51
|
Kommaddi RP, Shenoy SK. Arrestins and protein ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:175-204. [PMID: 23764054 DOI: 10.1016/b978-0-12-394440-5.00007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adaptor proteins, β-arrestins 1 and 2, were originally identified as inhibitors of G protein signaling at the seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors or GPCRs). Subsequent studies have established β-arrestins as critical multifunctional 7TMR adaptors that mediate receptor trafficking and activate G protein-independent signaling pathways. 7TMR activation leads not only to the recruitment of arrestin proteins upon phosphorylation by GPCR kinases but also to β-arrestin ubiquitination. This posttranslational modification of β-arrestin is appended by specific E3 ubiquitin ligases and reversed by deubiquitinases, which are also recruited in a receptor- and agonist-specific manner. β-Arrestin ubiquitination allows it to form protein complexes with activated 7TMRs, endocytic proteins such as clathrin, and phosphorylated ERK1/2. β-Arrestin ubiquitination is dependent on its activated conformation and likely regulates timing and subcellular localization of various protein interactions during receptor trafficking and signaling. β-Arrestins also serve as adaptors that escort E3 ubiquitin ligases to mediate ubiquitination of a wide list of substrate proteins including 7TMRs and provide an added layer of regulation for defining substrate specificity in the cellular ubiquitination pathway.
Collapse
Affiliation(s)
- Reddy Peera Kommaddi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
52
|
Borroto-Escuela DO, Flajolet M, Agnati LF, Greengard P, Fuxe K. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol 2013; 117:141-64. [PMID: 24143976 DOI: 10.1016/b978-0-12-408143-7.00008-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A large body of evidence indicates that G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signaling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signaling molecules. This integrative phenomenon is reciprocal and can place also RTK signaling downstream of GPCR. Formation of either stable or transient complexes by these two important classes of membrane receptors is involved in regulating all aspects of receptor function, from ligand binding to signal transduction, trafficking, desensitization, and downregulation among others. Functional phenomena can be modulated with conformation-specific inhibitors that stabilize defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses or by means of small interfering heteroreceptor complex interface peptides. The bioluminescence resonance energy transfer (BRET) technology has emerged as a powerful method to study the structure of heteroreceptor complexes closely associated with the study of receptor-receptor interactions in such complexes. In this chapter, we provide an overview of different BRET(2) assays that can be used to study the structure of GPCR-RTK heteroreceptor complexes and their functions. Various experimental designs for optimization of these experiments are also described.
Collapse
|
53
|
Aubry L, Klein G. True arrestins and arrestin-fold proteins: a structure-based appraisal. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:21-56. [PMID: 23764049 DOI: 10.1016/b978-0-12-394440-5.00002-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Arrestin-clan proteins are folded alike, a feature responsible for their recent grouping in a single clan. In human, it includes the well-characterized visual and β-arrestins, the arrestin domain-containing proteins (ARRDCs), isoforms of the retromer subunit VPS26, and DSCR3, a protein involved in Down syndrome. A new arrestin-fold-predicted protein, RGP1, described here may join the clan. Unicellular organisms like the yeast Saccharomyces cerevisiae or the amoeba Dictyostelium discoideum harbor VPS26, DSCR3, and RGP1 isoforms as well as arrestin-related trafficking adaptors or ADCs, but true arrestins are missing. Functionally, members of the arrestin clan have generally a scaffolding role in various membrane protein trafficking events. Despite their similar structure, the mechanism of cargo recognition and internalization and the nature of recruited partners differ for the different members. Based on the recent literature, true arrestins (visual and β-arrestins), ARRDCs, and yeast ARTS are the closest from a functional point of view.
Collapse
Affiliation(s)
- Laurence Aubry
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, F-38054, Grenoble, France
| | | |
Collapse
|
54
|
Lefkowitz RJ. Arrestins Come of Age. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:3-18. [DOI: 10.1016/b978-0-12-394440-5.00001-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
55
|
McLean S, Bhattacharya M, Di Guglielmo GM. βarrestin2 interacts with TβRII to regulate Smad-dependent and Smad-independent signal transduction. Cell Signal 2012; 25:319-31. [PMID: 23069267 DOI: 10.1016/j.cellsig.2012.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/28/2022]
Abstract
The Transforming Growth Factor beta (TGFβ) signaling pathway is necessary for a variety of normal cellular processes. However, the distinct mechanisms involved in TGFβ receptor turnover and the effect on signal transduction have yet to be fully elucidated. We have previously shown that TβRIII is able to interact with the TβRII/TβRI complex to increase clathrin-dependent endocytosis and receptor half-life. Others have shown that βarrestin2 binds TβRIII to mediate TβRII/TβRIII endocytosis. To further understand the mechanism regulating TGFβ receptor signaling, we evaluated the role of βarrestin2 in TGFβ receptor signal transduction, half-life and trafficking. We have found that TβRII binds βarrestin2 in the absence of TβRIII. Furthermore, using immunofluorescence microscopy we show that βarrestin2 traffics to the early endosome with TβRII. We investigated the effect of loss of βarrestin2 on TβRII dynamics and found that loss of βarrestin2 increases steady-state levels of TβRII at the cell surface. The interaction of TβRII with βarrestin2 is involved in modulating TGFβ signal transduction, as loss of βarrestin2 increases the phosphorylation of p38 and modestly affects pSmad levels. Using a luciferase assay to assess TGFβ-dependent transcription we show that loss of βarrestin2 decreases Smad-dependent TGFβ-stimulated transcription. Furthermore, loss of βarrestin2 increases p38 signal transduction, which correlated with increased cell death via apoptosis. Overall, our results suggest a role for βarrestin2 in the regulation of Smad-dependent and independent TGFβ pathways.
