51
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
52
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
53
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
54
|
Ren T, Xu M, Zhou S, Ren J, Li B, Jiang P, Li H, Wu W, Chen C, Fan M, Jiao L. Structural characteristics of mixed pectin from ginseng berry and its anti-obesity effects by regulating the intestinal flora. Int J Biol Macromol 2023; 242:124687. [PMID: 37146855 DOI: 10.1016/j.ijbiomac.2023.124687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Ginseng berry is the mature berry of ginseng and its polysaccharide has hypolipidaemic effect, but its mechanism remains unclear. A pectin (GBPA) with a molecular weight of 3.53 × 104 Da was isolated from ginseng berry, it was mainly composed of Rha (25.54 %), GalA (34.21 %), Gal (14.09 %) and Ara (16.25 %). Structural analysis showed that GBPA is a mixed pectin containing rhamnogalacturonan-I and homogalacturonan domains and has a triple helix structure. GBPA distinctly improved lipid disorders in obese rats, and changed intestinal flora with enrichments of Akkermansia, Bifidobacterium, Bacteroides and Prevotella, improved the levels of acetic acid, propionic acid, butyric acid and valeric acid. Serum metabolites which involved in the lipid regulation-related pathway, including cinnzeylanine, 10-Hydroxy-8-nor-2-fenchanone glucoside, armillaribin, 24-Propylcholestan-3-ol, were also greatly changed after GBPA treatment. GBPA activated AMP-activated protein kinase, phosphorylated acetyl-CoA carboxylase, and reduced the expression of lipid synthesis-related genes sterol regulatory element-binding protein-1c and fatty acid synthases. The regulatory effects of GBPA on lipid disorders in obese rats are related to the regulation of intestinal flora and activation of AMP-activated protein kinase pathway. Ginseng berry pectin could be considered in the future as a health food or medicine to prevent obesity.
Collapse
Affiliation(s)
- Ting Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Bo Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Peng Jiang
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Meiling Fan
- The Affiliated Hospital of ChangChun University of Chinese Medicine, Changchun, Jilin 130021, China.
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
55
|
Tilves C, Tanaka T, Differding MK, Spira AP, Chia CW, Ferrucci L, Mueller NT. The gut microbiome and regional fat distribution: Findings from the Baltimore Longitudinal Study of Aging. Obesity (Silver Spring) 2023; 31:1425-1435. [PMID: 37016727 PMCID: PMC10191998 DOI: 10.1002/oby.23717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 04/06/2023]
Abstract
OBJECTIVE The aim of this study was to examine associations of gut microbiome diversity and composition with directly measured regional fat distribution, including central fat, in a large community-based cohort. METHODS A cross-sectional investigation was conducted in the Baltimore Longitudinal Study of Aging (N = 815, 55.2% female, 65.9% White). The fecal microbiome was assessed using whole-genome shotgun metagenomic sequencing, and trunk and leg fat was measured using dual x-ray absorptiometry. Multivariable-adjusted associations of regional fat measures, BMI, or waist circumference with microbiome alpha diversity metrics, microbiome beta diversity metrics, and species differential abundance (verified using two compositional statistical approaches) were examined. RESULTS Trunk fat, leg fat, BMI, and waist circumference all significantly explained similar amounts of variance in microbiome structure. Differential abundance testing identified 11 bacterial species significantly associated with at least one measure of body composition or anthropometry. Ruminococcus gnavus was strongly and consistently associated with trunk fat mass, which is congruent with prior literature. CONCLUSIONS Microbiome diversity and composition, in particular higher abundance of Ruminococcus gnavus, were associated with greater trunk fat, in addition to other measures of obesity. Longitudinal studies are needed to replicate these findings, and if replicated, randomized trials are needed to determine whether interventions targeting microbiome features such as abundance of Ruminococcus gnavus can lead to reductions in trunk fat and its metabolic sequelae.
Collapse
Affiliation(s)
- Curtis Tilves
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Toshiko Tanaka
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moira K. Differding
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
- Center on Aging and Health, Johns Hopkins University
| | - Chee W. Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
56
|
Kurmaeva D, Ye Y, Bakhytkyzy I, Aru V, Dalimova D, Turdikulova S, Dragsted LO, Engelsen SB, Khakimov B. Associations between sheep meat intake frequency and blood plasma levels of metabolites and lipoproteins in healthy Uzbek adults. Metabolomics 2023; 19:46. [PMID: 37099187 PMCID: PMC10133350 DOI: 10.1007/s11306-023-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/27/2023]
Abstract
INTRODUCTION Uzbekistan is one of the countries with the highest number of diet-related chronic diseases, which is believed to be associated with high animal fat intake. Sheep meat is high in fats (~ 5% in muscle), including saturated and monounsaturated fatty acids, and it contains nearly twice the higher amounts of n-3 polyunsaturated fatty acids and conjugated linoleic acids compared to beef. Nevertheless, sheep meat is considered health promoting by the locals in Uzbekistan and it accounts for around 1/3 of red meat intake in the country. OBJECTIVES The aim of this study was to apply a metabolomics approach to investigate if sheep meat intake frequency (SMIF) is associated with alterations in fasting blood plasma metabolites and lipoproteins in healthy Uzbek adults. METHODS The study included 263 subjects, 149 females and 114 males. For each subject a food intake questionnaire, including SMIF, was recorded and fasting blood plasma samples were collected for metabolomics. Blood plasma metabolites and lipoprotein concentrations were determined using 1H NMR spectroscopy. RESULTS AND CONCLUSION The results showed that SMIF was confounded by nationality, sex, body mass index (BMI), age, intake frequency of total meat and fish in ascending order (p < 0.01). Multivariate and univariate data analyses showed differences in the levels of plasma metabolites and lipoproteins with respect to SMIF. The effect of SMIF after statistical adjustment by nationality, sex, BMI, age, intake frequency of total meat and fish decreased but remained significant. Pyruvic acid, phenylalanine, ornithine, and acetic acid remained significantly lower in the high SMIF group, whereas choline, asparagine, and dimethylglycine showed an increasing trend. Levels of cholesterol, apolipoprotein A1, as well as low- and high-density lipoprotein subfractions all displayed a decreasing trend with increased SMIF although the difference were not significant after FDR correction.
Collapse
Affiliation(s)
- Diyora Kurmaeva
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Yongxin Ye
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Inal Bakhytkyzy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Dilbar Dalimova
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Shahlo Turdikulova
- Centre for Advanced Technologies, Talabalar Shaharchasi 3A, 100041, Tashkent, Uzbekistan
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
57
|
Abstract
Microbial communities are shaped by positive and negative interactions ranging from competition to mutualism. In the context of the mammalian gut and its microbial inhabitants, the integrated output of the community has important impacts on host health. Cross-feeding, the sharing of metabolites between different microbes, has emergent roles in establishing communities of gut commensals that are stable, resistant to invasion, and resilient to external perturbation. In this review, we first explore the ecological and evolutionary implications of cross-feeding as a cooperative interaction. We then survey mechanisms of cross-feeding across trophic levels, from primary fermenters to H2 consumers that scavenge the final metabolic outputs of the trophic network. We extend this analysis to also include amino acid, vitamin, and cofactor cross-feeding. Throughout, we highlight evidence for the impact of these interactions on each species' fitness as well as host health. Understanding cross-feeding illuminates an important aspect of microbe-microbe and host-microbe interactions that establishes and shapes our gut communities.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
58
|
Colangeli L, Escobar Marcillo DI, Simonelli V, Iorio E, Rinaldi T, Sbraccia P, Fortini P, Guglielmi V. The Crosstalk between Gut Microbiota and White Adipose Tissue Mitochondria in Obesity. Nutrients 2023; 15:nu15071723. [PMID: 37049562 PMCID: PMC10097238 DOI: 10.3390/nu15071723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Adipose tissue (AT) dysregulation is a key process in the pathophysiology of obesity and its cardiometabolic complications, but even if a growing body of evidence has been collected over recent decades, the underlying molecular basis of adiposopathy remains to be fully understood. In this context, mitochondria, the intracellular organelles that orchestrate energy production and undergo highly dynamic adaptive changes in response to changing environments, have emerged as crucial regulators of both white (WAT) and brown adipose tissue (BAT) metabolism and function. Given that the gut microbiota and its metabolites are able to regulate host metabolism, adipogenesis, WAT inflammation, and thermogenesis, we hypothesize that their frequently observed dysregulation in obesity could affect AT metabolism by exerting direct and indirect effects on AT mitochondria. By collecting and revising the current evidence on the connections between gut microbiota and AT mitochondria in obesity, we gained insights into the molecular biology of their hitherto largely unexplored crosstalk, tracing how gut microbiota may regulate AT mitochondrial function.
