51
|
Eken A, Erdem S, Haliloglu Y, Zehra Okus F, Cakir M, Fatih Yetkin M, Akcakoyunlu M, Karayigit MO, Azizoglu ZB, Bicer A, Gur TN, Aslan K, Hora M, Oukka M, Altuntas HD, Ufuk Nalbantoglu O, Gundogdu A, Mirza M, Canatan H. Temporal overexpression of IL-22 and Reg3γ differentially impacts the severity of experimental autoimmune encephalomyelitis. Immunology 2021; 164:73-89. [PMID: 33876425 PMCID: PMC8358722 DOI: 10.1111/imm.13340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
IL-22 is an alpha-helical cytokine which belongs to the IL-10 family of cytokines. IL-22 is produced by RORγt+ innate and adaptive lymphocytes, including ILC3, γδ T, iNKT, Th17 and Th22 cells and some granulocytes. IL-22 receptor is expressed primarily by non-haematopoietic cells. IL-22 is critical for barrier immunity at the mucosal surfaces in the steady state and during infection. Although IL-22 knockout mice were previously shown to develop experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), how temporal IL-22 manipulation in adult mice would affect EAE course has not been studied previously. In this study, we overexpressed IL-22 via hydrodynamic gene delivery or blocked it via neutralizing antibodies in C57BL/6 mice to explore the therapeutic impact of IL-22 modulation on the EAE course. IL-22 overexpression significantly decreased EAE scores and demyelination, and reduced infiltration of IFN-γ+IL-17A+Th17 cells into the central nervous system (CNS). The neutralization of IL-22 did not alter the EAE pathology significantly. We show that IL-22-mediated protection is independent of Reg3γ, an epithelial cell-derived antimicrobial peptide induced by IL-22. Thus, overexpression of Reg3γ significantly exacerbated EAE scores, demyelination and infiltration of IFN-γ+IL-17A+ and IL-17A+GM-CSF+Th17 cells to CNS. We also show that Reg3γ may inhibit IL-2-mediated STAT5 signalling and impair expansion of Treg cells in vivo and in vitro. Finally, Reg3γ overexpression dramatically impacted intestinal microbiota during EAE. Our results provide novel insight into the role of IL-22 and IL-22-induced antimicrobial peptide Reg3γ in the pathogenesis of CNS inflammation in a murine model of MS.
Collapse
Affiliation(s)
- Ahmet Eken
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Serife Erdem
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Yesim Haliloglu
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Fatma Zehra Okus
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mustafa Cakir
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Medical BiologyVan Yuzuncu Yıl University School of MedicineVanTurkey
| | | | - Merve Akcakoyunlu
- Department of NeurologyErciyes University School of MedicineKayseriTurkey
| | | | - Zehra Busra Azizoglu
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Ayten Bicer
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Tugba Nur Gur
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Kubra Aslan
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mehmet Hora
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Mohamed Oukka
- Department of ImmunologyUniversity of WashingtonSeattleWAUSA
| | - Hamiyet Donmez Altuntas
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| | - Ozkan Ufuk Nalbantoglu
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Computer EngineeringFaculty of EngineeringErciyes UniversityKayseriTurkey
| | - Aycan Gundogdu
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
- Department of Microbiology and Clinical MicrobiologyErciyes University School of MedicineKayseriTurkey
| | - Meral Mirza
- Department of NeurologyErciyes University School of MedicineKayseriTurkey
| | - Halit Canatan
- Department of Medical BiologyErciyes University School of MedicineKayseriTurkey
- Betül‐Ziya Eren Genome and Stem Cell Center (GENKOK)KayseriTurkey
| |
Collapse
|
52
|
Che Y, Tian Y, Chen R, Xia L, Liu F, Su Z. IL-22 ameliorated cardiomyocyte apoptosis in cardiac ischemia/reperfusion injury by blocking mitochondrial membrane potential decrease, inhibiting ROS and cytochrome C. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166171. [PMID: 34015450 DOI: 10.1016/j.bbadis.2021.166171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/29/2023]
Abstract
Irreversible cardiomyocyte death is one of the main reasons of heart failure following cardiac injury. Therefore, controlling cardiomyocyte death is an effective method to delay the progression of cardiac disease after injury. IL-22 plays critical roles in tissue homeostasis and repair, and has become an important bridge between the immune system and specific tissues or organs. However, whether IL-22 can prevent of cardiomyocyte apoptosis from cardiac injury remains unclear. Therefore, the present work would address the above question. Our results showed that, in vitro, IL-22 prevented cardiomyocyte apoptosis induced by Angiotensin II via enhancing the activity of SOD, blocking the decrease of mitochondrial membrane potential, inhibiting ROS production and release of cytochrome C. The similar results were also found in vivo and patients. Our results shed a light on the therapy of cardiac injury.
Collapse
Affiliation(s)
- Yang Che
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
53
|
Gong J, Zhan H, Liang Y, He Q, Cui D. Role of Th22 Cells in Human Viral Diseases. Front Med (Lausanne) 2021; 8:708140. [PMID: 34434945 PMCID: PMC8381044 DOI: 10.3389/fmed.2021.708140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Naive CD4+ T cells can differentiate into different cell subsets after receiving antigen stimulation, which secrete corresponding characteristic cytokines and thereby exert biological effects in various diseases. Th22 cells, a novel subset of CD4+ T cells, are different from Th1, Th2, Th17, and Treg cell subsets, which have been discovered in recent years. They can express CCR4, CCR6, and CCR10 molecules and secrete IL-22, IL-13, and TNF-α. They are not able to secrete IL-17, IL-4, and interferon-γ (IFN-γ). IL-22 is considered as a major effector molecule of Th22 cells whose functions and mechanisms of regulating cell differentiation have been constantly improved. In this review, we provide an overview of the origin, differentiation of Th22 cells. Moreover, we also describe the interrelationships between Th22 cells and Th17, Th1, and Th2 cells. Additionally, the role of Th22 cells were discussed in human diseases with virus infection, which will provide novel insight for the prevention and treatment of viral infection in human.
Collapse
Affiliation(s)
- Jianguang Gong
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Huifang Zhan
- Department of Emergency, Zhejiang University Hospital, Hangzhou, China
| | - Yan Liang
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Qiang He
- Department of Nephrology, Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
54
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
55
|
Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021; 43:591-607. [PMID: 33851257 PMCID: PMC8443499 DOI: 10.1007/s00281-021-00854-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The human liver fulfills several vital tasks daily and possesses an impressive ability to self-regenerate. However, the capacity of this self-healing process can be exhausted by a variety of different liver diseases, such as alcoholic liver damage, viral hepatitis, or hepatocellular carcinoma. Over time, all these diseases generally lead to progressive liver failure that can become fatal if left untreated. Thus, a great effort has been directed towards the development of innovative therapies. The most recently discovered therapies often involve modifying the patient's immune system to enhance a beneficial immune response. Current data suggest that, among others, the cytokine IL-22 might be a promising therapeutical candidate. IL-22 and its endogenous antagonist, IL-22BP, have been under thorough scientific investigation for nearly 20 years. While IL-22 is mainly produced by TH22 cells, ILC3s, NKT cells, or γδ T cells, sources of IL-22BP include dendritic cells, eosinophils, and CD4+ cells. In many settings, IL-22 was shown to promote regenerative potential and, thus, could protect tissues from pathogens and damage. However, the effects of IL-22 during carcinogenesis are more ambiguous and depend on the tumor entity and microenvironment. In line with its capabilities of neutralizing IL-22 in vivo, IL-22BP possesses often, but not always, an inverse expression pattern compared to its ligand. In this comprehensive review, we will summarize past and current findings regarding the roles of IL-22 and IL-22BP in liver diseases with a particular focus on the leading causes of advanced liver failure, namely, liver infections, liver damage, and liver malignancies.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lennart Fynn Bauditz
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
56
|
Rae J, Hackney J, Huang K, Keir M, Herman A. Identification of an IL-22-Dependent Gene Signature as a Pharmacodynamic Biomarker. Int J Mol Sci 2021; 22:8205. [PMID: 34360971 PMCID: PMC8347589 DOI: 10.3390/ijms22158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Interleukin-22 (IL-22) plays a role in epithelial barrier function and repair, and may provide benefits in conditions like inflammatory bowel disease. However, limited human data are available to assess the clinical effect of IL-22 administration. This study used a human intestinal cell line to identify an IL-22-dependent gene signature that could serve as a pharmacodynamic biomarker for IL-22 therapy. The response to IL-22Fc (UTTR1147A, an Fc-stabilized version of IL-22) was assessed in HT-29 cells by microarray, and the selected responsive genes were confirmed by qPCR. HT-29 cells demonstrated dose-dependent increases in STAT3 phosphorylation and multiple gene expression changes in response to UTTR1147A. Genes were selected that were upregulated by UTTR1147A, but to a lesser extent by IL-6, which also signals via STAT3. IL-1R1 was highly upregulated by UTTR1147A, and differential gene expression patterns were observed in response to IL-22Fc in the presence of IL-1β. An IL-22-dependent gene signature was identified that could serve as a pharmacodynamic biomarker in intestinal biopsies to support the clinical development of an IL-22 therapeutic. The differential gene expression pattern in the presence of IL-1β suggests that an inflammatory cytokine milieu in the disease setting could influence the clinical responses to IL-22.
