51
|
Smith GJ, Thrall RS, Cloutier MM, Manautou JE, Morris JB. Acetaminophen Attenuates House Dust Mite-Induced Allergic Airway Disease in Mice. J Pharmacol Exp Ther 2016; 358:569-79. [PMID: 27402277 DOI: 10.1124/jpet.116.233684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Epidemiologic evidence suggests that N-acetyl-para-aminophenol (APAP) may play a role in the pathogenesis of asthma, likely through pro-oxidant mechanisms. However, no studies have investigated the direct effects of APAP on the development of allergic inflammation. To determine the likelihood of a causal relationship between APAP and asthma pathogenesis, we explored the effects of APAP on inflammatory responses in a murine house dust mite (HDM) model of allergic airway disease. We hypothesized that APAP would enhance the development of HDM-induced allergic inflammation. The HDM model consisted of once daily intranasal instillations for up to 2 weeks with APAP or vehicle administration 1 hour prior to HDM during either week 1 or 2. Primary assessment of inflammation included bronchoalveolar lavage (BAL), cytokine expression in lung tissue, and histopathology. Contrary to our hypothesis, the effects of HDM treatment were substantially diminished in APAP-treated groups compared with controls. APAP-treated groups had markedly reduced airway inflammation: including decreased inflammatory cells in the BAL fluid, lower cytokine expression in lung tissue, and less perivascular and peribronchiolar immune cell infiltration. The anti-inflammatory effect of APAP was not abrogated by an inhibitor of cytochrome P450 (P450) metabolism, suggesting that the effect was due to the parent compound or a non-P450 generated metabolite. Taken together, our studies do not support the biologic plausibility of the APAP hypothesis that APAP use may contribute to the causation of asthma. Importantly, we suggest the mechanism by which APAP modulates airway inflammation may provide novel therapeutic targets for asthma.
Collapse
Affiliation(s)
- Gregory J Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Roger S Thrall
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Michelle M Cloutier
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - John B Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| |
Collapse
|
52
|
Piasek M, Jurasović J, Sekovanić A, Brajenović N, Brčić Karačonji I, Mikolić A, Grgec AS, Stasenko S. Placental cadmium as an additional noninvasive bioindicator of active maternal tobacco smoking. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:443-446. [PMID: 27210017 DOI: 10.1080/15287394.2016.1165640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tobacco smoke (TS) is a mixture of chemicals that is known to exert carcinogenic and endocrine-disrupting effects, as well as adverse effects on various systems. In TS nicotine is the major alkaloid and cadmium (Cd) the most abundant metal ion. The aim of this investigation was to assess exposure to Cd attributed to TS in healthy postpartum subjects (mean age 28 years) after term vaginal delivery in a clinical hospital by determining metal levels in maternal blood, placenta, and cord blood in relation to nicotine in maternal hair (12-cm-long samples). Two study groups were compared based upon self-reporting data: smokers (n = 32; continual cigarette smoking 3 months before and 9 months during pregnancy) and nonsmokers (n = 54; including passive smokers whose parameters did not differ from unexposed nonsmokers). In smokers compared to nonsmokers maternal hair nicotine concentrations increased approximately sevenfold, while Cd levels rose fourfold in maternal blood and up to twofold in placenta. Significant positive correlations were noted between maternal hair nicotine and placental Cd, maternal hair nicotine and maternal blood Cd, and placental Cd and maternal blood Cd. Levels of cord blood Cd were low in both study groups (<0.1 ng/ml). Data indicate that Cd in placenta may serve as a noninvasive bioindicator in addition to commonly used noninvasive hair nicotine in maternal TS assessment, especially in cases where unavailable or inappropriate (short or chemically treated) hair samples occur.
Collapse
Affiliation(s)
- Martina Piasek
- a Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Jasna Jurasović
- a Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ankica Sekovanić
- a Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Nataša Brajenović
- a Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | | | - Anja Mikolić
- a Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | | | | |
Collapse
|
53
|
Han SG, Pant K, Bruce SW, Gairola CG. Bhas 42 cell transformation activity of cigarette smoke condensate is modulated by selenium and arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:220-228. [PMID: 26924598 DOI: 10.1002/em.22000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Cigarette smoking remains a major health risk worldwide. Development of newer tobacco products requires the use of quantitative toxicological assays. Recently, v-Ha-ras transfected BALB/c3T3 (Bhas 42) cell transformation assay was established that simulates the two-stage animal tumorigenesis model and measures tumor initiating and promoting activities of chemicals. The present study was performed to assess the feasibility of using this Bhas 42 cell transformation assay to determine the initiation and promotion activities of cigarette smoke condensate (CSC) and its water soluble fraction. Further, the modulating effects of selenium and arsenic on cigarette smoke-induced cell transformation were investigated. Dimethyl sulfoxide (DMSO) and water extracts of CSC (CSC-D and CSC-W, respectively) were tested at concentrations of 2.5-40 µg mL(-1) in the initiation or promotion assay formats. Initiation protocol of the Bhas 42 assay showed a 3.5-fold increase in transformed foci at 40 µg mL(-1) of CSC-D but not CSC-W. The promotion phase of the assay yielded a robust dose response with CSC-D (2.5-40 µg mL(-1)) and CSC-W (20-40 µg mL(-1)). Preincubation of cells with selenium (100 nM) significantly reduced CSC-induced increase in cell transformation in initiation assay. Co-treatment of cells with a sub-toxic dose of arsenic significantly enhanced cell transformation activity of CSC-D in promotion assay. The results suggest a presence of both water soluble and insoluble tumor promoters in CSC, a role of oxidative stress in CSC-induced cell transformation, and usefulness of Bhas 42 cell transformation assay in comparing tobacco product toxicities and in studying the mechanisms of tobacco carcinogenesis.
