51
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
52
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020; 59:6482-6491. [DOI: 10.1002/anie.202000247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
53
|
Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol 2019; 55:9-18. [PMID: 31869674 DOI: 10.1016/j.cbpa.2019.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023]
Abstract
The mitochondrial calcium uniporter (MCU) is a protein located in the inner mitochondrial membrane that is responsible for mitochondrial Ca2+ uptake. Under certain pathological conditions, dysregulation of Ca2+ uptake through the MCU results in cellular dysfunction and apoptotic cell death. Given the role of the MCU in human disease, researchers have developed compounds capable of inhibiting mitochondrial calcium uptake as tools for understanding the role of this protein in cell death. In this article, we describe recent findings on the role of the MCU in mediating pathological conditions and the search for small-molecule inhibitors of this protein for potential therapeutic applications.
Collapse
Affiliation(s)
- Joshua J Woods
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14583, USA.
| |
Collapse
|
54
|
Wong HTC, Zhang Q, Beirl AJ, Petralia RS, Wang YX, Kindt K. Synaptic mitochondria regulate hair-cell synapse size and function. eLife 2019; 8:e48914. [PMID: 31609202 PMCID: PMC6879205 DOI: 10.7554/elife.48914] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells in the ear utilize specialized ribbon synapses. These synapses are defined by electron-dense presynaptic structures called ribbons, composed primarily of the structural protein Ribeye. Previous work has shown that voltage-gated influx of Ca2+ through CaV1.3 channels is critical for hair-cell synapse function and can impede ribbon formation. We show that in mature zebrafish hair cells, evoked presynaptic-Ca2+ influx through CaV1.3 channels initiates mitochondrial-Ca2+ (mito-Ca2+) uptake adjacent to ribbons. Block of mito-Ca2+ uptake in mature cells depresses presynaptic-Ca2+ influx and impacts synapse integrity. In developing zebrafish hair cells, mito-Ca2+ uptake coincides with spontaneous rises in presynaptic-Ca2+ influx. Spontaneous mito-Ca2+ loading lowers cellular NAD+/NADH redox and downregulates ribbon size. Direct application of NAD+ or NADH increases or decreases ribbon size respectively, possibly acting through the NAD(H)-binding domain on Ribeye. Our results present a mechanism where presynaptic- and mito-Ca2+ couple to confer proper presynaptic function and formation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Genetically Modified
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cell Size
- Embryo, Nonmammalian
- Evoked Potentials, Auditory/physiology
- Eye Proteins/chemistry
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Isradipine/pharmacology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- NAD/metabolism
- Oxidation-Reduction
- Protein Binding
- Protein Interaction Domains and Motifs
- Ruthenium Compounds/pharmacology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission
- Zebrafish
- Zebrafish Proteins/agonists
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hiu-tung C Wong
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
- National Institutes of Health-Johns Hopkins University Graduate Partnership ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Qiuxiang Zhang
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ronald S Petralia
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ya-Xian Wang
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Katie Kindt
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
55
|
Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P, Weightman A, Himori K, Yamada T, Bruton J, Steele D, Westerblad H, Calaghan S. A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic Transl Sci 2019; 4:509-523. [PMID: 31468006 PMCID: PMC6712048 DOI: 10.1016/j.jacbts.2019.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.
Collapse
Key Words
- Ca2+, calcium
- FDB, flexor digitorum brevis
- FKBP12, FK506 binding protein (calstabin)
- GAS, gastrocnemius
- HADHA, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase
- HMG CoA, 3-hydroxy-3-methylglutaryl coenzyme A
- L-NAME, N(ω)-nitro-L-arginine methyl ester
- NOS, nitric oxide synthase
- PGC1α, peroxisome proliferator-activated receptor γ co-activator 1α
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SOD, superoxide dismutase
- SR, sarcoplasmic reticulum
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- calcium leak
- exercise
- myopathy
- ryanodine receptor
- statin
Collapse
Affiliation(s)
- Sabine Lotteau
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhaokang Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Damien Restagno
- VetAgro Sup, APCSe, Université de Lyon, Marcy l’Etoile, France
| | - John Colyer
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philip Hopkins
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Calaghan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
56
|
Zhou J, Li A, Li X, Yi J. Dysregulated mitochondrial Ca 2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys 2019; 663:249-258. [PMID: 30682329 PMCID: PMC6506190 DOI: 10.1016/j.abb.2019.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by motor neuron loss and prominent skeletal muscle wasting. Despite more than one hundred years of research efforts, the pathogenic mechanisms underlying neuromuscular degeneration in ALS remain elusive. While the death of motor neuron is a defining hallmark of ALS, accumulated evidences suggested that in addition to being a victim of motor neuron axonal withdrawal, the intrinsic skeletal muscle degeneration may also actively contribute to ALS disease pathogenesis and progression. Examination of spinal cord and muscle autopsy/biopsy samples of ALS patients revealed similar mitochondrial abnormalities in morphology, quantity and disposition, which are accompanied by defective mitochondrial respiratory chain complex and elevated oxidative stress. Detailing the molecular/cellular mechanisms and the role of mitochondrial dysfunction in ALS relies on ALS animal model studies. This review article discusses the dysregulated mitochondrial Ca2+ and reactive oxygen species (ROS) signaling revealed in live skeletal muscle derived from ALS mouse models, and a potential role of the vicious cycle formed between the dysregulated mitochondrial Ca2+ signaling and excessive ROS production in promoting muscle wasting during ALS progression.
Collapse
Affiliation(s)
- Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ang Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
57
|
Liu ZJ, Zhao W, Lei HY, Xu HL, Lai LY, Xu R, Xu SY. High Glucose Enhances Bupivacaine-Induced Neurotoxicity via MCU-Mediated Oxidative Stress in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7192798. [PMID: 30911349 PMCID: PMC6398017 DOI: 10.1155/2019/7192798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Bupivacaine, a typical local anesthetic, induces neurotoxicity via reactive oxygen species regulation of apoptosis. High glucose could enhance bupivacaine-induced neurotoxicity through regulating oxidative stress, but the mechanism of it is not clear. Mitochondrial calcium uniporter (MCU), a key channel for regulating the mitochondrial Ca2+ (mCa2+) influx, is closely related to oxidative stress via disruption of mCa2+ homeostasis. Whether MCU is involved in high glucose-sensitized bupivacaine-induced neurotoxicity remains unknown. In this study, human neuroblastoma (SH-SY5Y) cells were cultured with high glucose and/or bupivacaine, and the data showed that high glucose enhanced bupivacaine-induced MCU expression elevation, mCa2+ accumulation, and oxidative damage. Next, Ru360, an inhibitor of MCU, was employed to pretreated SH-SY5Y cells, and the results showed that it could decrease high glucose and bupivacaine-induced mCa2+ accumulation, oxidative stress, and apoptosis. Further, with the knockdown of MCU with a specific small interfering RNA (siRNA) in SH-SY5Y cells, we found that it also could inhibit high glucose and bupivacaine-induced mCa2+ accumulation, oxidative stress, and apoptosis. We propose that downregulation expression or activity inhibition of the MCU channel might be useful for restoring the mitochondrial function and combating high glucose and bupivacaine-induced neurotoxicity. In conclusion, our study demonstrated the crucial role of MCU in high glucose-mediated enhancement of bupivacaine-induced neurotoxicity, suggesting the possible use of this channel as a target for curing bupivacaine-induced neurotoxicity in diabetic patients.
