51
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
52
|
Pelletier RM, Layeghkhavidaki H, Seidah NG, Prat A, Vitale ML. PCSK9 Contributes to the Cholesterol, Glucose, and Insulin2 Homeostasis in Seminiferous Tubules and Maintenance of Immunotolerance in Testis. Front Cell Dev Biol 2022; 10:889972. [PMID: 35586340 PMCID: PMC9108277 DOI: 10.3389/fcell.2022.889972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The PCSK9 contribution to cholesterol and immunotolerance homeostasis and response to glucose, and insulin in testis and hypophysis were studied using Pcsk9-deficient (-/-) and transgenic [Tg (PCSK9)] mice, and diabetic, obese ob/ob and db/db mice. The spermatids/spermatozoa acrosome, peritubular vessels, and epididymal adipocytes were PCSK9- and LDL-R-positive. The pro-PCSK9/PCSK9 ratio was high in interstitial tissue-fractions (ITf) and spermatozoa and low in seminiferous tubule-fractions (STf) in normal adult mice. This ratio decreased in ITf in ob/ob and db/db mice but increased in tubules in ob/ob mice. Deleting pcsk9 lowered cholesterol in serum but increased testicular cholesterol. Furthermore, HMGCoA-red, ACAT-2 and LDL-R turnover increased whereas SR-BI decreased in ITf; in tubules, ABCA1 decreased and 160 kDa LDL-R increased in Pcsk9 -/- mice. Excess testicular cholesterol could result from increased cholesterol synthesis and uptake with reduction in SR-BI-mediated efflux in ITf and from the overload of apoptotic cells, lowered ABCA1-mediated efflux and stimulated LDL-R protein synthesis in tubules in Pcsk9 -/- mice. Concomitantly with the cholesterol accumulation, tubules showed infiltrates of immune cells, elevated IL-17A and IL-17RA, and changes in the immunotolerance homeostasis. PCSK9 deficiency decreased glucose in tubules and spermatozoa while increasing insulin2 in ITf and tubules not serum. Moreover, IR-α, and IR-β augmented in tubules but decreased in the anterior pituitary; IR-α increased whereas IR-β decreased in ITf. The histology and cholesterol levels were normal in Tg (PCSK9) mouse testis. The excess cholesterol creates a milieu favorable to the action of high IL-17A and IL-17RA, the development of inflammatory conditions and self-tolerance breakdown in testis.
Collapse
Affiliation(s)
- R.-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Hamed Layeghkhavidaki
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Nabil G. Seidah
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - María L. Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
53
|
Byun JH, Lebeau PF, Platko K, Carlisle RE, Faiyaz M, Chen J, MacDonald ME, Makda Y, Yousof T, Lynn EG, Dickhout JG, Krepinsky JC, Weaver F, Igdoura SA, Seidah NG, Austin RC. Inhibitory Antibodies against PCSK9 Reduce Surface CD36 and Mitigate Diet-Induced Renal Lipotoxicity. KIDNEY360 2022; 3:1394-1410. [PMID: 36176646 PMCID: PMC9416829 DOI: 10.34067/kid.0007022021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/26/2022] [Indexed: 01/11/2023]
Abstract
Background PCSK9 modulates the uptake of circulating lipids through a range of receptors, including the low-density lipoprotein receptor (LDLR) and CD36. In the kidney, CD36 is known to contribute to renal injury through pro-inflammatory and -fibrotic pathways. In this study, we sought to investigate the role of PCSK9 in modulating renal lipid accumulation and injury through CD36 using a high fat diet (HFD)-induced murine model. Methods The effect of PCSK9 on the expression of CD36 and intracellular accumulation of lipid was examined in cultured renal cells and in the kidneys of male C57BL/6J mice. The effect of these findings was subsequently explored in a model of HFD-induced renal injury in Pcsk9 -/- and Pcsk9 +/+ littermate control mice on a C57BL/6J background. Results In the absence of PCSK9, we observed heightened CD36 expression levels, which increased free fatty acid (FFA) uptake in cultured renal tubular cells. As a result, PCSK9 deficiency was associated with an increase in long-chain saturated FFA-induced ER stress. Consistent with these observations, Pcsk9-/- mice fed a HFD displayed elevated ER stress, inflammation, fibrosis, and renal injury relative to HFD-fed control mice. In contrast to Pcsk9-/- mice, pretreatment of WT C57BL/6J mice with evolocumab, an anti-PCSK9 monoclonal antibody (mAb) that binds to and inhibits the function of circulating PCSK9, protected against HFD-induced renal injury in association with reducing cell surface CD36 expression on renal epithelia. Conclusions We report that circulating PCSK9 modulates renal lipid uptake in a manner dependent on renal CD36. In the context of increased dietary fat consumption, the absence of circulating PCSK9 may promote renal lipid accumulation and subsequent renal injury. However, although the administration of evolocumab blocks the interaction of PCSK9 with the LDLR, this evolocumab/PCSK9 complex can still bind CD36, thereby protecting against HFD-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Paul F. Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Rachel E. Carlisle
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Mahi Faiyaz
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jack Chen
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Yumna Makda
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Tamana Yousof
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Jeffrey G. Dickhout
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Joan C. Krepinsky
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| | - Fiona Weaver
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Suleiman A. Igdoura
- Department of Biology and Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Canada
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe’s Hamilton and The Hamilton Centre for Kidney Research, Hamilton, Canada
| |
Collapse
|
54
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
55
|
Mbikay M, Chrétien M. The Biological Relevance of PCSK9: When Less Is Better…. Biochem Cell Biol 2022; 100:189-198. [PMID: 35263196 DOI: 10.1139/bcb-2021-0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) is a circulating negative regulator of hepatic low-density lipoprotein receptor (LDLR) which clears cholesterol from blood. Gain-of-function genetic mutations which amplify PCSK9 activity have been found to cause potentially lethal familial hypercholesterolemia. Inversely, reduction of its activity through loss-of-function genetics or with pharmaceuticals was shown to increase hepatic LDLR, to lower blood cholesterol, and to protect against cardiovascular diseases. New epidemiological and experimental evidence suggests that this reduction could also attenuate inflammation, reinforce cancer immunity, provide resistance to infections, and protect against liver pathologies. In this review, we question the relevance of this protein under normal physiology. We propose that PCSK9 is an important, but non-essential, modulator of cholesterol metabolism and immunity, and that its pathogenicity results from its chronic overexpression.
Collapse
Affiliation(s)
- Majambu Mbikay
- Institut de recherches cliniques de Montréal, 5598, Functional Endoproteolysis, Montreal, Quebec, Canada;
| | - Michel Chrétien
- Institut de recherches cliniques de Montreal, 5598, Functional Endoproteolysis, Montreal, Quebec, Canada;
| |
Collapse
|
56
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
57
|
Ben-Naim L, Khalaila I, Papo N. Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C). Protein Eng Des Sel 2022; 35:6529797. [DOI: 10.1093/protein/gzab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
LDL-receptor (LDLR)-mediated uptake of LDL-C into hepatocytes is impaired by lysosomal degradation of LDLR, which is promoted by proprotein convertase subtilisin/kexin type 9 (PCSK9). Cell surface binding of PCSK9 to LDLR produces a complex that translocates to an endosome, where the acidic pH strengthens the binding affinity of PCSK9 to LDLR, preventing LDLR recycling to the cell membrane. We present a new approach to inhibit PCSK9-mediated LDLR degradation, namely, targeting the PCSK9/LDLR interface with a PCSK9-antagonist, designated Flag-PCSK9PH, which prevents access of WT PCSK9 to LDLR. In HepG2 cells, Flag-PCSK9PH, a truncated version (residues 53–451) of human WT PCSK9, strongly bound LDLR at the neutral pH of the cell surface but dissociated from it in the endosome (acidic pH), allowing LDLR to exit the lysosomes intact and recycle to the cell membrane. Flag-PCSK9PH thus significantly enhanced cell-surface LDLR levels and the ability of LDLR to take up extracellular LDL-C.