Collapse
Affiliation(s)
- Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kamala Pant
- Department of Genetic Toxicology, Bioreliance Corporation, Rockville, Maryland
| | - Shannon W Bruce
- Department of Genetic Toxicology, Bioreliance Corporation, Rockville, Maryland
| | - C Gary Gairola
- Department of Genetic Toxicology, Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
54
|
Rowell TR, Tarran R. Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Physiol 2015; 309:L1398-409. [PMID: 26408554 PMCID: PMC4683316 DOI: 10.1152/ajplung.00272.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig usage has increased, attracting both former tobacco smokers and never smokers. E-Cig liquids (e-liquids) contain nicotine in a glycerol/propylene glycol vehicle with flavorings, which are vaporized and inhaled. To date, neither E-Cig devices, nor e-liquids, are regulated by the Food and Drug Administration (FDA). The FDA has proposed a deeming rule, which aims to initiate legislation to regulate E-Cigs, but the timeline to take effect is uncertain. Proponents of E-Cigs say that they are safe and should not be regulated. Opposition is varied, with some opponents proposing that E-Cig usage will introduce a new generation to nicotine addiction, reversing the decline seen with tobacco smoking, or that E-Cigs generally may not be safe and will trigger diseases like tobacco. In this review, we shall discuss what is known about the effects of E-Cigs on the mammalian lung and isolated lung cells in vitro. We hope that collating this data will help illustrate gaps in the knowledge of this burgeoning field, directing researchers toward answering whether or not E-Cigs are capable of causing disease.
Collapse
Affiliation(s)
- Temperance R Rowell
- Marsico Lung Institute and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Tarran
- Marsico Lung Institute and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
55
|
Yoon CM, Nam M, Oh YM, Dela Cruz CS, Kang MJ. Mitochondrial Regulation of Inflammasome Activation in Chronic Obstructive Pulmonary Disease. J Innate Immun 2015; 8:121-8. [PMID: 26536345 DOI: 10.1159/000441299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by enhanced chronic airway and lung inflammatory responses to noxious particles or gases. It is a major unmet medical need worldwide, and in Western society is strongly associated with exposure to cigarette smoke (CS). CS-induced inflammation is believed to be a key immune driver in the pathogenesis of COPD. Since the concept of inflammasomes was first introduced nearly a decade ago, these have been increasingly recognized as a central player in innate immune and inflammatory responses. In addition, studies have emerged demonstrating that mitochondrial innate immune signaling plays an important role in CS-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. Here, recent discoveries about inflammasome activation and mitochondrial biology and their role in COPD pathogenesis are reviewed. In addition, the current limitations of our understanding of this theme and future research directions are discussed.
Collapse
Affiliation(s)
- Chang Min Yoon
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | |
Collapse
|
56
|
Grill AE, Schmitt T, Gates LA, Lu D, Bandyopadhyay D, Yuan JM, Murphy SE, Peterson LA. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans. Chem Res Toxicol 2015; 28:1508-16. [PMID: 26114498 PMCID: PMC5473163 DOI: 10.1021/acs.chemrestox.5b00189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian-Min Yuan
- ∥University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, United States
| | | | | |
Collapse
|
57
|
Lim D, Lee E, Jeong E, Jang YP, Kim J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:41-51. [PMID: 25476485 DOI: 10.1016/j.jep.2014.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stemona tuberosa (ST) is a traditional herbal medicine used for the treatment of various respiratory diseases in eastern Asia. AIM OF THE STUDY We investigated the anti-inflammatory effects of a ST water extract in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in cigarette smoke (CS)-induced lung inflammation mouse models. MATERIALS AND METHODS RAW 264.7 macrophages were treated with the ST extract and stimulated by LPS. The expressions of pro-inflammatory mediators were evaluated by using nitric oxide (NO) assay, enzyme-linked immunosorbent assay and Western blot analysis. After the C57BL/6 mice were exposed to CS, they were administrated with the ST extract. The accumulated inflammatory cells in the bronchoalveolar lavage fluid (BALF) were counted. Also, real-time polymerase chain reaction and hematoxylin and eosin staining were performed in lung tissues. RESULTS The ST extract treatment reduced the production of NO via blocking the expressions of cyclooxygenase-2 and inducible nitric oxide synthase protein in RAW 264.7 macrophages. In addition, ST extract treatment decreased the secretions of inflammatory cytokines and regulated NF-κB activation by inhibiting the phosphorylation of IκB and the mitogen-activated protein kinase pathway. Also, ST extract administration to mice reduced the infiltrations of macrophages into BALF and the histological inflammatory changes in lung tissues. Furthermore, administration of the ST extract regulated the levels of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, monocyte chemoattractant protein-1 and matrix metalloproteinases-12 in the lungs. CONCLUSION These findings suggested that ST extract attenuated pulmonary inflammatory responses by inhibiting the expression of diverse inflammatory mediators in vivo and in vitro.
Collapse
Affiliation(s)
- Dahae Lim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Euijeong Lee
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Eunyoung Jeong
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
58
|
Kim JH, Cho MH, Choi KC, Lee K, Kim KS, Shim SM. Oxidative Stress Induced by Cigarette Smoke Extracts in Human Brain Cells (T98G) and Human Brain Microvascular Endothelial Cells (HBMEC) in Mono- and Co-Culture. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1019-27. [PMID: 26262444 DOI: 10.1080/15287394.2015.1043607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of the current study was to examine oxidative stress induced by cigarette smoke extract (CSE) or cigarette smoke condensate (CSC) in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture systems. Cell viability of T98G cells exposed to CSC (0.05-4 mg/ml) was significantly decreased compared to CSE (0.025-20%). There were no marked differences between quantities of reactive oxygen species (ROS) generation by either CSE (2, 4, and 10%) or CSC (0.2, 0.4, and 0.8 mg/ml) treatment compared to control. However, a significant effect was noted in ROS generation following CSC incubation at 4mg/ml. Cellular integrity of HBMEC decreased to 74 and 64% within 120 h of exposure at the IC50 value of CSE and CSC, respectively. This study suggests that chronic exposure to cigarette smoking might initiate damage to the blood-brain barrier.