Collapse
Affiliation(s)
- Zhong-Jie Liu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Hong-Yi Lei
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Hua-Li Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Lu-Ying Lai
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, No. 253 Middle Gongye Street, Guangzhou, 510282 Guangdong, China
| |
Collapse
|
58
|
Woods J, Nemani N, Shanmughapriya S, Kumar A, Zhang M, Nathan SR, Thomas M, Carvalho E, Ramachandran K, Srikantan S, Stathopulos PB, Wilson JJ, Madesh M. A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury. ACS CENTRAL SCIENCE 2019; 5:153-166. [PMID: 30693334 PMCID: PMC6346394 DOI: 10.1021/acscentsci.8b00773] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 05/10/2023]
Abstract
Mitochondrial Ca2+ (mCa2+) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca2+ dynamics and mitochondrial membrane potential (ΔΨm). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models.
Collapse
Affiliation(s)
- Joshua
J. Woods
- Robert
F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Neeharika Nemani
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santhanam Shanmughapriya
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Akshay Kumar
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - MengQi Zhang
- Department
of Physiology and Pharmacology, Western
University, London, Ontario N6A 5C1, Canada
| | - Sarah R. Nathan
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Manfred Thomas
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Edmund Carvalho
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Karthik Ramachandran
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Subramanya Srikantan
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Peter B. Stathopulos
- Department
of Physiology and Pharmacology, Western
University, London, Ontario N6A 5C1, Canada
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Muniswamy Madesh
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
59
|
Phillips CB, Tsai CW, Tsai MF. The conserved aspartate ring of MCU mediates MICU1 binding and regulation in the mitochondrial calcium uniporter complex. eLife 2019; 8:41112. [PMID: 30638448 PMCID: PMC6347451 DOI: 10.7554/elife.41112] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/07/2019] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial calcium uniporter is a Ca2+ channel that regulates intracellular Ca2+ signaling, oxidative phosphorylation, and apoptosis. It contains the pore-forming MCU protein, which possesses a DIME sequence thought to form a Ca2+ selectivity filter, and also regulatory EMRE, MICU1, and MICU2 subunits. To properly carry out physiological functions, the uniporter must stay closed in resting conditions, becoming open only when stimulated by intracellular Ca2+ signals. This Ca2+-dependent activation, known to be mediated by MICU subunits, is not well understood. Here, we demonstrate that the DIME-aspartate mediates a Ca2+-modulated electrostatic interaction with MICU1, forming an MICU1 contact interface with a nearby Ser residue at the cytoplasmic entrance of the MCU pore. A mutagenesis screen of MICU1 identifies two highly-conserved Arg residues that might contact the DIME-Asp. Perturbing MCU-MICU1 interactions elicits unregulated, constitutive Ca2+ flux into mitochondria. These results indicate that MICU1 confers Ca2+-dependent gating of the uniporter by blocking/unblocking MCU.
Collapse
Affiliation(s)
| | - Chen-Wei Tsai
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ming-Feng Tsai
- Department of Biochemistry, Brandeis University, Waltham, United States.,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
60
|
Chamberland S, Zamora Moratalla A, Topolnik L. Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium 2019; 77:49-57. [DOI: 10.1016/j.ceca.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
|
61
|
Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca 2+ Content Regulates Sarcoplasmic Reticulum Ca 2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018; 9:1831. [PMID: 30622478 PMCID: PMC6308295 DOI: 10.3389/fphys.2018.01831] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Richard T. Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
| | - Jin O-Uchi
- Lillehei Heart Institute University of Minnesota, Cancer and Cardiovascular Research Building, Minneapolis, MN, United States
| | - György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| |
Collapse
|
62
|
Paillard M, Csordás G, Huang KT, Várnai P, Joseph SK, Hajnóczky G. MICU1 Interacts with the D-Ring of the MCU Pore to Control Its Ca 2+ Flux and Sensitivity to Ru360. Mol Cell 2018; 72:778-785.e3. [PMID: 30454562 PMCID: PMC6251499 DOI: 10.1016/j.molcel.2018.09.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Abstract
Proper control of the mitochondrial Ca2+ uniporter's pore (MCU) is required to allow Ca2+-dependent activation of oxidative metabolism and to avoid mitochondrial Ca2+ overload and cell death. The MCU's gatekeeping and cooperative activation is mediated by the Ca2+-sensing MICU1 protein, which has been proposed to form dimeric complexes anchored to the EMRE scaffold of MCU. We unexpectedly find that MICU1 suppresses inhibition of MCU by ruthenium red/Ru360, which bind to MCU's DIME motif, the selectivity filter. This led us to recognize in MICU1's sequence a putative DIME interacting domain (DID), which is required for both gatekeeping and cooperative activation of MCU and for cell survival. Thus, we propose that MICU1 has to interact with the D-ring formed by the DIME domains in MCU to control the uniporter.