Collapse
|
59
|
Hijová E. Benefits of Biotics for Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24076292. [PMID: 37047262 PMCID: PMC10093891 DOI: 10.3390/ijms24076292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiovascular diseases are the main cause of death in many countries, and the better prevention and prediction of these diseases would be of great importance for individuals and society. Nutrition, the gut microbiota, and metabolism have raised much interest in the field of cardiovascular disease research in the search for the main mechanisms that promote cardiovascular diseases. Understanding the interactions between dietary nutrient intake and the gut microbiota-mediated metabolism may provide clinical insight in order to identify individuals at risk of cardiometabolic disease progression, as well as other potential therapeutic targets to mitigate the risk of cardiometabolic disease progression. The development of cardiometabolic diseases can be modulated by specific beneficial metabolites derived from bacteria. Therefore, it is very important to investigate the impact of these metabolites on human health and the possibilities of modulating their production with dietary supplements called biotics.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
60
|
Chu Y, Meng Q, Yu J, Zhang J, Chen J, Kang Y. Strain-Level Dynamics Reveal Regulatory Roles in Atopic Eczema by Gut Bacterial Phages. Microbiol Spectr 2023; 11:e0455122. [PMID: 36951555 PMCID: PMC10101075 DOI: 10.1128/spectrum.04551-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
The vast population of bacterial phages or viruses (virome) plays pivotal roles in the ecology of human microbial flora and health conditions. Obstacles, including poor viral sequence inference, strain-sensitive virus-host relationship, and the high diversity among individuals, hinder the in-depth understanding of the human virome. We conducted longitudinal studies of the virome based on constructing a high-quality personal reference metagenome (PRM). By applying long-read sequencing for representative samples, we could build a PRM of high continuity that allows accurate annotation and abundance estimation of viruses and bacterial species in all samples of the same individual by aligning short sequencing reads to the PRM. We applied this approach to a series of fecal samples collected for 6 months from a 2-year-old boy who had experienced a 2-month flare-up of atopic eczema (dermatitis) in this period. We identified 31 viral strains in the patient's gut microbiota and deciphered their strain-level relationship to their bacterial hosts. Among them, a lytic crAssphage developed into a dozen substrains and coordinated downregulation in the catabolism of aromatic amino acids (AAAs) in their host bacteria which govern the production of immune-active AAA derivates. The metabolic alterations confirmed based on metabolomic assays cooccurred with symptom remission. Our PRM-based analysis provides an easy approach for deciphering the dynamics of the strain-level human gut virome in the context of entire microbiota. Close temporal correlations among virome alteration, microbial metabolism, and disease remission suggest a potential mechanism for how bacterial phages in microbiota are intimately related to human health. IMPORTANCE The vast populations of viruses or bacteriophages in human gut flora remain mysterious. However, poor annotation and abundance estimation remain obstacles to strain-level analysis and clarification of their roles in microbiome ecology and metabolism associated with human health and diseases. We demonstrate that a personal reference metagenome (PRM)-based approach provides strain-level resolution for analyzing the gut microbiota-associated virome. When applying such an approach to longitudinal samples collected from a 2-year-old boy who has experienced a 2-month flare-up of atopic eczema, we observed thriving substrains of a lytic crAssphage, showing temporal correlation with downregulated catabolism of aromatic amino acids, lower production of immune-active metabolites, and remission of the disease. The PRM-based approach is practical and powerful for strain-centric analysis of the human gut virome, and the underlying mechanism of how strain-level virome dynamics affect disease deserves further investigation.
Collapse
Affiliation(s)
- Yanan Chu
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Qingren Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- Department of Pediatric, Peking University Third Hospital, Beijing, China
| | - Jing Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yu Kang
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
61
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023; 12:cells12050793. [PMID: 36899929 PMCID: PMC10000530 DOI: 10.3390/cells12050793] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, viruses and phages, inhabits the gastrointestinal tract. This commensal microbiota can contribute to the regulation of host immune response and homeostasis. Alterations of the gut microbiota have been found in many immune-related diseases. The metabolites generated by specific microorganisms in the gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, not only affect genetic and epigenetic regulation but also impact metabolism in the immune cells, including immunosuppressive and inflammatory cells. The immunosuppressive cells (such as tolerogenic macrophages (tMacs), tolerogenic dendritic cells (tDCs), myeloid-derived suppressive cells (MDSCs), regulatory T cells (Tregs), regulatory B cells (Breg) and innate lymphocytes (ILCs)) and inflammatory cells (such as inflammatory Macs (iMacs), DCs, CD4 T helper (Th)1, CD4Th2, Th17, natural killer (NK) T cells, NK cells and neutrophils) can express different receptors for SCFAs, Trp and BA metabolites from different microorganisms. Activation of these receptors not only promotes the differentiation and function of immunosuppressive cells but also inhibits inflammatory cells, causing the reprogramming of the local and systemic immune system to maintain the homeostasis of the individuals. We here will summarize the recent advances in understanding the metabolism of SCFAs, Trp and BA in the gut microbiota and the effects of SCFAs, Trp and BA metabolites on gut and systemic immune homeostasis, especially on the differentiation and functions of the immune cells.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ningning Zhu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
62
|
Guan SP, Kumar SN, Fann DY, Kennedy BK. A mechanistic perspective on the health promoting effects of alcohol - A focus on epigenetics modification. Alcohol 2023; 107:91-96. [PMID: 35987314 DOI: 10.1016/j.alcohol.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/23/2023]
Abstract
While the detrimental effects of binge drinking are well recognized, low-to-moderate alcohol consumption may be beneficial to health, although the underlying mechanism(s) remains elusive. In this opinion article, we will examine the effects of low dose alcohol consumption from the perspective of epigenetic modulation. Biochemically, alcohol is metabolized into acetate and subsequently to acetyl-coA, which can modulate histone acetylation levels. While elevated levels of acetyl-CoA are detrimental for longevity, we argue that diminished acetyl-CoA also negatively affects fatty acid biosynthesis and histone acetylation, which play a critical role in gene expression and, ultimately, health span. Since mitochondrial function and glucose metabolism, which provide the main source of nucleocytoplasmic acetyl-CoA, are compromised with age, alcohol-derived acetate could be an alternative source of acetyl-CoA to compensate. Hence, the health benefits of low ethanol consumption may be more pronounced after midlife, since mitochondrial function and/or glucose metabolism are diminished in this phase of the life course. Indeed, various clinical alcohol consumption studies concur with this notion, and have shown that a low dose of regular alcohol intake after midlife brings about various health and survival benefits. The requirement for regular alcohol intake may also reflect the transient nature of ethanol-induced histone acetylation. Conversely, ethanol may also stimulate carcinogenesis by inhibiting DNA methylation, as it was shown to reduce various pathways leading to DNA and histone methylation. However, unlike acetylation, where ethanol directly increases the substrate for acetylation, this effect was only observed in the high alcohol exposure cohort. While alcohol-derived acetate may be beneficial for health after midlife, various detrimental effects of alcohol consumption remain, and hence, we do not advocate excessive drinking to increase acetate. This opinion article establishes a possible role of ethanol-derived acetate in achieving homeostasis and sustaining an organism's health span.