Collapse
Affiliation(s)
- Lital Ben-Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
58
|
Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME, Paré G, Steinberg GR, Janssen LJ, Igdoura SA, Tarnopolsky MA, Wayne Chen SR, Seidah NG, Magolan J, Austin RC. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun 2022; 13:770. [PMID: 35140212 PMCID: PMC8828868 DOI: 10.1038/s41467-022-28240-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2022] [Indexed: 01/06/2023] Open
Abstract
Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR). Following the observation that CF reduced circulating PCSK9 levels and increased hepatic LDLR expression, additional CF-derived analogs with increased potency for PCSK9 inhibition compared to CF itself were developed. The PCSK9-lowering effect of CF was subsequently confirmed in a cohort of healthy volunteers. Mechanistically, we demonstrate that CF increases hepatic endoplasmic reticulum (ER) Ca2+ levels to block transcriptional activation of the sterol regulatory element-binding protein 2 (SREBP2) responsible for the regulation of PCSK9, thereby increasing the expression of the LDLR and clearance of LDLc. Our findings highlight ER Ca2+ as a master regulator of cholesterol metabolism and identify a mechanism by which CF may protect against CVD.
Collapse
Affiliation(s)
- Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Paul Saliba
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Matthew Sguazzin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.,Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Suleiman A Igdoura
- Department of Biology and Pathology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, QC, H2W 1R7, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada. .,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada.
| |
Collapse
|
59
|
Ahamad S, Mathew S, Khan WA, Mohanan K. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today 2022; 27:1332-1349. [PMID: 35121175 DOI: 10.1016/j.drudis.2022.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Abstract
When secreted into the circulation, proprotein convertase subtilisin kexin type 9 (PCSK9) blocks the low-density lipoprotein receptors (LDL-R) and, as a consequence, low-density lipoprotein cholesterol (LDL-C) levels increase. Therefore, PCSK9 has emerged as a potential therapeutic target for lowering LDL-C levels and preventing atherosclerosis. The US Food and Drug Administration (FDA) has approved two monoclonal antibodies (mAbs) against PCSK9, but the expensive manufacturing process limits their use. Subsequently, there have been tremendous efforts to develop cost-effective small molecules specific to PCSK9 over the past few years. These small molecules are promising therapeutics that act by preventing the synthesis of PCSK9, its secretion from cells, or the PCSK9-LDRL interaction. In this review, we summarize recent developments in the discovery of small-molecule PCSK9 inhibitors, focusing on their design, therapeutic effects, specific targets, and mechanisms of action.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Shintu Mathew
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India
| | - Waqas A Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Lucknow, 226031 UP, India.
| |
Collapse
|
60
|
PCSK9 Promotes Cardiovascular Diseases: Recent Evidence about Its Association with Platelet Activation-Induced Myocardial Infarction. Life (Basel) 2022; 12:life12020190. [PMID: 35207479 PMCID: PMC8875594 DOI: 10.3390/life12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with the majority of the cases being heart failure due to myocardial infarction. Research on cardiovascular diseases is currently underway, particularly on atherosclerosis prevention, to reduce the risk of myocardial infarction. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been reported to play a role in lipid metabolism, by enhancing low-density lipoprotein (LDL) receptor degradation. Therefore, PCSK9 inhibitors have been developed and found to successfully decrease LDL plasma levels. Recent experimental studies have also implicated PCSK9 in platelet activation, having a key role during atherosclerosis progression. Although numerous studies have addressed the role of PCSK9 role in controlling hypercholesterolemia, studies and discussions exploring its involvement in platelet activation are still limited. Hence, here, we address our current understanding of the pathophysiological process involved in atherosclerosis-induced myocardial infarction (MI) through platelet activation and highlight the molecular mechanisms used by PCSK9 in regulating platelet activation. Undoubtedly, a deeper understanding of the relationship between platelet activation and the underlying molecular mechanisms of PCSK9 in the context of MI progression will provide a new strategy for developing drugs that selectively inhibit the most relevant pathways in cardiovascular disease progression.
Collapse
|
61
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
62
|
Abstract
INTRODUCTION Statins have pleiotropic effects, being both anti-inflammatory and immunomodulatory. Proprotein convertase subtilisin kexin 9 (PCSK9) targets the low-density lipoprotein receptor (LDLR), which increases LDL levels due to the lower expression of LDLR. AREAS COVERED Inhibition of PCSK9 by the use of antibodies represents a novel principle to lower LDL levels. LDL may have other properties than being a cholesterol carrier but is well established as a risk factor for cardiovascular disease and atherosclerosis. In atherosclerosis, the plaques are characterized by activated T cells and dendritic cells (DCs), dead cells, and OxLDL. The latter may be an important cause of the inflammation typical of atherosclerosis, by promoting a proinflammatory immune activation. This is inhibited by PCSK9 inhibition, and an anti-inflammatory type of immune activation is induced. OxLDL is raised in systemic lupus erythematosus (SLE), where both CVD and atherosclerosis are much increased compared to the general population. PCSK9 is reported to be associated with disease activity and complications in SLE. Also in other rheumatoid arthritis, PCSK9 may play a role. EXPERT OPINION PCSK9 has pleiotropic effects, being implicated in inflammation and immunity. Inhibition of PCSK9 is therefore interesting to study further as a potential therapy against inflammation and autoimmunity.
Collapse
Affiliation(s)
- Johan Frostegård
- Institute of Environmental Medicine, Division of Immunology and Chronic disease, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
63
|
Uribe KB, Chemello K, Larrea-Sebal A, Benito-Vicente A, Galicia-Garcia U, Bourane S, Jaafar AK, Lambert G, Martín C. A Systematic Approach to Assess the Activity and Classification of PCSK9 Variants. Int J Mol Sci 2021; 22:ijms222413602. [PMID: 34948399 PMCID: PMC8706470 DOI: 10.3390/ijms222413602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. OBJECTIVE Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. METHODS The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. RESULTS LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. CONCLUSIONS We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.
Collapse
Affiliation(s)
- Kepa B. Uribe
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastian, Spain
| | - Kevin Chemello
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Steeve Bourane
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Ali K. Jaafar
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| |
Collapse
|
64
|
Roudaut M, Idriss S, Caillaud A, Girardeau A, Rimbert A, Champon B, David A, Lévêque A, Arnaud L, Pichelin M, Prieur X, Prat A, Seidah NG, Zibara K, Le May C, Cariou B, Si-Tayeb K. PCSK9 regulates the NODAL signaling pathway and cellular proliferation in hiPSCs. Stem Cell Reports 2021; 16:2958-2972. [PMID: 34739847 PMCID: PMC8693623 DOI: 10.1016/j.stemcr.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a key regulator of low-density lipoprotein (LDL) cholesterol metabolism and the target of lipid-lowering drugs. PCSK9 is mainly expressed in hepatocytes. Here, we show that PCSK9 is highly expressed in undifferentiated human induced pluripotent stem cells (hiPSCs). PCSK9 inhibition in hiPSCs with the use of short hairpin RNA (shRNA), CRISPR/cas9-mediated knockout, or endogenous PCSK9 loss-of-function mutation R104C/V114A unveiled its new role as a potential cell cycle regulator through the NODAL signaling pathway. In fact, PCSK9 inhibition leads to a decrease of SMAD2 phosphorylation and hiPSCs proliferation. Conversely, PCSK9 overexpression stimulates hiPSCs proliferation. PCSK9 can interfere with the NODAL pathway by regulating the expression of its endogenous inhibitor DACT2, which is involved in transforming growth factor (TGF) β-R1 lysosomal degradation. Using different PCSK9 constructs, we show that PCSK9 interacts with DACT2 through its Cys-His-rich domain (CHRD) domain. Altogether these data highlight a new role of PCSK9 in cellular proliferation and development.