Collapse
Affiliation(s)
- Melanie Paillard
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kai-Ting Huang
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter Várnai
- Department of Physiology, Semmelweis University, Budapest, 1094 Hungary
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
63
|
Xie A, Zhou A, Liu H, Shi G, Liu M, Boheler KR, Dudley SC. Mitochondrial Ca2+ flux modulates spontaneous electrical activity in ventricular cardiomyocytes. PLoS One 2018; 13:e0200448. [PMID: 30001390 PMCID: PMC6042741 DOI: 10.1371/journal.pone.0200448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction Ca2+ release from sarcoplasmic reticulum (SR) is known to contribute to automaticity via the cytoplasmic Na+-Ca2+ exchanger (NCX). Mitochondria participate in Ca2+ cycling. We studied the role of mitochondrial Ca2+ flux in ventricular spontaneous electrical activity. Methods Spontaneously contracting mouse embryonic stem cells (ESC)-derived ventricular cardiomyocytes (CMs) were differentiated from wild type and ryanodine receptor type 2 (RYR2) knockout mouse ESCs and differentiated for 19–21 days. Automaticity was also observed in human induced pluripotent stem cell (hiPSC)-derived ventricular CMs differentiated for 30 days, and acute isolated adult mouse ventricular cells in ischemic simulated buffer. Action potentials (APs) were recorded by perforated whole cell current-clamp. Cytoplasmic and mitochondrial Ca2+ transients were determined by fluorescent imaging. Results In mouse ESC-derived ventricular CMs, spontaneous beating was dependent on the L-type Ca2+ channel, cytoplasmic NCX and mitochondrial NCX. Spontaneous beating was modulated by SR Ca2+ release from RYR2 or inositol trisphosphate receptors (IP3R), the pacemaker current (If) and mitochondrial Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU). In RYR2 knockout mouse ESC-derived ventricular CMs, mitochondrial Ca2+ flux influenced spontaneous beating independently of the SR Ca2+ release from RYR2, and the mitochondrial effect was dependent on IP3R SR Ca2+ release. Depolarization of mitochondria and preservation of ATP could terminate spontaneous beating. A contribution of mitochondrial Ca2+ flux to automaticity was confirmed in hiPSC-derived ventricular CMs and ischemic adult mouse ventricular CMs, confirming the findings across species and cell maturity levels. Conclusions Mitochondrial and sarcolemma NCX fluxes are required for ventricular automaticity. Mitochondrial Ca2+ uptake plays a modulatory role. Mitochondrial Ca2+ uptake through MCU is influenced by IP3R-dependent SR Ca2+ release.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Anyu Zhou
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Guangbin Shi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Man Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, Hong Kong, P.R. China
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
64
|
Tsai CW, Tsai MF. Electrical recordings of the mitochondrial calcium uniporter in Xenopus oocytes. J Gen Physiol 2018; 150:1035-1043. [PMID: 29891485 PMCID: PMC6028504 DOI: 10.1085/jgp.201812015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
The mitochondrial calcium uniporter is a Ca2+ channel that has been hard to characterize electrophysiologically. Tsai and Tsai establish a method that permits efficient electrophysiological recordings of the human uniporter in Xenopus oocytes and demonstrate characteristic uniporter behaviour. The mitochondrial calcium uniporter is a multisubunit Ca2+ channel that mediates mitochondrial Ca2+ uptake, a cellular process crucial for the regulation of oxidative phosphorylation, intracellular Ca2+ signaling, and apoptosis. In the last few years, genes encoding uniporter proteins have been identified, but a lack of efficient tools for electrophysiological recordings has hindered quantitative analysis required to determine functional mechanisms of this channel complex. Here, we redirected Ca2+-conducting subunits (MCU and EMRE) of the human uniporter to the plasma membrane of Xenopus oocytes. Two-electrode voltage clamp reveals inwardly rectifying Ca2+ currents blocked by a potent inhibitor, Ru360 (half maximal inhibitory concentration, ~4 nM), with a divalent cation conductivity of Ca2+ > Sr2+ > Ba2+, Mn2+, and Mg2+. Patch clamp recordings further reveal macroscopic and single-channel Ca2+ currents sensitive to Ru360. These electrical phenomena were abolished by mutations that perturb MCU-EMRE interactions or disrupt a Ca2+-binding site in the pore. Altogether, this work establishes a robust method that enables deep mechanistic scrutiny of the uniporter using classical strategies in ion channel electrophysiology.
Collapse
Affiliation(s)
- Chen-Wei Tsai
- Department of Biochemistry, Brandeis University, Waltham, MA
| | - Ming-Feng Tsai
- Department of Biochemistry, Brandeis University, Waltham, MA .,Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
65
|
Maxwell JT, Tsai CH, Mohiuddin TA, Kwong JQ. Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells. J Vis Exp 2018. [PMID: 29757281 DOI: 10.3791/57225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ca2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca2+ from mitochondria is important for determining the role of mitochondrial Ca2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca2+ uptake using the Ca2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca2+ in permeabilized cells using the Ca2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca2+. Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.
Collapse
Affiliation(s)
| | - Chin-Hsien Tsai
- Department of Pediatrics, Emory University School of Medicine
| | | | | |
Collapse
|
66
|
Xie A, Song Z, Liu H, Zhou A, Shi G, Wang Q, Gu L, Liu M, Xie LH, Qu Z, Dudley SC. Mitochondrial Ca 2+ Influx Contributes to Arrhythmic Risk in Nonischemic Cardiomyopathy. J Am Heart Assoc 2018; 7:e007805. [PMID: 29627768 PMCID: PMC6015427 DOI: 10.1161/jaha.117.007805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with increased arrhythmia risk and triggered activity. Abnormal Ca2+ handling is thought to underlie triggered activity, and mitochondria participate in Ca2+ homeostasis. METHODS AND RESULTS A model of nonischemic HF was induced in C57BL/6 mice by hypertension. Computer simulations were performed using a mouse ventricular myocyte model of HF. Isoproterenol-induced premature ventricular contractions and ventricular fibrillation were more prevalent in nonischemic HF mice than sham controls. Isolated myopathic myocytes showed decreased cytoplasmic Ca2+ transients, increased mitochondrial Ca2+ transients, and increased action potential duration at 90% repolarization. The alteration of action potential duration at 90% repolarization was consistent with in vivo corrected QT prolongation and could be explained by augmented L-type Ca2+ currents, increased Na+-Ca2+ exchange currents, and decreased total K+ currents. Of myopathic ventricular myocytes, 66% showed early afterdepolarizations (EADs) compared with 17% of sham myocytes (P<0.05). Intracellular application of 1 μmol/L Ru360, a mitochondrial Ca2+ uniporter-specific antagonist, could reduce mitochondrial Ca2+ transients, decrease action potential duration at 90% repolarization, and ameliorate EADs. Furthermore, genetic knockdown of mitochondrial Ca2+ uniporters inhibited mitochondrial Ca2+ uptake, reduced Na+-Ca2+ exchange currents, decreased action potential duration at 90% repolarization, suppressed EADs, and reduced ventricular fibrillation in nonischemic HF mice. Computer simulations showed that EADs promoted by HF remodeling could be abolished by blocking either the mitochondrial Ca2+ uniporter or the L-type Ca2+ current, consistent with the experimental observations. CONCLUSIONS Mitochondrial Ca2+ handling plays an important role in EADs seen with nonischemic cardiomyopathy and may represent a therapeutic target to reduce arrhythmic risk in this condition.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Anyu Zhou
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Guangbin Shi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Qiongying Wang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lianzhi Gu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Man Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Samuel C Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
67
|
Scrima R, Piccoli C, Moradpour D, Capitanio N. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca 2+ Fluxes as Therapeutic Strategy for HCV Infection. Front Chem 2018; 6:73. [PMID: 29619366 PMCID: PMC5871704 DOI: 10.3389/fchem.2018.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/06/2018] [Indexed: 01/16/2023] Open
Abstract
Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Darius Moradpour
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
68
|