Collapse
Affiliation(s)
- Sarah McLean
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | |
Collapse
|
56
|
Amritraj A, Posse de Chaves EI, Hawkes C, Macdonald RG, Kar S. Single-transmembrane domain IGF-II/M6P receptor: potential interaction with G protein and its association with cholesterol-rich membrane domains. Endocrinology 2012; 153:4784-98. [PMID: 22903618 DOI: 10.1210/en.2012-1139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The IGF-II/mannose 6-phosphate (M6P) receptor is a single-transmembrane domain glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. The receptor may also mediate certain biological effects in response to IGF-II binding by interacting with G proteins. However, the nature of the IGF-II/M6P receptor's interaction with the G protein or with G protein-coupled receptor (GPCR) interacting proteins such as β-arrestin remains unclear. Here we report that [(125)I]IGF-II receptor binding in the rat hippocampal formation is sensitive to guanosine-5'-[γ-thio]triphosphate, mastoparan, and Mas-7, which are known to interfere with the coupling of the classical GPCR with G protein. Monovalent and divalent cations also influenced [(125)I]IGF-II receptor binding. The IGF-II/M6P receptor, as observed for several GPCRs, was found to be associated with β-arrestin 2, which exhibits sustained ubiquitination after stimulation with Leu(27)IGF-II, an IGF-II analog that binds rather selectively to the IGF-II/M6P receptor. Activation of the receptor by Leu(27)IGF-II induced stimulation of extracellular signal-related kinase 1/2 via a pertussis toxin-dependent pathway. Additionally, we have shown that IGF-II/M6P receptors under normal conditions are associated mostly with detergent-resistant membrane domains, but after stimulation with Leu(27)IGF-II, are translocated to the detergent-soluble fraction along with a portion of β-arrestin 2. Collectively these results suggest that the IGF-II/M6P receptor may interact either directly or indirectly with G protein as well as β-arrestin 2, and activation of the receptor by an agonist can lead to alteration in its subcellular distribution along with stimulation of an intracellular signaling cascade.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
57
|
Por ED, Bierbower SM, Berg KA, Gomez R, Akopian AN, Wetsel WC, Jeske NA. β-Arrestin-2 desensitizes the transient receptor potential vanilloid 1 (TRPV1) channel. J Biol Chem 2012; 287:37552-63. [PMID: 22952227 DOI: 10.1074/jbc.m112.391847] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated by multiple stimuli and is implicated in a variety of pain disorders. Dynamic sensitization of TRPV1 activity by A-kinase anchoring protein 150 demonstrates a critical role for scaffolding proteins in nociception, yet few studies have investigated scaffolding proteins capable of mediating receptor desensitization. In this study, we identify β-arrestin-2 as a scaffolding protein that regulates TRPV1 receptor activity. We report β-arrestin-2 association with TRPV1 in multiple cell models. Moreover, siRNA-mediated knockdown of β-arrestin-2 in primary cultures resulted in a significant increase in both initial and repeated responses to capsaicin. Electrophysiological analysis further revealed significant deficits in TRPV1 desensitization in primary cultures from β-arrestin-2 knock-out mice compared with wild type. In addition, we found that β-arrestin-2 scaffolding of phosphodiesterase PDE4D5 to the plasma membrane was required for TRPV1 desensitization. Importantly, inhibition of PDE4D5 activity reversed β-arrestin-2 desensitization of TRPV1. Together, these results identify a new endogenous scaffolding mechanism that regulates TRPV1 ligand binding and activation.
Collapse
Affiliation(s)
- Elaine D Por
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int 2012; 2012:242764. [PMID: 22988512 PMCID: PMC3439951 DOI: 10.1155/2012/242764] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/28/2012] [Indexed: 02/08/2023] Open
Abstract
In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS) signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.
Collapse
|
59
|
Kawashima Y, Higaki K, Fukushima T, Hakuno F, Nagaishi JI, Hanaki K, Nanba E, Takahashi SI, Kanzaki S. Novel missense mutation in the IGF-I receptor L2 domain results in intrauterine and postnatal growth retardation. Clin Endocrinol (Oxf) 2012; 77:246-54. [PMID: 22309212 DOI: 10.1111/j.1365-2265.2012.04357.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND IGFs play key roles in intrauterine and postnatal growth through the IGF-I receptor (IGF-IR). We identified a family bearing a new heterozygous missense mutation at the L2 domain of IGF-IR (R431L). METHOD We analysed the nucleotide sequences of the IGF1R gene of the family. We prepared R(-) cells (fibroblasts with targeted disruption of the IGF-IR gene) expressing wild-type or R431L IGF-IR and performed functional analyses by evaluating IGF-I binding, IGF-I-stimulated DNA synthesis, tyrosine phosphorylation of IGF-IR and its substrates, and internalization by measuring [(125) I]IGF-I internalization. We also performed confocal microscopy analysis. RESULTS We identified a family bearing a new heterozygous missense mutation at the L2 domain of IGF-IR (R431L) through an 8-year-old girl and her mother, both born with intrauterine growth retardation. In experiments conducted using cells homozygously transfected with the IGF-IR R431L mutation; (i) IGF-I binding was not affected; (ii) DNA synthesis induced by IGF-I was decreased; (iii) IGF-IR internalization stimulated by IGF-I was decreased and (iv) IGF-I-stimulated tyrosine phosphorylation was reduced IGF-IR by low concentrations of IGF-I and on insulin receptor substrate (IRS)-1 and IRS-2. CONCLUSION A missense mutation (R431L) leads to the inhibition of cell proliferation, attenuation of IGF signalling and decrease in internalization of IGF-IR. The results of this study suggest a novel link between a mutation at the IGF-IR L2 domain and intrauterine and postnatal growth retardation.
Collapse
Affiliation(s)
- Yuki Kawashima
- Division of Pediatrics & Perinatology, Research Center for Bioscience and Technology, Tottori University Faculty of Medicine, Yonago, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proc Natl Acad Sci U S A 2012; 109:7055-60. [PMID: 22509025 DOI: 10.1073/pnas.1118359109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
β-Arrestins are multifunctional proteins that play central roles in G protein-coupled receptor (GPCR) trafficking and signaling. β-Arrestin1 is also recruited to the insulin-like growth factor-1 receptor (IGF-1R), a receptor tyrosine kinase (RTK), mediating receptor degradation and signaling. Because GPCR phosphorylation by GPCR-kinases (GRKs) governs interactions of the receptors with β-arrestins, we investigated the regulatory roles of the four widely expressed GRKs on IGF-1R signaling/degradation. By suppressing GRK expression with siRNA, we demonstrated that lowering GRK5/6 abolishes IGF1-mediated ERK and AKT activation, whereas GRK2 inhibition increases ERK activation and partially inhibits AKT signaling. Conversely, β-arrestin-mediated ERK signaling is enhanced by overexpression of GRK6 and diminished by GRK2. Similarly, we demonstrated opposing effects of GRK2 and -6 on IGF-1R degradation: GRK2 decreases whereas GRK6 enhances ligand-induced degradation. GRK2 and GRK6 coimmunoprecipitate with IGF-1R and increase IGF-1R serine phosphorylation, promoting β-arrestin1 association. Using immunoprecipitation, confocal microscopy, and FRET analysis, we demonstrated β-arrestin/IGF-1R association to be transient for GRK2 and stable for GRK6. Using bioinformatic studies we identified serines 1248 and 1291 as the major serine phosphorylation sites of the IGF-1R, and subsequent mutation analysis demonstrated clear effects on IGF-1R signaling and degradation, mirroring alterations by GRKs. Targeted mutation of S1248 recapitulates GRK2 modulation, whereas S1291 mutation resembles GRK6 effects on IGF-1R signaling/degradation, consistent with GRK isoform-specific serine phosphorylation. This study demonstrates distinct roles for GRK isoforms in IGF-1R signaling through β-arrestin binding with divergent functional outcomes.
Collapse
|
61
|
Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation. Proc Natl Acad Sci U S A 2012; 109:E1028-37. [PMID: 22493236 DOI: 10.1073/pnas.1112422109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been shown to activate the mitogen-activated protein kinases, ERK1/2, through both G protein-dependent and -independent mechanisms. Here, we describe a G protein-independent mechanism that unravels an unanticipated role for β-arrestins. Stimulation of the V2 vasopressin receptor (V2R) in cultured cells or in vivo in rat kidney medullar collecting ducts led to the activation of ERK1/2 through the metalloproteinase-mediated shedding of a factor activating the insulin-like growth factor receptor (IGFR). This process was found to be both Src- and β-arrestin-dependent. Whereas Src was found to act upstream of the metalloproteinase activation and be required for the release of the IGFR-activating factor, β-arrestins were found to act downstream of the IGFR transactivation. Unexpectedly, the engagement of β-arrestins by the IGFR but not by the V2R was needed to promote the vasopressin-stimulated ERK1/2 activation, indicating that a pool of β-arrestins distinct from those β-arrestins recruited to the V2R acts downstream of the receptor tyrosine kinase to activate ERK1/2. Such a dual site of action for β-arrestins helps explain the pleiotropic actions of this scaffolding protein. Given the role that V2R-stimulated ERK1/2 plays in kidney cell proliferation, this transactivation mechanism may have important implications for renal pathophysiology. Still, the role of β-arrestins downstream of a transactivation event is not limited to the V2R, because we observed a similar involvement for an unrelated GPCR (the platelet-activating factor receptor), indicating that it may be a general mechanism shared among GPCRs.