Collapse
Affiliation(s)
- Ju-Hyeong Kim
- a Department of Food Science and Technology , Sejong University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
59
|
Brajenović N, Karačonji IB, Bulog A. Evaluation of Urinary Btex, Nicotine, and Cotinine as Biomarkers of Airborne Pollutants in Nonsmokers and Smokers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1133-6. [PMID: 26460693 DOI: 10.1080/15287394.2015.1066286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) are by-products of tobacco smoke and traffic emissions. The aim of this study was to determine the contribution of cigarette smoking to urinary levels of BTEX present in humans. Nicotine and cotinine, biomarkers of exposure to tobacco smoke, as well as BTEX, were measured in urine of smokers (n = 70) and nonsmokers (n = 65) using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). In smokers, a significant correlation was found between urinary BTEX levels and nicotine and cotinine. In addition, significant regression models with nicotine and cotinine as predictors showed that BTEX in smokers' urine was predominantly derived from exposure to tobacco smoke. In nonsmokers a weak correlation between BTEX and nicotine and cotinine was found in urine. Further, there was a lack of significant contribution of BTEX to urinary nicotine and cotinine concentrations in nonsmokers. Thus, it was presumed that vehicle exhaust was the main source of exposure to BTEX in nonsmokers.
Collapse
Affiliation(s)
- Nataša Brajenović
- a Analytical Toxicology and Mineral Metabolism Unit , Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Irena Brčić Karačonji
- a Analytical Toxicology and Mineral Metabolism Unit , Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Aleksandar Bulog
- b Department of Environmental Health, Faculty of Medicine , University of Rijeka , Rijeka , Croatia
| |
Collapse
|
60
|
Goldkorn T, Filosto S, Chung S. Lung injury and lung cancer caused by cigarette smoke-induced oxidative stress: Molecular mechanisms and therapeutic opportunities involving the ceramide-generating machinery and epidermal growth factor receptor. Antioxid Redox Signal 2014; 21:2149-74. [PMID: 24684526 PMCID: PMC4215561 DOI: 10.1089/ars.2013.5469] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are frequently caused by tobacco smoking. However, these diseases present opposite phenotypes involving redox signaling at the cellular level. While COPD is characterized by excessive airway epithelial cell death and lung injury, lung cancer is caused by uncontrolled epithelial cell proliferation. Notably, epidemiological studies have demonstrated that lung cancer incidence is significantly higher in patients who have preexisting emphysema/lung injury. However, the molecular link and common cell signaling events underlying lung injury diseases and lung cancer are poorly understood. This review focuses on studies of molecular mechanism(s) underlying smoking-related lung injury (COPD) and lung cancer. Specifically, the role of the ceramide-generating machinery during cigarette smoke-induced oxidative stress leading to both apoptosis and proliferation of lung epithelial cells is emphasized. Over recent years, it has been established that ceramide is a sphingolipid playing a major role in lung epithelia structure/function leading to lung injury in chronic pulmonary diseases. However, new and unexpected findings draw attention to its potential role in lung development, cell proliferation, and tumorigenesis. To address this dichotomy in detail, evidence is presented regarding several protein targets, including Src, p38 mitogen-activated protein kinase, and neutral sphingomyelinase 2, the major sphingomyelinase that controls ceramide generation during oxidative stress. Furthermore, their roles are presented not only in apoptosis and lung injury but also in enhancing cell proliferation, lung cancer development, and resistance to epidermal growth factor receptor-targeted therapy for treating lung cancer.
Collapse
Affiliation(s)
- Tzipora Goldkorn
- Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine , Davis, California
| | | | | |
Collapse
|
61
|
Ma B, Villalta PW, Balbo S, Stepanov I. Analysis of a malondialdehyde-deoxyguanosine adduct in human leukocyte DNA by liquid chromatography nanoelectrospray-high-resolution tandem mass spectrometry. Chem Res Toxicol 2014; 27:1829-36. [PMID: 25181548 PMCID: PMC4203394 DOI: 10.1021/tx5002699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Malondialdehyde
(MDA), an endogenous genotoxic product formed upon
lipid peroxidation and prostaglandin biosynthesis, can react with
DNA to form stable adducts. These adducts may contribute to the development
of such inflammation-mediated diseases as cancer and cardiovascular
and neurodegenerative diseases. The predominant MDA-derived DNA adduct
formed under physiological conditions is 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG). In this study, we developed
a novel liquid chromatography (LC)–nanoelectrospray ionization
(NSI)–high-resolution tandem mass spectrometry (HRMS/MS) method
for the analysis of M1dG in human leukocyte DNA. After
enzymatic hydrolysis of DNA, M1dG and the added internal
standard [13C3]M1dG were reduced
to their 5,6-dihydro derivatives by addition of sodium borohydride
to the hydrolysate and purified by solid-phase extraction and column
chromatography. The 5,6-dihydro derivatives in the purified samples
were analyzed by LC–NSI–HRMS/MS using higher-energy
collisional dissociation (HCD) fragmentation, isolation widths of
1 Da for both the analyte and internal standard, and a resolution
of 50 000. The detection limit of the developed method is 5
amol on-column, and the limit of quantitation is 0.125 fmol/mg DNA
starting with 200 μg of DNA. Method accuracy and precision were
characterized. The developed method was further applied to the analysis
of leukocyte DNA from 50 human subjects. M1dG was detected
in all samples and ranged from 0.132 to 275 fmol/mg DNA, or 0.004
to 9.15 adducts per 108 bases. This unique and highly sensitive
HRMS/MS-based method can be used in future studies investigating the
pathophysiological role of M1dG in human diseases.