Collapse
Affiliation(s)
- Meryl Roudaut
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; HCS Pharma, Lille, France
| | - Salam Idriss
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; ER045 - Laboratory of Stem Cells: Maintenance, Differentiation and Pathology, Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Amandine Caillaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Aurore Girardeau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Benoite Champon
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amandine David
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Antoine Lévêque
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lucie Arnaud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Matthieu Pichelin
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Xavier Prieur
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Annik Prat
- University of Montreal, Montreal, QC, Canada
| | | | - Kazem Zibara
- ER045 - Laboratory of Stem Cells: Maintenance, Differentiation and Pathology, Biology Department, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Cedric Le May
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bertrand Cariou
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France.
| | - Karim Si-Tayeb
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France.
| |
Collapse
|
65
|
Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S, Zheng XL. PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Triggers Vascular Smooth Muscle Cell Senescence and Apoptosis: Implication of Its Direct Role in Degenerative Vascular Disease. Arterioscler Thromb Vasc Biol 2021; 42:67-86. [PMID: 34809446 DOI: 10.1161/atvbaha.121.316902] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.
Collapse
Affiliation(s)
- Yanan Guo
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Zhihan Tang
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Binjie Yan
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Hao Yin
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Now with Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada (H.Y.)
| | - Shi Tai
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yuting Cui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Darrell Belke
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| |
Collapse
|
66
|
Xia XD, Peng ZS, Gu HM, Wang M, Wang GQ, Zhang DW. Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Front Cardiovasc Med 2021; 8:764038. [PMID: 34782856 PMCID: PMC8589637 DOI: 10.3389/fcvm.2021.764038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of low-density lipoprotein receptor (LDLR) and plays a central role in regulating plasma levels of LDL cholesterol levels, lipoprotein(a) and triglyceride-rich lipoproteins, increasing the risk of cardiovascular disease. Additionally, PCSK9 promotes degradation of major histocompatibility protein class I and reduces intratumoral infiltration of cytotoxic T cells. Inhibition of PCSK9 increases expression of LDLR, thereby reducing plasma levels of lipoproteins and the risk of cardiovascular disease. PCSK9 inhibition also increases cell surface levels of major histocompatibility protein class I in cancer cells and suppresses tumor growth. Therefore, PCSK9 plays a vital role in the pathogenesis of cardiovascular disease and cancer, the top two causes of morbidity and mortality worldwide. Monoclonal anti-PCSK9 antibody-based therapy is currently the only available treatment that can effectively reduce plasma LDL-C levels and suppress tumor growth. However, high expenses limit their widespread use. PCSK9 promotes lysosomal degradation of its substrates, but the detailed molecular mechanism by which PCSK9 promotes degradation of its substrates is not completely understood, impeding the development of more cost-effective alternative strategies to inhibit PCSK9. Here, we review our current understanding of PCSK9 and focus on the regulation of its expression and functions.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhong-Sheng Peng
- School of Economics, Management and Law, University of South China, Hengyang, China
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maggie Wang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
67
|
Krittanawong C, Khawaja M, Rosenson RS, Amos CI, Nambi V, Lavie CJ, Virani SS. Association of PCSK9 Variants With the Risk of Atherosclerotic Cardiovascular Disease and Variable Responses to PCSK9 Inhibitor Therapy. Curr Probl Cardiol 2021; 47:101043. [PMID: 34780866 DOI: 10.1016/j.cpcardiol.2021.101043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Genetic polymorphisms or variations, randomly distributed in a population, may cause drug-gene response variations. Investigation into these polymorphisms may identify novel mechanisms contributing to a specific disease process. Such investigation necessitates the use of Mendelian randomization, an analytical method that uses genetic variants as instrumental variables for modifiable risk factors that affect population health.1 In the past decade, advances in our understanding of genetic polymorphisms have enabled the identification of genetic variants in candidate genes that impact low-density lipoprotein cholesterol (LDL-C) regulating pathways and cardiovascular disease (CVD) outcomes. A specific candidate gene of interest is that of the LDL receptor degrading protein, PCSK9. In fact, loss-of-function genetic variants for the PCSK9 gene are what first highlighted this pathway as a candidate for pharmacologic inhibition. PCSK9 inhibitors (PCSK9i) are a class of cholesterol-lowering medications that provide significant reductions in LDL by inhibiting the degradation of LDL receptors (LDLR). These inhibitors have also been found to reduce production and enhance clearance of lipoprotein A (Lp[a]), an LDL-like particle currently under study as a separate risk factor for atherosclerotic CVD. Here, we discuss the promise of personalized medicine in developing a more efficacious and individualized pharmacogenomics-based approach for the use of PCSK9i that considers genetic variation and targets different patient populations. This review explores the pharmacogenomics of PCSK9i in the context of PCSK9 allele variants related to drug-metabolizing enzymes and responses since more studies are demonstrating that some patients are hyporesponsive or non-responsive to PCSK9i.2 In summary, the pharmacogenomics of PCSK9 are a promising therapeutic target and genetic information from prospective randomized clinical trials is warranted to gain a full understanding of the efficacy and cost-effectiveness of such allele and/or gene-guided PCSK9i therapy.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX.
| | - Muzamil Khawaja
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Robert S Rosenson
- Director, Cardiometabolics Unit, Mount Sinai Hospital, Mount Sinai Heart, NY, NY
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, TX
| | - Vijay Nambi
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| | - Salim S Virani
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
68
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
69
|
Jacome Sanz D, Saralahti AK, Pekkarinen M, Kesseli J, Nykter M, Rämet M, Ojanen MJT, Pesu M. Proprotein convertase subtilisin/kexin type 9 regulates the production of acute-phase reactants from the liver. Liver Int 2021; 41:2511-2522. [PMID: 34174143 DOI: 10.1111/liv.14993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) controls blood cholesterol levels by fostering the LDL receptor (LDLR) degradation in hepatocytes. Additionally, PCSK9 has been suggested to participate in immunoregulation by modulating cytokine production. We studied the immunological role of PCSK9 in Streptococcus pneumoniae bacteraemia in vivo and in a human hepatocyte cell line. METHODS CRISPR/Cas9 mutagenesis was utilized to create pcsk9 knock-out (KO) zebrafish, which were infected with S pneumoniae to assess the role of PCSK9 for the survival of the fish and in the transcriptomic response of the liver. The direct effects of PCSK9 on the expression of acute-phase reaction (APR) genes were studied in HepG2 cells. RESULTS The pcsk9 KO zebrafish lines (pcsk9tpu-13 and pcsk9tpu-2,+15 ) did not show developmental defects or gross phenotypical differences. In the S pneumoniae infected zebrafish, the mortality of pcsk9 KOs was similar to the controls. A liver-specific gene expression analysis revealed that a pneumococcal challenge upregulated pcsk9, and that the pcsk9 deletion reduced the expression of APR genes, including hepcidin antimicrobial peptide (hamp) and complement component 7b (c7b). Accordingly, silencing PCSK9 in vitro in HepG2 cells using small interfering RNAs (siRNAs) decreased HAMP expression. CONCLUSIONS We demonstrate that PCSK9 is not critical for zebrafish survival in a systemic pneumococcal infection. However, PCSK9 deficiency was associated with the lower expression of APR genes in zebrafish and altered the expression of innate immunity genes in a human hepatocyte cell line. Overall, our data suggest an evolutionarily conserved function for PCSK9 in APR in the liver.