Collapse
Affiliation(s)
- Shou Ping Guan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Shermila N Kumar
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Singapore Institute of Clinical Sciences, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
63
|
Ghazali AK, Firdaus-Raih M, Uthaya Kumar A, Lee WK, Hoh CC, Nathan S. Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Microbiol Spectr 2023; 11:e0383522. [PMID: 36856434 PMCID: PMC10100664 DOI: 10.1128/spectrum.03835-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Asqwin Uthaya Kumar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
64
|
Takeuchi T, Kameyama K, Miyauchi E, Nakanishi Y, Kanaya T, Fujii T, Kato T, Sasaki T, Tachibana N, Negishi H, Matsui M, Ohno H. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab 2023; 35:361-375.e9. [PMID: 36652945 DOI: 10.1016/j.cmet.2022.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/25/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Although recent studies have highlighted the impact of gut microbes on the progression of obesity and its comorbidities, it is not fully understood how these microbes promote these disorders, especially in terms of the role of microbial metabolites. Here, we report that Fusimonas intestini, a commensal species of the family Lachnospiraceae, is highly colonized in both humans and mice with obesity and hyperglycemia, produces long-chain fatty acids such as elaidate, and consequently facilitates diet-induced obesity. High fat intake altered the expression of microbial genes involved in lipid production, such as the fatty acid metabolism regulator fadR. Monocolonization with a FadR-overexpressing Escherichia coli exacerbated the metabolic phenotypes, suggesting that the change in bacterial lipid metabolism is causally involved in disease progression. Mechanistically, the microbe-derived fatty acids impaired intestinal epithelial integrity to promote metabolic endotoxemia. Our study thus provides a mechanistic linkage between gut commensals and obesity through the overproduction of microbe-derived lipids.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Keishi Kameyama
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takayoshi Fujii
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroki Negishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Misato Matsui
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
65
|
Chen AS, Liu DH, Hou HN, Yao JN, Xiao SC, Ma XR, Li PZ, Cao Q, Liu XK, Zhou ZQ, Wang P. Dietary pattern interfered with the impacts of pesticide exposure by regulating the bioavailability and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159936. [PMID: 36336046 DOI: 10.1016/j.scitotenv.2022.159936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 05/15/2023]
Abstract
Dietary intake is an essential way for pesticides to enter the human body. The effects of dietary pattern on the risks of pesticides and what diet can reduce the damage are largely unknown. Here, it is found that Mediterranean diet and Vegetarian diet could alleviate insulin resistance and obesity induced by chlorpyrifos, while Western diet could aggravate that. Gut microbiota and chlorpyrifos bioavailability mediated by the diets were involved in these effects. Both the dietary pattern and chlorpyrifos could change the composition of gut microbiota. Chlorpyrifos caused gut dysbacteriosis which was an important reason for the induced metabolic syndrome. Mediterranean diet and Vegetarian diet could maintain gut microbiota homeostasis and increase intestinal bacteria producing short-chain fatty acids, repair the gut microbiota and intestinal barrier damaged by chlorpyrifos. High dietary fat intake increased the bioavailability of chlorpyrifos, which aggravated the gut dysbacteriosis and destruction of intestinal integrity. Thus, the amount of endotoxin entering the blood increased and caused low-grade inflammation, which was also an important pathway of metabolic syndrome. The results suggested that although it was almost impossible to avoid the exposure to pesticides in modern life, healthy diets could regulate beneficial gut microbiota and alleviate the risk of pesticide exposure.
Collapse
Affiliation(s)
- Ai Song Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Dong Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Hao Nan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jia Ning Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Shou Chun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiao Ran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pei Ze Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Qian Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xue Ke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhi Qiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
66
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
67
|
Kropochev AI, Lashin SA, Matushkin YG, Klimenko AI. Trait-Based Method of Quantitative Assessment of Ecological Functional Groups in the Human Intestinal Microbiome. BIOLOGY 2023; 12:biology12010115. [PMID: 36671807 PMCID: PMC9855786 DOI: 10.3390/biology12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
We propose the trait-based method for quantifying the activity of functional groups in the human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes in the microbial community comprised of the following functional groups: butyrate-producers, acetogens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional analysis of metatranscriptomic data by focusing on the ecological level of the community under study. To develop the method, we used published data obtained in a carefully controlled environment and from a synthetic microbial community, where the problem of ambiguity between functionality and taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification provides prospects for the application of this method for analyzing natural communities of the human intestinal microbiota.
Collapse
Affiliation(s)
- Andrew I. Kropochev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
- Correspondence:
| | - Sergey A. Lashin
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yury G. Matushkin
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra I. Klimenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
68
|
Fourati S, Dumay A, Roy M, Willemetz A, Ribeiro-Parenti L, Mauras A, Mayeur C, Thomas M, Kapel N, Joly F, Le Gall M, Bado A, Le Beyec J. Fecal microbiota transplantation in a rodent model of short bowel syndrome: A therapeutic approach? Front Cell Infect Microbiol 2023; 13:1023441. [PMID: 36936775 PMCID: PMC10020656 DOI: 10.3389/fcimb.2023.1023441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive intestinal resection leads to Short Bowel Syndrome (SBS), the main cause of chronic intestinal failure. Colon preservation is crucial for spontaneous adaptation, to improve absorption and reduce parenteral nutrition dependence. Fecal microbiota transplantation (FMT), a promising approach in pathologies with dysbiosis as the one observed in SBS patients, was assessed in SBS rats with jejuno-colonic anastomosis. The evolution of weight and food intake, the lenght of intestinal villi and crypts and the composition of fecal microbiota of Sham and SBS rats, transplanted or not with high fat diet rat microbiota, were analyzed. All SBS rats lost weight, increased their food intake and exhibited jejunal and colonic hyperplasia. Microbiota composition of SBS rats, transplanted or not, was largely enriched with Lactobacillaceae, and α- and β-diversity were significantly different from Sham. The FMT altered microbiota composition and α- and β-diversity in Sham but not SBS rats. FMT from high fat diet rats was successfully engrafted in Sham, but failed to take hold in SBS rats, probably because of the specific luminal environment in colon of SBS subjects favoring aero-tolerant over anaerobic bacteria. Finally, the level of food intake in SBS rats was positively correlated with their Lactobacillaceae abundance. Microbiota transfer must be optimized and adapted to this specific SBS environment.
Collapse
Affiliation(s)
- Salma Fourati
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Sorbonne Université, AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Biochimie Endocrinienne et Oncologique, Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
| | - Anne Dumay
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Maryline Roy
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Alexandra Willemetz
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Lara Ribeiro-Parenti
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- AP-HP, Hôpital Bichat -Claude Bernard, Service de chirurgie Générale OEsogastrique et Bariatrique, Paris, France
| | - Aurélie Mauras
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Camille Mayeur
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Thomas
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR1319 - Micalis Institute, Institut National de Recherche pour l’Agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- UMR-S 1139, INSERM, Universite Paris Cite, Paris, France
- AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Coprologie fonctionnelle, Paris, France
| | - Francisca Joly
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Department of gastroenterology, IBD and nutrition Support, AP‐HP, CRMR MarDi, Hôpital Beaujon, Clichy, France
| | - Maude Le Gall
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - André Bado
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
| | - Johanne Le Beyec
- UMR-S1149, Centre de recherche sur l’inflammation, INSERM, Universite Paris Cite, Paris, France
- Sorbonne Université, AP-HP, Hôpital de la Pitié‐Salpêtrière‐Charles Foix, Service de Biochimie Endocrinienne et Oncologique, Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, Paris, France
- *Correspondence: Johanne Le Beyec, ;;
| |
Collapse
|
69
|
van de Velde C, Joseph C, Simoens K, Raes J, Bernaerts K, Faust K. Technical versus biological variability in a synthetic human gut community. Gut Microbes 2023; 15:2155019. [PMID: 36580382 PMCID: PMC9809966 DOI: 10.1080/19490976.2022.2155019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic communities grown in well-controlled conditions are an important tool to decipher the mechanisms driving community dynamics. However, replicate time series of synthetic human gut communities in chemostats are rare, and it is thus still an open question to what extent stochasticity impacts gut community dynamics. Here, we address this question with a synthetic human gut bacterial community using an automated fermentation system that allows for a larger number of biological replicates. We collected six biological replicates for a community initially consisting of five common gut bacterial species that fill different metabolic niches. After an initial 12 hours in batch mode, we switched to chemostat mode and observed the community to stabilize after 2-3 days. Community profiling with 16S rRNA resulted in high variability across replicate vessels and high technical variability, while the variability across replicates was significantly lower for flow cytometric data. Both techniques agree on the decrease in the abundance of Bacteroides thetaiotaomicron, accompanied by an initial increase in Blautia hydrogenotrophica. These changes occurred together with reproducible metabolic shifts, namely a fast depletion of glucose and trehalose concentration in batch followed by a decrease in formic acid and pyruvic acid concentrations within the first 12 hours after the switch to chemostat mode. In conclusion, the observed variability in the synthetic bacterial human gut community, as assessed with 16S rRNA gene sequencing, is largely due to technical variability. The low variability seen in HPLC and flow cytometry data suggests a highly deterministic system.