Collapse
|
62
|
Ibrahim IAAEH, Kurose H. β-arrestin-mediated signaling improves the efficacy of therapeutics. J Pharmacol Sci 2012; 118:408-12. [PMID: 22447307 DOI: 10.1254/jphs.11r10cp] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
β-Arrestins (β-arrestin-1 and β-arrestin-2) were first identified as proteins that have the ability to desensitize G protein-coupled receptors (GPCRs). However, it has recently been found that β-arrestins can activate signaling pathways independent of G protein activation. The diversity of these signaling pathways has also been recognized. This leads to an appreciation of β-arrestin-biased agonists, which is a new class of drugs that selectively activate β-arrestin-mediated signaling without G protein activation. In this review, we will discuss the recent advance of β-arrestin-mediated signaling pathways, including a brief account of different biased agonists, their pharmacological applications, and novel β-arrestin research.
Collapse
Affiliation(s)
- Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
63
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
64
|
Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 2011; 63:1001-19. [PMID: 21873412 DOI: 10.1124/pr.111.004598] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are the most effective analgesic drugs for the management of moderate or severe pain, yet their clinical use is often limited because of the onset of adverse side effects. Drugs in this class produce most of their physiological effects through activation of the μ opioid receptor; however, an increasing number of studies demonstrate that different opioids, while presumably acting at this single receptor, can activate distinct downstream responses, a phenomenon termed functional selectivity. Functional selectivity of receptor-mediated events can manifest as a function of the drug used, the cellular or neuronal environment examined, or the signaling or behavioral measure recorded. This review summarizes both in vitro and in vivo work demonstrating functional selectivity at the μ opioid receptor in terms of G protein coupling, receptor phosphorylation, interactions with β-arrestins, receptor desensitization, internalization and signaling, and details on how these differences may relate to the progression of analgesic tolerance after their extended use.
Collapse
Affiliation(s)
- Kirsten M Raehal
- Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
65
|
Taguchi K, Kobayashi T, Matsumoto T, Kamata K. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol 2011; 301:H571-83. [DOI: 10.1152/ajpheart.01189.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr308) phosphorylation and eNOS (at Ser1177) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
66
|
Aubry L, Guetta D, Klein G. The arrestin fold: variations on a theme. Curr Genomics 2011; 10:133-42. [PMID: 19794886 PMCID: PMC2699828 DOI: 10.2174/138920209787847014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 12/26/2022] Open
Abstract
Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. β-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and β-arrestins have a two-lobe, immunoglobulin-like, β-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan. This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.
Collapse
Affiliation(s)
- Laurence Aubry
- CNRS, UMR 5092, 17 rue des Martyrs, Grenoble, 38054, France
| | | | | |
Collapse
|
67
|
Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011; 32:521-33. [PMID: 21680031 DOI: 10.1016/j.tips.2011.05.002] [Citation(s) in RCA: 552] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/14/2023]
Abstract
β-Arrestins function as endocytic adaptors and mediate trafficking of a variety of cell-surface receptors, including seven-transmembrane receptors (7TMRs). In the case of 7TMRs, β-arrestins carry out these tasks while simultaneously inhibiting upstream G-protein-dependent signaling and promoting alternate downstream signaling pathways. The mechanisms by which β-arrestins interact with a continuously expanding ensemble of protein partners and perform their multiple functions including trafficking and signaling are currently being uncovered. Molecular changes at the level of protein conformation as well as post-translational modifications of β-arrestins probably form the basis for their dynamic interactions during receptor trafficking and signaling. It is becoming increasingly evident that β-arrestins, originally discovered as 7TMR adaptor proteins, indeed have much broader and more versatile roles in maintaining cellular homeostasis. In this review paper, we assess the traditional and novel functions of β-arrestins and discuss the molecular attributes that might facilitate multiple interactions in regulating cell signaling and receptor trafficking.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.
| | | |
Collapse
|
68
|
Pyne NJ, Pyne S. Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 2011; 32:443-50. [PMID: 21612832 DOI: 10.1016/j.tips.2011.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) can form platforms in which protein signalling components specific for each receptor are shared (owing to close proximity) to produce an integrated response upon engagement of ligands. RTK-GPCR signalling platforms respond to growth factors and GPCR agonists to increase gain over and above that which is normally produced by separate receptors. They can also function to change the spatial context of signalling in response to growth factor activation. The function of RTK-GPCR signalling platforms can be modulated with conformational-specific inhibitors that stabilise defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses. In this paper, we provide an opinion of the biology and unusual pharmacology of RTK-GPCR signalling platforms and make comparisons with a more traditional model of crosstalk between RTKs and GPCRs.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | | |
Collapse
|
69
|
Perrault R, Wright B, Storie B, Hatherell A, Zahradka P. Tyrosine kinase-independent activation of extracellular-regulated kinase (ERK) 1/2 by the insulin-like growth factor-1 receptor. Cell Signal 2011; 23:739-46. [DOI: 10.1016/j.cellsig.2010.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
70
|
Lukashova V, Szabó EZ, Jinadasa T, Mokhov A, Litchfield DW, Orlowski J. CK2 phosphorylation of an acidic Ser/Thr di-isoleucine motif in the Na+/H+ exchanger NHE5 isoform promotes association with beta-arrestin2 and endocytosis. J Biol Chem 2011; 286:11456-68. [PMID: 21296876 DOI: 10.1074/jbc.m110.182881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Internalization of the Na(+)/H(+) exchanger NHE5 into recycling endosomes is enhanced by the endocytic adaptor proteins β-arrestin1 and -2, best known for their preferential recognition of ligand-activated G protein-coupled receptors (GPCRs). However, the mechanism underlying their atypical association with non-GPCRs, such as NHE5, is unknown. In this study, we identified a highly acidic, serine/threonine-rich, di-isoleucine motif (amino acids 697-723) in the cytoplasmic C terminus of NHE5 that is recognized by β-arrestin2. Gross deletions of this site decreased the state of phosphorylation of NHE5 as well as its binding and responsiveness to β-arrestin2 in intact cells. More refined in vitro analyses showed that this site was robustly phosphorylated by the acidotropic protein kinase CK2, whereas other kinases, such as CK1 or the GPCR kinase GRK2, were considerably less potent. Simultaneous mutation of five Ser/Thr residues within 702-714 to Ala ((702)ST/AA(714)) abolished phosphorylation and binding of β-arrestin2. In transfected cells, the CK2 catalytic α subunit formed a complex with NHE5 and decreased wild-type but not (702)ST/AA(714) NHE5 activity, further supporting a regulatory role for this kinase. The rate of internalization of (702)ST/AA(714) was also diminished and relatively insensitive to overexpression of β-arrestin2. However, unlike in vitro, this mutant retained its ability to form a complex with β-arrestin2 despite its lack of responsiveness. Additional mutations of two di-isoleucine-based motifs (I697A/L698A and I722A/I723A) that immediately flank the acidic cluster, either separately or together, were required to disrupt their association. These data demonstrate that discrete elements of an elaborate sorting signal in NHE5 contribute to β-arrestin2 binding and trafficking along the recycling endosomal pathway.