Arduino DM, Perocchi F. Pharmacological modulation of mitochondrial calcium homeostasis. J Physiol 2018; 596:2717-2733. [PMID: 29319185 DOI: 10.1113/jp274959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are pivotal organelles in calcium (Ca2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Daniela M Arduino
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, 81377, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), Neuherberg, 85764, Germany
| |
Collapse
|
69
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
70
|
Nathan SR, Wilson JJ. Synthesis and Evaluation of a Ruthenium-based Mitochondrial Calcium Uptake Inhibitor. J Vis Exp 2017. [PMID: 29155737 DOI: 10.3791/56527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We detail the synthesis and purification of a mitochondrial calcium uptake inhibitor, [(OH2)(NH3)4Ru(µ-O)Ru(NH3)4(OH2)]5+. The optimized synthesis of this compound commences from [Ru(NH3)5Cl]Cl2 in 1 M NH4OH in a closed container, yielding a green solution. Purification is accomplished with cation-exchange chromatography. This compound is characterized and verified to be pure by UV-vis and IR spectroscopy. The mitochondrial calcium uptake inhibitory properties are assessed in permeabilized HeLa cells by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Sarah R Nathan
- Department of Chemistry and Chemical Biology, Cornell University
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University;
| |
Collapse
|
71
|
Bustos G, Cruz P, Lovy A, Cárdenas C. Endoplasmic Reticulum-Mitochondria Calcium Communication and the Regulation of Mitochondrial Metabolism in Cancer: A Novel Potential Target. Front Oncol 2017; 7:199. [PMID: 28944215 PMCID: PMC5596064 DOI: 10.3389/fonc.2017.00199] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023] Open
Abstract
Cancer is characterized by an uncontrolled cell proliferation rate even under low nutrient availability, which is sustained by a metabolic reprograming now recognized as a hallmark of cancer. Warburg was the first to establish the relationship between cancer and mitochondria; however, he interpreted enhanced aerobic glycolysis as mitochondrial dysfunction. Today it is accepted that many cancer cell types need fully functional mitochondria to maintain their homeostasis. Calcium (Ca2+)—a key regulator of several cellular processes—has proven to be essential for mitochondrial metabolism. Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ transfer from the endoplasmic reticulum to the mitochondria through the mitochondrial calcium uniporter (MCU) proves to be essential for the maintenance of mitochondrial function and cellular energy balance. Both IP3R and MCU are overexpressed in several cancer cell types, and the inhibition of the Ca2+ communication between these two organelles causes proliferation arrest, migration decrease, and cell death through mechanisms that are not fully understood. In this review, we summarize and analyze the current findings in this area, emphasizing the critical role of Ca2+ and mitochondrial metabolism in cancer and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Galdo Bustos
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Pablo Cruz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
72
|
Neurons and astrocytes in an infantile neuroaxonal dystrophy (INAD) mouse model show characteristic alterations in glutamate-induced Ca 2+ signaling. Neurochem Int 2017; 108:121-132. [DOI: 10.1016/j.neuint.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
73
|
Karam C, Yi J, Xiao Y, Dhakal K, Zhang L, Li X, Manno C, Xu J, Li K, Cheng H, Ma J, Zhou J. Absence of physiological Ca 2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet Muscle 2017; 7:6. [PMID: 28395670 PMCID: PMC5387329 DOI: 10.1186/s13395-017-0123-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Motor neurons control muscle contraction by initiating action potentials in muscle. Denervation of muscle from motor neurons leads to muscle atrophy, which is linked to mitochondrial dysfunction. It is known that denervation promotes mitochondrial reactive oxygen species (ROS) production in muscle, whereas the initial cause of mitochondrial ROS production in denervated muscle remains elusive. Since denervation isolates muscle from motor neurons and deprives it from any electric stimulation, no action potentials are initiated, and therefore, no physiological Ca2+ transients are generated inside denervated muscle fibers. We tested whether loss of physiological Ca2+ transients is an initial cause leading to mitochondrial dysfunction in denervated skeletal muscle. METHODS A transgenic mouse model expressing a mitochondrial targeted biosensor (mt-cpYFP) allowed a real-time measurement of the ROS-related mitochondrial metabolic function following denervation, termed "mitoflash." Using live cell imaging, electrophysiological, pharmacological, and biochemical studies, we examined a potential molecular mechanism that initiates ROS-related mitochondrial dysfunction following denervation. RESULTS We found that muscle fibers showed a fourfold increase in mitoflash activity 24 h after denervation. The denervation-induced mitoflash activity was likely associated with an increased activity of mitochondrial permeability transition pore (mPTP), as the mitoflash activity was attenuated by application of cyclosporine A. Electrical stimulation rapidly reduced mitoflash activity in both sham and denervated muscle fibers. We further demonstrated that the Ca2+ level inside mitochondria follows the time course of the cytosolic Ca2+ transient and that inhibition of mitochondrial Ca2+ uptake by Ru360 blocks the effect of electric stimulation on mitoflash activity. CONCLUSIONS The loss of cytosolic Ca2+ transients due to denervation results in the downstream absence of mitochondrial Ca2+ uptake. Our studies suggest that this could be an initial trigger for enhanced mPTP-related mitochondrial ROS generation in skeletal muscle.
Collapse
Affiliation(s)
- Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yajuan Xiao
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lin Zhang
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Carlo Manno
- Rush University School of Medicine, Chicago, IL, USA
| | - Jiejia Xu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Kaitao Li
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH, USA.
| | - Jingsong Zhou
- Rush University School of Medicine, Chicago, IL, USA. .,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA.
| |
Collapse
|
74
|
Nathan SR, Pino NW, Arduino DM, Perocchi F, MacMillan SN, Wilson JJ. Synthetic Methods for the Preparation of a Functional Analogue of Ru360, a Potent Inhibitor of Mitochondrial Calcium Uptake. Inorg Chem 2017; 56:3123-3126. [DOI: 10.1021/acs.inorgchem.6b03108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah R. Nathan
- Department of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nicholas W. Pino
- Department of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Daniela M. Arduino
- Gene Center, Department of Biochemistry, Ludwig-Maximilans Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabiana Perocchi
- Gene Center, Department of Biochemistry, Ludwig-Maximilans Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Samantha N. MacMillan
- Department of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry
and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
75
|
Small Interfering RNA Targeting Mitochondrial Calcium Uniporter Improves Cardiomyocyte Cell Viability in Hypoxia/Reoxygenation Injury by Reducing Calcium Overload. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5750897. [PMID: 28337252 PMCID: PMC5350333 DOI: 10.1155/2017/5750897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
Abstract
Intracellular Ca2+ mishandling is an underlying mechanism in hypoxia/reoxygenation (H/R) injury that results in mitochondrial dysfunction and cardiomyocytes death. These events are mediated by mitochondrial Ca2+ (mCa2+) overload that is facilitated by the mitochondrial calcium uniporter (MCU) channel. Along this line, we evaluated the effect of siRNA-targeting MCU in cardiomyocytes subjected to H/R injury. First, cardiomyocytes treated with siRNA demonstrated a reduction of MCU expression by 67%, which resulted in significant decrease in mitochondrial Ca2+ transport. siRNA treated cardiomyocytes showed decreased mitochondrial permeability pore opening and oxidative stress trigger by Ca2+ overload. Furthermore, after H/R injury MCU silencing decreased necrosis and apoptosis levels by 30% and 50%, respectively, and resulted in reduction in caspases 3/7, 9, and 8 activity. Our findings are consistent with previous conclusions that demonstrate that MCU activity is partly responsible for cellular injury induced by H/R and support the concept of utilizing siRNA-targeting MCU as a potential therapeutic strategy.