Collapse
Affiliation(s)
- Charlotte van de Velde
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Clémence Joseph
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
- Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), LeuvenB-3001, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, LeuvenB-3000, Belgium
| |
Collapse
|
70
|
Quigley EMM, Markinson L, Stevenson A, Treasure FP, Lacy BE. Randomised clinical trial: efficacy and safety of the live biotherapeutic product MRx1234 in patients with irritable bowel syndrome. Aliment Pharmacol Ther 2023; 57:81-93. [PMID: 36369645 DOI: 10.1111/apt.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND MRx1234 is a live biotherapeutic product that contains a strain of Blautia hydrogenotrophica. It is in development for the treatment of irritable bowel syndrome (IBS). AIMS To assess the efficacy and safety of MRx1234 in patients with IBS with predominant constipation (IBS-C) or diarrhoea (IBS-D) METHODS: We conducted a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Patients aged 18-70 years in two parallel cohorts (IBS-C; IBS-D) were randomised (1:1) to MRx1234 or placebo for 8 weeks. The primary efficacy endpoint was overall responder rate-a composite of improved bowel habit (IBS-C: stool frequency; IBS-D: stool consistency) and abdominal pain intensity-for ≥50% of the treatment period in each cohort. Statistical testing was at a one-sided 0.10 significance level. RESULTS Of 366 randomised patients (164 IBS-C; 202 IBS-D), 365 received any study medication (177 MRx1234, 188 placebo). Numerically, although not statistically significantly different, more patients who received MRx1234 than placebo were overall responders in the IBS-C (25.0% vs. 17.1%) and IBS-D (23.4% vs. 17.8%) cohorts. Similar results were observed in the additional combined cohort analysis (24.1% vs. 17.5%; p = 0.063). For the components of the primary endpoint, significantly more patients on MRx1234 than placebo reported improvement in bowel habit in the IBS-C, IBS-D and combined cohorts, while improvements in abdominal pain were observed in each cohort. The safety profile of MRx1234 was similar to placebo. CONCLUSIONS MRx1234 has the potential to become a novel, safe treatment option for patients with IBS-C or IBS-D, and for those who have mixed symptoms or transition between subtypes. CLINICALTRIALS gov #NCT03721107.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA.,Houston Methodist Gastroenterology Associates, Houston, Texas, USA
| | | | | | | | - Brian E Lacy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
71
|
Wang T, van Dijk L, Rijnaarts I, Hermes GDA, de Roos NM, Witteman BJM, de Wit NJW, Govers C, Smidt H, Zoetendal EG. Methanogen Levels Are Significantly Associated with Fecal Microbiota Composition and Alpha Diversity in Healthy Adults and Irritable Bowel Syndrome Patients. Microbiol Spectr 2022; 10:e0165322. [PMID: 36321894 PMCID: PMC9769613 DOI: 10.1128/spectrum.01653-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Hydrogenotrophic microbes, primarily including the three functional groups methanogens, sulfate-reducing bacteria, and reductive acetogens, use hydrogen as an energy source and play an important role in maintaining the hydrogen balance in gut ecosystems. A distorted hydrogen balance has been associated with irritable bowel syndrome (IBS). However, the role of hydrogenotrophic microbes in overall microbiota composition and function remains largely unknown. This study aims to assess the distribution and stability of hydrogenotrophic functional groups in healthy adults (HAs) and IBS patients and their association with overall microbiota composition and IBS symptoms. A two-time-point study with 4 weeks in between was performed with 27 HAs and 55 IBS patients included. Our observations revealed that methanogens showed a bimodal distribution across samples. A high-level methanogen microbiota was consistently associated with higher alpha diversity, and its composition was significantly different from that of individuals with a low-level methanogen microbiota. In general, these associations were more pronounced in IBS patients than in HAs. The differences in the copy numbers of genes indicative of total bacteria and acetogens between HAs and IBS patients and their correlations with IBS symptom severity, anxiety, depression, and quality of life (QoL) were sampling time dependent. Hydrogenotrophic functional groups did not show negative abundance correlations with each other in HAs and IBS patients. These findings suggest that methanogen levels in the gut have a pronounced association with microbiota alpha diversity and composition, and the interactions between hydrogenotrophic functional groups are complex in gut ecosystems. IMPORTANCE Hydrogenotrophic microbes play an essential role in the disposal of hydrogen and the maintenance of the hydrogen balance in gut ecosystems. Their abundances vary between individuals and have been reported to be associated with human gut disorders such as irritable bowel disease. This study confirms that methanogen levels show a bimodal distribution. Moreover, a high-level methanogen microbiota was associated with higher alpha diversity, and its composition was different from that of individuals with a low-level methanogen microbiota. These associations are more pronounced in IBS patients than in healthy subjects. In addition, associations between hydrogenotrophic microbes and IBS symptom scores vary over time, which argues for the use of longitudinal study designs. Last but not least, this study suggests that the different hydrogenotrophic microbes coexist with each other and do not necessarily compete for hydrogen in the gut. The findings in this study highlight the impact of methanogens on overall microbiota composition and function.
Collapse
Affiliation(s)
- Taojun Wang
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Leander van Dijk
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iris Rijnaarts
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerben D. A. Hermes
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Nicole M. de Roos
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Ben J. M. Witteman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
- Department of Gastroenterology and Hepatology, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Nicole J. W. de Wit
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Coen Govers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, the Netherlands
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
72
|
Huang R, Liu P, Bai Y, Huang J, Pan R, Li H, Su Y, Zhou Q, Ma R, Zong S, Zeng G. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. J Zhejiang Univ Sci B 2022; 23:1002-1013. [PMID: 36518053 PMCID: PMC9758719 DOI: 10.1631/jzus.b2200344] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Osteoporosis (OP) has become a major public health issue, threatening the bone health of middle-aged and elderly people from all around the world. Changes in the gut microbiota (GM) are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial, and no systematic review or meta-analysis of the relationship between GM and OP has been conducted. This paper addresses this shortcoming, focusing on the difference in the GM abundance between OP patients and healthy controls based on previous 16S ribosomal RNA (rRNA) gene sequencing results, in order to provide new clinical reference information for future customized prevention and treatment options of OP. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI). In addition, we applied the R programming language version 4.0.3 and Stata 15.1 software for data analysis. We also implemented the Newcastle-Ottawa Scale (NOS), funnel plot analysis, sensitivity analysis, Egger's test, and Begg's test to assess the risk of bias. RESULTS: This research ultimately considered 12 studies, which included the fecal GM data of 2033 people (604 with OP and 1429 healthy controls). In the included research papers, it was observed that the relative abundance of Lactobacillus and Ruminococcus increased in the OP group, while the relative abundance for Bacteroides of Bacteroidetes increased (except for Ireland). Meanwhile, Firmicutes, Blautia, Alistipes, Megamonas, and Anaerostipes showed reduced relative abundance in Chinese studies. In the linear discriminant analysis Effect Size (LEfSe) analysis, certain bacteria showed statistically significant results consistently across different studies. CONCLUSIONS: This observational meta-analysis revealed that changes in the GM were correlated with OP, and variations in some advantageous GM might involve regional differences.
Collapse
Affiliation(s)
- Rui Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Pan Liu
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Yiguang Bai
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong 637000, China
| | - Jieqiong Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Rui Pan
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Huihua Li
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Yeping Su
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Quan Zhou
- Department of Wound Repair, the First People's Hospital of Nanning, Nanning 530022, China
| | - Ruixin Ma
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shaohui Zong
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China. ,
| |
Collapse
|
73
|
Ayariga JA, Ibrahim I, Gildea L, Abugri J, Villafane R. Microbiota in a long survival discourse with the human host. Arch Microbiol 2022; 205:5. [PMID: 36441284 DOI: 10.1007/s00203-022-03342-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
The relationship between human health and gut microbiota is becoming more apparent. It is now widely believed that healthy gut flora plays a vital role in the overall well-being of the individual. There are spatial and temporal variations in the distribution of microbes from the esophagus to the rectum throughout an individual's lifetime. Through the development of genome sequencing technologies, scientists have been able to study the interactions between different microorganisms and their hosts to improve the health and disease of individuals. The normal gut microbiota provides various functions to the host, whereas the host, in turn, provides nutrients and promotes the development of healthy and resilient microbiota communities. Thus, the microbiota provides and maintains the gut's structural integrity and protects the gut against pathogens. The development of the normal gut microbiota is influenced by various factors. Some of these include the mode of delivery, diet, and antibiotics. In addition, the environment can also affect the development of the gut microbiota. For example, one of the main concerns of antibiotic use is the alteration of the gut microbiota, which could lead to the development of multidrug-resistant organisms. When microbes are disturbed, it can potentially lead to various diseases. Depending on the species' ability to adapt to the human body's environment, the fate of the microbes in the host and their relationship with the human body are decided. This review aims to provide a comprehensive analysis of microbe, microbes-host immune interactions, and factors that can disturb their interactions.