Collapse
Affiliation(s)
- Dafne Jacome Sanz
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meeri Pekkarinen
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Markus J T Ojanen
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab laboratories Ltd, Tampere, Finland
| |
Collapse
|
70
|
Ito M, Hiwasa T, Oshima Y, Yajima S, Suzuki T, Nanami T, Sumazaki M, Shiratori F, Funahashi K, Li SY, Iwadate Y, Yamagata H, Jambaljav B, Takemoto M, Yokote K, Takizawa H, Shimada H. Association of Serum Anti-PCSK9 Antibody Levels with Favorable Postoperative Prognosis in Esophageal Cancer. Front Oncol 2021; 11:708039. [PMID: 34504788 PMCID: PMC8421770 DOI: 10.3389/fonc.2021.708039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/03/2021] [Indexed: 01/23/2023] Open
Abstract
Background Esophageal cancer often appears as postoperative metastasis or recurrence after radical surgery. Although we had previously reported that serum programmed cell death ligand 1 (PD-L1) level correlated with the prognosis of esophageal cancer, further novel biomarkers are required for more precise prediction of the prognosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with the cholesterol metabolism. But there was no report of relationship between serum PCSK9 antibody and cancer. Therefore, we investigated whether anti-PCSK9 antibodies could be a novel biomarker for solid cancer. Methods Serum levels of anti-PCSK9 antibodies and antigens in patients with solid cancer were analyzed using amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA). The reactivity of serum antibodies against recombinant PCSK9 protein was investigated by Western blotting, and the expression of PCSK9 antigens in esophageal cancer tissues was examined by immunohistochemical staining. Results AlphaLISA showed that serum anti-PCSK9 antibody (s-PCSK9-Ab) levels were significantly higher in patients with esophageal cancer, gastric cancer, colorectal cancer, lung cancer, and breast cancer than in healthy donors, and patients with esophageal cancer had the highest levels. The presence of serum antibody in patients was confirmed by Western blotting. There was no apparent correlation between s-PCSK9-Ab and PCSK9 antigen levels. Immunohistochemical staining demonstrated the expression of PCSK9 antigen in both the cytoplasm and nuclear compartments of esophageal squamous cell carcinoma tissue but not in normal tissue. Compared with patients with low s-PCSK9-Ab levels, those with high s-PCSK9-Ab levels had a favorable postoperative prognosis after radical surgery for esophageal cancer. In the multivariate analysis, tumor depth and s-PCSK9-Ab level were identified as independent prognostic factors. In the univariate analysis of clinicopathological features, high PCSK9 antibody levels were not associated with sex, age, location, tumor depth, lymph node status, squamous cell carcinoma antigen, or p53-Ab, whereas they correlated significantly with PD-L1 levels, which were associated with unfavorable prognosis. Correlation between s-PCSK9-Ab and PD-L1 levels was also confirmed in the logistic regression analysis; therefore, low s-PCSK9-Ab levels could discriminate another poor prognosis group other than high-PD-L1 group. Conclusions Patients with solid cancer had higher s-PCSK9-Ab levels than healthy donors. High s-PCSK9-Ab levels indicated better prognosis for overall survival after surgery in patients with esophageal cancer.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Kimihiko Funahashi
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroki Yamagata
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Byambasteren Jambaljav
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan.,Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koutaro Yokote
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
71
|
Taghizadeh Jazdani S, Shahbazian HB, Cheraghian B, Jalali MT, Mohammadtaghvaei N. Association between the rs615563 variant of PCSK9 gene and circulating lipids and Type 2 diabetes. BMC Res Notes 2021; 14:309. [PMID: 34380558 PMCID: PMC8359546 DOI: 10.1186/s13104-021-05723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Many different genetic variants of proprotein convertase subtilisin kexin 9 (PCSK9) are related to the serum levels of cholesterol and LDL cholesterol (LDL-C). The rs615563 variant of PCSK9 (a gain-of-function mutation) is associated with increased triglycerides and cholesterol levels, but its association with the incidence of diabetes is not well defined. This study aimed to investigate the relationship between the PCSK9 rs615563 variant with the incidence of type 2 diabetes. The data reported in this study are based on subsamples from a 5-year (2009–2014) cohort study of the adult population (590 subjects) aged 20 years and older. The rs615563 polymorphism was genotyped using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) analysis. Results The distribution of PCSK9 rs615563 genotypes was not significantly different between the diabetic and non-diabetic individuals. The incidence of diabetes after five-years of follow-up was not different between the genotypes. Our findings also showed no significant relationship between this polymorphism and serum lipid parameters. The data extracted from our cohort study do not support the findings that the gain-of-function mutations of PCSK9 predispose to the incidence of type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05723-4.
Collapse
Affiliation(s)
- Samira Taghizadeh Jazdani
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hajieh Bibi Shahbazian
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Epidemiology and Biostatistics, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Mohammadtaghvaei
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
72
|
Peyot ML, Roubtsova A, Lussier R, Chamberland A, Essalmani R, Murthy Madiraju SR, Seidah NG, Prentki M, Prat A. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158968. [PMID: 33992809 DOI: 10.1016/j.bbalip.2021.158968] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in β-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and β-cell function. We generated the first β-cell-specific KO of PCSK9 (βKO). PCSK9 mRNA and protein expression were reduced by 48% and 78% in βKO islets, respectively, indicating that β-cells constitute a major site of PCSK9 expression. In islets, loss of β-cell PCSK9 resulted in unchanged LDLR protein levels, but reduced LDLR mRNA, indicating that cholesterol internalization is enhanced and that β-cell PCSK9 promotes LDLR degradation. In contrast, whole body PCSK9 KO mice exhibited 2-fold higher LDLR protein levels in islets and a stable expression of cholesterogenic genes. Whole body KO and βKO mice presented normal glucose tolerance, insulin release in response to glucose load and insulin sensitivity. Ex vivo glucose-stimulated insulin secretion in presence or absence of fatty acids was similar in WT and KO islets. Like KO mice, individuals carrying loss-of-function PCSK9 variants may be protected from cholesterol-induced toxicity due to reduced circulating cholesterol levels. Using both whole body KO or βKO models, our data demonstrate that PCSK9 deletion in mouse does not have any toxic effect on β-cell function and glucose homeostasis.
Collapse
Affiliation(s)
- Marie-Line Peyot
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Roxane Lussier
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Ann Chamberland
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - S R Murthy Madiraju
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Marc Prentki
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada.
| |
Collapse
|
73
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
74
|
Ahn G, Banik SM, Bertozzi CR. Degradation from the outside in: Targeting extracellular and membrane proteins for degradation through the endolysosomal pathway. Cell Chem Biol 2021; 28:1072-1080. [PMID: 33770486 PMCID: PMC8286304 DOI: 10.1016/j.chembiol.2021.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation (TPD) is a promising strategy to remove deleterious proteins for therapeutic benefit and to probe biological pathways. The past two decades have witnessed a surge in the development of technologies that rely on intracellular machinery to degrade challenging cytosolic targets. However, these TPD platforms leave the majority of extracellular and membrane proteins untouched. To enable degradation of these classes of proteins, internalizing receptors can be co-opted to traffic extracellular proteins to the lysosome. Sweeping antibodies and Seldegs use Fc receptors in conjunction with engineered antibodies to degrade soluble proteins. Recently, lysosome-targeting chimeras (LYTACs) have emerged as a strategy to degrade both secreted and membrane-anchored targets. Together with other newcomer technologies, including antibody-based proteolysis-targeting chimeras, modalities that degrade extracellular proteins have promising translational potential. This perspective will give an overview of TPD platforms that degrade proteins via outside-in approaches and focus on the recent development of LYTACs.
