chern Y. N-glycosylation and residues Asn805 and Asn890 are involved in the functional properties of type VI adenylyl cyclase. J Biol Chem 2001; 276:35450-7. [PMID: 11461898 DOI: 10.1074/jbc.m009704200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we demonstrate that type VI adenylyl cyclase (ACVI) is glycosylated in vivo. Treating HEK293 cells expressing ACVI with tunicamycin to block the addition of N-linked oligosaccharide or removing the N-linked oligosaccharide by in vitro peptidyl-N-glycosidase F digestion reduced the molecular mass of ACVI. Furthermore, tunicamycin treatment suppressed the forskolin-stimulated activity of ACVI. Mutation of either one or both potential N-glycosylation sites (Asn(805) and Asn(890), located on extracellular loops 5 and 6, respectively) also reduced the molecular mass of ACVI. Therefore, ACVI was glycosylated at both Asn(805) and Asn(890). Confocal analysis indicated that glycosylation was not required for the delivery of ACVI to the cell surface. Although no significant alterations in K(m) values for ATP or sensitivity to divalent cations were detected, the glycosylation-deficient ACVI mutant N805Q/N890Q-ACVI exhibited much lower forskolin-, Mn(2+)-, and Mg(2+)-stimulated cyclase activities than did wild-type ACVI. By contrast, the Galpha(s)-stimulated cyclase activities of wild-type ACVI and N805Q/N890Q-ACVI were indistinguishable. Furthermore, compared with wild-type ACVI, N805Q/N890Q-ACVI was less sensitive to inhibition mediated by dopamine D2 receptors or by protein kinase C. Collectively, glycosylation of ACVI not only affected its catalytic activity in an activator-dependent manner, but also altered its ability to be regulated by a Galpha(i) protein-coupled receptor or by protein kinase C.
Collapse
Affiliation(s)
- G C Wu
- Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
74
|
Wong ST, Baker LP, Trinh K, Hetman M, Suzuki LA, Storm DR, Bornfeldt KE. Adenylyl cyclase 3 mediates prostaglandin E(2)-induced growth inhibition in arterial smooth muscle cells. J Biol Chem 2001; 276:34206-12. [PMID: 11432866 DOI: 10.1074/jbc.m103923200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arterial smooth muscle cell (SMC) proliferation contributes to a number of vascular pathologies. Prostaglandin E(2) (PGE(2)), produced by the endothelium and by SMCs themselves, acts as a potent SMC growth inhibitor. The growth-inhibitory effects of PGE(2) are mediated through activation of G-protein-coupled membrane receptors, activation of adenylyl cyclases (ACs), formation of cAMP, and subsequent inhibition of mitogenic signal transduction pathways in SMCs. Of the 10 different mammalian AC isoforms known today, seven isoforms (AC2-7 and AC9) are expressed in SMCs from various species. We show that, despite the presence of several different AC isoforms, the principal AC isoform activated by PGE(2) in human arterial SMCs is a calmodulin kinase II-inhibited AC with characteristics similar to those of AC3. AC3 is expressed in isolated human arterial SMCs and in intact aorta. We further show that arterial SMCs isolated from AC3-deficient mice are resistant to PGE(2)-induced growth inhibition. In summary, AC3 is the principal AC isoform activated by PGE(2) in arterial SMCs, and AC3 mediates the growth-inhibitory effects of PGE(2). Because AC3 activity is inhibited by intracellular calcium through calmodulin kinase II, AC3 may serve as an important integrator of growth-inhibitory signals that stimulate cAMP formation and growth factors that increase intracellular calcium.
Collapse
Affiliation(s)
- S T Wong
- Departments of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Parkinson NA, Bolsover SR. A nuclear location for Ca2+-activated adenylyl cyclases I and III in neurones. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:43-9. [PMID: 11457491 DOI: 10.1016/s0169-328x(01)00119-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium/calmodulin-sensitive adenylyl cyclases are increasingly recognised as important factors in memory formation and synaptic plasticity. We have examined the distributions of adenylyl cyclases types I, III, and VIII within rat primary sensory neurons. Immunofluorescence revealed distinct staining for adenylyl cyclases type I and III, but not adenylyl cyclase type VIII, within the cell nucleus. Western blots suggest that a processed form of adenylyl cyclase type III may be found within primary neurons and PC12 cells as a 70-kDa protein. We propose that the observed nuclear adenylyl cyclases are soluble forms of the cyclases.