Collapse
|
76
|
Paillamanque J, Sanchez-Tusie A, Carmona EM, Treviño CL, Sandoval C, Nualart F, Osses N, Reyes JG. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release. PLoS One 2017; 12:e0172128. [PMID: 28192519 PMCID: PMC5305069 DOI: 10.1371/journal.pone.0172128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis.
Collapse
Affiliation(s)
- Joaquin Paillamanque
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Sanchez-Tusie
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Emerson M. Carmona
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Carolina Sandoval
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan G. Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
77
|
Mitochondria Maintain Distinct Ca 2+ Pools in Cone Photoreceptors. J Neurosci 2017; 37:2061-2072. [PMID: 28115482 DOI: 10.1523/jneurosci.2689-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
Ca2+ ions have distinct roles in the outer segment, cell body, and synaptic terminal of photoreceptors. We tested the hypothesis that distinct Ca2+ domains are maintained by Ca2+ uptake into mitochondria. Serial block face scanning electron microscopy of zebrafish cones revealed that nearly 100 mitochondria cluster at the apical side of the inner segment, directly below the outer segment. The endoplasmic reticulum surrounds the basal and lateral surfaces of this cluster, but does not reach the apical surface or penetrate into the cluster. Using genetically encoded Ca2+ sensors, we found that mitochondria take up Ca2+ when it accumulates either in the cone cell body or outer segment. Blocking mitochondrial Ca2+ uniporter activity compromises the ability of mitochondria to maintain distinct Ca2+ domains. Together, our findings indicate that mitochondria can modulate subcellular functional specialization in photoreceptors.SIGNIFICANCE STATEMENT Ca2+ homeostasis is essential for the survival and function of retinal photoreceptors. Separate pools of Ca2+ regulate phototransduction in the outer segment, metabolism in the cell body, and neurotransmitter release at the synaptic terminal. We investigated the role of mitochondria in compartmentalization of Ca2+ We found that mitochondria form a dense cluster that acts as a diffusion barrier between the outer segment and cell body. The cluster is surprisingly only partially surrounded by the endoplasmic reticulum, a key mediator of mitochondrial Ca2+ uptake. Blocking the uptake of Ca2+ by mitochondria causes redistribution of Ca2+ throughout the cell. Our results show that mitochondrial Ca2+ uptake in photoreceptors is complex and plays an essential role in normal function.
Collapse
|
78
|
Ronchi C, Torre E, Rizzetto R, Bernardi J, Rocchetti M, Zaza A. Late sodium current and intracellular ionic homeostasis in acute ischemia. Basic Res Cardiol 2017; 112:12. [PMID: 28101642 DOI: 10.1007/s00395-017-0602-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
Blockade of the late Na+ current (I NaL) protects from ischemia/reperfusion damage; nevertheless, information on changes in I NaL during acute ischemia and their effect on intracellular milieu is missing. I NaL, cytosolic Na+ and Ca2+ activities (Nacyt, Cacyt) were measured in isolated rat ventricular myocytes during 7 min of simulated ischemia (ISC); in all the conditions tested, effects consistently exerted by ranolazine (RAN) and tetrodotoxin (TTX) were interpreted as due to I NaL blockade. The results indicate that I NaL was enhanced during ISC in spite of changes in action potential (AP) contour; I NaL significantly contributed to Nacyt rise, but only marginally to Cacyt rise. The impact of I NaL on Cacyt was markedly enhanced by blockade of the sarcolemmal(s) Na+/Ca2+ exchanger (NCX) and was due to the presence of (Na+-sensitive) Ca2+ efflux through mitochondrial NCX (mNCX). sNCX blockade increased Cacyt and decreased Nacyt, thus indicating that, throughout ISC, sNCX operated in the forward mode, in spite of the substantial Nacyt increment. Thus, a robust Ca2+ source, other than sNCX and including mitochondria, contributed to Cacyt during ISC. Most, but not all, of RAN effects were shared by TTX. (1) The paradigm that attributes Cacyt accumulation during acute ischemia to decrease/reversal of sNCX transport may not be of general applicability; (2) I NaL is enhanced during ISC, when the effect of Nacyt on mitochondrial Ca2+ transport may substantially contribute to I NaL impact on Cacyt; (3) RAN may act mostly, but not exclusively, through I NaL blockade during ISC.
Collapse
Affiliation(s)
- Carlotta Ronchi
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Eleonora Torre
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Riccardo Rizzetto
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Joyce Bernardi
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marcella Rocchetti
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnologies and Biosciences, University Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
79
|
Mishra J, Jhun BS, Hurst S, O-Uchi J, Csordás G, Sheu SS. The Mitochondrial Ca 2+ Uniporter: Structure, Function, and Pharmacology. Handb Exp Pharmacol 2017; 240:129-156. [PMID: 28194521 PMCID: PMC5554456 DOI: 10.1007/164_2017_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex.
Collapse
Affiliation(s)
- Jyotsna Mishra
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Bong Sook Jhun
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jin O-Uchi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
80
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
81
|
Urgiles J, Nathan SR, MacMillan SN, Wilson JJ. Dinuclear nitrido-bridged ruthenium complexes bearing diimine ligands. Dalton Trans 2017; 46:14256-14263. [DOI: 10.1039/c7dt03085a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrido-bridged ruthenium complexes are synthesized via ligand substitution reactions and evaluated for mitochondrial calcium uptake inhibition.