Collapse
Affiliation(s)
- Green Ahn
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Steven M Banik
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
75
|
Bourbiaux K, Legrand B, Verdié P, Mallart S, Manette G, Minoletti C, Stepp JD, Prigent P, Le Bail JC, Gauzy-Lazo L, Duclos O, Martinez J, Amblard M. Potent Lys Patch-Containing Stapled Peptides Targeting PCSK9. J Med Chem 2021; 64:10834-10848. [PMID: 34266235 DOI: 10.1021/acs.jmedchem.0c02051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), identified as a regulator of low-density lipoprotein receptor (LDLR), plays a major role in cardiovascular diseases (CVD). Recently, Pep2-8, a small peptide with discrete three-dimensional structure, was found to inhibit the PCSK9/LDLR interaction. In this paper, we describe the modification of this peptide using stapled peptide and SIP technologies. Their combination yielded potent compounds such as 18 that potently inhibited the binding of PCSK9 to LDLR (KD = 6 ± 1 nM) and restored in vitro LDL uptake by HepG2 cells in the presence of PCSK9 (EC50 = 175 ± 40 nM). The three-dimensional structures of key peptides were extensively studied by circular dichroism and nuclear magnetic resonance, and molecular dynamics simulations allowed us to compare their binding mode to tentatively rationalize structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Kévin Bourbiaux
- IBMM, ENSCM, Université de Montpellier, CNRS, 34093 Montpellier, France.,Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Baptiste Legrand
- IBMM, ENSCM, Université de Montpellier, CNRS, 34093 Montpellier, France
| | - Pascal Verdié
- IBMM, ENSCM, Université de Montpellier, CNRS, 34093 Montpellier, France
| | - Sergio Mallart
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Géraldine Manette
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Claire Minoletti
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - J David Stepp
- Sanofi, 153 2nd Avenue, Waltham, Massachusetts 02451, United States
| | - Philippe Prigent
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | | | - Laurence Gauzy-Lazo
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Olivier Duclos
- Sanofi Aventis R&D, 1 Avenue Pierre Brossolette, 91380 Chilly-Mazarin, France
| | - Jean Martinez
- IBMM, ENSCM, Université de Montpellier, CNRS, 34093 Montpellier, France
| | - Muriel Amblard
- IBMM, ENSCM, Université de Montpellier, CNRS, 34093 Montpellier, France
| |
Collapse
|
76
|
Tombling BJ, Zhang Y, Huang YH, Craik DJ, Wang CK. The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis 2021; 330:52-60. [PMID: 34246818 DOI: 10.1016/j.atherosclerosis.2021.06.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating cardiovascular disease (CVD) due to its involvement in cholesterol metabolism. Although approved monoclonal antibodies (alirocumab and evolocumab) that inhibit PCSK9 function are very effective in lowering cholesterol, their limitations, including high treatment costs, have so far prohibited widespread use. Accordingly, there is great interest in alternative drug modalities to antibodies. Like antibodies, peptides are valuable therapeutics due to their high target potency and specificity. Furthermore, being smaller than antibodies means they have access to more drug administration options, are less likely to induce adverse immunogenic responses, and are better suited to affordable production. This review surveys the current peptide-based landscape aimed towards PCSK9 inhibition, covering pre-clinical to patented drug candidates and comparing them to current cholesterol lowering therapeutics. Classes of peptides reported to be inhibitors include nature-inspired disulfide-rich peptides, combinatorially derived cyclic peptides, and peptidomimetics. Their functional activities have been validated in biophysical and cellular assays, and in some cases pre-clinical mouse models. Recent efforts report peptides with potent sub-nanomolar binding affinities to PCSK9, which highlights their potential to achieve antibody-like potency. Studies are beginning to address pharmacokinetic properties of PCSK9-targeting peptides in more detail. We conclude by highlighting opportunities to investigate their biological effects in pre-clinical models of cardiovascular disease. The anticipation concerning the PCSK9-targeting peptide landscape is accelerating and it seems likely that a peptide-based therapeutic for treating PCSK9-mediated hypercholesterolemia may be clinically available in the near future.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yuhui Zhang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
77
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
78
|
Bhattacharya A, Chowdhury A, Chaudhury K, Shukla PC. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188581. [PMID: 34144130 DOI: 10.1016/j.bbcan.2021.188581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel pharmacological target for hypercholesterolemia and associated cardiovascular diseases owing to its function to mediate the degradation of low-density lipoprotein receptor (LDLR). Findings over the past two decades have identified novel binding partners and cellular functions of PCSK9. Notably, PCSK9 is aberrantly expressed in a broad spectrum of cancers and apparently contributes to disease prognosis, indicating that PCSK9 could be a valuable cancer biomarker. Experimental studies demonstrate the contribution of PCSK9 in various aspects of cancer, including cell proliferation, apoptosis, invasion, metastasis, anti-tumor immunity and radioresistance, strengthening the idea that PCSK9 could be a promising therapeutic target. Here, we comprehensively review the involvement of PCSK9 in cancer, summarizing its aberrant expression, association with disease prognosis, biological functions and underlying mechanisms in various malignancies. Besides, we highlight the potential of PCSK9 as a future therapeutic target in personalized cancer medicine.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Chowdhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
79
|
Polymorphisms of rs2483205 and rs562556 in the PCSK9 gene are associated with coronary artery disease and cardiovascular risk factors. Sci Rep 2021; 11:11450. [PMID: 34075144 PMCID: PMC8169929 DOI: 10.1038/s41598-021-90975-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
PCSK9 plays a crucial role in lipid metabolism. This case–control study explored the associations of novel single nucleotide polymorphisms (SNPs) of the PCSK9 gene with coronary artery disease (CAD) (≥ 1 coronary artery stenosis ≥ 50%) and its risk factors in the Han population in Xinjiang, China. Four tag SNPs (rs11583680, rs2483205, rs2495477 and rs562556) of the PCSK9 gene were genotyped in 950 CAD patients and 1082 healthy controls. The distributions of genotypes in rs2483205 and rs562556 were significantly different between the groups (all p < 0.05). The TT genotype of rs2483205, GG genotype of rs562556, and their H4 (T-G) haplotype were associated with CAD [odds ratio (OR) 0.65, confidence interval (CI) 0.45–0.95, p = 0.024; 0.63, 0.45–0.90, p = 0.011; 0.50, 0.35–0.70, p < 0.001, respectively]. Additionally, the model (TT + CT vs. CC) of rs2483205 was associated with increased risk of obesity, and the G allele of rs562556 was associated with lower low-density lipoprotein cholesterol (LDL-C), blood glucose, body mass index (BMI), and mean platelet volume (MPV) (all p < 0.05). rs2483205, rs562556, and their H4 haplotype of the PCSK9 gene were associated with CAD. Additionally, rs2483205 is associated with obesity, and rs562556 is associated with LDL-C, blood glucose, BMI, and MPV.
Collapse
|
80
|
Barale C, Melchionda E, Morotti A, Russo I. PCSK9 Biology and Its Role in Atherothrombosis. Int J Mol Sci 2021; 22:ijms22115880. [PMID: 34070931 PMCID: PMC8198903 DOI: 10.3390/ijms22115880] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Platelets/drug effects
- Blood Platelets/enzymology
- Blood Platelets/pathology
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/metabolism
- Dyslipidemias/drug therapy
- Dyslipidemias/enzymology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Fibrinolytic Agents/therapeutic use
- Gene Expression Regulation
- Humans
- Hypolipidemic Agents/therapeutic use
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- PCSK9 Inhibitors
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Platelet Activation/drug effects
- Proprotein Convertase 9/biosynthesis
- Proprotein Convertase 9/genetics
- RNA, Small Interfering/therapeutic use
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Thrombosis/enzymology
- Thrombosis/genetics
- Thrombosis/pathology
- Thrombosis/prevention & control
Collapse
|
81
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
82
|
Wang Y, Guo P, Liu L, Zhang Y, Zeng P, Yuan Z. Mendelian Randomization Highlights the Causal Role of Normal Thyroid Function on Blood Lipid Profiles. Endocrinology 2021; 162:6136226. [PMID: 33587120 DOI: 10.1210/endocr/bqab037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The association between thyroid function and dyslipidemia has been well documented in observational studies. However, observational studies are prone to confounding, making it difficult to conduct causal inference. We performed a 2-sample bidirectional Mendelian randomization (MR) using summary statistics from large-scale genome-wide association studies of thyroid stimulating hormone (TSH), free T4 (FT4), and blood lipids. We chose the inverse variance-weighted (IVW) method for the main analysis, and consolidated results through various sensitivity analyses involving 6 different MR methods under different model specifications. We further conducted genetic correlation analysis and colocalization analysis to deeply reflect the causality. The IVW method showed per 1 SD increase in normal TSH was significantly associated with a 0.048 SD increase in total cholesterol (TC; P < 0.001) and a 0.032 SD increase in low-density lipoprotein cholesterol (LDL; P = 0.021). A 1 SD increase in normal FT4 was significantly associated with a 0.056 SD decrease in TC (P = 0.014) and a 0.072 SD decrease in LDL (P = 0.009). Neither TSH nor FT4 showed causal associations with high-density lipoprotein cholesterol and triglycerides. No significant causal effect of blood lipids on normal TSH or FT4 can be detected. All results were largely consistent when using several alternative MR methods, and were reconfirmed by both genetic correlation analysis and colocalization analysis. Our study suggested that, even within reference range, higher TSH or lower FT4 are causally associated with increased TC and LDL, whereas no reverse causal association can be found.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanan Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