Collapse
|
71
|
Boucher J, Macotela Y, Bezy O, Mori MA, Kriauciunas K, Kahn CR. A kinase-independent role for unoccupied insulin and IGF-1 receptors in the control of apoptosis. Sci Signal 2010; 3:ra87. [PMID: 21139139 DOI: 10.1126/scisignal.2001173] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) act as antiapoptotic hormones. We found that, unexpectedly, double-knockout (DKO) cells that lacked both insulin and IGF-1 receptors (IR and IGF1R, respectively) were resistant to apoptosis induced through either the intrinsic or the extrinsic pathway. This resistance to apoptosis was associated with decreased abundance of the proapoptotic protein Bax and increases in abundance of the antiapoptotic proteins Bcl-2, Bcl-xL, XIAP, and Flip. These changes in protein abundance involved primarily posttranscriptional mechanisms. Restoration of IR or IGF1R to DKO cells also restored their sensitivity to apoptosis. Notably, expression of a catalytically inactive mutant form of the IR also restored susceptibility to apoptosis. Thus, IR and IGF1R have bidirectional roles in the control of cell survival and can be viewed as dependence receptors. Insulin and IGF-1 binding stimulates receptor tyrosine kinase activity and blocks apoptosis, whereas unliganded IR and IGF1R, acting through a mechanism independent of their catalytic activity, exert a permissive effect on cell death.
Collapse
Affiliation(s)
- Jeremie Boucher
- Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
72
|
Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ. Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 2010; 285:30115-25. [PMID: 20650893 PMCID: PMC2943294 DOI: 10.1074/jbc.m110.141549] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins, originally discovered to desensitize activated G protein-coupled receptors, (aka seven-transmembrane receptors, 7TMRs) also mediate 7TMR internalization and G protein-independent signaling via these receptors. More recently, several regulatory roles of β-arrestins for atypical 7TMRs and non-7TM receptors have emerged. Here, we uncover an entirely novel regulatory role of β-arrestins in cross-talk between the angiotensin receptor (AT1aR) and a member of the transient receptor potential (TRP) ion channel family, TRPV4. AT1aR and TRPV4 form a constitutive complex in the plasma membrane, and angiotensin stimulation leads to recruitment of β-arrestin 1 to this complex. Surprisingly, angiotensin stimulation results in ubiquitination of TRPV4, a process that requires β-arrestin 1, and subsequently to internalization and functional down-regulation of TRPV4. β-Arrestin 1 interacts with, and acts as an adaptor for AIP4, an E3 ubiquitin ligase responsible for TRPV4 ubiquitination. Thus, our data provide the first evidence of a functional link between β-arrestins and TRPV4 and uncovers an entirely novel mechanism to maintain appropriate intracellular Ca2+ concentration to avoid excessive Ca2+ signaling.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010; 62:305-30. [PMID: 20427692 DOI: 10.1124/pr.109.002436] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective "biased agonists" is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, USA
| | | |
Collapse
|
74
|
Palmitessa A, Benovic JL. Arrestin and the multi-PDZ domain-containing protein MPZ-1 interact with phosphatase and tensin homolog (PTEN) and regulate Caenorhabditis elegans longevity. J Biol Chem 2010; 285:15187-15200. [PMID: 20207731 DOI: 10.1074/jbc.m110.104612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Arrestins are multifunctional adaptor proteins best known for their role in regulating G protein-coupled receptor signaling. Arrestins also regulate other types of receptors, including the insulin-like growth factor receptor (IGF-1R), although the mechanism by which this occurs is not well understood. In Caenorhabditis elegans, the IGF-1R ortholog DAF-2 regulates dauer formation, stress resistance, metabolism, and lifespan through a conserved signaling cascade. To further elucidate the role of arrestin in IGF-1R signaling, we employed an in vivo approach to investigate the role of ARR-1, the sole arrestin ortholog in C. elegans, on longevity. Here, we report that ARR-1 functions to positively regulate DAF-2 signaling in C. elegans. arr-1 mutant animals exhibit increased longevity and enhanced nuclear localization of DAF-16, an indication of decreased DAF-2 signaling, whereas animals overexpressing ARR-1 have decreased longevity. Genetic and biochemical analysis reveal that ARR-1 functions to regulate DAF-2 signaling via direct interaction with MPZ-1, a multi-PDZ domain-containing protein, via a C-terminal PDZ binding domain in ARR-1. Interestingly, ARR-1 and MPZ-1 are found in a complex with the phosphatase and tensin homolog (PTEN) ortholog DAF-18, which normally serves as a suppressor of DAF-2 signaling, suggesting that these three proteins work together to regulate DAF-2 signaling. Our results suggest that the ARR-1-MPZ-1-DAF-18 complex functions to regulate DAF-2 signaling in vivo and provide insight into a novel mechanism by which arrestin is able to regulate IGF-1R signaling and longevity.
Collapse
Affiliation(s)
- Aimee Palmitessa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
75
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
76
|
Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ. Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 2009; 17:443-58. [PMID: 19853559 DOI: 10.1016/j.devcel.2009.09.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arrestins were identified as mediators of G protein-coupled receptor (GPCR) desensitization and endocytosis. However, it is now clear that they scaffold many intracellular signaling networks to modulate the strength and duration of signaling by diverse types of receptors--including those relevant to the Hedgehog, Wnt, Notch, and TGFbeta pathways--and downstream kinases such as the MAPK and Akt/PI3K cascades. The involvement of arrestins in many discrete developmental signaling events suggests an indispensable role for these multifaceted molecular scaffolds.
Collapse
Affiliation(s)
- Jeffrey J Kovacs
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
77
|
Eisinger DA, Ammer H. Down-regulation of c-Cbl by morphine accounts for persistent ERK1/2 signaling in delta-opioid receptor-expressing HEK293 cells. J Biol Chem 2009; 284:34819-28. [PMID: 19828455 DOI: 10.1074/jbc.m109.042937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Opioids display ligand-specific differences in the time course of ERK1/2 signaling. Whereas full agonists, like etorphine, induce only transient activation of ERK1/2, the partial agonist morphine mediates persistent stimulation of mitogenic signaling. Here we report that in stably delta-opioid receptor (DOR)-expressing HEK293 (HEK/DOR) cells, the transient nature of etorphine-induced ERK1/2 signaling is due to desensitization of epidermal growth factor (EGF) receptor-mediated activation of the Ras/Raf-1/ERK1/2 cascade. Desensitization of ERK1/2 activity by etorphine is associated with down-regulation of EGF receptors, an effect mediated by the ubiquitin ligase c-Cbl. In contrast, chronic morphine treatment failed to desensitize EGF receptors, resulting in unimpeded ERK1/2 signaling. The failure of morphine to desensitize ERK1/2 signaling is mediated by persistent activation of c-Src, which induces degradation of c-Cbl. The role of c-Src in opioid-specific ERK1/2 signaling is further demonstrated by pretreatment of the cells with PP2 and SKI-I as well as overexpression of a dominant negative c-Src mutant (c-Src(dn)) or a c-Src-resistant c-Cbl mutant (CblY3F), both of which facilitate desensitization of ERK1/2 signaling by morphine. Conversely, overexpression of c-Src as well as down-regulation of c-Cbl by small interfering RNA results in persistent etorphine-induced stimulation of ERK1/2 activity. Subcellular fractionation experiments finally attributed the ability of morphine to persistently activate c-Src to its redistribution from Triton X-100-insensitive membrane rafts to DOR and EGF receptor containing high density membrane compartments implicated in ERK1/2 signaling. These results demonstrate that agonist-specific differences in the temporal and spatial pattern of c-Src activation determine the kinetics of DOR-mediated regulation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, 80539 Muenchen, Germany.