Collapse
Affiliation(s)
- Bin Ma
- Masonic Cancer Center and ‡Division of Environmental Health Sciences, University of Minnesota , Mayo Mail Code 806, 420 Delaware Street South East, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
62
|
Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol 2014; 307:L205-18. [DOI: 10.1152/ajplung.00330.2013] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cigarette smoking (CS) can impact the immune system and induce pulmonary disorders such as chronic obstructive pulmonary disease (COPD), which is currently the fourth leading cause of chronic morbidity and mortality worldwide. Accordingly, the most significant risk factor associated with COPD is exposure to cigarette smoke. The purpose of the present study is to provide an updated overview of the literature regarding the effect of CS on the immune system and lungs, the mechanism of CS-induced COPD and oxidative stress, as well as the available and potential treatment options for CS-induced COPD. An extensive literature search was conducted on the PubMed/Medline databases to review current COPD treatment research, available in the English language, dating from 1976 to 2014. Studies have investigated the mechanism by which CS elicits detrimental effects on the immune system and pulmonary function through the use of human and animal subjects. A strong relationship among continued tobacco use, oxidative stress, and exacerbation of COPD symptoms is frequently observed in COPD subjects. In addition, therapeutic approaches emphasizing smoking cessation have been developed, incorporating counseling and nicotine replacement therapy. However, the inability to reverse COPD progression establishes the need for improved preventative and therapeutic strategies, such as a combination of intensive smoking cessation treatment and pharmaceutical therapy, focusing on immune homeostasis and redox balance. CS initiates a complex interplay between oxidative stress and the immune response in COPD. Therefore, multiple approaches such as smoking cessation, counseling, and pharmaceutical therapies targeting inflammation and oxidative stress are recommended for COPD treatment.
Collapse
Affiliation(s)
- Li Zuo
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Feng He
- Department of Health and Kinesiology, Purdue University, Lafayette, Indiana
| | - Georgianna G. Sergakis
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Majid S. Koozehchian
- Exercise and Sport Nutrition Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Julia N. Stimpfl
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yi Rong
- Department of Radiation Oncology, James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Philip T. Diaz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thomas M. Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
63
|
Heikkilä K, Madsen IEH, Nyberg ST, Fransson EI, Ahola K, Alfredsson L, Bjorner JB, Borritz M, Burr H, Knutsson A, Koskenvuo M, Koskinen A, Nielsen ML, Nordin M, Pahkin K, Pentti J, Rugulies R, Salo P, Shipley MJ, Suominen SB, Theorell T, Väänänen A, Vahtera J, Virtanen M, Westerholm PJM, Batty GD, Singh-Manoux A, Kivimäki M. Job strain and COPD exacerbations: an individual-participant meta-analysis. Eur Respir J 2014; 44:247-51. [PMID: 24696117 PMCID: PMC4076526 DOI: 10.1183/09031936.00205113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/03/2014] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ida E H Madsen
- National Research Centre for the Working Environment, Copenhagen
| | | | - Eleonor I Fransson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm School of Health Sciences, Jönköping University, Jönköping Stress Research Institute, Stockholm University, Stockholm
| | - Kirsi Ahola
- Finnish Institute of Occupational Health, Helsinki
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm Centre for Occupational and Environmental Medicine, Stockhom County Council, Stockhom
| | - Jakob B Bjorner
- National Research Centre for the Working Environment, Copenhagen
| | - Marianne Borritz
- Dept of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen
| | - Hermann Burr
- Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany
| | | | | | - Aki Koskinen
- Finnish Institute of Occupational Health, Helsinki
| | - Martin L Nielsen
- Dept of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen
| | | | | | | | - Reiner Rugulies
- National Research Centre for the Working Environment, Copenhagen Dept of Public Health and Dept of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Paula Salo
- Finnish Institute of Occupational Health, Turku Dept of Psychology, University of Turku, Turku
| | - Martin J Shipley
- Dept of Epidemiology and Public Health, University College London, London
| | - Sakari B Suominen
- Folkhälsan Research Center, Helsinki Dept of Public Health, University of Turku, Turku, Finland Nordic School of Public Health, Gothenburg
| | - Töres Theorell
- Stress Research Institute, Stockholm University, Stockholm
| | - Ari Väänänen
- Finnish Institute of Occupational Health, Helsinki
| | - Jussi Vahtera
- Finnish Institute of Occupational Health, Turku Dept of Public Health, University of Turku, Turku, Finland
| | | | | | - G David Batty
- Dept of Epidemiology and Public Health, University College London, London Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Archana Singh-Manoux
- Dept of Epidemiology and Public Health, University College London, London Inserm U1018, Centre for Research in Epidemiology and Population Health, Villejuif, France
| | - Mika Kivimäki
- Finnish Institute of Occupational Health, Helsinki Dept of Epidemiology and Public Health, University College London, London
| |
Collapse
|
64
|
Slezakova K, Castro D, Delerue-Matos C, Morais S, Pereira MDC. Levels and risks of particulate-bound PAHs in indoor air influenced by tobacco smoke: a field measurement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4492-4501. [PMID: 24337991 DOI: 10.1007/s11356-013-2391-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Considering tobacco smoke as one of the most health-relevant indoor sources, the aim of this work was to further understand its negative impacts on human health. The specific objectives of this work were to evaluate the levels of particulate-bound PAHs in smoking and non-smoking homes and to assess the risks associated with inhalation exposure to these compounds. The developed work concerned the application of the toxicity equivalency factors approach (including the estimation of the lifetime lung cancer risks, WHO) and the methodology established by USEPA (considering three different age categories) to 18 PAHs detected in inhalable (PM10) and fine (PM2.5) particles at two homes. The total concentrations of 18 PAHs (ΣPAHs) was 17.1 and 16.6 ng m(-3) in PM10 and PM2.5 at smoking home and 7.60 and 7.16 ng m(-3) in PM10 and PM2.5 at non-smoking one. Compounds with five and six rings composed the majority of the particulate PAHs content (i.e., 73 and 78 % of ΣPAHs at the smoking and non-smoking home, respectively). Target carcinogenic risks exceeded USEPA health-based guideline at smoking home for 2 different age categories. Estimated values of lifetime lung cancer risks largely exceeded (68-200 times) the health-based guideline levels at both homes thus demonstrating that long-term exposure to PAHs at the respective levels would eventually cause risk of developing cancer. The high determined values of cancer risks in the absence of smoking were probably caused by contribution of PAHs from outdoor sources.