83
|
Tombling BJ, Lammi C, Bollati C, Anoldi A, Craik DJ, Wang CK. Increased Valency Improves Inhibitory Activity of Peptides Targeting Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). Chembiochem 2021; 22:2154-2160. [PMID: 33755275 DOI: 10.1002/cbic.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating hypercholesterolemia. Peptide-based PCSK9 inhibitors have attracted pharmaceutical interest, but the effect of multivalency on bioactivity is poorly understood. Here we designed bivalent and tetravalent dendrimers, decorated with the PCSK9 inhibitory peptides Pep2-8[RRG] or P9-38, to study relationships between peptide binding affinity, peptide valency, and PCSK9 inhibition. Increased valency resulted in improved PCSK9 inhibition for both peptides, with activity improvements of up to 100-fold achieved for the P9-38-decorated dendrimers compared to monomeric P9-38 in in vitro competition binding assays. Furthermore, the P9-38-decorated dendrimers showed improved potency at restoring functional low-density lipoprotein (LDL) receptor levels and internalizing LDL in the presence of PCSK9, demonstrating significant cell-based activity at picomolar concentrations. This study demonstrates the potential of increasing valency as a strategy for increasing the efficacy of peptide-based PCSK9 therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Carlotta Bollati
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Anna Anoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
84
|
Gago-Dominguez M, Sobrino T, Torres-Español M, Calaza M, Rodríguez-Castro E, Campos F, Redondo CM, Castillo J, Carracedo Á. Obesity-related genetic determinants of stroke. Brain Commun 2021; 3:fcab069. [PMID: 34550115 PMCID: PMC8126360 DOI: 10.1093/braincomms/fcab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
As obesity, circulating lipids and other vascular/metabolic factors influence the risk of stroke, we examined if genetic variants associated with these conditions are related to risk of stroke using a case-control study in Galicia, Spain. A selection of 200 single-nucleotide polymorphisms previously found to be related to obesity, body mass index, circulating lipids, type 2 diabetes, heart failure, obesity-related cancer and cerebral infarction were genotyped in 465 patients diagnosed with stroke and 480 population-based controls. An unsupervised Lasso regression procedure was carried out for single-nucleotide polymorphism selection based on their potential effect on stroke according to obesity. Selected genotypes were further analysed through multivariate logistic regression to study their association with risk of stroke. Using unsupervised selection procedures, nine single-nucleotide polymorphisms were found to be related to risk of stroke overall and after stratification by obesity. From these, rs10761731, rs2479409 and rs6511720 in obese subjects [odds ratio (95% confidence interval) = 0.61 (0.39-0.95) (P = 0.027); 0.54 (0.35-0.84) (P = 0.006) and 0.42 (0.22-0.80) (P = 0.0075), respectively], and rs865686 in non-obese subjects [odds ratio (95% confidence interval) = 0.67 (0.48-0.94) (P = 0.019)], were independently associated with risk of stroke after multivariate logistic regression procedures. The associations between the three single-nucleotide polymorphisms found to be associated with stroke risk in obese subjects were more pronounced among females; for rs10761731, odds ratios among obese males and females were 1.07 (0.58-1.97) (P = 0.84), and 0.31 (0.14-0.69) (P = 0.0018), respectively; for rs2479409, odd ratios were 0.66 (0.34-1.27) (P = 0.21), and 0.49 (0.24-0.99) (P = 0.04), for obese males and females, respectively; the stroke-rs6511720 association was also slightly more pronounced among obese females, odds ratios were 0.33 (0.13-0.87) (P = 0.022), and 0.28 (0.09-0.85) (P = 0.02) for obese males and females, respectively. The rs865686-stroke association was more pronounced among non-obese males [odds ratios = 0.61 (0.39-0.96) (P = 0.029) and 0.72 (0.42-1.22) (P = 0.21), for non-obese males and females, respectively]. A combined genetic score of variants rs10761731, rs2479409 and rs6511720 was highly predictive of stroke risk among obese subjects (P = 2.04 × 10-5), particularly among females (P = 4.28 × 10-6). In summary, single-nucleotide polymorphisms rs1076173, rs2479409 and rs6511720 were found to independently increase the risk of stroke in obese subjects after adjustment for established risk factors. A combined score with the three genomic variants was an independent predictor of risk of stroke among obese subjects in our population.
Collapse
Affiliation(s)
- Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
- Grupo de Medicina Xenómica, Centro en Red de
Enfermedades Raras (CIBERER), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain
- International Cancer Genetics and Epidemiology
Group, Health Research Institute of Santiago de Compostela (IDIS),
Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - María Torres-Español
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
| | - Manuel Calaza
- Conselleria de Educación, Xunta de
Galicia, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Carmen M Redondo
- Oncology and Genetics Unit, Instituto de
Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
- Grupo de Medicina Xenómica, Centro en Red de
Enfermedades Raras (CIBERER), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain
| |
Collapse
|
85
|
Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur J Clin Invest 2021; 51:e13459. [PMID: 33236356 DOI: 10.1111/eci.13459] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is involved in cholesterol homeostasis. After binding to the complex low-density lipoprotein (LDL)-receptor, PCSK9 induces its intracellular degradation, thus reducing serum LDL clearance. In addition to the well-known activity on the hepatic LDL receptor-mediated pathway, PCSK9 has been, however, associated with vascular inflammation in atherogenesis. Indeed, PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g. endothelial cells, smooth muscle cells and macrophages) and is detected inside human atherosclerotic plaques. We here analyse the biology of PCSK9 and its possible involvement in molecular processes involved in atherosclerosis, beyond the regulation of circulating LDL cholesterol levels.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | - Danilo Neglia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Raffaele De Caterina
- Fondazione Toscana G. Monasterio, Pisa, Italy.,Cardiovascular Division, Pisa University Hospital, University of Pisa, Pisa, Italy
| | | | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
86
|
Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation. Front Cardiovasc Med 2021; 8:639727. [PMID: 33834043 PMCID: PMC8021767 DOI: 10.3389/fcvm.2021.639727] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
The relevance of PCSK9 in atherosclerosis progression is demonstrated by the benefits observed in patients that have followed PCSK9-targeted therapies. The impact of these therapies is attributed to the plasma lipid-lowering effect induced when LDLR hepatic expression levels are recovered after the suppression of soluble PCSK9. Different studies show that PCSK9 is involved in other mechanisms that take place at different stages during atherosclerosis development. Indeed, PCSK9 regulates the expression of key receptors expressed in macrophages that contribute to lipid-loading, foam cell formation and atherosclerotic plaque formation. PCSK9 is also a regulator of vascular inflammation and its expression correlates with pro-inflammatory cytokines release, inflammatory cell recruitment and plaque destabilization. Furthermore, anti-PCSK9 approaches have demonstrated that by inhibiting PCSK9 activity, the progression of atherosclerotic disease is diminished. PCSK9 also modulates thrombosis by modifying platelets steady-state, leukocyte recruitment and clot formation. In this review we evaluate recent findings on PCSK9 functions in cardiovascular diseases beyond LDL-cholesterol plasma levels regulation.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
87
|
Tombling BJ, Lammi C, Lawrence N, Li J, Arnoldi A, Craik DJ, Wang CK. Engineered EGF-A Peptides with Improved Affinity for Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). ACS Chem Biol 2021; 16:429-439. [PMID: 33512150 DOI: 10.1021/acschembio.0c00991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The epidermal growth-factor-like domain A (EGF-A) of the low-density lipoprotein (LDL) receptor is a promising lead for therapeutic inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the clinical potential of EGF-A is limited by its suboptimal affinity for PCSK9. Here, we use phage display to identify EGF-A analogues with extended bioactive segments that have improved affinity for PCSK9. The most potent analogue, TEX-S2_03, demonstrated ∼130-fold improved affinity over the parent domain and had a reduced calcium dependency for efficient PCSK9 binding. Thermodynamic binding analysis suggests the improved affinity of TEX-S2_03 is enthalpically driven, indicating favorable interactions are formed between the extended segment of TEX-S2_03 and the PCSK9 surface. The improved affinity of TEX-S2_03 resulted in increased activity in competition binding assays and more efficient restoration of LDL receptor levels with clearance of extracellular LDL cholesterol in functional cell assays. These results confirm that TEX-S2_03 is a promising therapeutic lead for treating hypercholesterolemia. Many EGF-like domains are involved in disease-related protein-protein interactions; therefore, our strategy for engineering EGF-like domains has the potential to be broadly implemented in EGF-based drug design.