Collapse
Affiliation(s)
- Julie Rae
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Jason Hackney
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Kevin Huang
- Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (J.H.); (K.H.)
| | - Mary Keir
- OMNI Biomarker Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Ann Herman
- OMNI Biomarker Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA;
| |
Collapse
|
57
|
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:688066. [PMID: 34295334 PMCID: PMC8290841 DOI: 10.3389/fimmu.2021.688066] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as IL-22, IL-13 and TNF-α, but not others, such as IL-17, IL-4, or interferon-γ (IFN-γ), and they express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to play a role in skin inflammatory diseases, but recent studies have demonstrated their involvement in the development of various autoimmune diseases. Here, we review research advances in the origin, characteristics and effector mechanisms of Th22 cells, with an emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the pathogenesis of autoimmune diseases. The findings presented here may facilitate the development of new therapeutic strategies for targeting these diseases.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
58
|
Kartasheva-Ebertz DM, Pol S, Lagaye S. Retinoic Acid: A New Old Friend of IL-17A in the Immune Pathogeny of Liver Fibrosis. Front Immunol 2021; 12:691073. [PMID: 34211477 PMCID: PMC8239722 DOI: 10.3389/fimmu.2021.691073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Despite all the medical advances mortality due to cirrhosis and hepatocellular carcinoma, the end stages of fibrosis, continuously increases. Recent data suggest that liver fibrosis is guided by type 3 inflammation with IL-17A at the top of the line. The storage of vitamin A and its active metabolites, as well as genetics, can influence the development and progression of liver fibrosis and inflammation. Retinoic acid (active metabolite of vitamin A) is able to regulate the differentiation of IL-17A+/IL-22–producing cells as well as the expression of profibrotic markers. IL-17A and its pro-fibrotic role in the liver is the most studied, while the interaction and communication between IL-17A, IL-22, and vitamin A–active metabolites has not been investigated. We aim to update what is known about IL-17A, IL-22, and retinoic acid in the pathobiology of liver diseases.
Collapse
Affiliation(s)
| | - Stanislas Pol
- Institut Pasteur, INSERM U1223, Paris, France.,Université de Paris, Paris, France.,APHP, Groupe Hospitalier Cochin, Département d'Hépatologie, Paris, France
| | | |
Collapse
|
59
|
Boldeanu MV, Siloşi I, Bărbulescu AL, Sandu RE, Geormăneanu C, Pădureanu V, Popescu-Drigă MV, Poenariu IS, Siloşi CA, Ungureanu AM, Dijmărescu AL, Boldeanu L. Host immune response in chronic hepatitis C infection: involvement of cytokines and inflammasomes. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:33-43. [PMID: 32747893 PMCID: PMC7728117 DOI: 10.47162/rjme.61.1.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver disease is a major health issue worldwide and chronic hepatitis C (CHC) is associated with an increased risk of cirrhosis and hepatocellular carcinoma (HCC). There is evidence that the hepatitis C virus (HCV) infection is correlated with immune senescence by way of immune activation and chronic inflammation, which lead to increased metabolic and cardiovascular risk, as well as progressive liver damage. Both the innate and adaptive immunity are firmly tied to the prognosis of an infection with HCV and its response to antiviral therapy. HCV is therefore associated with increased pro-inflammatory status, heightened production of cytokines, prolonged systemic inflammation, as well as increased morbidity and mortality, mainly due to the progression of hepatic fibrosis and HCC, but also secondary to cardiovascular diseases. Viral hepatic pathology is increasingly considered a disease that is no longer merely limited to the liver, but one with multiple metabolic consequences. Numerous in vitro studies, using experimental models of acute or chronic inflammation of the liver, has brought new information on immunopathological mechanisms resulting from viral infections and have highlighted the importance of involving complex structures, inflammasomes complex, in these mechanisms, in addition to the involvement of numerous proinflammatory cytokines. Beyond obtaining a sustained viral response and halting the aforementioned hepatic fibrosis, the current therapeutic “treat-to-target” strategies are presently focused on immune-mediated and metabolic disorders, to improve the quality of life and long-term prognosis of CHC patients.
Collapse
Affiliation(s)
- Mihail Virgil Boldeanu
- Department of Pharmacology, Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania; ,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Saxton RA, Henneberg LT, Calafiore M, Su L, Jude KM, Hanash AM, Garcia KC. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 2021; 54:660-672.e9. [PMID: 33852830 PMCID: PMC8054646 DOI: 10.1016/j.immuni.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/17/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Interleukin-22 (IL-22) acts on epithelial cells to promote tissue protection and regeneration, but can also elicit pro-inflammatory effects, contributing to disease pathology. Here, we engineered a high-affinity IL-22 super-agonist that enabled the structure determination of the IL-22-IL-22Rα-IL-10Rβ ternary complex to a resolution of 2.6 Å. Using structure-based design, we systematically destabilized the IL-22-IL-10Rβ binding interface to create partial agonist analogs that decoupled downstream STAT1 and STAT3 signaling. The extent of STAT bias elicited by a single ligand varied across tissues, ranging from full STAT3-biased agonism to STAT1/3 antagonism, correlating with IL-10Rβ expression levels. In vivo, this tissue-selective signaling drove tissue protection in the pancreas and gastrointestinal tract without inducing local or systemic inflammation, thereby uncoupling these opposing effects of IL-22 signaling. Our findings provide insight into the mechanisms underlying the cytokine pleiotropy and illustrate how differential receptor expression levels and STAT response thresholds can be synthetically exploited to endow pleiotropic cytokines with enhanced functional specificity.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Marco Calafiore
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Leon Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Alan M Hanash
- Departments of Medicine, Human Oncology and Pathogenesis Program, and Immunology and Microbial Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
61
|
Aarts J, Roeleveld DM, Helsen MM, Walgreen B, Vitters EL, Kolls J, van de Loo FA, van Lent PL, van der Kraan PM, Koenders MI. Systemic overexpression of interleukin-22 induces the negative immune-regulator SOCS3 and potently reduces experimental arthritis in mice. Rheumatology (Oxford) 2021; 60:1974-1983. [PMID: 33197269 PMCID: PMC8023992 DOI: 10.1093/rheumatology/keaa589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE High levels of IL-22 are present in serum and synovial fluid of patients with RA. As both pro- and anti-inflammatory roles for IL-22 have been described in studies using animal models of RA, its exact function in arthritis remains poorly defined. With this study we aimed to further unravel the mechanism by which IL-22 exerts its effects and to decipher its therapeutic potential by overexpression of IL-22 either locally or systemically during experimental arthritis. METHODS CIA was induced in DBA-1 mice by immunization and booster injection with type II collagen (col II). Before arthritis onset, IL-22 was overexpressed either locally by intra-articular injection or systemically by i.v. injection using an adenoviral vector and clinical arthritis was scored for a period of 10 days. Subsequently, joints were isolated for histological analysis of arthritis severity and mRNA and protein expression of various inflammatory mediators was determined in the synovium, spleen and serum. RESULTS Local IL-22 overexpression did not alter arthritis pathology, whereas systemic overexpression of IL-22 potently reduced disease incidence, severity and pathology during CIA. Mice systemically overexpressing IL-22 showed strongly reduced serum cytokine levels of TNF-α and macrophage inflammatory protein 1α that correlated significantly with the enhanced expression of the negative immune regulator SOCS3 in the spleen. CONCLUSION With this study, we revealed clear anti-inflammatory effects of systemic IL-22 overexpression during CIA. Additionally, we are the first to show that the protective effect of systemic IL-22 during experimental arthritis is likely orchestrated via upregulation of the negative regulator SOCS3.
Collapse
Affiliation(s)
- Joyce Aarts
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Debbie M Roeleveld
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique M Helsen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Birgitte Walgreen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elly L Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jay Kolls
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fons A van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Dong Y, Hu C, Huang C, Gao J, Niu W, Wang D, Wang Y, Niu C. Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6621296. [PMID: 33790691 PMCID: PMC7984880 DOI: 10.1155/2021/6621296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
The interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic stroke and cerebral I/R injury remain unclear. In the current study, we provided direct evidence that IL-22 treatment decreased infarct size, neurological deficits, and brain water content in mice subjected to cerebral I/R injury. IL-22 treatment remarkably reduced the expression of inflammatory cytokines, including IL-1β, monocyte chemotactic protein- (MCP-) 1, and tumor necrosis factor- (TNF-) α, both in serum and the ischemic cerebral cortex. In addition, IL-22 treatment also decreased oxidative stress and neuronal apoptosis in mice after cerebral I/R injury. Moreover, IL-22 treatment significantly increased Janus tyrosine kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 phosphorylation levels in mice and PC12 cells, and STAT3 knockdown abolished the IL-22-mediated neuroprotective function. These findings suggest that IL-22 might be exploited as a potential therapeutic agent for ischemic stroke and cerebral I/R injury.