Collapse
Affiliation(s)
- N A Parkinson
- Department of Physiology, University College London, Gower Street, WC1E 6BT, London, UK
| | | |
Collapse
|
76
|
Abstract
1. The suction pipette technique was used to record receptor current and spiking responses from isolated frog olfactory receptor cells during prolonged odour stimuli. 2. The majority (70 %) of cells displayed 'oscillatory' responses, consisting of repeated bursts of spikes accompanied by regular increases in receptor current. The period of this oscillation varied from 3.5 to 12 s in different cells. The remaining cells responded either with a 'transient' burst of spikes at the onset of stimulation (10 %), or by 'sustained' firing throughout the odour stimulus (20 %). 3. In cells with oscillatory responses, the Ca(2+)-activated Cl(-) channel blocker niflumic acid prolonged the period of oscillation only slightly, despite a 3.8-fold decrease in the receptor current. A 3-fold reduction in the external Cl(-) concentration nearly doubled the receptor current, but had little effect on the oscillation period. These results imply that the majority of the receptor current underlying these oscillatory responses is carried by the Ca(2+)-activated Cl(-) conductance, suggesting that the intracellular Ca(2+) concentration oscillates also. 4. In cells with oscillatory responses, the period of oscillation was prolonged 1.5-fold when stimulated in a low-Na(+) solution designed to incapacitate Na(+)-Ca(2+) exchange, irrespective of whether Na(+) was replaced by permeant Li(+) or impermeant choline. The dependence of the oscillation period upon external Na(+) suggests that it may be governed by the dynamics of Ca(2+) extrusion via Na(+)-Ca(2+) exchange. 5. Exposure to the membrane-permeable cyclic nucleotide analogue CPT-cAMP evoked a sustained rather than an oscillatory response even in cells with oscillatory responses to odour. The inability of CPT-cAMP to evoke an oscillatory response suggests that the cAMP concentration is likely to oscillate also. 6. Perforated-patch recordings revealed that oscillatory responses could only be evoked when the membrane potential was free to change, but not when it was clamped near the resting potential. Since substantial changes in Ca(2+)-activated Cl(-) current, and hence odour-induced depolarisation, had little effect upon the period of oscillation, changes in membrane potential are suggested to play only a permissive role in these oscillatory responses. 7. These results are interpreted in terms of the coupled oscillation of Ca(2+) and cyclic nucleotide concentrations within the olfactory cilia during prolonged odour stimulation.
Collapse
Affiliation(s)
- J Reisert
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
77
|
Rousseau G, Haddad PS, Gallo-Payet N, Bouvier M. Ca(2+)-dependent sensitization of adenylyl cyclase activity. Eur J Pharmacol 2001; 422:53-60. [PMID: 11430913 DOI: 10.1016/s0014-2999(01)01073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been shown that intracellular Ca(2+) concentrations have multiple modulatory influences on hormone-stimulated adenylyl cyclase activity. Here, we report that increasing intracellular Ca(2+) concentration by treating cells with the Ca(2+) ionophore A23187 leads to a sensitization of the beta-adrenoceptor-stimulated adenylyl cyclase activity in Ltk(-) cells expressing the human beta(2)-adrenoceptor. The ionophore treatment led to a 20+/-5% increase of the maximal isoproterenol-stimulated cyclase activity that could be prevented by chelation of the extracellular Ca(2+) using EGTA. A similar Ca(2+)-mediated sensitization (20+/-6%) was observed when the adenylyl cyclase was directly stimulated by the diterpene forskolin indicating that the catalytic activity of the enzyme itself is modulated by the change in Ca(2+) concentration. Sensitization of both the isoproterenol- and forskolin-stimulated adenylyl cyclase activities were completely blocked by treatment with KN-62[1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine], an inhibitor of the Ca(2+)-calmodulin-dependent protein kinase (CamKinase). Taken together, our data reveal the existence of a CamKinase-dependent sensitization process acting at the level of the adenylyl cyclase catalytic moiety.
Collapse
Affiliation(s)
- G Rousseau
- Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
78
|
Jourdan KB, Mason NA, Long L, Philips PG, Wilkins MR, Morrell NW. Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1359-69. [PMID: 11350817 DOI: 10.1152/ajplung.2001.280.6.l1359] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of adenylyl cyclase (AC), of which there are 10 diversely regulated isoforms, is important in regulating pulmonary vascular tone and remodeling. Immunohistochemistry in rat lungs demonstrated that AC2, AC3, and AC5/6 predominated in vascular and bronchial smooth muscle. Isoforms 1, 4, 7, and 8 localized to the bronchial epithelium. Exposure of animals to hypoxia did not change the pattern of isoform expression. RT-PCR confirmed mRNA expression of AC2, AC3, AC5, and AC6 and demonstrated AC7 and AC8 transcripts in smooth muscle. Western blotting confirmed the presence of AC2, AC3, and AC5/6 proteins. Functional studies provided evidence of cAMP regulation by Ca(2+) and protein kinase C-activated but not G(i)-inhibited pathways, supporting a role for AC2 and a Ca(2+)-stimulated isoform, AC8. However, NKH-477, an AC5-selective activator, was more potent than forskolin in elevating cAMP and inhibiting serum-stimulated [(3)H]thymidine incorporation, supporting the presence of AC5. These studies demonstrate differential expression of AC isoforms in rat lungs and provide evidence that AC2, AC5, and AC8 are functionally important in cAMP regulation and growth pathways in pulmonary artery myocytes.