Collapse
Affiliation(s)
- Joseph A Ayariga
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA.
| | - Iddrisu Ibrahim
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| | - Logan Gildea
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
| | - Robert Villafane
- Department of Biological Sciences, Microbiology PhD. Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street Montgomery, Montgomery, AL, 36104, USA
| |
Collapse
|
74
|
Song EJ, Shin NR, Jeon S, Nam YD, Kim H. Impact of the herbal medicine, Ephedra sinica stapf , on gut microbiota and body weight in a diet-induced obesity model. Front Pharmacol 2022; 13:1042833. [PMID: 36457710 PMCID: PMC9706310 DOI: 10.3389/fphar.2022.1042833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 10/21/2024] Open
Abstract
Obesity is a chronic metabolic disease caused by excessive body fat and has become a global public health problem. Evidence suggests that obesity and obesity-induced metabolic disorders are closely related to gut microbiota. Bupropion (BP), an antidepressant medicine, and Ephedra sinica Stapf [Ephedraceae; Ephedrae Herba], a herbal medicine, are sympathetic stimulants and have weight loss effects. However, to our best knowledge, no studies have simultaneously assessed the effects of drugs and herbal medicines on obesity and gut microbiota. This study aimed to determine the effects of BP and ES on weight loss and re-modulation of host gut microbiota. To test this hypothesis, we fed C57BL/6J mice with a high-fat diet supplemented with bupropion (BP; 30 mg/kg/day) and Ephedra sinica Stapf extract (ES; 150 mg/kg/day) via oral gavage for eight weeks. Further, we evaluated the effects of BP and ES on body weight and fat accumulation. In addition, we evaluated the effects of BP and ES on gut microbiota using 16S rRNA amplicon sequencing. Our results showed that weight loss was confirmed in both BP and ES; however, it was more pronounced in ES. ES changed the overall composition of the gut microbiota by restoring the relative abundance of Oscillospiraceae, Lachnospiraceae, and the Firmicutes/Bacteroidetes ratio, an indicator of gut microbiota dysbiosis. Nine amplicon sequence variants (ASVs) of the gut microbiome were significantly recovered by BP and ES treatment, of which eight ASVs correlated with body weight and fat accumulation. Additionally, three ASVs were significantly recovered by ES treatment alone. In conclusion, the anti-obesity effects of BP and ES, especially fat accumulation, are related to the regulation of gut microbiota. Moreover, ES had a greater influence on the gut microbiota than BP.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Global Future Biomedical Scientists at Chonnam National University, Gwangju, South Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Goyang-si, Gyeonggi-do, South Korea
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW To discuss the interplay behind how a high-fibre diet leads to lower blood pressure (BP) via the gut microbiome. RECENT FINDINGS Compelling evidence from meta-analyses support dietary fibre prevents the development of cardiovascular disease and reduces BP. This relation is due to gut microbial metabolites, called short-chain fatty acids (SCFAs), derived from fibre fermentation. The SCFAs acetate, propionate and butyrate lower BP in independent hypertensive models. Mechanisms are diverse but still not fully understood-for example, they include G protein-coupled receptors, epigenetics, immune cells, the renin-angiotensin system and vasculature changes. Lack of dietary fibre leads to changes to the gut microbiota that drive an increase in BP. The mechanisms involved are unknown. The intricate interplay between fibre, the gut microbiota and SCFAs may represent novel therapeutic approaches for high BP. Other gut microbiota-derived metabolites, produced when fibre intake is low, may hold potential therapeutic applications. Further translational evidence is needed.
Collapse
Affiliation(s)
- Chudan Xu
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia.
- Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
76
|
Mitchelson KAJ, Tran TTT, Dillon ET, Vlckova K, Harrison SM, Ntemiri A, Cunningham K, Gibson I, Finucane FM, O'Connor EM, Roche HM, O'Toole PW. Yeast β-Glucan Improves Insulin Sensitivity and Hepatic Lipid Metabolism in Mice Humanized with Obese Type 2 Diabetic Gut Microbiota. Mol Nutr Food Res 2022; 66:e2100819. [PMID: 36038526 PMCID: PMC9787509 DOI: 10.1002/mnfr.202100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Gut microbiota alterations are associated with obesity and type 2 diabetes. Yeast β-glucans are potential modulators of the innate immune-metabolic response, by impacting glucose, lipid, and cholesterol homeostasis. The study examines whether yeast β-glucan interacts differentially with either an obese healthy or obese diabetic gut microbiome, to impact metabolic health through hepatic effects under high-fat dietary challenge. METHODS AND RESULTS Male C57BL/6J mice are pre-inoculated with gut microbiota from obese healthy (OBH) or obese type 2 diabetic (OBD) subjects, in conjunction with a high-fat diet (HFD) with/without yeast β-glucan. OBD microbiome colonization adversely impacts metabolic health compared to OBH microbiome engraftment. OBD mice are more insulin resistant and display hepatic lipotoxicity compared to weight matched OBH mice. Yeast β-glucan supplementation resolves this adverse metabolic phenotype, coincident with increasing the abundance of health-related bacterial taxa. Hepatic proteomics demonstrates that OBD microbiome transplantation increases HFD-induced hepatic mitochondrial dysfunction, disrupts oxidative phosphorylation, and reduces protein synthesis, which are partly reverted by yeast β-glucan supplementation. CONCLUSIONS Hepatic metabolism is adversely affected by OBD microbiome colonization with high-fat feeding, but partially resolved by yeast β-glucan. More targeted dietary interventions that encompass the interactions between diet, gut microbiota, and host metabolism may have greater treatment efficacy.
Collapse
Affiliation(s)
- Kathleen A. J. Mitchelson
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
| | - Tam T. T. Tran
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Present address:
Vietnam Academy of Science and TechnologyUniversity of Science and Technology of HanoiHanoiVietnam
| | - Eugene T. Dillon
- Mass Spectrometry ResourceConway Institute of Biomolecular & Biomedical ResearchUniversity College DublinDublinDublin 4Republic of Ireland
| | - Klara Vlckova
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Sabine M. Harrison
- UCD School of Agriculture & Food ScienceUniversity College DublinDublinDublin 4Republic of Ireland
| | - Alexandra Ntemiri
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| | - Katie Cunningham
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Irene Gibson
- Heart and Stroke CentreCroiThe West of Ireland Cardiac FoundationMoyola Lane, NewcastleGalwayGalwayH91 FF68Republic of Ireland
| | - Francis M. Finucane
- Bariatric Medicine ServiceCentre for Diabetes, Endocrinology and MetabolismGalway University HospitalsGalwayH91 YR71Republic of Ireland
- HRB Clinical Research FacilityNational University of IrelandGalwayH91 TK33Republic of Ireland
| | - Eibhlís M. O'Connor
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- Department of Biological SciencesSchool of Natural SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Health Research InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group and Institute of Food and HealthUniversity College DublinDublinDublin 4Republic of Ireland
- Diabetes Complications Research CentreUniversity College DublinDublinDublin 4Republic of Ireland
- The Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastBT9 5DLUK
| | - Paul W. O'Toole
- APC Microbiome IrelandUniversity College CorkCorkT12 K8AFRepublic of Ireland
- School of MicrobiologyUniversity College CorkCorkT12 K8AFRepublic of Ireland
| |
Collapse
|
77
|
Arzamasov AA, Nakajima A, Sakanaka M, Ojima MN, Katayama T, Rodionov DA, Osterman AL. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. mSystems 2022; 7:e0034322. [PMID: 36094076 PMCID: PMC9599254 DOI: 10.1128/msystems.00343-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR transcriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum. IMPORTANCE The predominance of bifidobacteria in the gut of breastfed infants is attributed to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are considered promising prebiotics that would stimulate the growth of bifidobacteria and confer multiple health benefits to preterm and malnourished children suffering from impaired (stunted) gut microbiota development. However, the rational selection of HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mechanisms governing HMO utilization in target bifidobacteria. This study describes NagR-mediated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp. infantis. The elucidated regulatory network appears optimally adapted to simultaneous utilization of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual components) to infant formulas. The study also provides insights into the evolutionary trajectories of complex regulatory networks controlling carbohydrate metabolism in bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A. Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
78
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
79
|
Kaburova AN, Drapkina OM, Yudin SM, Yafarova AA, Koretsky SN, Pokrovskaya MS, Makarov VV, Kraevoy SA, Shoibonov BB, Efimova IA, Serebryanskaya ZZ. The relationship between gut microbiota, chronic systemic inflammation, and endotoxemia in patients with heart failure with preserved ejection fraction. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim. To study the relationship between the abundance of the genera in the gut microbiota (GM) and levels of serum biomarkers of chronic systemic inflammation and endotoxemia in patients with HFpEF.Material and methods. The composition of GM among 42 patients with HFpEF (men, 57,1%) was assessed by 16S rRNA sequencing. The median age was 67,0 years, interquartile range [64,0; 71,5] years. Correlation and multivariate regression analysis (with adjustments for sex and age) of relationships between the relative abundance of intestinal bacteria and the concentrations of serum biomarkers including high-sensitivity C-reactive protein (hsCRP), interleukins (IL) 1β and 6, the soluble suppressor of tumorigenicity (sST2), and the level of lipopolysaccharide (LPS) was carried out.Results. According to multivariate regression analysis, the relative abundance of Haemophilus was directly related to the concentration of IL-1β (odds ratio (ОR) 32,37, 95% confidence interval (CI) 2,071237,69, p=0,025), Coriobacteriaceae (unclassified) — with IL-6 (ОR 6,27, (1,42-36,74), p=0,024), Porphyromonadaceae (unclassified) — with sST2 (ОR 5,96, (1,33-34,39), p=0,028), and the relative abundance of the genera Pseudomonas (ОR 7,09, (1,45-42,39), p=0,020), Parasutterella (ОR 4,55, (1,07-22,76), p=0,047) and Clostridiaceae (unclassified) (ОR 4,85, (1,06-24,7), p=0,045) was directly associated with LPS levels.Conclusion. In patients with HFpEF, the relative abundance of some GM genera (e.g., Haemophilus, Coriobacteriaceae (unclassified), Porphyromonadaceae (unclassified), Pseudomonas, Parasutterella, Clostridiaceae (unclassified)) is statistically significantly associated with the concentration of biomarkers of chronic systemic inflammation and endotoxemia.