Collapse
Affiliation(s)
- Yongfei Dong
- Department of Neurosurgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shangdong, 250021, China
| | - Chengyun Hu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jie Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Di Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| |
Collapse
|
63
|
Lindborg JA, Tran NM, Chenette DM, DeLuca K, Foli Y, Kannan R, Sekine Y, Wang X, Wollan M, Kim IJ, Sanes JR, Strittmatter SM. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair. Cell Rep 2021; 34:108777. [PMID: 33657370 PMCID: PMC8009559 DOI: 10.1016/j.celrep.2021.108777] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022] Open
Abstract
Adult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen. Suppression of 40 genes using viral-driven short hairpin RNAs (shRNAs) promotes retinal ganglion cell (RGC) axon regeneration after optic nerve crush (ONC), and most are validated by separate CRISPR-Cas9 editing experiments. Expression of these axon-regeneration-suppressing genes is not significantly altered by axotomy. Among regeneration-limiting genes, loss of the interleukin 22 (IL-22) cytokine allows an early, yet transient, inflammatory response in the retina after injury. Reduced IL-22 drives concurrent activation of signal transducer and activator of transcription 3 (Stat3) and dual leucine zipper kinase (DLK) pathways and upregulation of multiple neuron-intrinsic regeneration-associated genes (RAGs). Including IL-22, our screen identifies dozens of genes that limit CNS regeneration. Suppression of these genes in the context of axonal damage could support improved neural repair.
Collapse
Affiliation(s)
- Jane A Lindborg
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Devon M Chenette
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Kristin DeLuca
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Yram Foli
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ramakrishnan Kannan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Marius Wollan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
64
|
Abstract
Interleukin-22 (IL-22) is secreted by a wide range of immune cells and its downstream effects are mediated by the IL-22 receptor, which is present on non-immune cells in many organs throughout the body. IL-22 is an inflammatory mediator that conditions the tissue compartment by upregulating innate immune responses and is also a homeostatic factor that promotes tissue integrity and regeneration. Interestingly, the IL-22 system has also been linked to many T cell driven inflammatory diseases. Despite this, the downstream effects of IL-22 on the adaptive immune system has received little attention. We have reviewed the literature for experimental data that suggest IL-22 mediated effects on T cells, either transduced directly or via mediators expressed by innate immune cells or non-immune cells in response to IL-22. Collectively, the reviewed data indicate that IL-22 has a hitherto unappreciated influence on T helper cell polarization, or the secretion of signature cytokines, that is context dependent but in many cases results in a reduction of the Th1 type response and to some extent promotion of regulatory T cells. Further studies are needed that specifically address these aspects of IL-22 signaling, which can benefit the understanding and treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
65
|
Xiao Z, Liu L, Jin Y, Pei X, Sun W, Wang M. Clostridium tyrobutyricum Protects against LPS-Induced Colonic Inflammation via IL-22 Signaling in Mice. Nutrients 2021; 13:215. [PMID: 33451114 PMCID: PMC7828631 DOI: 10.3390/nu13010215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate the effects of Clostridium tyrobutyricum (C. tyrobutyricum) on colonic immunity and the role of IL-22 in the protective function of C. tyrobutyricum. Mice were supplemented with 108 CFU/mL C. tyrobutyricum daily for 20 days, followed by injecting with LPS for 24 h. In vivo interference of IL-22 via injecting with an adeno-associated virus was conducted to elucidate the role of IL-22 in C. tyrobutyricum attenuating colonic inflammation. The results showed that C. tyrobutyricum decreased the mRNA expression of IL-6 and IL-1β. C. tyrobutyricum enhanced the mRNA expression of IL-22 and the expression of MUC2 in the colon. The in vivo interference results showed that C. tyrobutyricum enhanced the mRNA expression of IL-6 and IL-1β while decreased the expression of MUC2 after knocking down IL-22. The flow cytometric analysis showed that C. tyrobutyricum decreased the proportions of macrophages, DCs, and mast cells and effectively regulated the proportion of Th17 cells, indicating that C. tyrobutyricum may stimulate the expression of IL-22 via regulating Th17 cells. Our study concluded that C. tyrobutyricum protected against LPS-induced colonic barrier dysfunction and inflammation via IL-22 signaling, suggesting that C. tyrobutyricum could be a potential probiotic in regulating colonic health.
Collapse
Affiliation(s)
| | | | | | | | | | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.X.); (L.L.); (Y.J.); (X.P.); (W.S.)
| |
Collapse
|
66
|
Elkins LL, Dolan MC. Plant production and functional characterization of catfish interleukin-22 as a natural immune stimulant for aquaculture fish. J Biotechnol 2021; 325:233-240. [PMID: 33069777 DOI: 10.1016/j.jbiotec.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
As the world population increases and wild caught fisheries decline, aquaculture offers a sustainable solution addressing this global challenge. However, disease management remains difficult. With limited options, there is a need for innovative solutions. The cytokine interleukin-22 (IL-22) has emerged as a possible therapeutic target for fish and has been correlated with protection under pathogen challenge. Plant-based production systems have the potential to effectively manufacture and bring unique efficacy-enhancing features to the aquaculture industry; namely, the advantages of low cost for this commodity market, ready scalability, and reduced environmental impact. Catfish IL-22 produced at significant yield and purity highlights the use of plants as a promising production platform for therapeutic proteins with utility to the aquaculture industry. Purified cfIL-22 shows similar in vitro bioactivity to its mammalian homolog that include increased proliferation of catfish cells highlighting the tissue preservation capabilities associated with this protein. Recombinant cfIL-22 also upregulated expression of genes encoding a tissue repair protein, fibronectin, an antimicrobial peptide, Natural killer lysin-1, and a common innate immune protein, interferon. These findings support plant-made recombinant catfish interleukin-22 as a potential therapeutic for the aquaculture industry and further analysis of this protein for promoting animal health.
Collapse
Affiliation(s)
- Lana L Elkins
- Molecular Biosciences Program, Jonesboro, Arkansas, 72401, United States; Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, 72401, United States
| | - Maureen C Dolan
- Molecular Biosciences Program, Jonesboro, Arkansas, 72401, United States; Arkansas Biosciences Institute, Jonesboro, Arkansas, 72401, United States; Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, 72401, United States.
| |
Collapse
|
67
|
Sakemi R, Mitsuyama K, Morita M, Yoshioka S, Kuwaki K, Tokuyasu H, Fukunaga S, Mori A, Araki T, Yoshimura T, Yamasaki H, Tsuruta K, Morita T, Yamasaki S, Mizoguchi A, Sou S, Torimura T. Altered serum profile of the interleukin-22 system in inflammatory bowel disease. Cytokine 2020; 136:155264. [PMID: 32920320 DOI: 10.1016/j.cyto.2020.155264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Interleukin-22 (IL-22), plays a vital role in the mucosal repair of inflammatory bowel disease (IBD). Serum levels of IL-22 and IL-22 binding protein (IL-22BP), a soluble inhibitory IL-22 receptor, were measured in patients with IBD to investigate the profile of IL-22 in the systemic circulation. METHODS Blood samples from 92 healthy subjects, 98 patients with ulcerative colitis (UC), and 105 patients with Crohn's disease (CD) were analyzed for serum levels of IL-22, IL-22BP, human β-defensin 2 (hBD-2), and serum inflammatory parameters. Disease activity was assessed by the partial Mayo score and Harvey-Bradshaw index for UC and CD, respectively. RESULTS Serum IL-22 level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and its decrease was more pronounced in CD than in UC (P = 0.019). Serum IL-22BP level was lower in UC (P < 0.001) and CD (P < 0.001) vs control and correlated with inflammatory parameters (albumin and C-reactive protein (CRP) in UC; hemoglobin, albumin, and CRP in CD). Serum IL-22/IL-22BP ratios were higher in UC (P = 0.009) vs control and correlated with inflammatory parameters (albumin and CRP). Serum hBD-2 level was higher only in CD (P = 0.015) but did not correlate with serum IL-22 levels, IL-22BP levels, IL-22/IL-22BP ratios, or inflammatory parameters. CONCLUSIONS Dysregulation of the IL-22 system in the blood may play a role in the pathogenesis of IBD. Further studies are needed to understand the pathogenic and clinical significance of the blood IL-22 system in IBD.
Collapse
Affiliation(s)
- Ryosuke Sakemi
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-machi, Kurume 830-0011, Japan.
| | - Masaru Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hidenori Tokuyasu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Taku Morita
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Suketo Sou
- Department of Gastroenterology, Tobata Kyoritsu Hospital, 2-5-1 Sawami, Tobata-ku, Kitakyushu 804-0093, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| |
Collapse
|
68
|
Yang Y, Wang J, Xu J, Liu Q, Wang Z, Zhu X, Ai X, Gao Q, Chen X, Zou J. Characterization of IL-22 Bioactivity and IL-22-Positive Cells in Grass Carp Ctenopharyngodon idella. Front Immunol 2020; 11:586889. [PMID: 33178219 PMCID: PMC7593840 DOI: 10.3389/fimmu.2020.586889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-22 plays an important role in regulating inflammation and clearance of infectious pathogens. IL-22 homologs have been discovered in fish, but the functions and sources of IL-22 have not been fully characterized. In this study, an IL-22 homolog was identified in grass carp and its bioactivities were investigated. The grass carp IL-22 was constitutively expressed in tissues, with the highest expression detected in the gills and hindgut. It was upregulated in the spleen after infection with Flavobacterium columnare and grass carp reovirus and in the primary head kidney and spleen leukocytes stimulated with LPS and IL-34. Conversely, it was downregulated by Th2 cytokines such as IL-4/13B and IL-10. The recombinant IL-22 produced in bacteria showed a stimulatory effect on the expression of inflammatory cytokines and STAT3 in the primary head kidney leukocytes and CIK cells. Moreover, the IL-22-positive cells were found to be induced in the hindgut and head kidney 24 h after infection by F. columnare. Our data suggest that IL-22 plays an important role in regulating mucosal and systemic immunity against bacterial and viral infection.