Collapse
Affiliation(s)
- Julie Urgiles
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Sarah R. Nathan
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | | | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
82
|
Diaz-Juarez J, Suarez J, Cividini F, Scott BT, Diemer T, Dai A, Dillmann WH. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. Am J Physiol Cell Physiol 2016; 311:C1005-C1013. [PMID: 27681178 DOI: 10.1152/ajpcell.00236.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy is associated with metabolic changes, including decreased glucose oxidation (Gox) and increased fatty acid oxidation (FAox), which result in cardiac energetic deficiency. Diabetic hyperglycemia is a pathophysiological mechanism that triggers multiple maladaptive phenomena. The mitochondrial Ca2+ uniporter (MCU) is the channel responsible for Ca2+ uptake in mitochondria, and free mitochondrial Ca2+ concentration ([Ca2+]m) regulates mitochondrial metabolism. Experiments with cardiac myocytes (CM) exposed to simulated hyperglycemia revealed reduced [Ca2+]m and MCU protein levels. Therefore, we investigated whether returning [Ca2+]m to normal levels in CM by MCU expression could lead to normalization of Gox and FAox with no detrimental effects. Mouse neonatal CM were exposed for 72 h to normal glucose [5.5 mM glucose + 19.5 mM mannitol (NG)], high glucose [25 mM glucose (HG)], or HG + adenoviral MCU expression. Gox and FAox, [Ca2+]m, MCU levels, pyruvate dehydrogenase (PDH) activity, oxidative stress, mitochondrial membrane potential, and apoptosis were assessed. [Ca2+]m and MCU protein levels were reduced after 72 h of HG. Gox was decreased and FAox was increased in HG, PDH activity was decreased, phosphorylated PDH levels were increased, and mitochondrial membrane potential was reduced. MCU expression returned these parameters toward NG levels. Moreover, increased oxidative stress and apoptosis were reduced in HG by MCU expression. We also observed reduced MCU protein levels and [Ca2+]m in hearts from type 1 diabetic mice. Thus we conclude that HG-induced metabolic alterations can be reversed by restoration of MCU levels, resulting in return of [Ca2+]m to normal levels.
Collapse
Affiliation(s)
- Julieta Diaz-Juarez
- Department of Medicine, University of California, San Diego, La Jolla, California; and.,Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, México, Mexico
| | - Jorge Suarez
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Federico Cividini
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Tanja Diemer
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Anzhi Dai
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
83
|
Esterberg R, Linbo T, Pickett SB, Wu P, Ou HC, Rubel EW, Raible DW. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 2016; 126:3556-66. [PMID: 27500493 DOI: 10.1172/jci84939] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure.
Collapse
|
84
|
Kwon SK, Sando R, Lewis TL, Hirabayashi Y, Maximov A, Polleux F. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons. PLoS Biol 2016; 14:e1002516. [PMID: 27429220 PMCID: PMC4948842 DOI: 10.1371/journal.pbio.1002516] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022] Open
Abstract
Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.
Collapse
Affiliation(s)
- Seok-Kyu Kwon
- Columbia University Medical Center, Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, New York, New York, United States of America
| | - Richard Sando
- The Scripps Research Institute, Dorris Neuroscience Center, La Jolla, California, United States of America
| | - Tommy L. Lewis
- Columbia University Medical Center, Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, New York, New York, United States of America
| | - Yusuke Hirabayashi
- Columbia University Medical Center, Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, New York, New York, United States of America
| | - Anton Maximov
- The Scripps Research Institute, Dorris Neuroscience Center, La Jolla, California, United States of America
| | - Franck Polleux
- Columbia University Medical Center, Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
85
|
Roles of the mitochondrial Na(+)-Ca(2+) exchanger, NCLX, in B lymphocyte chemotaxis. Sci Rep 2016; 6:28378. [PMID: 27328625 PMCID: PMC4916421 DOI: 10.1038/srep28378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Lymphocyte chemotaxis plays important roles in immunological reactions, although the mechanism of its regulation is still unclear. We found that the cytosolic Na(+)-dependent mitochondrial Ca(2+) efflux transporter, NCLX, regulates B lymphocyte chemotaxis. Inhibiting or silencing NCLX in A20 and DT40 B lymphocytes markedly increased random migration and suppressed the chemotactic response to CXCL12. In contrast to control cells, cytosolic Ca(2+) was higher and was not increased further by CXCL12 in NCLX-knockdown A20 B lymphocytes. Chelating intracellular Ca(2+) with BAPTA-AM disturbed CXCL12-induced chemotaxis, suggesting that modulation of cytosolic Ca(2+) via NCLX, and thereby Rac1 activation and F-actin polymerization, is essential for B lymphocyte motility and chemotaxis. Mitochondrial polarization, which is necessary for directional movement, was unaltered in NCLX-knockdown cells, although CXCL12 application failed to induce enhancement of mitochondrial polarization, in contrast to control cells. Mouse spleen B lymphocytes were similar to the cell lines, in that pharmacological inhibition of NCLX by CGP-37157 diminished CXCL12-induced chemotaxis. Unexpectedly, spleen T lymphocyte chemotaxis was unaffected by CGP-37157 treatment, indicating that NCLX-mediated regulation of chemotaxis is B lymphocyte-specific, and mitochondria-endoplasmic reticulum Ca(2+) dynamics are more important in B lymphocytes than in T lymphocytes. We conclude that NCLX is pivotal for B lymphocyte motility and chemotaxis.
Collapse
|
86
|
Hohendanner F, Maxwell JT, Blatter LA. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin) 2016; 9:129-38. [PMID: 25891132 DOI: 10.1080/19336950.2015.1040966] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites 'mini'-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR.
Collapse
Key Words
- 2-APB, 2-aminoethoxydiphenyl borate
- AP, action potential
- CICR, Ca-induced Ca release
- CRU, Ca release units
- CT, central
- CaT, Ca transient
- ECC, excitation-contraction coupling
- IICR
- IICR, IP3R-induced Ca release
- IP3
- IP3R, Inositol-1,4,5-trisphosphate receptor
- LCC, L-type Ca channels
- MCU, mitochondrial Ca uniporter
- NE, nuclear envelope
- NFAT, nuclear factor of activated T cells
- NPR, nucleoplasmic reticulum
- RyR, ryanodine receptor
- SR, sarcoplasmic reticulum
- SS, subsarcolemmal
- TF50, time to half-maximal amplitude
- TZ, transition zone.
- [Ca]i, cytosolic Ca concentration
- [Ca]mito, mitochondrial Ca concentration
- atria
- excitation-contraction coupling
- j-SR, junctional SR
- mitochondria
- nj-SR, non-junctional SR
- nuclear calcium
- t-tubule, transverse tubule
Collapse
Affiliation(s)
- Felix Hohendanner
- a Department of Molecular Biophysics and Physiology ; Rush University Medical Center ; Chicago , IL USA
| | | | | |
Collapse
|
87
|
Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+. PLoS One 2016; 11:e0148359. [PMID: 26849136 PMCID: PMC4746117 DOI: 10.1371/journal.pone.0148359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.