Collapse
Affiliation(s)
- A. N. Kaburova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. M. Yudin
- Center for Strategic Planning and Management of Biomedical Health Risks of the FMBA
| | - A. A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. N. Koretsky
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - V. V. Makarov
- Center for Strategic Planning and Management of Biomedical Health Risks of the FMBA
| | - S. A. Kraevoy
- Center for Strategic Planning and Management of Biomedical Health Risks of the FMBA
| | - B. B. Shoibonov
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine
| | | |
Collapse
|
80
|
Lv WJ, Ma YM, Huang JY, He SQ, Li SP, Lin J, Chen R, Lun JC, Liu J, Guo SN. Polysaccharides derived from Shenling Baizhu San improve colitis via modulating tryptophan metabolism in mice. Int J Biol Macromol 2022; 222:1127-1136. [DOI: 10.1016/j.ijbiomac.2022.09.246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 02/06/2023]
|
81
|
Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut. Appl Environ Microbiol 2022; 88:e0112822. [PMID: 36036591 PMCID: PMC9499014 DOI: 10.1128/aem.01128-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large bowel of monogastric animals, such as that of humans, is home to a microbial community (microbiota) composed of a diversity of mostly bacterial species. Interrelationships between the microbiota as an entity and the host are complex and lifelong and are characteristic of a symbiosis. The relationships may be disrupted in association with disease, resulting in dysbiosis. Modifications to the microbiota to correct dysbiosis require knowledge of the fundamental mechanisms by which symbionts inhabit the gut. This review aims to summarize aspects of niche fitness of bacterial species that inhabit the monogastric gut, especially of humans, and to indicate the research path by which progress can be made in exploring bacterial attributes that underpin symbiont life in the gut.
Collapse
|
82
|
Zhan Z, Tang H, Zhang Y, Huang X, Xu M. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front Microbiol 2022; 13:976406. [PMID: 36204607 PMCID: PMC9530198 DOI: 10.3389/fmicb.2022.976406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are a very important group of metabolites located in the gut that play a crucial role in the regulation of gut function and pathogen resistance. Since many enteric pathogens respond differently to various SCFAs, substantial efforts have been made to understand the regulatory effects of SCFA types on enteric pathogens. The application of protein post-translational modifications (PTMs) in bacterial research provides a new perspective for studying the regulation of enteric pathogens by different SCFAs. Existing evidence suggests that the SCFAs acetate, propionate, and butyrate influence bacterial processes by extensively promoting the acylation of key bacterial proteins. SCFAs can also prevent the invasion of pathogenic bacteria by regulating the barrier function and immune status of the host gut. In this review, we describe the mechanisms by which different SCFAs modulate the pathogenicity of enteric pathogens from multiple perspectives. We also explore some recent findings on how enteric pathogens counteract SCFA inhibition. Lastly, we discuss the prospects and limitations of applying SCFAs to control enteric pathogens.
Collapse
Affiliation(s)
- Ziyang Zhan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Tang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Xinxiang Huang,
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
- Min Xu,
| |
Collapse
|
83
|
Li S, Lin R, Chen J, Hussain R, Zhang S, Su Y, Chan Y, Ghaffar A, Shi D. Integrated gut microbiota and metabolomic analysis reveals immunomodulatory effects of Echinacea extract and Astragalus polysaccharides. Front Vet Sci 2022; 9:971058. [PMID: 36118329 PMCID: PMC9478787 DOI: 10.3389/fvets.2022.971058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Immunosuppression in different animals increases the susceptibility of various infections caused by pathogenic microorganisms leading to increase risks posed by antibiotics in different animal farming sectors. Therefore, investigation of the interactions between natural medicines and the intestinal environmental ecosystem is of vital importance and crucial. This study for the first time investigated the effects of Echinacea Extract (EE) and Astragalus polysaccharide (APS) on the gut using 16S rRNA and metabolomic analysis approaches in immunosuppressed broiler chickens. There were four groups divided into control (C), immunosuppression (IS), EE, and APS groups. Sequencing of gut microbes showed that immunosuppression decreased the relative abundance of Anaerofustis, Anaeroplasma, Anaerotroncus, and Lachnospira in the gut while increasing that of c_115 and Holdemania. However, EE and APS diminished the effects on the immunosuppression on the microbiota. The results revealed up-regulation of the relative abundance of Enterococcus in broiler chickens. In addition, EE reduced the relative abundance of Ruminococcus and Blautia. The results on metabolomic analysis revealed that immunosuppression mainly affects cyanuric acid metabolism, starch and sucrose metabolism while interconversion of pentose and glucuronide. EE and APS, on the other hand mainly impact butyrate metabolism, alanine, aspartate and glutamate metabolism while the interconversion of pentose and glucuronide, and D-glutamine and D-glutamate metabolism. Results regarding correlation analysis revealed significantly metabolic pathways including TCA cycle, butyrate metabolism, glyoxylate and dicarboxylate metabolism, propionate metabolism, alanine, aspartate and glutamate metabolism associated with Ruminococcus and Blautia. Both EE and APS can antagonize the effects of immunosuppression by modulating the disrupted gut microbiota. Nevertheless, EE might have a bidirectional regulatory functions on the intestinal health and further studies are needed to know the exact and relevant mechanisms of action regarding the effects of EE and APS.
Collapse
Affiliation(s)
- Shaochuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Riaz Hussain
- The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shiwei Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanzi Chan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Abdul Ghaffar
- The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Dayou Shi
| |
Collapse
|
84
|
Luo L, Luo J, Cai Y, Fu M, Li W, Shi L, Liu J, Dong R, Xu X, Tu L, Yang Y. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy. Pharmacol Res 2022; 183:106367. [PMID: 35882293 DOI: 10.1016/j.phrs.2022.106367] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueting Cai
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingrui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
85
|
Low A, Soh M, Miyake S, Seedorf H. Host Age Prediction from Fecal Microbiota Composition in Male C57BL/6J Mice. Microbiol Spectr 2022; 10:e0073522. [PMID: 35674443 PMCID: PMC9241839 DOI: 10.1128/spectrum.00735-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
The lifelong relationship between microorganisms and hosts has a profound impact on the overall health and physiology of the holobiont. Microbiome composition throughout the life span of a host remains largely understudied. Here, the fecal microbiota of conventionally raised C57BL/6J male mice was characterized throughout almost the entire adult life span, from "maturing" (9 weeks) until "very old" (112 weeks) age. Our results suggest that microbiota changes occur throughout life but are more pronounced in maturing to middle-age mice than in mice later in life. Phylum-level analysis indicates a shift of the Bacteroidota-to-Firmicutes ratio in favor of Firmicutes in old and very old mice. More Firmicutes amplicon sequence variants (ASVs) were transient with varying successional patterns than Bacteroidota ASVs, which varied primarily during maturation. Microbiota configurations from five defined life phases were used as training sets in a Bayesian model, which effectively enabled the prediction of host age. These results suggest that age-associated compositional differences may have considerable implications for the interpretation and comparability of animal model-based microbiome studies. The sensitivity of the age prediction to dietary perturbations was tested by applying this approach to two age-matched groups of C57BL/6J mice that were fed either a standard or western diet. The predicted age for the western diet-fed animals was on average 27 ± 11 (mean ± standard deviation) weeks older than that of standard diet-fed animals. This indicates that the fecal microbiota-based predicted age may be influenced not only by the host age and physiology but also potentially by other factors such as diet. IMPORTANCE The gut microbiome of a host changes with age. Cross-sectional studies demonstrate that microbiota of different age groups are distinct but do not demonstrate the temporal change that a longitudinal study is able to show. Here, we performed a longitudinal study of adult mice for over 2 years. We identified life stages where compositional changes were more dynamic and showed temporal changes for the more abundant species. Using a Bayesian model, we could reliably predict the life stages of the mice. Application of the same training set to mice fed different dietary regimens revealed that life-stage age predictions were possible for mice fed the same diet but less so for mice fed different diets. This study sheds light on the temporal changes that occur within the gut microbiota of laboratory mice over their life span and may inform researchers on the appropriate mouse age for their research.