Collapse
Affiliation(s)
- Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
69
|
Zhuang L, Ma W, Yan J, Zhong H. Evaluation of the effects of IL‑22 on the proliferation and differentiation of keratinocytes in vitro. Mol Med Rep 2020; 22:2715-2722. [PMID: 32945375 PMCID: PMC7453634 DOI: 10.3892/mmr.2020.11348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Psoriasis is one of the most common chronic inflammatory skin diseases, it is characterized by hyperproliferation of keratinocytes and infiltration of inflammatory cells. Several in vitro studies have reported that interleukin (IL)‑22 is involved in excessive proliferation and abnormal differentiation of human keratinocytes. However, the association between IL‑22 and CCAAT enhancer binding protein α (C/EBPα) in the pathogenesis of psoriasis remains unclear. Therefore, the present study aimed to investigate the association between IL‑22 and C/EBPα, and the effects of IL‑22 on the proliferation and differentiation of keratinocytes. Keratinocytes were treated with different concentrations of IL‑22 (30, 60 and 90 ng/ml) and subsequently cells were collected at different time intervals. The expression levels of the key molecules of the mitogen‑activated protein kinase (MAPK) signaling pathway were detected using western blot analysis. In addition, the effect of IL‑22 on the proliferation rate of keratinocytes and the mRNA expression levels of C/EBPα were determined using a Cell Counting Kit‑8 assay and reverse transcription‑quantitative PCR, respectively. Furthermore, keratinocytes were transfected with C/EBPα small interfering (si)RNA or control using Lipofectamine® 2000. The results revealed that IL‑22 significantly induced the proliferation of keratinocytes and the expression of phosphorylated (p)‑JNK, p‑ERK and p‑p38 (P<0.05). Additionally, IL‑22 significantly inhibited the differentiation of keratinocytes, and the mRNA and protein expression of C/EBPα (P<0.05). Furthermore, downregulation of C/EBPα increased the proliferation rate of keratinocytes and reduced the expression levels of cytokeratin 10 and involucrin. Therefore, these results suggested that the effect of IL‑22 on the proliferation and differentiation of keratinocytes may be mediated via the regulation of the MAPK signaling pathway and the expression of C/EBPα.
Collapse
Affiliation(s)
- Le Zhuang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hua Zhong
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
70
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
71
|
Sabihi M, Böttcher M, Pelczar P, Huber S. Microbiota-Dependent Effects of IL-22. Cells 2020; 9:E2205. [PMID: 33003458 PMCID: PMC7599675 DOI: 10.3390/cells9102205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokines are important contributors to immune responses against microbial and environmental threats and are of particular importance at epithelial barriers. These interfaces are continuously exposed to external factors and thus require immune components to both protect the host from pathogen invasion and to regulate overt inflammation. Recently, substantial efforts have been devoted to understanding how cytokines act on certain cells at barrier sites, and why the dysregulation of immune responses may lead to pathogenesis. In particular, the cytokine IL-22 is involved in preserving an intact epithelium, maintaining a balanced microbiota and a functioning defense system against external threats. However, a tight regulation of IL-22 is generally needed, since uncontrolled IL-22 production can lead to the progression of autoimmunity and cancer. Our aim in this review is to summarize novel findings on IL-22 and its interactions with specific microbial stimuli, and subsequently, to understand their contributions to the function of IL-22 and the clinical outcome. We particularly focus on understanding the detrimental effects of dysregulated control of IL-22 in certain disease contexts.
Collapse
Affiliation(s)
| | | | | | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (M.S.); (M.B.); (P.P.)
| |
Collapse
|
72
|
Min HK, Won JY, Kim BM, Lee KA, Lee SJ, Lee SH, Kim HR, Kim KW. Interleukin (IL)-25 suppresses IL-22-induced osteoclastogenesis in rheumatoid arthritis via STAT3 and p38 MAPK/IκBα pathway. Arthritis Res Ther 2020; 22:222. [PMID: 32972460 PMCID: PMC7517649 DOI: 10.1186/s13075-020-02315-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the suppressive role of interleukin (IL)-25 in IL-22-induced osteoclastogenesis and receptor activator of nuclear factor κB ligand (RANKL) expression in rheumatoid arthritis (RA). METHODS Serum from patients with RA and osteoarthritis (OA), and healthy controls, and synovial fluid from patients with RA and OA were collected, and the levels of IL-22 and IL-25 were measured. RA and OA synovial tissues were stained against IL-25. Fibroblast-like synoviocytes (FLSs) of patients with RA were cultured with IL-22, in the presence or absence of IL-25, and RANKL expression was measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA). Human peripheral blood monocytes were cultured under IL-22/RANKL + M-CSF, with or without IL-25, and tartrate-resistant acid phosphatase (TRAP)-positive cells and osteoclast-related markers were investigated to determine osteoclastogenesis. RESULTS Serum and synovial IL-25 levels in RA were upregulated compared to those in OA and healthy control, and elevated expression of IL-25 in RA synovial tissue was re-confirmed. IL-25 and IL-22 levels showed significant correlation in serum and synovial fluid. Pre-treatment of FLS with IL-25 reduced IL-22-induced RANKL expression at the RNA level. The suppressive effects of IL-25 were confirmed to occur through the STAT3 and p38 MAPK/IκBα pathways. IL-25 reduced osteoclast differentiation and suppressed the expression of osteoclast-related markers. CONCLUSION In the current study, we demonstrated the regulatory effect of IL-25 on IL-22-induced osteoclastogenesis. Therapeutic approach involving augmentation of IL-25 regulatory response may serve as a novel treatment option for RA, especially by suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Won
- R&D Center, OncoInsight, 1022, Gangnam AceTower, 174-10, Jagok-ro, Gangnam-gu, Seoul, 06373, Republic of Korea
| | - Bo-Mi Kim
- Laboratory of Stem Cell, NEXEL, Seoul, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, 04401, Republic of Korea
| | - Seoung-Joon Lee
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Kyoung-Woon Kim
- R&D Center, OncoInsight, 1022, Gangnam AceTower, 174-10, Jagok-ro, Gangnam-gu, Seoul, 06373, Republic of Korea.
| |
Collapse
|
73
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
74
|
Komine-Aizawa S, Aizawa S, Takano C, Hayakawa S. Interleukin-22 promotes the migration and invasion of oral squamous cell carcinoma cells. Immunol Med 2020; 43:121-129. [PMID: 32546118 DOI: 10.1080/25785826.2020.1775060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022] Open
Abstract
The roles of interleukin-22 (IL-22) in carcinogenesis have been proposed in various neoplasms. Increased expression of IL-22 has been observed in oral squamous cell carcinoma (OSCC) lesions as well as in other cancers. OSCC is still associated with poor prognosis and a high mortality rate because of its invasiveness and frequent lymph node metastasis. In the present study, we investigated the effects of IL-22 on OSCC cells. The human OSCC cell lines Ca9-22 and SAS were stimulated with IL-22 (1-10 ng/mL), and their migration abilities were examined using a cell scratch assay. A Matrigel invasion assay was performed to evaluate the invasion abilities of OSCC cells. Signal transducer and activator of transcription 3 (STAT3) phosphorylation, matrix metalloproteinase (MMP) and epithelial-mesenchymal transition (EMT)-related genes and proteins were also examined. IL-22 treatment promoted the migration and invasion abilities of OSCC cells without increasing their viability. IL-22 stimulation also induced STAT3 phosphorylation, MMP-9 activity and EMT-related genes and proteins. Our findings suggest that IL-22 has possible roles in the development of OSCC.