Collapse
MESH Headings
- Adenylyl Cyclases/chemistry
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- Cell Division/drug effects
- Cells, Cultured
- Colforsin/analogs & derivatives
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Enzyme Activators/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/metabolism
- Hypoxia/enzymology
- Immunohistochemistry
- Isoenzymes/chemistry
- Isoenzymes/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Organ Specificity
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/enzymology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred WKY
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- K B Jourdan
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
79
|
Patel TB, Du Z, Pierre S, Cartin L, Scholich K. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 2001; 269:13-25. [PMID: 11376933 DOI: 10.1016/s0378-1119(01)00448-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Signal transduction through the cell membrane requires the participation of one or more plasma membrane proteins. For many transmembrane signaling events adenylyl cyclases (ACs) are the final effector enzymes which integrate and interpret divergent signals from different pathways. The enzymatic activity of adenylyl cyclases is stimulated or inhibited in response to the activation of a large number of receptors in virtually all cells of the human body. To date, ten different mammalian isoforms of adenylyl cyclase (AC) have been cloned and characterized. Each isoform has its own distinct tissue distribution and regulatory properties, providing possibilities for different cells to respond diversely to similar stimuli. The product of the enzymatic reaction catalyzed by ACs, cyclic AMP (cAMP) has been shown to play a crucial role for a variety of fundamental physiological cell functions ranging from cell growth and differentiation, to transcriptional regulation and apoptosis. In the past, investigations into the regulatory mechanisms of ACs were limited by difficulties associated with their purification and the availability of the proteins in any significant amount. Moreover, nearly every cell expresses several AC isoforms. Therefore, it was difficult to perform biochemical characterization of the different AC isoforms and nearly impossible to assess the physiological roles of the individual isoforms in intact cells, tissue or organisms. Recently, however, different molecular biological approaches have permitted several breakthroughs in the study of ACs. Recombinant technologies have allowed biochemical analysis of adenylyl cyclases in-vitro and the development of transgenic animals as well as knock-out mice have yielded new insights in the physiological role of some AC isoforms. In this review, we will focus mainly on the most novel approaches and concepts, which have delineated the mechanisms regulating AC and unravelled novel functions for this enzyme.
Collapse
Affiliation(s)
- T B Patel
- Department of Pharmacology and the Vascular Biology Center of Excellence, University of Tennessee, Memphis, 874 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
80
|
Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI. On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:115-45. [PMID: 11336779 DOI: 10.1016/s0926-6410(00)00074-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Down syndrome (DS, trisomy 21, Ts21) is the most common known cause of mental retardation. In vivo structural brain imaging in young DS adults, and post-mortem studies, indicate a normal brain size after correction for height, and the absence of neuropathology. Functional imaging with positron emission tomography (PET) shows normal brain glucose metabolism, but fewer significant correlations between metabolic rates in different brain regions than in controls, suggesting reduced functional connections between brain circuit elements. Cultured neurons from Ts21 fetuses and from fetuses of an animal model for DS, the trisomy 16 (Ts16) mouse, do not differ from controls with regard to passive electrical membrane properties, including resting potential and membrane resistance. On the other hand, the trisomic neurons demonstrate abnormal active electrical and biochemical properties (duration of action potential and its rates of depolarization and repolarization, altered kinetics of active Na(+), Ca(2+) and K(+) currents, altered membrane densities of Na(+) and Ca(2+) channels). Another animal model, the adult segmental trisomy 16 mouse (Ts65Dn), demonstrates reduced long-term potentiation and increased long-term depression (models for learning and memory related to synaptic plasticity) in the CA1 region of the hippocampus. Evidence suggests that the abnormalities in the trisomy mouse models are related to defective signal transduction pathways involving the phosphoinositide cycle, protein kinase A and protein kinase C. The phenotypes of DS and its mouse models do not involve abnormal gene products due to mutations or deletions, but result from altered expression of genes on human chromosome 21 or mouse chromosome 16, respectively. To the extent that the defects in signal transduction and in active electrical properties, including synaptic plasticity, that are found in the Ts16 and Ts65Dn mouse models, are found in the brain of DS subjects, we postulate that mental retardation in DS results from such abnormalities. Changes in timing and synaptic interaction between neurons during development can lead to less than optimal functioning of neural circuitry and signaling then and in later life.
Collapse
Affiliation(s)
- Z Galdzicki
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
81
|
Watt WC, Storm DR. Odorants stimulate the ERK/mitogen-activated protein kinase pathway and activate cAMP-response element-mediated transcription in olfactory sensory neurons. J Biol Chem 2001; 276:2047-52. [PMID: 11042208 DOI: 10.1074/jbc.m006703200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Olfactory sensory neurons (OSNs) respond acutely to volatile molecules and exhibit adaptive responses including desensitization to odorant exposure. Although mechanisms for short term adaptation have been described, there is little evidence that odorants cause long lasting, transcription-dependent changes in OSNs. Here we report that odorants stimulate cAMP-response element (CRE)-mediated transcription in OSNs through Ca2+ activation of the ERK/MAPK/p90rsk pathway. Odorant stimulation of ERK phosphorylation was ablated by inhibition of calmodulin-dependent protein kinase II suggesting that odorant activation of ERK is mediated through this kinase. Moreover, a brief exposure in vivo to an odorant in vapor phase stimulated CRE-mediated gene transcription in discrete populations of OSNs. These data suggest that like central nervous system neurons, OSNs may undergo long term adaptive changes mediated through CRE-mediated transcription.