Collapse
Affiliation(s)
- Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, Porto, 4200-465, Portugal
| | | | | | | | | |
Collapse
|
65
|
Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem 2014; 391:127-36. [DOI: 10.1007/s11010-014-1995-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
|
66
|
Das B, Maity PC, Sil AK. Vitamin C forestalls cigarette smoke induced NF-κB activation in alveolar epithelial cells. Toxicol Lett 2013; 220:76-81. [PMID: 23615073 DOI: 10.1016/j.toxlet.2013.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 12/23/2022]
Abstract
Cigarette smoking causes cellular oxidative stress resulting in inflammatory diseases of lung wherein transcription factor NF-κB plays an important role. It is possible that vitamin C, an antioxidant, may prevent cigarette smoke (CS)-induced NF-κB activation that involves degradation of I-κBε and nuclear translocation of c-Rel/p50 in alveolar epithelial cells. Therefore, to examine the hypothesis, we verified the effect of vitamin C on CS-induced expression of NF-κB driven luciferase reporter and NF-κB binding at its target DNA by EMSA in alveolar epithelial A549 cells. We also examined the level of I-κBε and sub-cellular distribution of c-Rel by western blotting and immunofluorescence respectively in CSE-treated A549 cells with or without vitamin C pretreatment. We observed a significant reduction in CSE induced luciferase expression, NF-κB DNA binding, I-κBε degradation and c-Rel nuclear translocation in cells pretreated with vitamin C. To further validate the result, we examined sub-cellular distribution of c-Rel in lungs of CS-exposed guinea pigs treated or untreated with vitamin C. Result showed that vitamin C treatment resulted in markedly reduced c-Rel nuclear translocation. All these results demonstrate that vitamin C prevents CS(E)-induced NF-κB activation and thus it could be used for the prevention of CS-induced inflammatory diseases.
Collapse
Affiliation(s)
- Bannhi Das
- Department of Microbiology, University of Calcutta, 35 B. C. Road, Kolkata 700019, India
| | | | | |
Collapse
|
67
|
Moylan S, Jacka FN, Pasco JA, Berk M. How cigarette smoking may increase the risk of anxiety symptoms and anxiety disorders: a critical review of biological pathways. Brain Behav 2013; 3:302-26. [PMID: 23785661 PMCID: PMC3683289 DOI: 10.1002/brb3.137] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 12/24/2022] Open
Abstract
Multiple studies have demonstrated an association between cigarette smoking and increased anxiety symptoms or disorders, with early life exposures potentially predisposing to enhanced anxiety responses in later life. Explanatory models support a potential role for neurotransmitter systems, inflammation, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophins and neurogenesis, and epigenetic effects, in anxiety pathogenesis. All of these pathways are affected by exposure to cigarette smoke components, including nicotine and free radicals. This review critically examines and summarizes the literature exploring the role of these systems in increased anxiety and how exposure to cigarette smoke may contribute to this pathology at a biological level. Further, this review explores the effects of cigarette smoke on normal neurodevelopment and anxiety control, suggesting how exposure in early life (prenatal, infancy, and adolescence) may predispose to higher anxiety in later life. A large heterogenous literature was reviewed that detailed the association between cigarette smoking and anxiety symptoms and disorders with structural brain changes, inflammation, and cell-mediated immune markers, markers of oxidative and nitrosative stress, mitochondrial function, neurotransmitter systems, neurotrophins and neurogenesis. Some preliminary data were found for potential epigenetic effects. The literature provides some support for a potential interaction between cigarette smoking, anxiety symptoms and disorders, and the above pathways; however, limitations exist particularly in delineating causative effects. The literature also provides insight into potential effects of cigarette smoke, in particular nicotine, on neurodevelopment. The potential treatment implications of these findings are discussed in regards to future therapeutic targets for anxiety. The aforementioned pathways may help mediate increased anxiety seen in people who smoke. Further research into the specific actions of nicotine and other cigarette components on these pathways, and how these pathways interact, may provide insights that lead to new treatment for anxiety and a greater understanding of anxiety pathogenesis.
Collapse
Affiliation(s)
- Steven Moylan
- Deakin University School of Medicine Barwon Health, Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
68
|
Tonini G, D’Onofrio L, Dell’Aquila E, Pezzuto A. New molecular insights in tobacco-induced lung cancer. Future Oncol 2013; 9:649-55. [DOI: 10.2217/fon.13.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We know that cigarette smoking is a leading preventable cause of carcinogenesis in lung cancer. Cigarette smoke is a mixture of more than 5000 chemical compounds, among which more than 60 are recognized to have a specific carcinogenic potential. Carcinogens and their metabolites (i.e., N-nitrosamines and polycyclic aromatic hydrocarbons) can activate multiple pathways, contributing to lung cell transformation in different ways. Nicotine, originally thought only to be responsible for tobacco addiction, is also involved in tumor promotion and progression with antiapoptotic and indirect mitogenic properties. Lung nodules are frequent in smokers and can be transformed into malignant tumors depending on persistant smoking status. Even if detailed mechanisms underlying tobacco-induced cancerogenesis are not completely elucitated, this report collects the emergent body of knowledge in order to simplify the extremely complex framework that links smoking exposure to lung cancer.