Collapse
Affiliation(s)
- Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sohichi Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- JCHO Yokohama Chuo Hospital, Kanagawa, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
75
|
Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 2020; 295:12378-12397. [PMID: 32611765 PMCID: PMC7458808 DOI: 10.1074/jbc.ra120.013927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Kuchner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
76
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
77
|
Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: Protective or destructive? IUBMB Life 2020; 72:1585-1602. [PMID: 32365282 DOI: 10.1002/iub.2295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22 is a member of IL-10 family cytokines with various immunologic functions. As its name implies, IL-22 is known to be secreted mainly by Th22 cells, a recently discovered lineage of CD4+ T cells. Also, Th17, Th1, natural killer cells, γδT cells, and innate immune cells along with some nonlymphoid cells have been confirmed as secondary cellular sources of IL-22. Different cell types such as bronchial and intestinal epithelial cells, keratinocytes, hepatocytes, dermal fibroblasts, and tubular epithelial cells are affected by IL-22. Both pathologic and protective roles have been attributed to IL-22 in maintaining gut homeostasis and inflammation. According to the latest fast-growing investigations, IL-22 is significantly involved in various pathologies including allergic diseases, infection, autoimmunity, and cancer development. Regulating gut immune responses, barrier integrity, and inflammation is dependent on a diverse complex of cytokines and mediators which are secreted by mucosal immune cells. Several investigations have been designed to recognize the role of IL-22 in gastrointestinal immunity. This article tries to discuss the latest knowledge on this issue and clarify the potential of IL-22 to be used in the future therapeutic approaches of intestinal disorders including inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Dehghani
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Joudaki
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Shojapourian
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
78
|
Li J, Huang L, Zhao H, Yan Y, Lu J. The Role of Interleukins in Colorectal Cancer. Int J Biol Sci 2020; 16:2323-2339. [PMID: 32760201 PMCID: PMC7378639 DOI: 10.7150/ijbs.46651] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Despite great progress has been made in treatment strategies, colorectal cancer (CRC) remains the predominant life-threatening malignancy with the feature of high morbidity and mortality. It has been widely acknowledged that the dysfunction of immune system, including aberrantly expressed cytokines, is strongly correlated with the pathogenesis and progression of colorectal cancer. As one of the most well-known cytokines that were discovered centuries ago, interleukins are now uncovering new insights into colorectal cancer therapy. Herein, we divide currently known interleukins into 6 families, including IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family and IL-17 family. In addition, we comprehensively reviewed the oncogenic or antitumour function of each interleukin involved in CRC pathogenesis and progression by elucidating the underlying mechanisms. Furthermore, by providing interleukins-associated clinical trials, we have further driven the profound prospect of interleukins in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ling Huang
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hanzhang Zhao
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuheng Yan
- Department of Clinical Medicine, Grade 2017, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
79
|
Laukens B, Jacobs PP, Geysens K, Martins J, De Wachter C, Ameloot P, Morelle W, Haustraete J, Renauld JC, Samyn B, Contreras R, Devos S, Callewaert N. Off-target glycans encountered along the synthetic biology route toward humanized N-glycans in Pichia pastoris. Biotechnol Bioeng 2020; 117:2479-2488. [PMID: 32374435 DOI: 10.1002/bit.27375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 11/06/2022]
Abstract
The glycosylation pathways of several eukaryotic protein expression hosts are being engineered to enable the production of therapeutic glycoproteins with humanized application-customized glycan structures. In several expression hosts, this has been quite successful, but one caveat is that the new N-glycan structures inadvertently might be substrates for one or more of the multitude of endogenous glycosyltransferases in such heterologous background. This then results in the formation of novel, undesired glycan structures, which often remain insufficiently characterized. When expressing mouse interleukin-22 in a Pichia pastoris (syn. Komagataella phaffii) GlycoSwitchM5 strain, which had been optimized to produce Man5 GlcNAc2 N-glycans, glycan profiling revealed two major species: Man5 GlcNAc2 and an unexpected, partially α-mannosidase-resistant structure. A detailed structural analysis using exoglycosidase sequencing, mass spectrometry, linkage analysis, and nuclear magnetic resonance revealed that this novel glycan was Man5 GlcNAc2 modified with a Glcα-1,2-Manβ-1,2-Manβ-1,3-Glcα-1,3-R tetrasaccharide. Expression of a Golgi-targeted GlcNAc transferase-I strongly inhibited the formation of this novel modification, resulting in more homogeneous modification with the targeted GlcNAcMan5 GlcNAc2 structure. Our findings reinforce accumulating evidence that robustly customizing the N-glycosylation pathway in P. pastoris to produce particular human-type structures is still an incompletely solved synthetic biology challenge, which will require further innovation to enable safe glycoprotein pharmaceutical production.
Collapse
Affiliation(s)
- Bram Laukens
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Pieter P Jacobs
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katelijne Geysens
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Jose Martins
- NMR and Structural Analysis Unit, Department of Organic Chemistry and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Charlot De Wachter
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Paul Ameloot
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Willy Morelle
- Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq, France
| | | | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Bart Samyn
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Roland Contreras
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Simon Devos
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
80
|
Perez LG, Kempski J, McGee HM, Pelzcar P, Agalioti T, Giannou A, Konczalla L, Brockmann L, Wahib R, Xu H, Vesely MCA, Soukou S, Steglich B, Bedke T, Manthey C, Seiz O, Diercks BP, Gnafakis S, Guse AH, Perez D, Izbicki JR, Gagliani N, Flavell RA, Huber S. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat Commun 2020; 11:2608. [PMID: 32451418 PMCID: PMC7248087 DOI: 10.1038/s41467-020-16363-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
IL-22 has dual functions during tumorigenesis. Short term IL-22 production protects against genotoxic stress, whereas uncontrolled IL-22 activity promotes tumor growth; therefore, tight regulation of IL-22 is essential. TGF-β1 promotes the differentiation of Th17 cells, which are known to be a major source of IL-22, but the effect of TGF-β signaling on the production of IL-22 in CD4+ T cells is controversial. Here we show an increased presence of IL-17+IL-22+ cells and TGF-β1 in colorectal cancer compared to normal adjacent tissue, whereas the frequency of IL-22 single producing cells is not changed. Accordingly, TGF-β signaling in CD4+ T cells (specifically Th17 cells) promotes the emergence of IL-22-producing Th17 cells and thereby tumorigenesis in mice. IL-22 single producing T cells, however, are not dependent on TGF-β signaling. We show that TGF-β, via AhR induction, and PI3K signaling promotes IL-22 production in Th17 cells.
Collapse
Affiliation(s)
- Laura Garcia Perez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Kempski
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Heather M McGee
- Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010, La Jolla, CA, USA
| | - Penelope Pelzcar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios Giannou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Leonie Brockmann
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Ramez Wahib
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hao Xu
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | | | - Shiwa Soukou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tanja Bedke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Carolin Manthey
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Oliver Seiz
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn-Philipp Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stylianos Gnafakis
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, 06520, USA.
- Howard Hughes Medical Institute, School of Medicine, Yale University, New Haven, CT, 06520, USA.
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
81
|
Che Y, Su Z, Xia L. Effects of IL-22 on cardiovascular diseases. Int Immunopharmacol 2020; 81:106277. [PMID: 32062077 DOI: 10.1016/j.intimp.2020.106277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-22 (IL-22), which belongs to the IL-10 family, is an alpha helix cytokine specifically produced by many lymphocytes, such as Th1, Th17, Th22, ILCs, CD4+ and CD8+ T cells. In recent years, more and more studies have demonstrated that IL-22 has an interesting relationship with various cardiovascular diseases, including myocarditis, myocardial infarction, atherosclerosis, and other cardiovascular diseases, and IL-22 signal may play a dual role in cardiovascular diseases. Here, we summarize the recent progress on the source, function, regulation of IL-22 and the effects of IL-22 signal in cardiovascular diseases. The study of IL-22 will suggest more specific strategies to maneuver these functions for the effective treatment of cardiovascular diseases and future clinical treatment.
Collapse
Affiliation(s)
- Yang Che
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
82
|
Rudloff I, Jardé T, Bachmann M, Elgass KD, Kerr G, Engel R, Richards E, Oliva K, Wilkins S, McMurrick PJ, Abud HE, Mühl H, Nold MF. Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Transl Res 2020; 216:1-22. [PMID: 31734267 DOI: 10.1016/j.trsl.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-22 activates STAT (signal transducer and activator of transcription) 3 and antiapoptotic and proproliferative pathways; but beyond this, the molecular mechanisms by which IL-22 promotes carcinogenesis are poorly understood. Characterizing the molecular signature of IL-22 in human DLD-1 colon carcinoma cells, we observed increased expression of 26 genes, including NNMT (nicotinamide N-methyltransferase, ≤10-fold) and CEA (carcinoembryonic antigen, ≤7-fold), both known to promote intestinal carcinogenesis. ERP27 (endoplasmic reticulum protein-27, function unknown, ≤5-fold) and the proinflammatory ICAM1 (intercellular adhesion molecule-1, ≤4-fold) were also increased. The effect on CEA was partly STAT3-mediated, as STAT3-silencing reduced IL-22-induced CEA by ≤56%. Silencing of CEA or NNMT inhibited IL-22-induced proliferation/migration of DLD-1, Caco-2, and SW480 colon carcinoma cells. To validate these results in primary tissues, we assessed IL-22-induced gene expression in organoids from human healthy colon and colon cancer patients, and from normal mouse small intestine and colon. Gene regulation by IL-22 was similar in DLD-1 cells and human and mouse healthy organoids. CEA was an exception with no induction by IL-22 in organoids, indicating the 3-dimensional organization of the tissue may produce signals absent in 2D cell culture. Importantly, augmentation of NNMT was 5-14-fold greater in human cancerous compared to normal organoids, supporting a role for NNMT in IL-22-mediated colon carcinogenesis. Thus, NNMT and CEA emerge as mediators of the tumor-promoting effects of IL-22 in the intestine. These data advance our understanding of the multifaceted role of IL-22 in the gut and suggest the IL-22 pathway may represent a therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Ina Rudloff
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia; Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Kirstin D Elgass
- Monash Micro Imaging, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Rebekah Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia; Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Elizabeth Richards
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Karen Oliva
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Simon Wilkins
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Paul J McMurrick
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Malvern, Melbourne, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Clayton, Melbourne, Australia; Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Australia.
| |
Collapse
|
83
|
Chen Y, Vandereyken M, Newton IP, Moraga I, Näthke IS, Swamy M. Loss of adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22. PLoS Biol 2019; 17:e3000540. [PMID: 31770366 PMCID: PMC6903767 DOI: 10.1371/journal.pbio.3000540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-22 (IL-22) is a critical immune defence cytokine that maintains intestinal homeostasis and promotes wound healing and tissue regeneration, which can support the growth of colorectal tumours. Mutations in the adenomatous polyposis coli gene (Apc) are a major driver of familial colorectal cancers (CRCs). How IL-22 contributes to APC-mediated tumorigenesis is poorly understood. To investigate IL-22 signalling in wild-type (WT) and APC-mutant cells, we performed RNA sequencing (RNAseq) of IL-22-treated murine small intestinal epithelial organoids. In WT epithelia, antimicrobial defence and cellular stress response pathways were most strongly induced by IL-22. Surprisingly, although IL-22 activates signal transducer and activator of transcription 3 (STAT3) in APC-mutant cells, STAT3 target genes were not induced. Our analyses revealed that ApcMin/Min cells are resistant to IL-22 due to reduced expression of the IL-22 receptor, and increased expression of inhibitors of STAT3, particularly histone deacetylases (HDACs). We further show that IL-22 increases DNA damage and genomic instability, which can accelerate cellular transition from heterozygosity (ApcMin/+) to homozygosity (ApcMin/Min) to drive tumour formation. Our data reveal an unexpected role for IL-22 in promoting early tumorigenesis while excluding a function for IL-22 in transformed epithelial cells.