Collapse
Affiliation(s)
- W C Watt
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | |
Collapse
|
82
|
Abstract
Response properties of isolated mouse olfactory receptor cells were investigated using the suction pipette technique. Cells were exposed to the odour cineole or to solutions of modified ionic content by rapidly changing the solution superfusing the cilia. All experiments were performed at 37 degrees C. Mouse olfactory receptor cells displayed a steep dependence of action potential frequency on stimulus concentration, a 3-fold increase in stimulus concentration often saturating the firing frequency at 200-300 Hz. The receptor current increased more gradually with increasing cineole concentration and did not saturate within the 100-fold range of cineole concentrations applied. When stimulated for 30 s with a low odour concentration, cells responded with sporadic spike firing. Higher concentrations led to the generation of a large receptor current at the onset of stimulation which returned to baseline levels within a few seconds, accompanied during its rising phase by a short burst of action potentials. Thereafter an oscillating response pattern was observed during the remainder of the stimulus, consisting of repetitive increases in receptor current of around 1 s duration accompanied by short bursts of action potentials. Olfactory adaptation was studied by comparing the responses to two closely spaced odour stimuli. The response to the second odour stimulus recovered to 80% of its original magnitude when the cell was superfused with Ringer solution during the 5 s interval between odour exposures. In contrast, exposure to a choline-substituted low Na+ solution between odour stimuli had two effects. First, the receptor current response to the first odour stimulus did not terminate as quickly as in the presence of Na+, suggesting the presence of a Na+ -Ca2+ exchanger. Second, the response to the second stimulus only recovered to 55% of its original magnitude, demonstrating the involvement of Na+-Ca2+ exchange in the recovery of sensitivity in mouse olfactory receptor cells following stimulation.
Collapse
Affiliation(s)
- J Reisert
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
83
|
Wong ST, Trinh K, Hacker B, Chan GC, Lowe G, Gaggar A, Xia Z, Gold GH, Storm DR. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 2000; 27:487-97. [PMID: 11055432 DOI: 10.1016/s0896-6273(00)00060-x] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior.
Collapse
Affiliation(s)
- S T Wong
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 2000; 279:F400-16. [PMID: 10966920 DOI: 10.1152/ajprenal.2000.279.3.f400] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present review focuses on the potential physiological regulations involving different isoforms of adenylyl cyclase (AC), the enzymatic activity responsible for the synthesis of cAMP from ATP. Depending on the properties and the relative level of the isoforms expressed in a tissue or a cell type at a specific time, extracellular signals received by the G protein-coupled receptors can be differently integrated. We report here on various aspects of such regulations, emphasizing the role of Ca(2+)/calmodulin in activating AC1 and AC8 in the central nervous system, the potential inhibitory effect of Ca(2+) on AC5 and AC6, and the changes in the expression pattern of the isoforms during development. A particular emphasis is given to the role of cAMP during drug dependence. Present experimental limitations are also underlined (pitfalls in the interpretation of cellular transfection, scarcity of the invalidation models, and so on).
Collapse
Affiliation(s)
- N Defer
- Institut National de la Santé et de la Recherche Médicale U-99 Hôpital Henri Mondor, F-94010 Créteil, France
| | | | | |
Collapse
|
85
|
Colomer JM, Means AR. Chronic elevation of calmodulin in the ventricles of transgenic mice increases the autonomous activity of calmodulin-dependent protein kinase II, which regulates atrial natriuretic factor gene expression. Mol Endocrinol 2000; 14:1125-36. [PMID: 10935538 DOI: 10.1210/mend.14.8.0496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although isoforms of Ca2+/calmodulin-dependent protein kinase II (CaMKII) have been implicated in the regulation of gene expression in cultured cells, this issue has yet to be addressed in vivo. We report that the overexpression of calmodulin in ventricular myocytes of transgenic mice results in an increase in the Ca2+/calmodulin-independent activity of endogenous CaMKII. The calmodulin transgene is regulated by a 500-bp fragment of the atrial natriuretic factor (ANF) gene promoter which, based on cell transfection studies, is itself known to be regulated by CaMKII. The increased autonomous activity of CaMKII maintains the activity of the transgene and establishes a positive feed-forward loop, which also extends the temporal expression of the endogenous ANF promoter in ventricular myocytes. Both the increased activity of CaMKII and transcriptional activation of ANF are highly selective responses to the chronic overexpression of calmodulin. These results indicate that CaMKII can regulate gene expression in vivo and suggest that this enzyme may represent the Ca2+-dependent target responsible for reactivation of the ANF gene during ventricular hypertrophy.