Collapse
Affiliation(s)
- Giuseppe Tonini
- Department of Oncology, University Campus Bio-Medico Roma, Rome, Italy,
| | - Loretta D’Onofrio
- Department of Oncology, University Campus Bio-Medico Roma, Rome, Italy
| | | | - Aldo Pezzuto
- Department of Pneumology, Sant’Andrea Hospital, Rome, Italy
| |
Collapse
|
69
|
Messier EM, Bahmed K, Tuder RM, Chu HW, Bowler RP, Kosmider B. Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke. Cell Death Dis 2013; 4:e573. [PMID: 23559007 PMCID: PMC3668634 DOI: 10.1038/cddis.2013.96] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/02/2013] [Accepted: 02/12/2013] [Indexed: 11/11/2022]
Abstract
Cigarette smoke (CS) is a main risk factor for chronic obstructive pulmonary disease (COPD). Oxidative stress induced by CS causes DNA and lung damage. Oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD. We studied the effect of oxidative stress generated by CS both in vivo and in vitro on murine primary alveolar type II (ATII) cells isolated from nuclear erythroid 2-related factor-2 (Nrf2)(-/-) mice. We determined human primary ATII cell injury by CS in vitro and analyzed ATII cells isolated from smoker and non-smoker lung donors ex vivo. We also studied whether trolox (water-soluble derivative of vitamin E) could protect murine and human ATII cells against CS-induced DNA damage and/or decrease injury. We analyzed oxidative stress by 4-hydroxynonenal expression, reactive oxygen species (ROS) generation by Amplex Red Hydrogen Peroxide Assay, Nrf2, heme oxygenase 1, p53 and P53-binding protein 1 (53BP1) expression by immonoblotting, Nrf2 nuclear translocation, Nrf2 and p53 DNA-binding activities, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and cytokine production by ELISA. We found that ATII cells isolated from Nrf2(-/-) mice are more susceptible to CS-induced oxidative DNA damage mediated by p53/53BP1 both in vivo and in vitro compared with wild-type mice. Therefore, Nrf2 activation is a key factor to protect ATII cells against injury by CS. Moreover, trolox abolished human ATII cell injury and decreased DNA damage induced by CS in vitro. Furthermore, we found higher inflammation and p53 mRNA expression by RT-PCR in ATII cells isolated from smoker lung donors in comparison with non-smokers ex vivo. Our results indicate that the Nrf2 and p53 cross talk in ATII cells affect the susceptibility of these cells to injury by CS. Trolox can protect against oxidative stress, genotoxicity and inflammation induced by CS through ROS scavenging mechanism, and serve as a potential antioxidant prevention strategy against oxidative injury of ATII cells in CS-related lung diseases.
Collapse
Affiliation(s)
- E M Messier
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - K Bahmed
- University of Colorado School of Medicine, Denver, CO, USA
| | - R M Tuder
- University of Colorado School of Medicine, Denver, CO, USA
| | - H W Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - R P Bowler
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - B Kosmider
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
70
|
Ketha SS, Cooper LT. The role of autoimmunity in thromboangiitis obliterans (Buerger's disease). Ann N Y Acad Sci 2013; 1285:15-25. [PMID: 23510296 DOI: 10.1111/nyas.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thromboangiitis obliterans (TAO), or Buerger's disease, is a nonatherosclerotic segmental vasculitis that affects the small- and medium-sized arteries and veins of the extremities and is strongly associated with tobacco exposure. The immunopathogenesis of TAO remains largely unknown. In the acute phase of the disease, macrophages and occasional giant cells are observed in the characteristic intraluminal thrombus with a relatively mild infiltration of CD4(+) and CD8(+) T cells and macrophages in the internal lamina. VCAM-1, ICAM-1, and E-selectin expression on the surface of vascular endothelial cells is increased. A variety of circulating autoreactive antibodies targeting endothelial cells and vessel wall components are associated with active disease. One recent report suggests that removal of circulating antibodies by immunoadsorption may decrease disease severity. TAO has been associated positively and negatively with various MHC class 1 and 2 genes; however, genetic testing is not currently used for clinical diagnosis or management. The possible links between tobacco exposure and loss of tolerance for vascular tissues, current management strategy for patients with TAO, and opportunities for translational science are discussed.
Collapse
Affiliation(s)
- Siva S Ketha
- Gonda Vascular Center, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
71
|
Joseph P, Umbright C, Sellamuthu R. Blood transcriptomics: applications in toxicology. J Appl Toxicol 2013; 33:1193-202. [PMID: 23456664 DOI: 10.1002/jat.2861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023]
Abstract
The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article.
Collapse
Affiliation(s)
- Pius Joseph
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | | |
Collapse
|
72
|
Oluwole O, Arinola OG, Falade GA, Ige MO, Falusi GA, Aderemi T, Huo D, Olopade IO, Olopade CO. Allergy sensitization and asthma among 13-14 year old school children in Nigeria. Afr Health Sci 2013; 13:144-53. [PMID: 23658581 DOI: 10.4314/ahs.v13i1.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prevalence of asthma and role of atopy in asthma among children has not been clearly defined in Nigeria. OBJECTIVE To determine the prevalence of asthma and investigate risk factors related to allergy sensitization among urban and rural school children in southwest Nigeria. METHODS Validated ISAAC questionnaire was administered to 1736 high school children in randomly selected schools in rural and urban communities. Identified asthma cases were matched to controls. Allergy skin tests, blood eosinophil count, serum IgE and stool examination for parasites were performed. Dust samples from homes were also collected and analyzed for allergens. RESULTS The prevalence of asthma was 7.5% (95% CI 6.0 to 9.2%) and 8% (95% CI 6.0-10.4%) in the rural and urban communities respectively . Risk factors for asthma included cigarette-smoking, cats in the home and family size. Eosinophil count (109/L) was elevated in asthmatics [0.70 (95% CI 0.48-1.11) vs. 0.32 (95% CI 0.19-0.69); p<0.01], but IgE levels were similar between the two groups (298±229 IU/mL vs. 288±257; p=0.97). Positive skin tests to cat hair, cockroach, mango blossom and mouse epithelium were more frequent in asthmatics than in healthy controls, especially in the rural communities. There was no correlation between allergens in dust collected from homes and skin test reactivity. CONCLUSION Asthma prevalence is similar in rural and urban children in Southwest Nigeria and atopy with elevated IgE was not observed to be a major factor for asthma in our cohort of children in both communities.
Collapse
Affiliation(s)
- O Oluwole
- The Center for Global Health Initiative, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Panwar H, Jain D, Khan S, Pathak N, Raghuram GV, Bhargava A, Banerjee S, Mishra PK. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction. Redox Biol 2013; 1:163-71. [PMID: 24024149 PMCID: PMC3757684 DOI: 10.1016/j.redox.2013.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 01/29/2023] Open
Abstract
Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute) with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC) exposure on human pulmonary arterial endothelial cells (HPAE-26). We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.