Collapse
Affiliation(s)
- Yu Chen
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ian P. Newton
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacio Moraga
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Inke S. Näthke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit (PPU), School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
84
|
Mühl H, Bachmann M. IL-18/IL-18BP and IL-22/IL-22BP: Two interrelated couples with therapeutic potential. Cell Signal 2019; 63:109388. [PMID: 31401146 DOI: 10.1016/j.cellsig.2019.109388] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-18 and IL-22 are key components of cytokine networks that play a decisive role in (pathological) inflammation, host defense, and tissue regeneration. Tight regulation of cytokine-driven signaling, inflammation, and immunoactivation is supposed to enable nullification of a given deleterious trigger without mediating overwhelming collateral tissue damage or even activating a cancerous face of regeneration. In fact, feedback regulation by specific cytokine opponents is regarded as a major means by which the immune system is kept in balance. Herein, we shine a light on the interplay between IL-18 and IL-22 and their opponents IL-18 binding protein (IL-18BP) and IL-22BP in order to provide integrated information on their biology, pathophysiological significance, and prospect as targets and/or instruments of therapeutic intervention.
Collapse
Affiliation(s)
- Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany.
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe University Frankfurt am Main, Theodor-Stern- Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
85
|
IL-6 Negatively Regulates IL-22R α Expression on Epidermal Keratinocytes: Implications for Irritant Contact Dermatitis. J Immunol Res 2019; 2019:6276254. [PMID: 31781680 PMCID: PMC6875369 DOI: 10.1155/2019/6276254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Irritant Contact Dermatitis (ICD) is characterized by epidermal hyperplasia and inflammatory cytokine release. IL-6 has been shown to be involved in the pathogenesis of ICD; however, the involvement of the IL-22/IL-22Rα axis and its relation to IL-6 in the inflammatory response following irritant exposure are unknown. Using a chemical model of ICD, it was observed that mice with a keratinocyte-specific knockout of IL-6Rα (IL-6RαΔker) presented with increased inflammation and IL-22Rα and IL-22 protein expression relative to WT following irritant exposure, indicating that IL-6Rα deficiency in epidermal keratinocytes leads to the upregulation of IL-22Rα and its ligand during ICD. Furthermore, it was shown that IL-6 negatively regulates the expression of IL-22Rα on epidermal keratinocytes. This effect is functional as the effects of IL-22 on keratinocyte proliferation and differentiation were markedly reduced when keratinocytes were pretreated with IL-6 prior to IL-22 treatment. These results show that IL-6 modulates the IL-22/IL-22Rα axis in the skin and suggest that this occurrence may be associated with the increased epidermal hyperplasia and exacerbated inflammatory response observed in IL-6RαΔker mice during ICD.
Collapse
|
86
|
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the gastric epithelia of its human host. Everyone who is colonized with these pathogenic bacteria can develop gastric inflammation, termed gastritis. Additionally, a small proportion of colonized people develop more adverse outcomes, including gastric ulcer disease, gastric adenocarcinoma, or gastric mucosa-associated lymphoid tissue lymphoma. The development of these adverse outcomes is dependent on the establishment of a chronic inflammatory response. The development and control of this chronic inflammatory response are significantly impacted by CD4+ T helper cell activity. Noteworthy, T helper 17 (Th17) cells, a proinflammatory subset of CD4+ T cells, produce several proinflammatory cytokines that activate innate immune cell antimicrobial activity, drive a pathogenic immune response, regulate B cell responses, and participate in wound healing. Therefore, this review was written to take an intricate look at the involvement of Th17 cells and their affiliated cytokines (interleukin-17A [IL-17A], IL-17F, IL-21, IL-22, and IL-26) in regulating the immune response to H. pylori colonization and carcinogenesis.
Collapse
|
87
|
Cao Q, Gao X, Lin Y, Yue C, Wang Y, Quan F, Zhang Z, Liu X, Lu Y, Zhan Y, Yang H, Li X, Qin D, Birnbaumer L, Hao K, Yang Y. Thymopentin ameliorates dextran sulfate sodium-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. Theranostics 2019; 9:7490-7505. [PMID: 31695782 PMCID: PMC6831468 DOI: 10.7150/thno.35015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease, notoriously challenging to treat. Previous studies have found a positive correlation between thymic atrophy and colitis severity. It was, therefore, worthwhile to investigate the effect of thymopentin (TP5), a synthetic pentapeptide corresponding to the active domain of the thymopoietin, on colitis. Methods: Dextran sulfate sodium (DSS)-induced colitis mice were treated with TP5 by subcutaneous injection. Body weight, colon length, colon weight, immune organ index, disease activity index (DAI) score, and the peripheral blood profile were examined. The immune cells of the spleen and colon were analyzed by flow cytometry. Histology was performed on isolated colon tissues for cytokine analysis. Bacterial DNA was extracted from mouse colonic feces to assess the intestinal microbiota. Intestinal lamina propria mononuclear cells (LPMCs), HCT116, CT26, and splenocytes were cultured and treated with TP5. Results: TP5 treatment increased the body weight and colon length, decreased the DAI score, and restored colon architecture of colitic mice. TP5 also decreased the infiltration of immune cells and expression levels of pro-inflammatory cytokines such as IL-6. Importantly, the damaged thymus and compromised lymphocytes in peripheral blood were significantly restored by TP5. Also, the production of IL-22, both in innate and adaptive lymphoid cells, was triggered by TP5. Given the critical role of IL-22 in mucosal host defense, we tested the effect of TP5 on mucus barrier and gut microbiota and found that the number of goblet cells and the level of Mucin-2 expression were restored, and the composition of the gut microbiome was normalized after TP5 treatment. The critical role of IL-22 in the protective effect of TP5 on colitis was further confirmed by administering the anti-IL-22 antibody (αIL-22), which completely abolished the effect of TP5. Furthermore, TP5 significantly increased the expression level of retinoic acid receptor-related orphan receptor γ (RORγt), a transcription factor for IL-22. Consistent with this, RORγt inhibitor abrogated the upregulation of IL-22 induced by TP5. Conclusion: TP5 exerts a protective effect on DSS-induced colitis by triggering the production of IL-22 in both innate and adaptive lymphocytes. This study delineates TP5 as an immunomodulator that may be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Qiuhua Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xinghua Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yanting Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Chongxiu Yue
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yue Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Fei Quan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zixuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yuan Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yanling Zhan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Hongbao Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Xianjing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Di Qin
- School of Sports and Health, Nanjing sport institute, Nanjing, Jiangsu 210001, PR China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA, and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires C1107AFF, Argentina
| | - Kun Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| |
Collapse
|
88
|
Shahid A, Bharadwaj M. The connection between the Th17 cell related cytokines and cancer stem cells in cancer: Novel therapeutic targets. Immunol Lett 2019; 213:9-20. [PMID: 31278971 DOI: 10.1016/j.imlet.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Cancer Stem Cells (CSCs) are the subpopulation of cells present in the different types of cancers with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. The research work on the CSC has been providing a promising approach for the improvement of cancer therapies in the future. The CSCs have a close connection with the cytokines related with the T helper 17 (Th17) cell and other factors present in the tumor microenvironment, and these play a pivotal role in tumor progression and metastasis. The properties of CSCs are well defined in various type of tumor which is mainly developed by chemically and spontaneously in murine cancer model but in human defined primarily on acute myeloid leukemia, glioma, and breast cancer. The role of Th1, Th2, Natural Killer cells are well described in the cancer biology, but the Th17 cells are the subset which is recently exploited, and lots of research are going on. In this Review, we summarize current findings of the characteristics and functions of the Th17 cell and its signature cytokines in different cancers and their interconnections with cancer stem cells and with their markers. We have also discussed the functional properties of CSCs and how the CSCs markers can be distinguished from normal stem cells markers. We have also talked about the strategies that are efficiently targeting of CSCs and Th17 cells in different cancers.