| | | |
Collapse
|
78
|
Broussas M, Dupont J, Gonzalez A, Blaecke A, Fournier M, Corvaïa N, Goetsch L. Molecular mechanisms involved in activity of h7C10, a humanized monoclonal antibody, to IGF-1 receptor. Int J Cancer 2009; 124:2281-93. [PMID: 19165858 DOI: 10.1002/ijc.24186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
IGF-1 receptor (IGF-1R) plays a key role in the development of numerous tumors. Blockade of IGF-1R axis using monoclonal antibodies constitutes an interesting approach to inhibit tumor growth. We have previously shown that h7C10, a humanized anti-IGF-1R Mab, exhibited potent antitumor activity in vivo. However, mechanisms of action of h7C10 are still unknown. Here, we showed that h7C10 inhibited IGF-1-induced IGF-1R phosphorylation in a dose-dependent manner. Also, h7C10 abolished IGF-1-induced activation of PI3K/AKT and MAPK pathways. Cell cycle progression and colony formation were affected in the presence of h7C10 probably because of the inhibition of IGF-1-induced cyclin D1 and E expression. In addition, we demonstrated that h7C10 induced a rapid IGF-1R internalization leading to an accumulation into cytoplasm resulting in receptor degradation. Using lysosome and proteasome inhibitors, we observed that the IGF-1R alpha- and beta-chains could follow different degradation routes. Thus, we demonstrated that antitumoral properties of h7C10 are the result of IGF-1-induced cell signaling inhibition and down-regulation of IGF-1R level suggesting that h7C10 could be a candidate for therapeutic applications.
Collapse
Affiliation(s)
- Matthieu Broussas
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, BP 60497, Saint-Julien-en-Genevois, France.
| | | | | | | | | | | | | |
Collapse
|
79
|
Thomas R, Kim MH. A HIF-1alpha-dependent autocrine feedback loop promotes survival of serum-deprived prostate cancer cells. Prostate 2009; 69:263-75. [PMID: 19016246 DOI: 10.1002/pros.20885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We previously reported that normoxic, serum-deprived prostate cancer (PCa) cells upregulate hypoxia-inducible factor-1alpha (HIF-1alpha) protein, which promotes survival during serum deprivation via insulin-like growth factor-2 (IGF-2) upregulation. This study investigated the molecular mechanism of autocrine regulation of HIF-1alpha, IGF-2 and cell survival in serum-deprived PC-3 and LNCaP PCa cells. METHODS Cell viability was assessed by trypan blue assay. PI3K activity was inhibited with LY294002, and PTEN overexpression. mRNA was assessed by RT-PCR, and IGF-2 protein by ELISA. Activated insulin-like growth factor-I receptor (IGF-IR) was detected by probing immunoprecipitated IGF-IR for phospho-tyrosine. IGF-IR activity was inhibited with IGF-2 neutralizing antibody and IGF-IR-specific siRNA. HIF-1alpha, phospho-Akt, total-Akt and IGF-IR protein was assessed by immunoblots. HIF-1alpha was suppressed with siRNA. RESULTS We detected a time-dependent increase in Akt activation during serum deprivation, and inhibition of Akt activation attenuated the serum deprivation-mediated increase in HIF-1alpha and cell survival. Importantly, IGF-2 secretion significantly increased during serum deprivation, and was accompanied by increased activation of its receptor, IGF-IR. Additionally, inhibition of IGF-2 activity markedly attenuated the serum deprivation-mediated increase in IGF-IR and Akt activation, HIF-1alpha expression, and also its own transcription, suggesting autocrine regulation of HIF-1alpha expression via IGF-2. Cross-talk between IGF-2/ IGF-IR system and PI3K-Akt pathway was further demonstrated by findings wherein IGF-IR suppression inhibited Akt activation, and IGF-IR activation was inhibited following PI3K inhibition. Furthermore, HIF-1alpha suppression attenuated the serum deprivation-mediated increase in Akt and IGF-IR activation. CONCLUSION Collectively, our study demonstrates existence of a pro-survival HIF-1alpha-dependent autocrine feedback loop in normoxic, serum-deprived PCa cells.
Collapse
Affiliation(s)
- Rusha Thomas
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
80
|
Sehat B, Andersson S, Girnita L, Larsson O. Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 2008; 68:5669-77. [PMID: 18632619 DOI: 10.1158/0008-5472.can-07-6364] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-like growth factor receptor (IGF-IR) plays several pivotal roles in cancer. Although most studies on the function of the IGF-IR have been attributed to kinase-dependent signaling, recent findings by our group and others have implicated biological roles mediated by ubiquitination of the receptor. As previously reported, the E3 ligases Mdm2 and Nedd4 mediate IGF-IR ubiquitination. Here we show that c-Cbl is a novel E3 ligase for IGF-IR. On ligand stimulation, both Mdm2 and c-Cbl associate with IGF-IR and mediate receptor polyubiquitination. Whereas Mdm2 catalyzed lysine 63 (K63) chain ubiquitination, c-Cbl modified IGF-IR through K48 chains. Mdm2-mediated ubiquitination occurred when cells were stimulated with a low concentration (5 ng/mL) of IGF-I, whereas c-Cbl required high concentrations (50-100 ng/mL). Mdm2-ubiquitinated IGF-IR was internalized through the clathrin endocytic pathway whereas c-Cbl-ubiquitinated receptors were endocytosed via the caveolin route. Taken together, our results show that c-Cbl constitutes a new ligase responsible for the ubiquitination of IGF-IR and that it complements the action of Mdm2 on ubiquitin lysine residue specificity, responsiveness to IGF-I, and type of endocytic pathway used. The actions and interactions of Mdm2 and c-Cbl in the ubiquitination and endocytosis of IGF-IR may have implications in cancer. In addition, identification and functional characterization of new E3 ligases are important in itself because therapeutic targeting of substrate-specific E3 ligases is likely to represent a critical strategy in future cancer treatment.