Collapse
Affiliation(s)
- Hariom Panwar
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, India
| | - Deepika Jain
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Saba Khan
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Neelam Pathak
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Gorantla V. Raghuram
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai 410 210, India
| | - Arpit Bhargava
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai 410 210, India
| | - Smita Banerjee
- Department of Biotechnology, Dr. H.S. Gour Central University, Sagar, India
| | - Pradyumna K. Mishra
- Department of Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
- Division of Translational Research, Tata Memorial Centre, ACTREC, Navi Mumbai 410 210, India
| |
Collapse
|
74
|
Bhoopalan V, Han SG, Shah MM, Thomas DM, Bhalla DK. Tobacco smoke modulates ozone-induced toxicity in rat lungs and central nervous system. Inhal Toxicol 2013; 25:21-8. [PMID: 23293970 DOI: 10.3109/08958378.2012.751143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adult Sprague-Dawley (SD) male rats were exposed for a single 3 h period to air, ozone (O₃) or O₃) followed by tobacco smoke (O₃/TS). For pulmonary effects, bronchoalveolar lavage (BAL) cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN), total protein and albumin concentrations in the O₃ group, reflecting inflammatory and toxic responses. A subsequent exposure to TS attenuated PMN infiltration into the airspaces and their recovery in the BAL. A similar reduction was observed for BAL protein and albumin in the O₃/TS group, but it was not statistically significant. We also observed a significant increase in BAL total antioxidant capacity following O₃ exposure, suggesting development of protective mechanisms for oxidative stress damage from O₃. Exposure to TS attenuated the levels of total antioxidant capacity. Lung tissue protein analysis showed a significant reduction of extracellular superoxide dismutase (EC-SOD) in the O₃ or O₃/TS group and catalase in the O₃/TS group. TS further altered O₃-induced EC-SOD and catalase protein expression, but the reductions were not significant. For effects in the central nervous system (CNS), we measured striatal dopamine levels by HPLC with electrochemical detection. O₃ exposure produced a nonsignificant decrease in the striatal dopamine content. The effect was partially reversed in the O₃/TS group. Overall, the results show that the toxicity of O₃ in the lung is modulated by TS exposure, and the attenuating trend, though nonsignificant in many cases, is contrary to the synergistic toxicity predicted for TS and O₃, suggesting limited cross-tolerance following such exposures.
Collapse
Affiliation(s)
- Vanitha Bhoopalan
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
75
|
Pacheco SA, Torres VM, Louro H, Gomes F, Lopes C, Marçal N, Fragoso E, Martins C, Oliveira CL, Hagenfeldt M, Bugalho-Almeida A, Penque D, Simões T. Effects of occupational exposure to tobacco smoke: is there a link between environmental exposure and disease? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:311-327. [PMID: 23514073 DOI: 10.1080/15287394.2013.757269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In a previous study, evidence was provided that indoor secondhand tobacco smoke (SHS) air pollution remains high in Lisbon restaurants where smoking is allowed, regardless of the protective measures used. The aim of this study was to determine in these locations the levels of polycyclic aromatic hydrocarbons (PAH) associated with the particulate phase of SHS (PPAH), a fraction that contains recognized carginogens, such as benzo[a]pyrene (BaP). Data showed that restaurant smoking areas might contain PPAH levels as high as 110 ng/m(3), a value significantly higher than that estimated for nonsmoking areas (30 ng/m(3)) or smoke-free restaurants (22 ng/m(3)). The effective exposure to SHS components in restaurant smoking rooms was confirmed as cotinine levels found in workers' urine. Considering that all workers exhibited normal lung function, eventual molecular changes in blood that might be associated with occupational exposure to SHS and SHS-associated PPAH were investigated by measurement of two oxidative markers, total antioxidant status (TAS) and 8-hydroxyguanosine (8-OHdG) in plasma and serum, respectively. SHS-exposed workers exhibited higher mean levels of serum 8-OHdG than nonexposed workers, regardless of smoking status. By using a proteomics approach based on 2D-DIGE-MS, it was possible to identify nine differentially expressed proteins in the plasma of SHS-exposed nonsmoker workers. Two acute-phase inflammation proteins, ceruloplasmin and inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), were predominant. These two proteins presented a high number of isoforms modulated by SHS exposure with the high-molecular-weight (high-MW) isoforms decreased in abundance while low-MW isoforms were increased in abundance. Whether these expression profiles are due to (1) a specific proteolytic cleavage, (2) a change on protein stability, or (3) alterations on post-translational modification pattern of these proteins remains to be investigated. Considering that these events seem to precede the first symptoms of tobacco-related diseases, our findings might contribute to elucidation of early SHS-induced pathogenic mechanisms and constitute a useful tool for monitoring the effects of SHS on occupationally exposed individuals such as those working in the hospitality industry.
Collapse
Affiliation(s)
- Solange A Pacheco
- Laboratório de Proteómica, Departamento de Genética Humana, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Ng SP, Silverstone AE, Lai ZW, Zelikoff JT. Prenatal exposure to cigarette smoke alters later-life antitumor cytotoxic T-lymphocyte (CTL) activity via possible changes in T-regulatory cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1096-1110. [PMID: 24274151 DOI: 10.1080/15287394.2013.839976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Epidemiological studies suggest that maternal smoking increases the incidence in the progeny of certain childhood cancers. Our previous study in mice demonstrated the feasibility of such an association by demonstrating that prenatal exposure to cigarette smoke (CS) elevated the incidence of transplanted tumors and reduced cytotoxic T-lymphocyte (CTL) activity in juvenile male offspring. The current study extends these findings by investigating the relationship between CS-induced CTL suppression and effects on regulators of effector T-cell activity, such as T-regulatory (Treg; CD4+ CD25+ Foxp3+) cells and transforming growth factor (TGF)-β. Results here demonstrate that in utero exposure to CS, at a maternal particle concentration of 15 mg/m3 (4 h/d, 5 d/wk), significantly reduced ex vivo CTL activity of whole splenocytes (and isolated CD8+ cells) against tumor cells both before and after injection of prenatally exposed mice with EL4 lymphoma cells. In contrast, prenatal CS exposure significantly increased levels of thymic Treg cells in a time-dependent manner following tumor cell injection. In vitro production of TGF-β by splenocytes recovered from prenatally exposed, tumor-bearing mice was also altered. Neither prenatal CS exposure nor subsequent administration of EL4 cells exerted any marked effects on lymphoid organ weights, cellularity, or histologic profiles. Given that Treg cells and TGF-β suppress effector T-cell activities, these findings suggest possible immune mechanisms by which early exposure to CS reduces CTL tumoricidal activity during tumor cell development. Data suggest that children of smoking mothers may be less able to mount an appropriate adaptive immune response to tumors, thus increasing their risk for some cancers later in life.