Collapse
Affiliation(s)
- Ayaz Shahid
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India
| | - Mausumi Bharadwaj
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India.
| |
Collapse
|
89
|
Gao B, Xiang X. Interleukin-22 from bench to bedside: a promising drug for epithelial repair. Cell Mol Immunol 2019; 16:666-667. [PMID: 29921965 PMCID: PMC6804818 DOI: 10.1038/s41423-018-0055-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
90
|
Tang KY, Lickliter J, Huang ZH, Xian ZS, Chen HY, Huang C, Xiao C, Wang YP, Tan Y, Xu LF, Huang YL, Yan XQ. Safety, pharmacokinetics, and biomarkers of F-652, a recombinant human interleukin-22 dimer, in healthy subjects. Cell Mol Immunol 2019; 16:473-482. [PMID: 29670279 PMCID: PMC6474205 DOI: 10.1038/s41423-018-0029-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
F-652 is a recombinant fusion protein consisting of two human interleukin-22 (IL-22) molecules linked to an immunoglobulin constant region (IgG2-Fc). IL-22 plays critical roles in promoting tissue repair and suppressing bacterial infection. The safety, pharmacokinetics (PK), tolerability, and biomarkers of F-652 were evaluated following a single dose in healthy male volunteers in a randomized, double-blind, placebo-controlled study. Following single-dose subcutaneous (SC) injection of F-652 at 2.0 µg/kg into healthy subjects, six out of six subjects experienced delayed injection site reactions, which presented as erythematous and/or discoid eczematous lesions 10 to 17 days post-dosing. F-652 was then administered to the healthy subjects via an intravenous (IV) infusion at 2.0, 10, 30, and 45 µg/kg. No severe adverse event (SAE) was observed during the study. Among the IV-dosed cohorts, eye and skin treatment emergent adverse events (TEAEs) were observed in the 30 and 45 µg/kg cohorts. F-652 IV dosing resulted in linear increases in Cmax and AUC(0-t), and the T1/2 ranged from 39.4 to 206 h in the cohorts. An IV injection of F-652 induced dose-dependent increases in serum marker serum amyloid A, C-reactive protein, and FIB, and decreased serum triglycerides. The serum levels of 36 common pro-inflammatory cytokines/chemokines were not altered by the treatment of F-652 at 45 μg/kg. In conclusion, IV administration of F-652 to healthy male volunteers is safe and well-tolerated and demonstrates favorable PK and pharmacodynamic properties. These results warrant further clinical development of F-652 to treat inflammatory diseases.
Collapse
Affiliation(s)
- Kai-Yang Tang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | | | - Zhi-Hua Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Zong-Shu Xian
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Han-Yang Chen
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Cheng Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Chong Xiao
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Yu-Peng Wang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Ying Tan
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Lin-Feng Xu
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Yu-Liang Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Xiao-Qiang Yan
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China.
| |
Collapse
|
91
|
Ouyang W, O'Garra A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity 2019; 50:871-891. [PMID: 30995504 DOI: 10.1016/j.immuni.2019.03.020] [Citation(s) in RCA: 600] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Inflammation and Oncology Research, Amgen, South San Francisco, CA 94080, USA.
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
92
|
Zhang X, Liu S, Wang Y, Hu H, Li L, Wu Y, Cao D, Cai Y, Zhang J, Zhang X. Interleukin‑22 regulates the homeostasis of the intestinal epithelium during inflammation. Int J Mol Med 2019; 43:1657-1668. [PMID: 30816423 PMCID: PMC6414155 DOI: 10.3892/ijmm.2019.4092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin‑22 (IL‑22) has both pro‑inflammatory and anti‑inflammatory properties in a number tissues depending on the environment. Epithelial cells usually have a rapid turnover and are fueled by tissue stem cells. However, the question of whether IL‑22 regulates tissue homeostasis through the modulation of stem cells remains unanswered. In this study, we investigated the role of IL‑22 in the homeostasis of intestinal epithelial cells (IECs) during inflammation through a 3D organoid culture system. qPCR was performed to detect the changes in important gene transcriptions, and immunohistochemistry and western blot analysis were carried out to determine protein expression. As a result, we found that the expression of IL‑22 was synchronously altered with the damage of the intestine. IL‑22 treatment promoted cell proliferation and suppressed the cell differentiation of intestinal organoids. Surprisingly, IL‑22 also led to self‑renewal defects of intestinal stem cells (ISCs), thereby eventually resulting in the death of organoids. In examining the underlying mechanisms, we found that IL‑22 activated signal transducer and activator of transcription 3 (Stat3) phosphorylation and suppressed the Wnt and Notch signaling pathways. Importantly, Wnt3a treatment attenuated the organoid defects caused by IL‑22, which consolidated the importance of Wnt pathway at the downstream of IL‑22. Collectively, the findings of this study indicate that IL‑22 regulates the homeostasis of the intestinal epithelium and is critical for the regeneration of the intestine during inflammation. Thus, the data of this study may provide a potential strategy and a basis for the treatment of diseases of intestinal inflammation in clinical practice.
Collapse
Affiliation(s)
- Xinyan Zhang
- Hospital and Institute of Obstetrics and Gynecology Affiliated to Fudan University, Shanghai 200011
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241
| | - Shijie Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241
| | - Yueqian Wang
- Shanghai The Fifth People’s Hospital Affiliated to Fudan University, Shanghai 200240
| | - Huiqiong Hu
- Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499
| | - Liang Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241
| | - Yibin Wu
- Shanghai The Fifth People’s Hospital Affiliated to Fudan University, Shanghai 200240
| | - Duo Cao
- College of Life Sciences, Northwest University, Xi’an, Shanxi 710069, P.R. China
| | - Yuankun Cai
- Shanghai The Fifth People’s Hospital Affiliated to Fudan University, Shanghai 200240
| | - Jiqin Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499
| |
Collapse
|
93
|
Abdallah F, Lecellier G, Raharivelomanana P, Pichon C. R. nukuhivensis acts by reinforcing skin barrier function, boosting skin immunity and by inhibiting IL-22 induced keratinocyte hyperproliferation. Sci Rep 2019; 9:4132. [PMID: 30858525 PMCID: PMC6411885 DOI: 10.1038/s41598-019-39831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Rauvolfia nukuhivensis is a well-known plant used for its wide range of beneficial effects in Marquesas islands. It is made up of diverse indole alkaloids and is used as traditional medicine for skin application. The actual mechanism behind the virtue of this plant is still unknown. Hence, in this study we aimed at deciphering the impact of R. nukuhivensis on skin immune system in context of (1) homeostasis, (2) pathogen infection and (3) inflammation. Here we show that R. nukuhivensis enhances cellular metabolic activity and wound healing without inducing cellular stress or disturbing cellular homeostasis. It reinforces the epithelial barrier by up-regulating hBD-1. Nevertheless, in pathogenic stress, R. nukuhivensis acts by preparing the immune system to be reactive and effective directly. Indeed, it enhances the innate immune response by increasing pathogens sensors such as TLR5. Finally, R. nukuhivensis blocks IL-22 induced hyperproliferation via PTEN and Filaggrin up-regulation as well as BCL-2 downregulation. In conclusion, this study provides evidence on the several cutaneous application potentials of R. nukuhivensis such as boosting the immune response or in restoring the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Florence Abdallah
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071, Orléans, France
| | - Gaël Lecellier
- Université de Paris-Saclay UVSQ, 55 Avenue de Paris, 78000, Versailles, France
| | - Phila Raharivelomanana
- Université de la Polynésie Française, UMR 241 EIO, 6570 - 98702, Faa'a, Tahiti, Polynésie Française
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS-UPR4301, 45071, Orléans, France.
- Université d'Orléans, Collegium Sciences et Techniques, 45100, Orléans, France.
| |
Collapse
|
94
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
95
|
Leyva-Castillo JM, Yoon J, Geha RS. IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. J Allergy Clin Immunol 2019; 143:619-630.e7. [PMID: 29920352 PMCID: PMC6298864 DOI: 10.1016/j.jaci.2018.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Serum IL-22 levels are increased in patients with atopic dermatitis, which commonly precedes asthma in the atopic march. Epicutaneous sensitization in mice results in TH2-dominated skin inflammation that mimics atopic dermatitis and sensitizes the airways for antigen challenge-induced allergic inflammation characterized by the presence of both eosinophils and neutrophils. Epicutaneous sensitization results in increased serum levels of IL-22. OBJECTIVE We sought to determine the role of IL-22 in antigen-driven airway allergic inflammation after inhalation challenge in epicutaneously sensitized mice. METHODS Wild-type (WT) and Il22-/- mice were sensitized epicutaneously or immunized intraperitoneally with ovalbumin (OVA) and challenged intranasally with antigen. OVA T-cell receptor-specific T cells were TH22 polarized in vitro. Airway inflammation, mRNA levels in the lungs, and airway hyperresponsiveness (AHR) were examined. RESULTS Epicutaneous sensitization preferentially elicited an IL-22 response compared with intraperitoneal immunization. Intranasal challenge of mice epicutaneously sensitized with OVA elicited in the lungs Il22 mRNA expression, IL-22 production, and accumulation of CD3+CD4+IL-22+ T cells that coexpressed IL-17A and TNF-α. Epicutaneously sensitized Il22-/- mice exhibited diminished eosinophil and neutrophil airway infiltration and decreased AHR after intranasal OVA challenge. Production of IL-13, IL-17A, and TNF-α was normal, but IFN-γ production was increased in lung cells from airway-challenged and epicutaneously sensitized Il22-/- mice. Intranasal instillation of IFN-γ-neutralizing antibody partially reversed the defect in eosinophil recruitment. WT recipients of TH22-polarized WT, but not IL-22-deficient, T-cell receptor OVA-specific T cells, which secrete both IL-17A and TNF-α, had neutrophil-dominated airway inflammation and AHR on intranasal OVA challenge. Intranasal instillation of IL-22 with TNF-α, but not IL-17A, elicited neutrophil-dominated airway inflammation and AHR in WT mice, suggesting that loss of IL-22 synergy with TNF-α contributed to defective recruitment of neutrophils into the airways of Il22-/- mice. TNF-α, but not IL-22, blockade at the time of antigen inhalation challenge inhibited airway inflammation in epicutaneously sensitized mice. CONCLUSION Epicutaneous sensitization promotes generation of antigen-specific IL-22-producing T cells that promote airway inflammation and AHR after antigen challenge, suggesting that IL-22 plays an important role in the atopic march.