Collapse
Affiliation(s)
- Adrian Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Melissa Soh
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Sou Miyake
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
86
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
87
|
Singh A, Schnürer A. AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database (Oxford) 2022; 2022:6609150. [PMID: 35708586 PMCID: PMC9216588 DOI: 10.1093/database/baac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022]
Abstract
AcetoBase is a public repository and database of formyltetrahydrofolate synthetase (FTHFS) sequences. It is the first systematic collection of bacterial FTHFS nucleotide and protein sequences from genomes and metagenome-assembled genomes and of sequences generated by clone library sequencing. At its publication in 2019, AcetoBase (Version 1) was also the first database to establish connections between the FTHFS gene, the Wood–Ljungdahl pathway and 16S ribosomal RNA genes. Since the publication of AcetoBase, there have been significant improvements in the taxonomy of many bacterial lineages and accessibility/availability of public genomics and metagenomics data. The update to the AcetoBase reference database described here (Version 2) provides new sequence data and taxonomy, along with improvements in web functionality and user interface. The evaluation of this latest update by re-analysis of publicly accessible FTHFS amplicon sequencing data previously analysed with AcetoBase Version 1 revealed significant improvements in the taxonomic assignment of FTHFS sequences. Database URL: https://acetobase.molbio.slu.se
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| |
Collapse
|
88
|
Han DS, Wu WK, Liu PY, Yang YT, Hsu HC, Kuo CH, Wu MS, Wang TG. Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass. Clin Nutr 2022; 41:1491-1500. [DOI: 10.1016/j.clnu.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
|
89
|
Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother 2022; 149:112839. [PMID: 35325852 DOI: 10.1016/j.biopha.2022.112839] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most risk factors threatening human health. Although genetic and environmental factors contribute to the development of T2DM, gut microbiota has also been found to be involved. Gut microbiota-derived metabolites are a key factor in host-microbe crosstalk, and have been revealed to play a central role in the physiology and physiopathology of T2DM. In this review, we provide a timely and comprehensive summary of the microbial metabolites that are protective or causative for T2DM, including some amino acids-derived metabolites, short-chain fatty acids, trimethylamine N-oxide, and bile acids. The mechanisms by which metabolites affect T2DM have been elaborated. Knowing more about these processes will increase our understanding of the causal relationship between gut microbiota and T2DM. Moreover, some frontier therapies that target gut microbes and their metabolites to improve T2DM, including dietary intervention, fecal microbiota transplantation, probiotics, prebiotics or synbiotics intervention, and drugging microbial metabolism, have been critically discussed. This review may provide novel insights for the development of targeted and personalized treatments for T2DM based on gut microbial metabolites. More high-quality clinical trials are needed to accelerate the clinical translation of gut-targeted therapies for T2DM.
Collapse
Affiliation(s)
- Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Tang
- Department of Endocrinology, Chengdu Fifth People's Hospital, Chengdu 611130, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
90
|
Jangid A, Fukuda S, Suzuki Y, Taylor TD, Ohno H, Prakash T. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice. Sci Rep 2022; 12:6748. [PMID: 35468931 PMCID: PMC9038746 DOI: 10.1038/s41598-022-10762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, we elucidated the effect of grain-based (GB) diet containing both soluble and insoluble fibers and purified ingredients-based (PIB) diet containing only insoluble fiber, namely cellulose on mice gut microbiome using whole shotgun based metagenomic sequencing. Although the fiber content in both diet types is the same (5%) the presence of soluble fiber only in the GB diet differentiates it from the PIB diet. The taxonomic analysis of sequenced reads reveals a significantly higher enrichment of probiotic Lactobacilli in the GB group as compared to the PIB group. Further, the enhancement of energy expensive cellular processes namely, cell cycle control, cell division, chromosome partitioning, and transcription is observed in the GB group which could be due to the metabolization of the soluble fiber for faster energy production. In contrast, a higher abundance of cellulolytic bacterial community namely, the members of family Lachnospiraceae and Ruminococcaceae and the metabolism functions are found in the PIB group. The PIB group shows a significant increase in host-derived oligosaccharide metabolism functions indicating that they might first target the host-derived oligosaccharides and self-stored glycogen in addition to utilising the available cellulose. In addition to the beneficial microbial community variations, both the groups also exhibited an increased abundance of opportunistic pathobionts which could be due to an overall low amount of fiber in the diet. Furthermore, backtracing analysis identified probiotic members of Lactobacillus, viz., L. crispatus ST1, L. fermentum CECT 5716, L. gasseri ATCC 33323, L. johnsonii NCC 533 and L. reuteri 100-23 in the GB group, while Bilophila wadsworthia 3_1_6, Desulfovibrio piger ATCC 29098, Clostridium symbiosum WAL-14163, and Ruminococcaceae bacterium D16 in the PIB group. These data suggest that Lactobacilli, a probiotic community of microorganisms, are the predominant functional contributors in the gut of GB diet-fed mice, whereas pathobionts too coexisted with commensals in the gut microbiome of the PIB group. Thus at 5% fiber, GB modifies the gut microbial ecology more effectively than PIB and the inclusion of soluble fiber in the GB diet may be one of the primary factors responsible for this impact.
Collapse
Affiliation(s)
- Aditi Jangid
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Todd D Taylor
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tulika Prakash
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India. .,Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
91
|
Couch C, Sanders J, Sweitzer D, Deignan K, Cohen L, Broughton H, Steingass S, Beechler B. The relationship between dietary trophic level, parasites and the microbiome of Pacific walrus ( Odobenus rosmarus divergens). Proc Biol Sci 2022; 289:20220079. [PMID: 35382593 PMCID: PMC8984803 DOI: 10.1098/rspb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Arctic species are likely to experience rapid shifts in prey availability under climate change, which may alter their exposure to microbes and parasites. Here, we describe fecal bacterial and macroparasite communities and assess correlations with diet trophic level in Pacific walruses harvested during subsistence hunts by members of the Native Villages of Gambell and Savoonga on St Lawrence Island, Alaska. Fecal bacterial communities were dominated by relatively few taxa, mostly belonging to phyla Fusobacteriota and Firmicutes. Members of parasite-associated phyla Nematoda, Acanthocephala and Platyhelminthes were prevalent in our study population. We hypothesized that high versus low prey trophic level (e.g. fish versus bivalves) would result in different gut bacterial and macroparasite communities. We found that bacterial community structure correlated to diet, with nine clades enriched in walruses consuming higher-trophic-level prey. While no parasite compositional differences were found at the phylum level, the cestode genus Diphyllobothrium was more prevalent and abundant in walruses consuming higher-trophic-level prey, probably because fish are the intermediate hosts for this genus. This study suggests that diet is important for structuring both parasite and microbial communities of this culturally and ecologically important species, with potential implications for population health under climate change.
Collapse
Affiliation(s)
- Claire Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Justin Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Danielle Sweitzer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kristen Deignan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Lesley Cohen
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Heather Broughton
- Department of Biology, Oregon State University-Cascades, Bend, OR, USA
| | - Sheanna Steingass
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA.,Oregon State University Marine Mammal Institute, Newport, OR, USA
| | - Brianna Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
92
|
Kelly WJ, Mackie RI, Attwood GT, Janssen PH, McAllister TA, Leahy SC. Hydrogen and formate production and utilisation in the rumen and the human colon. Anim Microbiome 2022; 4:22. [PMID: 35287765 PMCID: PMC8919644 DOI: 10.1186/s42523-022-00174-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the mammalian gut. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the gut ecosystem, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate mammalian gut environments for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilisation could be a significant entry point for the development of successful interventions. Ruminant methane mitigation approaches are discussed as a model to help understand the fate of H2 and formate in gut systems.
Collapse
Affiliation(s)
- William J Kelly
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Graeme T Attwood
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Sinead C Leahy
- New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC), Palmerston North, New Zealand.
| |
Collapse
|
93
|
Luo Y, Liu Y, Li H, Zhao Y, Wright ADG, Cai J, Tian G, Mao X. Differential Effect of Dietary Fibers in Intestinal Health of Growing Pigs: Outcomes in the Gut Microbiota and Immune-Related Indexes. Front Microbiol 2022; 13:843045. [PMID: 35273589 PMCID: PMC8902361 DOI: 10.3389/fmicb.2022.843045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Although dietary fibers (DFs) have been shown to improve intestinal health in pigs, it is unclear whether this improvement varies according to the type/source of DF. In the current study, we investigated the impact of dietary supplement (15%) of pea-hull fiber (PF), oat bran (OB), and their mixture (MIX, PF, and OB each accounted for 7.5%) in the growth performance as well as intestinal barrier and immunity-related indexes in growing pigs. Twenty-four cross-bred pigs (32.42 ± 1.95 kg) were divided into four groups: CON (basal diet with no additional DF), PF, OB, and MIX. After 56 days of feeding, we found that the growth performance of PF pigs was decreased (p < 0.05) compared with pigs in other groups. Results of real-time polymerase chain reaction and Western blot showed that the improvement of immune-related indexes (e.g., interleukin 10 [IL-10]) in OB and MIX pigs mainly presented in the ileum, whereas the improvement of intestinal barrier–related indexes (e.g., MUC1 and MUC2) mainly presented in the colon. Whether in the ileum or colon, such improvement of immune function may be dependent on NOD rather than TLR-associated pathways. Amplicon sequencing results showed that PF and MIX pigs shared a similar bacterial community, such as lower abundance of ileal Clostridiaceae and colonic Streptoccocus than that of CON pigs (p < 0.05). Our results indicate that OB and MIX, rather than PF, benefit the intestinal health in growing pigs, and multiple-sourced DF may reduce the adverse effect of single-soured DF on the growth performance and gut microbiota in pigs.