Collapse
Affiliation(s)
- Benjamin J. Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianqiang Li
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
88
|
Patterns and tempo of PCSK9 pseudogenizations suggest an ancient divergence in mammalian cholesterol homeostasis mechanisms. Genetica 2021; 149:1-19. [PMID: 33515402 PMCID: PMC7929951 DOI: 10.1007/s10709-021-00113-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a central role in cholesterol homeostasis in humans as a major regulator of LDLR levels. PCSK9 is an intriguing protease in that it does not act by proteolysis but by preventing LDLR recirculation from endosomes to the plasma membrane. This, and the inexistence of any other proteolytic substrate but itself could suggest that PCSK9 is an exquisite example of evolutionary fine-tuning. However, the gene has been lost in several mammalian species, and null alleles are present (albeit at low frequencies) in some human populations without apparently deleterious health effects, raising the possibility that the PCSK9 may have become dispensable in the mammalian lineage. To address this issue, we systematically recovered, assembled, corrected, annotated and analysed publicly available PCSK9 sequences for 420 eutherian species to determine the distribution, frequencies, mechanisms and timing of PCSK9 pseudogenization events, as well as the evolutionary pressures underlying the preservation or loss of the gene. We found a dramatic difference in the patterns of PCSK9 retention and loss between Euarchontoglires—where there is strong pressure for gene preservation—and Laurasiatheria, where multiple independent events have led to PCSK9 loss in most species. These results suggest that there is a fundamental difference in the regulation of cholesterol metabolism between Euarchontoglires and Laurasiatheria, which in turn has important implications for the use of Laurasiatheria species (e.g. pigs) as animal models of human cholesterol-related diseases.
Collapse
|
89
|
Xu B, Li S, Fang Y, Zou Y, Song D, Zhang S, Cai Y. Proprotein Convertase Subtilisin/Kexin Type 9 Promotes Gastric Cancer Metastasis and Suppresses Apoptosis by Facilitating MAPK Signaling Pathway Through HSP70 Up-Regulation. Front Oncol 2021; 10:609663. [PMID: 33489919 PMCID: PMC7817950 DOI: 10.3389/fonc.2020.609663] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
Objective To examine the effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) on gastric cancer (GC) progression and prognosis, and to explore the underlying mechanism. Methods PCSK9 expression levels in human GC tissues were determined by quantitative real-time PCR, western blotting, and immunohistochemical assay. PCSK9 serum levels were detected by enzyme-linked immunosorbent assay. The relationships of PCSK9 and GC progression and survival were analyzed using the Chi-square test, Kaplan-Meier analysis, and Cox proportional hazards model. The effect of PCSK9 on cell invasion, migration, and apoptosis were determined in human GC cell lines and mouse xenograft model separately using PCSK9 knockdown and overexpression strategies. The PCSK9 interacting molecules, screened by co-immunoprecipitation combined with LC-MS/MS, were identified by immunofluorescence localization and western blotting. Additionally, the mitogen-activated protein kinase (MAPK) pathway was assessed by western blotting. Results PCSK9 mRNA and protein levels were significantly elevated in GC tissues compared with the paired normal tissues at our medical center (P < 0.001). Notably, the up-regulation of PCSK9 expression in GC tissues was related to tumor progression and poor survival. GC patients had higher serum levels of PCSK9 than the age-matched healthy controls (P < 0.001); PCSK9 promoted invasive and migratory ability and inhibited apoptosis in GC cells with no apparent affection in cell proliferation. The silencing of PCSK9 reversed these effects, suppressing tumor metastasis in vitro and in vivo. Furthermore, PCSK9 maintained these functions through up-regulating heat shock protein 70 (HSP70), ultimately facilitating the mitogen-activated protein kinase (MAPK) pathway. Conclusion Collectively, our data revealed that high PCSK9 expression levels in GC tissue were correlated with GC progression and poor prognosis and that PCSK9 could promote GC metastasis and suppress apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. PCSK9 may represent a novel potential therapeutic target in GC.
Collapse
Affiliation(s)
- Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Fang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongqiang Song
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
90
|
Jang HD, Lee SE, Yang J, Lee HC, Shin D, Lee H, Lee J, Jin S, Kim S, Lee SJ, You J, Park HW, Nam KY, Lee SH, Park SW, Kim JS, Kim SY, Kwon YW, Kwak SH, Yang HM, Kim HS. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur Heart J 2021; 41:239-252. [PMID: 31419281 PMCID: PMC6945527 DOI: 10.1093/eurheartj/ehz566] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Aims Proprotein convertase subtilisin/kexin type-9 (PCSK9), a molecular determinant of low-density lipoprotein (LDL) receptor (LDLR) fate, has emerged as a promising therapeutic target for atherosclerotic cardiovascular diseases. However, the precise mechanism by which PCSK9 regulates the internalization and lysosomal degradation of LDLR is unknown. Recently, we identified adenylyl cyclase-associated protein 1 (CAP1) as a receptor for human resistin whose globular C-terminus is structurally similar to the C-terminal cysteine-rich domain (CRD) of PCSK9. Herein, we investigated the role of CAP1 in PCSK9-mediated lysosomal degradation of LDLR and plasma LDL cholesterol (LDL-C) levels. Methods and results The direct binding between PCSK9 and CAP1 was confirmed by immunoprecipitation assay, far-western blot, biomolecular fluorescence complementation, and surface plasmon resonance assay. Fine mapping revealed that the CRD of PCSK9 binds with the Src homology 3 binding domain (SH3BD) of CAP1. Two loss-of-function polymorphisms found in human PCSK9 (S668R and G670E in CRD) were attributed to a defective interaction with CAP1. siRNA against CAP1 reduced the PCSK9-mediated degradation of LDLR in vitro. We generated CAP1 knock-out mice and found that the viable heterozygous CAP1 knock-out mice had higher protein levels of LDLR and lower LDL-C levels in the liver and plasma, respectively, than the control mice. Mechanistic analysis revealed that PCSK9-induced endocytosis and lysosomal degradation of LDLR were mediated by caveolin but not by clathrin, and they were dependent on binding between CAP1 and caveolin-1. Conclusion We identified CAP1 as a new binding partner of PCSK9 and a key mediator of caveolae-dependent endocytosis and lysosomal degradation of LDLR. ![]()
Collapse
Affiliation(s)
- Hyun-Duk Jang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sang Eun Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Jimin Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Chae Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Dasom Shin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hwan Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jaewon Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sooryeonhwa Jin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Soungchan Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Seung Ji Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jihye You
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Woo Park
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Ky-Youb Nam
- Bio AI Research Center, Pharos I&BT Co., Ltd., Anyang-si, Gyeonggi-do 14059, Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120752, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120752, Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul 120752, Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Yoo-Wook Kwon
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Han-Mo Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Hyo-Soo Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| |
Collapse
|
91
|
Tombling BJ, Lammi C, Lawrence N, Gilding EK, Grazioso G, Craik DJ, Wang CK. Bioactive Cyclization Optimizes the Affinity of a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Peptide Inhibitor. J Med Chem 2020; 64:2523-2533. [PMID: 33356222 DOI: 10.1021/acs.jmedchem.0c01766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
92
|
Dong J, He M, Li J, Pessentheiner A, Wang C, Zhang J, Sun Y, Wang WT, Zhang Y, Liu J, Wang SC, Huang PH, Gordts PL, Yuan ZY, Tsimikas S, Shyy JY. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production. JCI Insight 2020; 5:143812. [PMID: 33119548 PMCID: PMC7714402 DOI: 10.1172/jci.insight.143812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects cholesterol homeostasis by targeting hepatic LDL receptor (LDLR) for lysosomal degradation. Clinically, PCSK9 inhibitors effectively reduce LDL-cholesterol (LDL-C) levels and the incidence of cardiovascular events. Because microRNAs (miRs) are integral regulators of cholesterol homeostasis, we investigated the involvement of miR-483 in regulating LDL-C metabolism. Using in silico analysis, we predicted that miR-483-5p targets the 3′-UTR of PCSK9 mRNA. In HepG2 cells, miR-483-5p targeted the PCSK9 3′-UTR, leading to decreased PCSK9 protein and mRNA expression, increased LDLR expression, and enhanced LDL-C uptake. In hyperlipidemic mice and humans, serum levels of total cholesterol and LDL-C were inversely correlated with miR-483-5p levels. In mice, hepatic miR-483 overexpression increased LDLR levels by targeting Pcsk9, with a significant reduction in plasma total cholesterol and LDL-C levels. Mechanistically, the cholesterol-lowering effect of miR-483-5p was significant in mice receiving AAV8 PCSK9-3′-UTR but not Ldlr-knockout mice or mice receiving AAV8 PCSK9-3′-UTR (ΔBS) with the miR-483-5p targeting site deleted. Thus, exogenously administered miR-483 or similarly optimized compounds have potential to ameliorate hypercholesterolemia. MicroRNA-483 targeting 3’ untranslated region of PCSK9 mRNA inhibits hepatic PCSK9 expression, resulting in increased LDLR expression and LDL uptake, which ameliorates hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Jianjie Dong