Collapse
Affiliation(s)
- Juan Manuel Leyva-Castillo
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Juhan Yoon
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
96
|
Lee DW, Zhong S, Pai R, Rae J, Sukumaran S, Stefanich EG, Lutman J, Doudement E, Wang X, Harder B, Lekkerkerker A, Herman A, Ouyang W, Danilenko DM. Nonclinical safety assessment of a human interleukin-22FC IG fusion protein demonstrates in vitro to in vivo and cross-species translatability. Pharmacol Res Perspect 2018; 6:e00434. [PMID: 30464842 PMCID: PMC6238097 DOI: 10.1002/prp2.434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Although Interleukin-22 (IL-22) is produced by various leukocytes, it preferentially targets cells with epithelial origins. IL-22 exerts essential roles in modulating various tissue epithelial functions, such as innate host defense against extracellular pathogens, barrier integrity, regeneration, and wound healing. Therefore, IL-22 is thought to have therapeutic potential in treating diseases associated with infection, tissue injury or chronic tissue damage. A number of in vitro and in vivo nonclinical studies were conducted to characterize the pharmacological activity and safety parameters of UTTR1147A, an IL-22 recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of a human immunoglobulin. To assess the pharmacological activity of UTTR1147A, STAT3 activation was evaluated in primary hepatocytes isolated from human, cynomolgus monkey, minipig, rat, and mouse after incubation with UTTR1147A. UTTR1147A activated STAT3 in all species evaluated, demonstrating that all were appropriate nonclinical species for toxicology studies. The nonclinical safety profile of UTTR1147A was evaluated in rats, minipigs, and cynomolgus monkeys to establish a safe clinical starting dose for humans in Phase I trials and to support clinical intravenous, subcutaneous and/or topical administration treatment regimen. Results demonstrate the cross-species translatability of the biological response in activating the IL-22 pathway as well as the translatability of findings from in vitro to in vivo systems. UTTR1147A was well tolerated in all species tested and induced the expected pharmacologic effects of epidermal hyperplasia and a transient increase in on-target acute phase proteins. These effects were all considered to be clinically predictable, manageable, monitorable, and reversible.
Collapse
Affiliation(s)
| | | | - Rama Pai
- CytokineticsSouth San FranciscoCaliforniaUSA
| | - Julie Rae
- Genentech, IncSouth San FranciscoCaliforniaUSA
| | | | | | - Jeff Lutman
- Genentech, IncSouth San FranciscoCaliforniaUSA
| | | | | | | | | | - Ann Herman
- Genentech, IncSouth San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
97
|
Mylonas A, Conrad C. Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol 2018; 9:2746. [PMID: 30555460 PMCID: PMC6283263 DOI: 10.3389/fimmu.2018.02746] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic plaque psoriasis is a common debilitating skin disease. The identification of the pathogenic role of the TNF/IL-23/TH17 pathway has enabled the development of targeted therapies used in the clinic today. Particularly, TNF inhibitors have become a benchmark for the treatment of numerous chronic inflammatory diseases such as psoriasis. Although being highly effective in psoriasis treatment, anti-TNFs can themselves induce psoriasis-like skin lesions, a side effect called paradoxical psoriasis. In this review, we provide a comprehensive look at the different cellular and molecular players involved in classical plaque psoriasis and contrast its pathogenesis to paradoxical psoriasis, which is clinically similar but immunologically distinct. Classical psoriasis is a T-cell mediated autoimmune disease driven by TNF, characterised by T-cells memory, and a relapsing disease course. In contrast, paradoxical psoriasis is caused by the absence of TNF and represents an ongoing type-I interferon-driven innate inflammation that fails to elicit T-cell autoimmunity and lacks memory T cell-mediated relapses.
Collapse
Affiliation(s)
- Alessio Mylonas
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| | - Curdin Conrad
- Department of Dermatology, University Hospital CHUV, Lausanne, Switzerland
| |
Collapse
|
98
|
Li P, Shi X, Xu Y, Zhong B, Lu Y, Sun Y. Interleukin-22 Promotes Osteosarcoma Cell Proliferation and Invasion via STAT3 Activation. Med Sci Monit 2018; 24:7802-7808. [PMID: 30381753 PMCID: PMC6225732 DOI: 10.12659/msm.910962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Interleukin-22 (IL-22) is one of the cytokines secreted by T-helper 17 (Th17) cells. It belongs to the IL-10 cytokine family and influences a variety of immune reactions. Studies have indicated that IL-22 can promote cancer progression and metastases. However, the function of IL-22 in osteosarcoma (OS) remains unclear. MATERIAL AND METHODS In this study, the expression of IL-22 in the OS cell line was detected by qRT-PCR. The role of IL-22 in proliferation and invasion in OS cells was tested by MTT and Transwell assays. The protein expression of STAT3, phospho-STAT3, AKT, and phospho-AKT was detected by Western blot analysis. RESULTS The results showed that IL-22 was upregulated in OS cells. IL-22 dose-independently promoted OS cells proliferation and invasion, which could be reversed by IL-22 antibody or STAT3 siRNA. Furthermore, IL-22 exposure of OS cells resulted in dose-independently increased levels of phosphorylated STAT3 protein kinases. Interestingly, IL-22 did not influence the expression of phosphorylated AKT. CONCLUSIONS These results suggest that IL-22 promotes OS cells proliferation and invasion and its effect is mediated by activation of the STAT3 pathway. These findings demonstrate that IL-22 may serve as a promising molecular biomarker for diagnosis and therapy for OS patients.
Collapse
Affiliation(s)
- Panpan Li
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Xin Shi
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yonghui Xu
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Binggang Zhong
- Department of Orthopedics, The First People’s Hospital of Zhao Tong, Zhaotong, Yunnan, P.R. China
| | - Yu Lu
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yong Sun
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
99
|
Zheng Y, Li T. Interleukin-22, a potent target for treatment of non-autoimmune diseases. Hum Vaccin Immunother 2018; 14:2811-2819. [PMID: 30335564 DOI: 10.1080/21645515.2018.1509649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interleukin -22 (IL-22) is a member of interleukin-10 (IL-10) family cytokines that is produced by different types of lymphocytes included in both innate and adaptive immune systems. These lymphocytes include activated T cells, most notably Th17 and Th22 cells, as well as NK cells, γδ T cells, etc. IL-22 mediate its effects via the IL-22-IL-22R complex and subsequent Janus Kinase-signal transduces and activators transcription (JAK-STAT) signaling pathway. According to recent evidence, IL-22 played a critical role in the pathogenesis of many non-autoimmune diseases. In this review, we mainly discussed the recent findings and advancements of the role of IL-22 in several non-autoimmune diseases, such as acute lung injury, atherosclerosis and some bacterial infections, suggesting that IL-22 may have therapeutic potential for treating non-autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zheng
- a Cardiology , The Third Central Clinical College of Tianjin Medical University , Tianjin , China.,b Cardiology , Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,d Tianjin Institute of Hepatobiliary Disease , Tianjin , China
| | - Tong Li
- b Cardiology , Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,d Tianjin Institute of Hepatobiliary Disease , Tianjin , China.,e The Third Central Hospital of Tianjin , Tianjin , China
| |
Collapse
|
100
|
Forbester JL, Lees EA, Goulding D, Forrest S, Yeung A, Speak A, Clare S, Coomber EL, Mukhopadhyay S, Kraiczy J, Schreiber F, Lawley TD, Hancock REW, Uhlig HH, Zilbauer M, Powrie F, Dougan G. Interleukin-22 promotes phagolysosomal fusion to induce protection against Salmonella enterica Typhimurium in human epithelial cells. Proc Natl Acad Sci U S A 2018; 115:10118-10123. [PMID: 30217896 PMCID: PMC6176607 DOI: 10.1073/pnas.1811866115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection.
Collapse
Affiliation(s)
- Jessica L Forbester
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom;
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Emily A Lees
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sally Forrest
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Amy Yeung
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Anneliese Speak
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Eve L Coomber
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Judith Kraiczy
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fernanda Schreiber
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Trevor D Lawley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
- Department of Paediatrics, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fiona Powrie
- Translational Gastroenterology Unit, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|