Collapse
Affiliation(s)
- Yuheng Luo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhao
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Jingyi Cai
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Agricultural University, Chengdu, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
94
|
Zhu JH, Mao Q, Wang SY, Liu H, Zhou SS, Zhang W, Kong M, Zhu H, Li SL. Optimization and validation of direct gas chromatography-mass spectrometry method for simultaneous quantification of ten short-chain fatty acids in rat feces. J Chromatogr A 2022; 1669:462958. [PMID: 35303574 DOI: 10.1016/j.chroma.2022.462958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Short-chain fatty acids (SCFAs) play key roles in maintaining health and treating disease. Quantification of important fecal SCFAs is necessary to facilitate the clarification of their biological roles. However, the existing quantifying methods mainly depend on complicated precolumn derivatization, and/or are unable to determine formic acid, a SCFA commonly associated with toxicity. In this study, a direct gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of ten SCFAs including formic acid in rat feces was developed. The approach was optimized in terms of chromatographic and spectrometric conditions as well as sample preparation. DB-FFAP capillary column with temperature programming was used to get baseline separation and symmetrical peak shape of SCFAs without precolumn derivatization in a relatively short running time (8 min). Multiple reaction monitoring (MRM) scan mode was employed to enhance the sensitivity and selectivity of SCFAs. Acidification with 50% HCl and immediate extraction with diethyl ether were utilized to achieve sample preparation of ten SCFAs from feces. Furthermore, the developed method was validated with wide linear range, high sensitivity and precision, low matrix effect and acceptable accuracy. The established method was successfully applied to compare the contents of fecal SCFAs between normal and immunosuppressed animal models.
Collapse
Affiliation(s)
- Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wei Zhang
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
95
|
Zhang SQ, Tian D, Hu CY, Meng YH. Chlorogenic Acid Ameliorates High-Fat and High-Fructose Diet-Induced Cognitive Impairment via Mediating the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2600-2615. [PMID: 35188379 DOI: 10.1021/acs.jafc.1c07479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorogenic acid (CGA) displays cognition-improving properties, but the underlying mechanisms remain unclear. Herein, CGA supplementation (150 mg/kg body weight) for 14 weeks significantly prevented obesity and insulin resistance, cognitive-behavioral disturbances, and synaptic dysfunction induced by a high-fat and high-fructose diet (HFFD). Moreover, CGA supplementation enhanced the expression of genes enriched in the neuroactive ligand-receptor interaction pathway and reduced inflammatory factor expressions. Furthermore, CGA treatment increased gut microbiota diversity and the level of bacterial genera producing SCFAs. CGA also decreased the concentration of energy metabolism substrates, while it increased phosphorylcholine. Finally, we observed a significant correlation among synaptic transmission genes, gut microbiota, and neurotransmission in the CGA supplementation group by targeted multiomics analysis. Together, our results supported that the alteration of gut microbiota and metabolite composition is the underlying mechanism of CGA improving cognitive function. CGA is also a promising intervention strategy to prevent HFFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Shu Qing Zhang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P. R. China
| |
Collapse
|
96
|
Li XL, Cui JJ, Zheng WS, Zhang JL, Li R, Ma XL, Lin M, Guo HH, Li C, Yu XY, Du P, Zhao LM, He S, Lan P, Jiang JD, Che Y, Wang LL. Bicyclol Alleviates Atherosclerosis by Manipulating Gut Microbiota. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105021. [PMID: 35088527 DOI: 10.1002/smll.202105021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.
Collapse
Affiliation(s)
- Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Jin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Miao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Peng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Min Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shuwang He
- College of Pharmacy, Shandong University, Beijing, 250012, China
| | - Pei Lan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
97
|
Feng J, Qian Y, Zhou Z, Ertmer S, Vivas EI, Lan F, Hamilton JJ, Rey FE, Anantharaman K, Venturelli OS. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe 2022; 30:200-215.e12. [PMID: 34995484 PMCID: PMC9060796 DOI: 10.1016/j.chom.2021.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Polysaccharide utilization loci (PULs) are co-regulated bacterial genes that sense nutrients and enable glycan digestion. Human gut microbiome members, notably Bacteroides, contain numerous PULs that enable glycan utilization and shape ecological dynamics. To investigate the role of PULs on fitness and inter-species interactions, we develop a CRISPR-based genome editing tool to study 23 PULs in Bacteroides uniformis (BU). BU PULs show distinct glycan-degrading functions and transcriptional coordination that enables the population to adapt upon loss of other PULs. Exploiting a BU mutant barcoding strategy, we demonstrate that in vitro fitness and BU colonization in the murine gut are enhanced by deletion of specific PULs and modulated by glycan availability. PULs mediate glycan-dependent interactions with butyrate producers that depend on the degradation mechanism and glycan utilization ability of the butyrate producer. Thus, PULs determine community dynamics and butyrate production and provide a selective advantage or disadvantage depending on the nutritional landscape.
Collapse
Affiliation(s)
- Jun Feng
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Ertmer
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA,Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Freeman Lan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J. Hamilton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S. Venturelli
- The Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA,Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA,Lead contact,Correspondence:
| |
Collapse
|
98
|
Kendig MD, Hasebe K, McCague R, Lee F, Leigh SJ, Arnold R, Morris MJ. Adolescent exposure to a solid high-fat, high-sugar ‘cafeteria’ diet leads to more pronounced changes in metabolic measures and gut microbiome composition than liquid sugar in female rats. Appetite 2022; 172:105973. [DOI: 10.1016/j.appet.2022.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/02/2022]
|
99
|
Inoue M, Omae K, Nakamoto I, Kamikawa R, Yoshida T, Sako Y. Biome-specific distribution of Ni-containing carbon monoxide dehydrogenases. Extremophiles 2022; 26:9. [PMID: 35059858 PMCID: PMC8776680 DOI: 10.1007/s00792-022-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Ni-containing carbon monoxide dehydrogenase (Ni-CODH) plays an important role in the CO/CO2-based carbon and energy metabolism of microbiomes. Ni-CODH is classified into distinct phylogenetic clades, A–G, with possibly distinct cellular roles. However, the types of Ni-CODH clade used by organisms in different microbiomes are unknown. Here, we conducted a metagenomic survey of a protein database to determine the relationship between the phylogeny and biome distribution of Ni-CODHs. Clustering and phylogenetic analyses showed that the metagenome assembly-derived Ni-CODH sequences were distributed in ~ 60% Ni-CODH clusters and in all Ni-CODH clades. We also identified a novel Ni-CODH clade, clade H. Biome mapping on the Ni-CODH phylogenetic tree revealed that Ni-CODHs of almost all the clades were found in natural aquatic environmental and engineered samples, whereas those of specific subclades were found only in host-associated samples. These results are comparable with our finding that the diversity in the phylum-level taxonomy of host-associated Ni-CODH owners is statistically different from those of the other biomes. Our findings suggest that while Ni-CODH is a ubiquitous enzyme produced across diverse microbiomes, its distribution in each clade is biased and mainly affected by the distinct composition of microbiomes.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- R-GIRO, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Issei Nakamoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
100
|
Abstract
Symbiotic microorganisms inhabiting the gastrointestinal tract promote health by decreasing susceptibility to infection and enhancing resistance to a range of diseases. In this Review, we discuss our increasing understanding of the impact of the microbiome on the mammalian host and recent efforts to culture and characterize intestinal symbiotic microorganisms that produce or modify metabolites that impact disease pathology. Manipulation of the intestinal microbiome has great potential to reduce the incidence and/or severity of a wide range of human conditions and diseases, and the biomedical research community now faces the challenge of translating our understanding of the microbiome into beneficial medical therapies. Our increasing understanding of symbiotic microbial species and the application of ecological principles and machine learning are providing exciting opportunities for microbiome-based therapeutics to progress from faecal microbiota transplantation to the administration of precisely defined and clinically validated symbiotic microbial consortia that optimize disease resistance.
Collapse
|