Collapse
Affiliation(s)
- Lukas Jaroslaw Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Robert Larbig
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Leitner
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
88
|
Strokin M, Reiser G. Mitochondrial Ca2+ Processing by a Unit of Mitochondrial Ca2+ Uniporter and Na+/Ca2+ Exchanger Supports the Neuronal Ca2+ Influx via Activated Glutamate Receptors. Neurochem Res 2016; 41:1250-62. [DOI: 10.1007/s11064-015-1819-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
89
|
Gineste C, Hernandez A, Ivarsson N, Cheng AJ, Naess K, Wibom R, Lesko N, Bruhn H, Wedell A, Freyer C, Zhang SJ, Carlström M, Lanner JT, Andersson DC, Bruton JD, Wredenberg A, Westerblad H. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy. Hum Mol Genet 2015; 24:6580-7. [PMID: 26374844 PMCID: PMC4634369 DOI: 10.1093/hmg/ddv361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Rolf Wibom
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden and Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Laboratory Medicine, Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Anna Wredenberg
- Department of Laboratory Medicine, Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
90
|
Finkel T, Menazza S, Holmström KM, Parks RJ, Liu J, Sun J, Liu J, Pan X, Murphy E. The ins and outs of mitochondrial calcium. Circ Res 2015; 116:1810-9. [PMID: 25999421 DOI: 10.1161/circresaha.116.305484] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Toren Finkel
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.).
| | - Sara Menazza
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Kira M Holmström
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Randi J Parks
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Julia Liu
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Junhui Sun
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Jie Liu
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Xin Pan
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.)
| | - Elizabeth Murphy
- From the Center for Molecular Medicine (T.F., K.M.H., Julia Liu, Jie Liu) and Systems Biology Center (S.M., R.J.P., J.S., E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Laboratory of Cell Biology, National Center of Biomedical Analysis, Beijing, China (X.P.).
| |
Collapse
|
91
|
Motloch LJ, Reda S, Wolny M, Hoppe UC. UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes during Ischemia. Pharmaceuticals (Basel) 2015; 8:474-82. [PMID: 26248074 PMCID: PMC4588178 DOI: 10.3390/ph8030474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Ruthenium 360 (Ru360) has been shown to induce cardioprotective mechanisms in perfused hearts. The agent is a specific blocker of the main cardiac mitochondrial uptake mechanism, the mitochondrial calcium uniporter (MCU). UCP2, a mitochondrial membrane protein, which influences cardiac ROS formation was reported to interact with the MCU. METHODS To prove whether Ru360 affects ischemic cell injury on the singular cell level, cell viability (CV) in isolated cardiomyocytes from wild type mice (WT) was measured in a model of pelleting hypoxia (PH). To explore a possible influence of UCP2 on cellular survival, as well as on Ru360 function, cardiomyocytes from UCP2-/- mice were investigated. RESULTS During PH, Ru360 significantly improved CV in WT cardiomyocytes (Control 26.32% ± 1.58% vs. PH 13.60% ± 1.20% vs. PH+Ru360 19.98% ± 0.98%, n = 6; p < 0.05). No differences in the rate of apoptosis were observed in UCP2-/- vs. WT. In UCP2-/- cardiomyocytes, Ru360 reduced the rate of cell death. However, the effect was less pronounced compared to WT cardiomyocytes. CONCLUSION Ru360 significantly reduces hypoxic cell injury by preventing single cell apoptosis in WT cardiomyoctes. UCP2 does not affect cell survival in hypoxic cardiomyocytes, but it might modulate cardioprotective effects of Ru360 during ischemia.
Collapse
Affiliation(s)
- Lukas J Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg 5020, Austria.
| | - Uta C Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg 5020, Austria.
| |
Collapse
|
92
|
Role of the Mitochondrial Calcium Uniporter in Rat Hippocampal Neuronal Death After Pilocarpine-Induced Status Epilepticus. Neurochem Res 2015; 40:1739-46. [DOI: 10.1007/s11064-015-1657-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
|
93
|
Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, York AJ, Zhang J, Bers DM, Molkentin JD. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Rep 2015; 12:15-22. [PMID: 26119742 DOI: 10.1016/j.celrep.2015.06.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 11/16/2022] Open
Abstract
In the heart, augmented Ca(2+) fluxing drives contractility and ATP generation through mitochondrial Ca(2+) loading. Pathologic mitochondrial Ca(2+) overload with ischemic injury triggers mitochondrial permeability transition pore (MPTP) opening and cardiomyocyte death. Mitochondrial Ca(2+) uptake is primarily mediated by the mitochondrial Ca(2+) uniporter (MCU). Here, we generated mice with adult and cardiomyocyte-specific deletion of Mcu, which produced mitochondria refractory to acute Ca(2+) uptake, with impaired ATP production, and inhibited MPTP opening upon acute Ca(2+) challenge. Mice lacking Mcu in the adult heart were also protected from acute ischemia-reperfusion injury. However, resting/basal mitochondrial Ca(2+) levels were normal in hearts of Mcu-deleted mice, and mitochondria lacking MCU eventually loaded with Ca(2+) after stress stimulation. Indeed, Mcu-deleted mice were unable to immediately sprint on a treadmill unless warmed up for 30 min. Hence, MCU is a dedicated regulator of short-term mitochondrial Ca(2+) loading underlying a "fight-or-flight" response that acutely matches cardiac workload with ATP production.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Xiyuan Lu
- Department of Pharmacology, University of California-Davis, Davis, CA 95616, USA
| | - Robert N Correll
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jennifer A Schwanekamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jianyi Zhang
- Department of Medicine, Leilihei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald M Bers
- Department of Pharmacology, University of California-Davis, Davis, CA 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
94
|
Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández DE, Fritz E, Abarzua S, Martinez A, Elorza AA, Alvarez A, Court F, van Zundert B. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci 2015; 9:203. [PMID: 26106294 PMCID: PMC4460879 DOI: 10.3389/fncel.2015.00203] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which pathogenesis and death of motor neurons are triggered by non-cell-autonomous mechanisms. We showed earlier that exposing primary rat spinal cord cultures to conditioned media derived from primary mouse astrocyte conditioned media (ACM) that express human SOD1G93A (ACM-hSOD1G93A) quickly enhances Nav channel-mediated excitability and calcium influx, generates intracellular reactive oxygen species (ROS), and leads to death of motoneurons within days. Here we examined the role of mitochondrial structure and physiology and of the activation of c-Abl, a tyrosine kinase that induces apoptosis. We show that ACM-hSOD1G93A, but not ACM-hSOD1WT, increases c-Abl activity in motoneurons, interneurons and glial cells, starting at 60 min; the c-Abl inhibitor STI571 (imatinib) prevents this ACM-hSOD1G93A-mediated motoneuron death. Interestingly, similar results were obtained with ACM derived from astrocytes expressing SOD1G86R or TDP43A315T. We further find that co-application of ACM-SOD1G93A with blockers of Nav channels (spermidine, mexiletine, or riluzole) or anti-oxidants (Trolox, esculetin, or tiron) effectively prevent c-Abl activation and motoneuron death. In addition, ACM-SOD1G93A induces alterations in the morphology of neuronal mitochondria that are related with their membrane depolarization. Finally, we find that blocking the opening of the mitochondrial permeability transition pore with cyclosporine A, or inhibiting mitochondrial calcium uptake with Ru360, reduces ROS production and c-Abl activation. Together, our data point to a sequence of events in which a toxic factor(s) released by ALS-expressing astrocytes rapidly induces hyper-excitability, which in turn increases calcium influx and affects mitochondrial structure and physiology. ROS production, mediated at least in part through mitochondrial alterations, trigger c-Abl signaling and lead to motoneuron death.