Collapse
Affiliation(s)
- J M Colomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
86
|
Watson EL, Jacobson KL, Singh JC, Idzerda R, Ott SM, DiJulio DH, Wong ST, Storm DR. The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem 2000; 275:14691-9. [PMID: 10799557 DOI: 10.1074/jbc.275.19.14691] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Capacitative Ca(2+) entry stimulates cAMP synthesis in mouse parotid acini, suggesting that one of the Ca(2+)-sensitive adenylyl cyclases (AC1 or AC8) may play an important role in the regulation of parotid function (Watson, E. L., Wu, Z., Jacobson, K. L., Storm, D. R., Singh, J. C., and Ott, S. M. (1998) Am. J. Physiol. 274, C557-C565). To evaluate the role of AC1 and AC8 in Ca(2+) stimulation of cAMP synthesis in parotid cells, acini were isolated from AC1 mutant (AC1-KO) and AC8 mutant (AC8-KO) mice and analyzed for Ca(2+) stimulation of intracellular cAMP levels. Although Ca(2+) stimulation of intracellular cAMP levels in acini from AC1-KO mice was indistinguishable from wild type mice, acini from AC8-KO mice showed no Ca(2+)-stimulated cAMP accumulation. This indicates that AC8, but not AC1, plays a major role in coupling Ca(2+) signals to cAMP synthesis in parotid acini. Interestingly, treatment of acini from AC8-KO mice with agents, i.e. carbachol and thapsigargin that increase intracellular Ca(2+), lowered cAMP levels. This decrease was dependent upon Ca(2+) influx and independent of phosphodiesterase activation. Immunoblot analysis revealed that AC5/6 and AC3 are expressed in parotid glands. Inhibition of calmodulin (CaM) kinase II with KN-62, or inclusion of the CaM inhibitor, calmidazolium, did not prevent agonist-induced inhibition of stimulated cAMP accumulation. In vitro studies revealed that Ca(2+), independently of CaM, inhibited isoproterenol-stimulated AC. Data suggest that agonist augmentation of stimulated cAMP levels is due to activation of AC8 in mouse parotid acini, and strongly support a role for AC5/6 in the inhibition of stimulated cAMP levels.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Nakamura T. Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:17-32. [PMID: 10908849 DOI: 10.1016/s1095-6433(00)00191-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since the discovery of odorant-activated adenylate cyclase in the olfactory receptor cilia, research into the olfactory perception of vertebrates has rapidly expanded. Recent studies have shown how the odor discrimination starts at the receptor level: each of 700-1000 types of the olfactory neurons in the neural olfactory epithelium contains a single type of odor receptor protein. Although the receptors have relatively low specific affinities for odorants, excitation of different types of receptors forms an excitation pattern specific to each odorant in the glomerular layer of the olfactory bulb. It was demonstrated that adenosine 3',5'-cyclic monophosphate (cAMP) is very likely the sole second messenger for olfactory transduction. It was also demonstrated that the affinity of the cyclic nucleotide-gated channel for cAMP regulated by Ca(2+)/calmodulin is solely responsible for the adaptation of the cell. However, many other regulatory components were found in the transduction cascade. Regulated by Ca(2+) and/or the protein-phosphorylation, many of them may serve for the adaptation of the cell, probably on a longer time scale. It may be important to consider the resensitization as a part of this adaptation, as well as to collect kinetic data of each reaction to gain further insight into the olfactory mechanism.
Collapse
Affiliation(s)
- T Nakamura
- Department of Applied Physics and Chemistry, Division of Bio-Informatics, Faculty of Electro-Communications, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
88
|
Abstract
Adenylyl cyclases (ACs) are a family of enzymes that synthesize one of the major second messengers, cAMP, upon stimulation. Since the report of the first adenylyl cyclase (AC) gene in 1989, tremendous efforts have been devoted to identifying and characterizing more AC isozymes. In the past decade, significant knowledge regarding the basic structure, tissue distribution, and regulation of AC isozymes has been accumulated. Because members of the AC superfamily are tightly controlled by various signals, one of the most important impacts of these AC isozymes is their contribution to the complexity and fine-tuning of cellular signalling, especially in the central nervous system (CNS) where multiple signals constantly occur. This review focuses on recent progress toward understanding the physiological roles of ACs in the CNS.