- Department of Cardiology, First Affiliated Hospital, and.,Cardiovascular Research Center, School of Basic Medical Sciences, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Division of Cardiology and
| | | | - Jie Li
- Cardiovascular Research Center, School of Basic Medical Sciences, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ariane Pessentheiner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Chen Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jin Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | - Junhui Liu
- Department of Clinical Laboratory, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shen-Chih Wang
- Department of Anesthesiology.,Cardiovascular Research Center
| | - Po-Hsun Huang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, and.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Philip Lsm Gordts
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital, and
| | | | | |
Collapse
|
93
|
Oleaga C, Hay J, Gurcan E, David LL, Mueller PA, Tavori H, Shapiro MD, Pamir N, Fazio S. Insights into the kinetics and dynamics of the furin-cleaved form of PCSK9. J Lipid Res 2020; 62:100003. [PMID: 33429337 PMCID: PMC7890205 DOI: 10.1194/jlr.ra120000964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low density lipoprotein receptors (LDLRs). Plasma PCSK9 has 2 main molecular forms: a 62 kDa mature form (PCSK9_62) and a 55 kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLRs. We aimed to identify the site of PCSK9_55 formation (intracellular vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Coexpressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions, we found that i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase analysis, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the nonsecreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency than PCSK9_62. Collectively, our data show that 1) PCSK9_55 is formed extracellularly; 2) PCSK9_55 has a shorter half-life; 3) there is a small intracellular pool of PCSK9_55 that is not secreted; and 4) PCSK9_55 retained within the cell maintains a reduced efficiency to cause LDLR degradation.
Collapse
Affiliation(s)
- Carlota Oleaga
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Joshua Hay
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Emma Gurcan
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paul A Mueller
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Michael D Shapiro
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Nathalie Pamir
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA.
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
94
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
95
|
Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, Xie L, Huang Q, Li F, Li CY. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020; 588:693-698. [PMID: 33177715 PMCID: PMC7770056 DOI: 10.1038/s41586-020-2911-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuhui Bao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Mengjie Hu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Hanman Chang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Meng Jiao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Jin Cheng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qian Huang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
96
|
PCSK9: A Potential Therapeutic Target for Sepsis. J Immunol Res 2020; 2020:2687692. [PMID: 33123601 PMCID: PMC7584934 DOI: 10.1155/2020/2687692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host response to infection. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is often upregulated in the presence of sepsis and infectious diseases. In sepsis, PCSK9 degraded the low-density lipoprotein cholesterol (LDL) receptors (LDL-R) of the hepatocytes and the very low-density lipoprotein cholesterol receptors (VLDL-R) of the adipocytes, which then subsequently reduced pathogenic lipid uptake and clearance/sequestration. Moreover, it might improve cholesterol accumulation and augment toll-like receptor function in macrophages, which supported inflammatory responses. Accordingly, PCSK9 might show detrimental effects on immune host response and survival in sepsis. However, the exact roles of PCSK9 in the pathogenesis of sepsis are still not well defined. In this review, we summarized the literatures focusing on the roles of PCSK9 in sepsis. Our review provided an additional insight in the role of PCSK9 in sepsis, which might serve as a potential target for the treatment of sepsis.
Collapse
|
97
|
Non-hematopoietic deficiency of proprotein convertase subtilisin/kexin type 9 deficiency leads to more severe anemia in a murine model of sickle cell disease. Sci Rep 2020; 10:16514. [PMID: 33020528 PMCID: PMC7536178 DOI: 10.1038/s41598-020-73463-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency leads to lower cholesterol and is associated with reduced vascular complications in the general population. Cholesterol lowering may also have beneficial effects in sickle cell disease (SCD). The objective of this study was to determine effects of PCSK9 deficiency in a mouse model of SCD. Bone marrow transplantation (BMT) was performed from donor SCD mice to wild-type, PCSK9-deficient, and LDLR-deficient recipients to generate SCD controls (Pcsk9+/+, SCDbmt) with preserved PCSK9 status, SCD mice with deficiency of PCSK9 (Pcsk9−/−, SCDbmt), and SCD mice with deficiency of LDLR (Ldlr−/−, SCDbmt). Although cholesterol levels were lower in Pcsk9−/−, SCDbmt mice compared to Pcsk9+/+, SCDbmt mice, anemia was more severe in Pcsk9−/−, SCDbmt mice. Increased reticulocytosis, enhanced ex vivo erythrocyte sickling, and increased erythrocyte phosphatidylserine exposure was also observed. Livers, spleens, and kidneys contained increased iron in Pcsk9−/−, SCDbmt mice compared to Pcsk9+/+, SCDbmt mice consistent with greater hemolysis. SCD mice with deficiency of LDLR (Ldlr−/−, SCDbmt mice) had similar anemia as Ldlr+/+, SCDbmt mice despite higher serum cholesterol. In conclusion, deficiency of PCSK9 is associated with worsened anemia in SCD mice due to increased hemolysis. These findings may have implications for lipid-lowering strategies in patients with SCD, as well as for potential novel modifiers of anemia severity.
Collapse
|
98
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
99
|
Panagiotopoulou O, Chiesa ST, Tousoulis D, Charakida M. Dyslipidaemias and Cardiovascular Disease: Focus on the Role of PCSK9 Inhibitors. Curr Med Chem 2020; 27:4494-4521. [PMID: 31453780 DOI: 10.2174/0929867326666190827151012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Genetic, experimental and clinical studies have consistently confirmed that inhibition of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) can result in significant lowering of LDL-C and two fully human PCSK9 monoclonal antibodies have received regulatory approval for use in highrisk patients. Co-administration of PCSK9 with statins has resulted in extremely low LDL-C levels with excellent short-term safety profiles. While results from Phase III clinical trials provided significant evidence about the role of PCSK9 inhibitors in reducing cardiovascular event rates, their impact on mortality remains less clear. PCSK9 inhibitor therapy can be considered for high-risk patients who are likely to experience significant cardiovascular risk reduction.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Scott T Chiesa
- UCL Institute of Cardiovascular Sciences, London, United Kingdom
| | | | - Marietta Charakida
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
100
|
Guo Q, Feng X, Zhou Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front Genet 2020; 11:1020. [PMID: 33173529 PMCID: PMC7538608 DOI: 10.3389/fgene.2020.01020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant familial hypercholesterolemia (FH) affects approximately 1/250, individuals and potentially leads to elevated blood cholesterol and a significantly increased risk of atherosclerosis. Along with improvements in detection and the increased early diagnosis and treatment, the serious burden of FH on families and society has become increasingly apparent. Since FH is strongly associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), increasing numbers of studies have focused on finding effective diagnostic and therapeutic methods based on PCSK9. At present, as PCSK9 is one of the main pathogenic FH genes, its contribution to FH deserves more explorative research.
Collapse
Affiliation(s)
- Qianyun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Xunxun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| |
Collapse
|