Collapse
Affiliation(s)
- Bita Sehat
- Department of Oncology and Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
81
|
Monami G, Emiliozzi V, Morrione A. Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 2008; 216:426-37. [PMID: 18286479 DOI: 10.1002/jcp.21405] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The adaptor protein Grb10 is an interacting partner of the IGF-I receptor (IGF-IR) and the insulin receptor (IR). Previous work from our laboratory has established the role of Grb10 as a negative regulator of IGF-IR-dependent cell proliferation. We have shown that Grb10 binds the E3 ubiquitin ligase Nedd4 and promotes IGF-I-stimulated ubiquitination, internalization, and degradation of the IGF-IR, thereby giving rise to long-term attenuation of signaling. Recent biochemical evidence suggests that tyrosine-kinase receptors (RTK) may not be polyubiquitinated but monoubiquitinated at multiple sites (multiubiquitinated). However, the type of ubiquitination of the IGF-IR is still not defined. Here we show that the Grb10/Nedd4 complex upon ligand stimulation mediates multiubiquitination of the IGF-IR, which is required for receptor internalization. Moreover, Nedd4 by promoting IGF-IR ubiquitination and internalization contributes with Grb10 to negatively regulate IGF-IR-dependent cell proliferation. We also demonstrate that the IGF-IR is internalized through clathrin-dependent and-independent pathways. Grb10 and Nedd4 remain associated with the IGF-IR in early endosomes and caveosomes, where they may participate in sorting internalized receptors. Grb10 and Nedd4, unlike the IGF-IR, which is targeted for lysosomal degradation are not degraded and likely directed into recycling endosomes. These results indicate that Grb10 and Nedd4 play a critical role in mediating IGF-IR down-regulation by promoting ligand-dependent multiubiquitination of the IGF-IR, which is required for receptor internalization and regulates mitogenesis.
Collapse
Affiliation(s)
- Giada Monami
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
82
|
Abstract
The lysosomal cysteine proteinase cathepsin L is involved in proteolytic processing of internalized proteins. In transformed cells, where it is frequently overexpressed, its intracellular localization and functions can be altered. Previously, we reported that treatment of highly metastatic, murine carcinoma H-59 cells with small molecule cysteine proteinase inhibitors altered the responsiveness of the type I insulin-like growth factor (IGF-I) receptor and consequently reduced cell invasion and metastasis. To assess more specifically the role of cathepsin L in IGF-I-induced signaling and tumorigenicity, we generated H-59 subclones with reduced cathepsin L expression levels. These clonal lines showed an altered responsiveness to IGF-I in vitro, as evidenced by (i) loss of IGF-I-induced receptor phosphorylation and Shc recruitment, (ii) reduced IGF-I (but not IGF-II)-induced cellular proliferation and migration, (iii) decreased anchorage-independent growth and (iv) reduced plasma membrane levels of IGF-IR. These changes resulted in increased apoptosis in vivo and an impaired ability of the cells to form liver metastases. The results demonstrate that cathepsin L expression levels regulate cell responsiveness to IGF-I and thereby identify a novel function for cathepsin L in the control of the tumorigenic/metastatic phenotype.
Collapse
|
83
|
Wang P, Kumar P, Wang C, Defea KA. Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 alpha and beta by protease-activated receptor 2 and beta-arrestins. Biochem J 2007; 408:221-30. [PMID: 17680774 PMCID: PMC2267348 DOI: 10.1042/bj20070483] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Galphaq/Ca2+-dependent activation and beta-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of beta-arrestins in the regulation of PI3K activity. Whereas the ability of beta-arrestin-1 to inhibit p110alpha (PI3K catalytic subunit alpha) has been demonstrated, the role of beta-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110alpha and p110beta) associated with p85alpha (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110alpha- and p110beta-associated lipid kinase activities, and both p110alpha and p110beta are inhibited by over-expression of either beta-arrestin-1 or -2; (ii) both beta-arrestin-1 and -2 directly inhibit the p110alpha catalytic subunit in vitro, whereas only beta-arrestin-2 directly inhibited p110beta; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) beta-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that beta-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two beta-arrestins differ in their ability to inhibit the p110alpha and p110beta catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for beta-arrestin-dependent signalling events.
Collapse
Affiliation(s)
- Ping Wang
- Division of Biomedical Sciences, Cell, Molecular and Developmental Biology Program and Biochemistry and Molecular Biology Program, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
84
|
Delcourt N, Bockaert J, Marin P. GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol Sci 2007; 28:602-7. [PMID: 18001849 DOI: 10.1016/j.tips.2007.09.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 02/03/2023]
Abstract
A large body of evidence indicates that agonists of some G protein-coupled receptors (GPCRs) can activate growth factor receptor tyrosine kinases (RTKs) in the absence of added growth factor. This phenomenon, called transactivation, is an important pathway that contributes to growth-promoting activity of many GPCR ligands. Reciprocally, recent advances indicate that RTKs utilize GPCR signalling molecules to transduce signals and that RTK ligands themselves can transactivate GPCRs. This novel transactivation process, which places GPCR signalling downstream of RTKs, either requires the production of a GPCR ligand of the transactivated GPCR or occurs in a ligand independent manner within an integrated signalling network. Here, we provide an overview of the molecular mechanisms involved in this novel cross-communication between GPCRs and RTKs and discuss its relevance in the specification of growth factor signalling and functions.
Collapse
Affiliation(s)
- Nicolas Delcourt
- Institut de Génomique Fonctionnelle, Universités de Montpellier, CNRS UMR 5203, 141 rue de la Cardonille, Montpellier CEDEX 5, F-34094, France
| | | | | |
Collapse
|
85
|
Bakshi K, Mercier RW, Pavlopoulos S. Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin-2. FEBS Lett 2007; 581:5009-16. [PMID: 17910957 PMCID: PMC2151313 DOI: 10.1016/j.febslet.2007.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/21/2022]
Abstract
Desensitization of the cannabinoid CB1 receptor is mediated by the interaction with arrestin. In this study, we report the structural changes of a synthetic diphosphorylated peptide corresponding to residues 419-439 of the CB1 C-terminus upon binding to arrestin-2. This segment is pivotal to the desensitization of CB1. Using high-resolution proton NMR, we observe two helical segments in the bound peptide that are separated by the presence a glycine residue. The binding we observe is with a diphoshorylated peptide, whereas a previous study reported binding of a highly phosphorylated rhodopsin fragment to visual arrestin. The arrestin bound conformations of the peptides are compared.