Collapse
Affiliation(s)
- Y Chern
- Institute of Biomedical Science, Academia Sinica, Taipei 11529, Taiwan, People's Republic of China.
| |
Collapse
|
89
|
Drescher MJ, Khan KM, Hatfield JS, Shakir AH, Drescher DG. Immunohistochemical localization of adenylyl cyclase isoforms in the lateral wall of the rat cochlea. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:289-98. [PMID: 10762704 DOI: 10.1016/s0169-328x(00)00008-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzymatic activity of adenylyl cyclase (AC) is attributable to nine isoforms with individual pharmacology and tissue distribution. Polyclonal antibodies for AC isoforms I-IV, VII and VIII were applied to sections of cochlear lateral wall, a tissue involved in ion transport contributing to the unique ion content of endolymph and electrical potential of scala media. Within the stria vascularis, immunoreactivity primarily to Ca(2+)/calmodulin-independent isoforms II, IV and VII was localized to sites consistent in position to the basolateral extensions of marginal cells. Little immunoreactivity was observed in the stria vascularis for Ca(2+)/calmodulin-dependent isoforms I, III and VIII. Within the spiral ligament, type II and type IV fibrocytes exhibited moderate staining for ACII, IV and VII, less staining for VIII and little for I and III. Immunoreactivity to ACII, IV, VII and VIII was observed in type I fibrocytes. The outer sulcus cells and root processes were highly immunoreactive for isoforms I and VIII, but not for III or the Ca(2+)/calmodulin-independent isoforms. The differential pattern of immunoreactivity in the lateral wall overall appears to reflect subfamily-specific expression with Ca(2+)/calmodulin-independent isoforms expressed in the stria vascularis and Ca(2+)/calmodulin-dependent isoforms expressed in the outer sulcus cells and root processes. cAMP-mediated modulation of ion transport by marginal cells is predicted to exhibit, in the microenvironment of basolateral membrane infoldings, pharmacological characteristics of the AC type II subfamily (II, IV and VII), including activation by protein kinase C (II and VII).
Collapse
Affiliation(s)
- M J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, 261 Lande Medical Research Building, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
90
|
Iourgenko V, Levin LR. A calcium-inhibited Drosophila adenylyl cyclase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1495:125-39. [PMID: 10656970 DOI: 10.1016/s0167-4889(99)00155-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Mammals possess a family of transmembrane, G-protein-responsive adenylyl cyclase isoforms (tmACs) encoded by distinct genes differing in their patterns of expression and modes of biochemical regulation. Our previous work confirmed that Drosophila melanogaster also possesses a family of tmAC isoforms defining the fly as a suitable genetic model for discerning mammalian tmAC function. We now describe a Drosophila tmAC, DAC39E, which employs a novel means for regulating its expression; differential exon utilization results in a developmental switch in DAC39E protein. DAC39E protein sequence is most closely related to mammalian type III AC, and it is predominantly expressed in the central nervous system (CNS) and olfactory organs, suggesting a role in processing sensory signaling inputs. DAC39E catalytic activity is inhibited by micromolar concentrations of calcium; therefore, DAC39E is oppositely regulated by calcium compared to the only other tmAC shown to be expressed in the Drosophila CNS, Rutabaga AC. The presence of both positively and negatively regulated tmACs suggests a complex mode of cross-talk between cAMP and calcium signal transduction pathways in the fly CNS.
Collapse
Affiliation(s)
- V Iourgenko
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
91
|
Abstract
Heterotrimeric G proteins in vertebrates constitute a family molecular switches that transduce the activation of a populous group of cell-surface receptors to a group of diverse effector units. The receptors include the photopigments such as rhodopsin and prominent families such as the adrenergic, muscarinic acetylcholine, and chemokine receptors involved in regulating a broad spectrum of responses in humans. Signals from receptors are sensed by heterotrimeric G proteins and transduced to effectors such as adenylyl cyclases, phospholipases, and various ion channels. Physiological regulation of G protein-linked receptors allows for integration of signals that directly or indirectly effect the signaling from receptor-->G protein-->effector(s). Steroid hormones can regulate signaling via transcriptional control of the activities of the genes encoding members of G protein-linked pathways. Posttranscriptional mechanisms are under physiological control, altering the stability of preexisting mRNA and affording an additional level for regulation. Protein phosphorylation, protein prenylation, and proteolysis constitute major posttranslational mechanisms employed in the physiological regulation of G protein-linked signaling. Drawing upon mechanisms at all three levels, physiological regulation permits integration of demands placed on G protein-linked signaling.
Collapse
Affiliation(s)
- A J Morris
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, University Medical Center, State University of New York/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
92
|
Mamluk R, Defer N, Hanoune J, Meidan R. Molecular identification of adenylyl cyclase 3 in bovine corpus luteum and its regulation by prostaglandin F2alpha-induced signaling pathways. Endocrinology 1999; 140:4601-8. [PMID: 10499516 DOI: 10.1210/endo.140.10.7099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The involvement of cAMP in various aspects of ovarian steroidogenic cells functions has been extensively studied. However, the adenylyl cyclase (AC) types expressed in ovarian cells, of any species, are not yet determined. The present study was undertaken to identify AC types present in bovine luteal cells and their regulation by various stimuli. AC isoforms 2, 3, 5, 6, 7, 8, and 9 were detected in the bovine brain by Northern blotting analysis, whereas the bovine corpus luteum (CL) only expressed AC3 and 6 mRNAs, with AC3 being more abundant than AC6. The use of AC3-specific primers in RT-PCR reaction verified the presence of AC3 mRNA in both bovine and rat CL tissue as well as in bovine steroidogenic luteal cells. Because these two AC isoforms, AC3 and 6, exhibit distinct regulatory patterns we have next examined the effects of various signaling pathways on AC activity in luteal cells. These studies have shown that: 1) prostaglandin (PG) F2alpha and phorbol 12-myristate 13-acetate markedly elevated agonist-stimulated cAMP synthesis (these effects were inhibited by addition of highly specific PKC inhibitor, bisindolylmaleimide); 2) depletion of Ca2+ from the incubation medium inhibited AC activity; 3) physiological concentrations of Ca2+ ions (up to 5 mM) significantly stimulated cAMP production in luteal cells; and 4) the effects of Ca2+ on cAMP synthesis were evident only in the presence of forskolin. These regulatory characteristics of AC activity are consistent with the molecular identification of ACs indicating the presence of AC3 in luteal cells. The reported data may delineate the cross-talk between physiological activators of AC in the CL (such as LH, PGE2, and PGI2) and other ligands (such as PGF2alpha and endothelin-1), which indirectly modulate AC activity. Therefore, the identification of AC isoforms present in luteal cells is an important step toward understanding the mode of action of a wide array of hormones regulating ovarian cells.