Collapse
Affiliation(s)
- Fabiola Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - David Gonzalez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Diego E Hernández
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Elsa Fritz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Sebastián Abarzua
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Alexis Martinez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile ; Millennium Institute of Immunology and Immunotherapy Santiago, Chile
| | - Alejandra Alvarez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Felipe Court
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
95
|
Vadori M, Florio C, Groppo B, Cocchietto M, Pacor S, Zorzet S, Candussio L, Sava G. The antimetastatic drug NAMI-A potentiates the phenylephrine-induced contraction of aortic smooth muscle cells and induces a transient increase in systolic blood pressure. J Biol Inorg Chem 2015; 20:831-40. [DOI: 10.1007/s00775-015-1269-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/03/2015] [Indexed: 11/29/2022]
|
96
|
Yang R, Lirussi D, Thornton TM, Jelley-Gibbs DM, Diehl SA, Case LK, Madesh M, Taatjes DJ, Teuscher C, Haynes L, Rincón M. Mitochondrial Ca²⁺ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. eLife 2015; 4. [PMID: 25974216 PMCID: PMC4447996 DOI: 10.7554/elife.06376] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022] Open
Abstract
IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI:http://dx.doi.org/10.7554/eLife.06376.001 Inflammation is a normal part of the body's response to an infection or injury and it helps to start the healing process. However, if left unchecked, inflammation itself can damage tissues, and diseases such as rheumatoid arthritis are the result of uncontrolled inflammation. Certain immune cells release molecules that can either trigger or suppress inflammation. Interleukin 6 is an example of a ‘pro-inflammatory’ molecule, which regulates the activity of groups of immune cells collectively known as ‘CD4 cells’. People who are overweight or obese have higher levels of interleukin 6 than people of a healthy weight. Obesity and other metabolic conditions have been linked to problems with structures called mitochondria, which make a molecule called ATP that provides cells with the energy they need to survive. But it is not known if interleukin 6 can affect the activity of mitochondria inside CD4 cells. Now, Yang et al. have discovered that interleukin 6 can affect the mitochondria inside CD4 cells and, in doing so, have identified a new way that interleukin 6 can regulate these cells' activity. Experiments involving immune cells from mice revealed that interleukin 6 triggers a cascade of signaling events that aid the formation of so-called ‘mitochondrial respiratory chain supercomplexes’ in CD4 cells. These are groups of proteins that work together in the membranes of mitochondria and are vital for the activity of these structures. The formation of these supercomplexes maintains a large voltage difference across the membrane of the mitochondria that occurs during the later stages of CD4 cell activation. Yang et al. found that this voltage difference was not linked to the production of ATP, but that it did raise the levels of calcium ions inside the mitochondria. Further experiments revealed that these increased levels of calcium ions prolong the production of other pro-inflammatory molecules in the CD4 cells. Following the discovery of a new pathway that regulates the activity of CD4 cells, the next challenge is to see if the parts of this pathway could be targeted with drugs to help treat inflammatory diseases such as rheumatoid arthritis. Moreover, because interleukin 6 plays an active role in other diseases such as cancer, further studies of this new pathway may help explain how this molecule encourages cancers to progress and/or spread around the body. DOI:http://dx.doi.org/10.7554/eLife.06376.002
Collapse
Affiliation(s)
- Rui Yang
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | - Dario Lirussi
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | - Tina M Thornton
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | | | - Sean A Diehl
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | - Laure K Case
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, United States
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| | | | - Mercedes Rincón
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
| |
Collapse
|
97
|
Pecze L, Schwaller B. Characterization and modeling of Ca2+ oscillations in mouse primary mesothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:632-45. [DOI: 10.1016/j.bbamcr.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
98
|
Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, Zhang L, Wei J, Xie H, Zhou L, Zheng S. Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett 2014; 358:47-58. [PMID: 25541060 DOI: 10.1016/j.canlet.2014.12.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
In previous studies, we confirmed that mitofusin-2 (Mfn2) induced apoptosis in hepatocellular carcinoma (HCC) cells. However, the exact molecular mechanism remained unclear. Mfn2 expressed lower in tumour tissues, compared with adjacent non-cancer tissues. Furthermore, Mfn2 immunostaining was very weak in HCC tissue (P < 0.05) and was significantly associated with tumour size and TNM stage (P = 0.038 and 0.040, respectively), and patients with HCC with lower Mfn2 expression had a poorer prognosis. Overexpression of Mfn2 induced HepG2 cells apoptosis, reduced the mitochondrial membrane potential (ΔΨm) and endoplasmic reticulum (ER) calcium ion (Ca(2+)) concentrations, and elevated intracellular reactive oxygen species (ROS) and mitochondrial Ca(2+) concentrations. However, when HepG2 cells overexpressing Mfn2 were treated with both heparin and RU360, there was no induction of apoptosis, decline in ΔΨm or ER Ca(2+), or increase in intracellular ROS or mitochondrial Ca(2+). We also found downregulation in the expression of mitochondrial calcium uptake1 and 2 (MICU1 and MICU2) in cells transfected with Adv-Mfn2. Thus, we confirmed that Mfn2 induced apoptosis in HCC cells by triggering influx of Ca(2+) into the mitochondria from the ER.
Collapse
Affiliation(s)
- Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Qingsong Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaohu Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jingzi Yao
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaoxiang Zhu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Pengfei Huang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Lufei Zhang
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jianfeng Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
99
|
Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 2014; 593:1459-77. [PMID: 25416623 DOI: 10.1113/jphysiol.2014.283226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Schooley JF, Namboodiri AMA, Cox RT, Bünger R, Flagg TP. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake. BMC PHYSIOLOGY 2014; 14:12. [PMID: 25488103 PMCID: PMC4274725 DOI: 10.1186/s12899-014-0012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/24/2014] [Indexed: 02/02/2023]
Abstract
Background There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Results Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1–10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca2+ uptake. Moreover, pretreatment of cells with the mitochondrial Ca2+ uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Conclusions Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca2+ uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.
Collapse
Affiliation(s)
- James F Schooley
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University for the Health Sciences, Bethesda, 20814, MD, USA.
| | - Rolf Bünger
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Thomas P Flagg
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| |
Collapse
|