Collapse
Affiliation(s)
- Kunal Bakshi
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269 USA
| | - Richard W. Mercier
- Center for Drug Discovery, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269 USA
| | - Spiro Pavlopoulos
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269 USA
- * Corresponding Author Dr. Spiro Pavlopoulos, University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, 69 North Eagleville Road, U-3092, Storrs, CT 06269 USA, Ph: 860 486 5413, Fax: 860 486 6857,
| |
Collapse
|
86
|
Kimura T, Allen PB, Nairn AC, Caplan MJ. Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase. Mol Biol Cell 2007; 18:4508-18. [PMID: 17804821 PMCID: PMC2043564 DOI: 10.1091/mbc.e06-08-0711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 epsilon, and spinophilin directly associate with the Na(+),K(+)-ATPase and that the associations with arrestins, GRKs, or 14-3-3 epsilon are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na(+),K(+)-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of beta-arrestins accelerated internalization of the Na(+),K(+)-ATPase endocytosis. We also find that GRKs phosphorylate the Na(+),K(+)-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 epsilon, and spinophilin may be important modulators of Na(+),K(+)-ATPase trafficking.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
87
|
Lee NY, Blobe GC. The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem 2007; 282:21507-17. [PMID: 17540773 DOI: 10.1074/jbc.m700176200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In endothelial cells, transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation and migration, the ALK-1/Smads 1/5/8 pathway and the ALK-5/Smads 2/3 pathway. TGF-beta signaling through these pathways is further regulated in endothelial cells by the endothelial specific TGF-beta superfamily co-receptor, endoglin. The importance of endoglin, ALK-1, and ALK-5 in endothelial biology is underscored by the embryonic lethal phenotypes of knock-outs in mice due to defects in angiogenesis, and by the presence of disease-causing mutations in these genes in human vascular diseases. However, the mechanism of action of endoglin is not well defined. Here we define a novel interaction between endoglin and the scaffolding protein beta-arrestin2. Both co-immunoprecipitation and fluorescence confocal studies demonstrate the specific interaction between endoglin and beta-arrestin2 in endothelial cells, enhanced by ALK-1 and to a lesser extent by the type II TGF-beta receptor. The endoglin/beta-arrestin2 interaction results in endoglin internalization and co-accumulation of endoglin and beta-arrestin2 in endocytic vesicles. Whereas endoglin did not have a direct impact on either Smad 2/3 or Smad 1/5/8 activation, endoglin antagonized TGF-beta-mediated ERK signaling, altered the subcellular distribution of activated ERK, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with beta-arrestin2. Reciprocally, small interfering RNA-mediated silencing of endogenous beta-arrestin2 expression restored TGF-beta-mediated ERK activation and increased endothelial cell migration in an endoglin-dependent manner. These studies define a novel function for endoglin, and further expand the roles mediated by the ubiquitous scaffolding protein beta-arrestin2.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
88
|
Abstract
Upon their discovery, beta-arrestins 1 and 2 were named for their capacity to sterically hinder the G protein coupling of agonist-activated seven-transmembrane receptors, ultimately resulting in receptor desensitization. Surprisingly, recent evidence shows that beta-arrestins can also function to activate signaling cascades independently of G protein activation. By serving as multiprotein scaffolds, the beta-arrestins bring elements of specific signaling pathways into close proximity. beta-Arrestin regulation has been demonstrated for an ever-increasing number of signaling molecules, including the mitogen-activated protein kinases ERK, JNK, and p38 as well as Akt, PI3 kinase, and RhoA. In addition, investigators are discovering new roles for beta-arrestins in nuclear functions. Here, we review the signaling capacities of these versatile adapter molecules and discuss the possible implications for cellular processes such as chemotaxis and apoptosis.
Collapse
Affiliation(s)
- Scott M DeWire
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
89
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
90
|
Kumar P, Lau CS, Mathur M, Wang P, DeFea KA. Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Am J Physiol Cell Physiol 2007; 293:C346-57. [PMID: 17442737 DOI: 10.1152/ajpcell.00010.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Beta-arrestins-1 and 2 are known to play important roles in desensitization of membrane receptors and facilitation of signal transduction pathways. It has been previously shown that beta-arrestins are required for signal termination, internalization, and ERK1/2 activation downstream of protease-activated-receptor-2 (PAR-2), but it is unclear whether they are functionally redundant or mediate specific events. Here, we demonstrate that in mouse embryonic fibroblasts (MEFs) from beta-arrestin-1/2 knockout mice, G alpha q signaling by PAR-2, as measured by mobilization of intracellular Ca(2+), is prolonged. Only expression of beta-arrestin-1 shortened the signal duration, whereas either beta-arrestin-1 or 2 was able to restore PKC-induced receptor desensitization. Beta-arrestin-1 also mediated early, while beta-arrestin-2 mediated delayed, receptor internalization and membrane-associated ERK1/2 activation. While beta-arrestin-1 colocalized with a lysosomal marker (LAMP-1), beta-arrestin-2 did not, suggesting a specific role for beta-arrestin-1 in lysosomal receptor degradation. Together, these data suggest distinct temporal and functional roles for beta-arrestins in PAR-2 signaling, desensitization, and internalization.
Collapse
Affiliation(s)
- P Kumar
- Div. of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
91
|
Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Vasilcanu D, Girnita A, Lefkowitz RJ, Larsson O. Beta-arrestin and Mdm2 mediate IGF-1 receptor-stimulated ERK activation and cell cycle progression. J Biol Chem 2007; 282:11329-38. [PMID: 17303558 DOI: 10.1074/jbc.m611526200] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-arrestin1, which regulates many aspects of seven transmembrane receptor (7TMR) biology, has also been shown to serve as an adaptor, which brings Mdm2, an E3 ubiquitin ligase to the insulin-like growth factor-1 receptor (IGF-1R), leading to its proteasome-dependent destruction. Here we demonstrate that IGF-1R stimulation also leads to ubiquitination of beta-arrestin1, which regulates vesicular trafficking and activation of ERK1/2. This beta-arrestin1-dependent ERK activity can occur even when the classical tyrosine kinase signaling is impaired. siRNA-mediated suppression of beta-arrestin1 in human melanoma cells ablates IGF-1-stimulated ERK and prolongs the G1 phase of the cell cycle. These data suggest that beta-arrestin-dependent ERK signaling by the IGF-1R regulates cell cycle progression and may thus be an important regulator of the growth of normal and malignant cells.
Collapse
Affiliation(s)
- Leonard Girnita
- Department of Oncology and Pathology, Division of Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska Hospital, SE-171 76 Stockholm, Sweden, and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Affiliation(s)
- Eileen F Grady
- UCSF Center for the Neurobiology of Digestive Disease, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
93
|
Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28:20-47. [PMID: 16931767 DOI: 10.1210/er.2006-0001] [Citation(s) in RCA: 730] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IGF-I receptor (IGF-IR) signaling and functions are mediated through the activities of a complex molecular network of positive (e.g., type I IGF) and negative (e.g., the type II IGF receptor, IGF-IIR) effectors. Under normal physiological conditions, the balance between the expression and activities of these molecules is tightly controlled. Changes in this delicate balance (e.g., overexpression of one effector) may trigger a cascade of molecular events that can ultimately lead to malignancy. In recent years, evidence has been mounting that the IGF axis may be involved in human cancer progression and can be targeted for therapeutic intervention. Here we review old and more recent evidence on the role the IGF system in malignancy and highlight experimental and clinical studies that provide novel insights into the complex mechanisms that contribute to its oncogenic potential. Controversies arising from conflicting evidence on the relevance of IGF-IR and its ligands to human cancer are discussed. Our review highlights the importance of viewing the IGF axis as a complex multifactorial system and shows that changes in the expression levels of any one component of the axis, in a given malignancy, should be interpreted with caution and viewed in a wider context that takes into account the expression levels, state of activation, accessibility, and functionality of other interacting components. Because IGF targeting for anticancer therapy is rapidly becoming a clinical reality, an understanding of this complexity is timely because it is likely to have an impact on the design, mode of action, and clinical outcomes of newly developed drugs.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Room H6.25687, Pine Avenue West, Montreal, Québec, Canada H3A 1A1
| | | | | | | |
Collapse
|
94
|
Abstract
The arrestins are a small family of proteins that regulate the signaling and trafficking of G-protein-coupled receptors and also serve as ubiquitous signaling regulators in the cytoplasm and nucleus. In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also found in insects, protochordates and nematodes. Fungi and protists have related proteins but do not have true arrestins. Structural information is available only for free (unbound) vertebrate arrestins, and shows that the conserved overall fold is elongated and composed of two domains, with the core of each domain consisting of a seven-stranded β-sandwich. Two main intramolecular interactions keep the two domains in the correct relative orientation, but both of these interactions are destabilized in the process of receptor binding, suggesting that the conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR subtypes, arrestins interact with other classes of membrane receptors and more than 20 surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling regulators in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Nashville, TN 37232, USA
| |
Collapse
|
95
|
Lefkowitz RJ, Rajagopal K, Whalen EJ. New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 2007; 24:643-652. [PMID: 17157248 DOI: 10.1016/j.molcel.2006.11.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
beta-arrestins, originally discovered as molecules that bind to and desensitize the activated and phosphorylated form of the G protein-coupled beta2-adrenergic receptor (beta2-AR), have recently emerged as multifunctional adaptor/scaffold proteins that dynamically assemble a wide range of multiprotein complexes in response to stimulation of most seven-transmembrane receptors (7TMRs). These complexes mediate receptor signaling, trafficking, and degradation. Moreover, beta-arrestins are increasingly found to perform analogous functions for receptors from structurally diverse classes, including atypical 7TMRs such as frizzled and smoothened, the nicotinic cholinergic receptors, receptor tyrosine kinases, and cytokine receptors, thereby regulating a growing list of cellular processes such as chemotaxis, apoptosis, and metastasis.