Collapse
Affiliation(s)
- R Mamluk
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University, Rehovot, Israel
| | | | | | | |
Collapse
|
93
|
Chabardès D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal 1999; 11:651-63. [PMID: 10530873 DOI: 10.1016/s0898-6568(99)00031-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among the different adenylyl cyclase (AC) isoforms, type 5 and type 6 constitute a subfamily which has the remarkable property of being inhibited by submicromolar Ca2+ concentrations in addition to Galphai-mediated processes. These independent and cumulative negative regulations are associated to a low basal enzymatic activity which can be strongly activated by Galphas-mediated interactions or forskolin. These properties ensure possible wide changes of cAMP synthesis. Regulation of cAMP synthesis by Ca2+ was studied in cultured or native cells which express naturally type 5 and/or type 6 AC, including well-defined renal epithelial cells. The results underline two characteristics of the inhibition due to agonist-elicited increase of intracellular Ca2+: i) Ca2+ rises achieved through capacitive Ca2+ entry or intracellular Ca2+ release can inhibit AC to a similar extent; and ii) in a same cell type, different agonists inducing similar overall Ca2+ rises elicit a variable inhibition of AC activity. The results suggest that a high efficiency of AC regulation by Ca2+ is linked to a requisite close localization of AC enzyme and Ca2+ rises.
Collapse
Affiliation(s)
- D Chabardès
- URA 1859 CNRS, Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, Gif sur Yvette, France.
| | | | | |
Collapse
|
94
|
Lai HL, Lin TH, Kao YY, Lin WJ, Hwang MJ, Chern Y. The N terminus domain of type VI adenylyl cyclase mediates its inhibition by protein kinase C. Mol Pharmacol 1999; 56:644-50. [PMID: 10462552 DOI: 10.1124/mol.56.3.644] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous results from our laboratory have shown that phosphorylation of type VI adenylyl cyclase (ACVI) by protein kinase C (PKC) caused suppression of adenylyl cyclase activity. In the present study, we investigated the role of the N terminus cytosolic domain of ACVI in this PKC-mediated inhibition of ACVI. Removal of amino acids 1 to 86 of ACVI or mutation of Ser(10) (a potential PKC phosphorylation site) into alanine significantly relieved the PKC-mediated inhibition and markedly reduced the PKC-evoked protein phosphorylation. PKC also effectively phosphorylated a recombinant N terminus cytosolic domain (amino acids 1-160) protein of ACVI and a synthetic peptide representing Ser(10). In addition, the amino acids 1 to 86 truncated mutant exhibited kinetic properties similar to those of the wild type. Taken together, these data demonstrate that the highly variable N terminus cytoplasmic domain of ACVI is a regulatory domain with a critical role in PKC-mediated suppression, which is a hallmark of this adenylyl cyclase isozyme. In addition, Ser(10) was found to serve as an acceptor for the PKC-mediated phosphorylating transfer of ACVI.
Collapse
Affiliation(s)
- H L Lai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
95
|
Schwencke C, Yamamoto M, Okumura S, Toya Y, Kim SJ, Ishikawa Y. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae. Mol Endocrinol 1999; 13:1061-70. [PMID: 10406458 DOI: 10.1210/mend.13.7.0304] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cAMP-signaling pathway is composed of multiple components ranging from receptors, G proteins, and adenylyl cyclase to protein kinase A. A common view of the molecular interaction between them is that these molecules are disseminated on the plasma lipid membrane and random collide with each other to transmit signals. A limitation to this idea, however, is that a signaling cascade involving multiple components may not occur rapidly. Caveolae and their principal component, caveolin, have been implicated in transmembrane signaling, particularly in G protein-coupled signaling. We examined whether caveolin interacts with adenylyl cyclase, the membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. When overexpressed in insect cells, types III, IV, and V adenylyl cyclase were localized in caveolin-enriched membrane fractions. Caveolin was coimmunoprecipitated with adenylyl cyclase in tissue homogenates and copurified with a polyhistidine-tagged form of adenylyl cyclase by Ninitrilotriacetic acid resin chromatography in insect cells, suggesting the colocalization of adenylyl cyclase and caveolin in the same microdomain. Further, the regulatory subunit of protein kinase A (RIIalpha, but not RIalpha) was also enriched in the same fraction as caveolin. Gsalpha was found in both caveolin-enriched and non-caveolin-enriched membrane fractions. Our data suggest that the cAMP-signaling cascade occurs within a restricted microdomain of the plasma membrane in a highly organized manner.