Collapse
Affiliation(s)
- Robert J Lefkowitz
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710; Department of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.
| | - Keshava Rajagopal
- Department of Surgery, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Erin J Whalen
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
96
|
Moughal NA, Waters CM, Valentine WJ, Connell M, Richardson JC, Tigyi G, Pyne S, Pyne NJ. Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. J Neurochem 2006; 98:1920-9. [PMID: 16945108 DOI: 10.1111/j.1471-4159.2006.04009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here a novel role for the constitutively active lysophosphatidic acid receptor-1 (LPA(1)) receptor in providing Gbetagamma subunits for use by the Trk A receptor. This enhances the ability of nerve growth factor (NGF) to promote signalling and cell response. These conclusions were based on three lines of evidence. Firstly, the LPA(1) receptor was co-immunoprecipitated with the Trk A receptor from lysates, suggesting that these proteins form a complex. Secondly, Ki16425, a selective protean agonist of the LPA(1) receptor, decreased constitutive basal and LPA-induced LPA(1) receptor-stimulated GTPgammaS binding. Ki16425 reduced the LPA-induced activation of p42/p44 mitogen activated protein kinase (MAPK), while acting as a weak stimulator of p42/p44 MAPK on its own, properties typical of a protean agonist. Significantly, Ki16425 also reduced the NGF-induced stimulation of p42/p44 MAPK and inhibited NGF-stimulated neurite outgrowth. Thirdly, the over-expression of the C-terminal GRK-2 peptide, which sequesters Gbetagamma subunits, reduced the NGF-induced activation of p42/p44 MAPK. In contrast, the stimulation of PC12 cells with LPA leads to a predominant G(i)alpha2-mediated Trk A-independent activation of p42/p44 MAPK, where Gbetagamma subunits play a diminished role. These findings suggest a novel role for the constitutively active LPA(1) receptor in regulating NGF-induced neuronal differentiation.
Collapse
Affiliation(s)
- Noreen A Moughal
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Rajagopal K, Whalen EJ, Violin JD, Stiber JA, Rosenberg PB, Premont RT, Coffman TM, Rockman HA, Lefkowitz RJ. Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci U S A 2006; 103:16284-9. [PMID: 17060617 PMCID: PMC1637574 DOI: 10.1073/pnas.0607583103] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The G protein-coupled receptor kinases (GRKs) and beta-arrestins, families of molecules essential to the desensitization of G protein-dependent signaling via seven-transmembrane receptors (7TMRs), have been recently shown to also transduce G protein-independent signals from receptors. However, the physiologic consequences of this G protein-independent, GRK/beta-arrestin-dependent signaling are largely unknown. Here, we establish that GRK/beta-arrestin-mediated signal transduction via the angiotensin II (ANG) type 1A receptor (AT(1A)R) results in positive inotropic and lusitropic effects in isolated adult mouse cardiomyocytes. We used the "biased" AT(1A)R agonist [Sar(1), Ile(4), Ile(8)]-angiotensin II (SII), which is unable to stimulate G(alpha)q-mediated signaling, but which has previously been shown to promote beta-arrestin interaction with the AT(1A)R. Cardiomyocytes from WT, but not AT(1A)R-deficient knockout (KO) mice, exhibited positive inotropic and lusitropic responses to both ANG and SII. Responses of WT cardiomyocytes to ANG were dramatically reduced by protein kinase C (PKC) inhibition, whereas those to SII were unaffected. In contrast, cardiomyocytes from beta-arrestin2 KO and GRK6 KO mice failed to respond to SII, but displayed preserved responses to ANG. Cardiomyocytes from GRK2 heterozygous knockout mice (GRK2(+/-)) exhibited augmented responses to SII in comparison to ANG, whereas those from GRK5 KO mice did not differ from those from WT mice. These findings indicate the existence of independent G(alpha)q/PKC- and GRK6/beta-arrestin2-dependent mechanisms by which stimulation of the AT(1A)R can modulate cardiomyocyte function, and which can be differentially activated by selective receptor ligands. Such ligands may have potential as a novel class of therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert J. Lefkowitz
- Medicine
- Biochemistry, and
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
98
|
El-Shewy HM, Johnson KR, Lee MH, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84052-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
99
|
Abstract
Receptor tyrosine kinases (RTKs) are a unique family of cell surface receptors, each containing a common intracellular domain that has tyrosine kinase activity. However, RTKs share many signaling molecules with another unique family of cell surface receptors, the seven-transmembrane receptors (7TMRs), and these receptor families can activate similar signaling cascades. In this review of RTK signaling, we describe the role of cross talk between RTKs and 7TMRs, focusing specifically on the role played in this process by beta-arrestins and by G proteins.
Collapse
Affiliation(s)
- Christopher J Hupfeld
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
100
|
Salcedo A, Mayor F, Penela P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J 2006; 25:4752-62. [PMID: 17006543 PMCID: PMC1618114 DOI: 10.1038/sj.emboj.7601351] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 08/23/2006] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a central regulator of G-protein-coupled receptor signaling. We report that Mdm2, an E3-ubiquitin ligase involved in the control of cell growth and apoptosis, plays a key role in GRK2 degradation. Mdm2 and GRK2 association is enhanced by beta(2)-adrenergic receptor stimulation and beta-arrestin. Increased Mdm2 expression accelerates GRK2 proteolysis and promotes kinase ubiquitination at defined residues, whereas GRK2 turnover is markedly impaired in Mdm2-deficient cells. Moreover, we find that activation of the PI3K/Akt pathway by insulin-like growth factor-1 alters Mdm2-mediated GRK2 degradation, leading to enhanced GRK2 stability and increased kinase levels. These data put forward a novel mechanism for controlling GRK2 expression in physiological and pathological conditions.
Collapse
Affiliation(s)
- Alicia Salcedo
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa', Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34 91 497 4865; Fax: +34 91 497 4799; E-mail:
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular and Centro de Biología Molecular ‘Severo Ochoa', Consejo Superior de Investigaciones Científicas- Universidad Autónoma de Madrid, 28049 Madrid, Spain. Tel.: +34 91 497 4865; Fax: +34 91 497 4799; E-mail:
| |
Collapse
|