Collapse
Affiliation(s)
- C Schwencke
- Cardiovascular & Pulmonary Research Institute, Allegheny University of the Health Sciences, Pittsburgh, Pennsylvania 15212, USA
| | | | | | | | | | | |
Collapse
|
96
|
Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG. The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol Sci 1999; 20:205-10. [PMID: 10354616 DOI: 10.1016/s0165-6147(99)01310-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent kinetic, binding and crystallographic studies using P-site inhibitors of mammalian adenylate bases provide new insights into the catalytic mechanism of these highly regulated enzymes. Here, Carmen Dessauer and colleagues discuss the conformational states of adenylate cyclase, the structural determinants of inhibitor binding and the potential uses of these inhibitors as pharmacological agents.
Collapse
Affiliation(s)
- C W Dessauer
- Department of Integrative Biology, Pharmacology and Physiology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
97
|
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.
| |
Collapse
|
98
|
Abstract
Adenylate cyclase integrates positive and negative signals that act through G protein-coupled cell-surface receptors with other extracellular stimuli to finely regulate levels of cAMP within the cell. Recently, the structures of the cyclase catalytic core complexed with the plant diterpene forskolin, and a cyclase-forskolin complex bound to an activated form of the stimulatory G protein subunit Gs alpha have been solved by X-ray crystallography. These structures provide a wealth of detail about how different signals could converge at the core cyclase domains to regulate catalysis. In this article, William Simonds reviews recent advances in the molecular and structural biology of this key regulatory enzyme, which provide new insight into its ability to integrate multiple signals in diverse cellular contexts.
Collapse
Affiliation(s)
- W F Simonds
- Metabolic Diseases, Branch/NIDDK, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
99
|
Leech CA, Castonguay MA, Habener JF. Expression of adenylyl cyclase subtypes in pancreatic beta-cells. Biochem Biophys Res Commun 1999; 254:703-6. [PMID: 9920805 DOI: 10.1006/bbrc.1998.9906] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of adenylyl cyclase by Gs-coupled receptors for insulinotropic hormones such as glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide plays a critical role in stimulating glucose-induced insulin secretion. Despite this important role of insulinotropic hormones in the regulation of insulin secretion, little is known about which of the multiple subtypes of adenylyl cyclase are expressed in beta-cells. Here we report the use of PCR primers designed to amplify all subtypes of adenylyl cyclase from cDNA prepared from human and rat islets and from insulin-secreting beta-cell lines. PCR products were cloned and sequenced to identify the subtypes of adenylyl cyclase amplified. Adenylyl cyclase types V and VI, known to couple to Galphas and Gbetagamma in the cAMP signaling pathway, account for all subtypes identified in human islets and INS-1 cells and the majority of subtypes in rat islets and HIT-T15 cells. These findings indicate that pancreatic beta-cells are particularly well suited to transmit signals via Gs-coupled receptors such as that for glucagon-like peptide-1.
Collapse
Affiliation(s)
- C A Leech
- Laboratory of Molecular Endocrinology, Howard Hughes Medical Institute, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
| | | | | |
Collapse
|
100
|
Ueki S, Takagi J, Kobayashi Y, Sato F, Saito Y. 12-hydroxy-5Z, 8Z, 10E, 14Z, eicosatetraenoic acid (12-HETE) stimulates cAMP production in normal human fibroblasts. J Cell Physiol 1999; 178:63-8. [PMID: 9886491 DOI: 10.1002/(sici)1097-4652(199901)178:1<63::aid-jcp8>3.0.co;2-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report here that the 12-lipoxygenase metabolite of arachidonic acid, 12-hydroxy-5Z, 8Z, 10E, 14Z, eicosatetraenoic acid (12-HETE), stimulates cAMP production in human fibroblasts among various cultured cell lines tested. Although 12-HETE seemed to stimulate the phospholipase C (PLC)-protein kinase C (PKC) system, inhibitors against PLC and PKC did not reduce the cAMP production induced by 12-HETE, indicating that the activation of PLC-PKC system is not positively coupled with the stimulation of cAMP production. On the other hand, the cAMP production induced by 12-HETE was dependent on the Ca2+/calmodulin system in the cells. The results suggest that 12-HETE specifically stimulates Ca2+/calmodulin-dependent adenylyl cyclase to increase cAMP level in the fibroblasts.
Collapse
Affiliation(s)
- S Ueki
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|