Collapse
Affiliation(s)
- Sheung P Ng
- a E. I. du Pont de Nemours and Company , Haskell Global Centers for Heath & Environmental Sciences , Newark , Delaware , USA
| | | | | | | |
Collapse
|
77
|
Jain RB. Effect of pregnancy on the levels of blood cadmium, lead, and mercury for females aged 17-39 years old: data from National Health and Nutrition Examination Survey 2003-2010. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:58-69. [PMID: 23151210 DOI: 10.1080/15287394.2012.722524] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Data from the National Health and Nutrition Examination survey for the years 2003-2010 were used (n = 4700) to evaluate the effect of age, parity, body mass index (BMI), race/ethnicity, pregnancy, iron (Fe) storage status, smoking status, and fish/shellfish consumption on the levels of blood cadmium (Cd), lead (Pb), and total mercury (Hg)for females aged 17-39 years old. Regression analysis was used to fit models for each of the three metals. For all three metals, age was positively and BMI was negatively associated with levels of these metals in blood. Smokers had statistically significantly higher levels of Cd and Pb irrespective of race/ethnicity and Fe storage status as compared to nonsmokers. Novel to this study, pregnancy was found to be associated with significantly lower levels of Cd, Pb, and Hg irrespective of race/ethnicity and Fe storage status as compared to nonpregnant females. It is conceivable that pregnancy may thus accelerate clearance of these metals from blood. Fish/shellfish consumption was associated with higher levels of Hg but not with Cd levels.
Collapse
|
78
|
Cuzić S, Bosnar M, Kramarić MD, Ferencić Z, Marković D, Glojnarić I, Eraković Haber V. Claudin-3 and Clara cell 10 kDa protein as early signals of cigarette smoke-induced epithelial injury along alveolar ducts. Toxicol Pathol 2012; 40:1169-87. [PMID: 22659244 DOI: 10.1177/0192623312448937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smoking-associated chronic obstructive pulmonary disease is characterized by inflammation, changes affecting small airways, and development of emphysema. Various short- and long-term models have been introduced to investigate these processes. The aim of the present study was to identify markers of early epithelial injury/adaptation in a short-term animal model of cigarette smoke exposure. Initially, male BALB/c mice were exposed to smoke from one to five cigarettes and lung changes were assessed 4 and 24 hr after smoking cessation. Subsequently, animals were exposed to smoke from five cigarettes for 2 consecutive days and lungs investigated daily until the seventh postexposure day. Lung homogenates cytokines were determined, bronchioloalveolar fluid cells were counted, and lung tissue was analyzed by immunohistochemistry. Exposure to smoke from a single cigarette induced slight pulmonary neutrophilia. Smoke from two cigarettes additionally induced de novo expression of tight junction protein, claudin-3, by alveolar duct (AD) epithelial cells. Further increases in smoke exposure induced epithelial changes in airway progenitor regions. During the recovery period, the severity/frequency of epithelial reactions slowly decreased, coinciding with the switch from acute to a chronic inflammatory reaction. Claudin-3 and Clara cell 10 kDa protein were identified as possible markers of early tobacco smoke-induced epithelial injury along ADs.
Collapse
Affiliation(s)
- Snjezana Cuzić
- GlaxoSmithKline Research Centre Zagreb Limited, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
79
|
Szponar B, Pehrson C, Larsson L. Bacterial and fungal markers in tobacco smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:447-51. [PMID: 23026151 DOI: 10.1016/j.scitotenv.2012.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 n mol/m(3) (N=5) and 0.0007/m(3) (N=6) in the smoking vs. non-smoking rooms (p=0.0559) of the studied private houses, and 0.0231 n mol/m(3) (N=5) vs. 0.0006 n mol/m(3) (N=5) (p=0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease.
Collapse
Affiliation(s)
- B Szponar
- Lund University, Dept. of Laboratory Medicine, Sölvegatan 23, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
80
|
Yu YB, Liao YW, Su KH, Chang TM, Shyue SK, Kou YR, Lee TS. Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke. Acta Physiol (Oxf) 2012; 205:532-40. [PMID: 22448892 DOI: 10.1111/j.1748-1716.2012.02433.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/20/2012] [Accepted: 02/29/2012] [Indexed: 11/28/2022]
Abstract
AIM Environmental cigarette smoke (CS) contains many compounds that are harmful to the respiratory system and lead to chronic lung inflammation and other lung diseases. Exercise training is known to confer protection against diseases with chronic inflammation by reducing inflammatory response in human or experimental animals. In this study, we investigated the preventive effect of exercise training against lung inflammation induced by environmental CS. METHODS AND RESULTS In this study, two groups of mice received air exposure with (the exercise group) or without (the control group) exercise training for 8 weeks and another two groups received air exposure for the first 4 weeks and CS exposure for the following 4 weeks with (the exercise+CS group) or without (the CS group) exercise training for 8 weeks. As compared with lung tissues of control and exercise groups, those of the CS group showed significantly increased bronchoalveolar-capillary permeability, inflammatory cell infiltration, epithelial thickening, expression of proliferating cell nuclear antigen, mucin 2, cytokines, chemokines, adhesion molecules and activation of NF-κB. These CS-induced pathophysiologic consequences were largely prevented in the exercise + CS group. CONCLUSION Collectively, prior exercise training may protect against lung inflammation induced by environmental CS in mice by attenuating the activation of NF-κB and the production of inflammatory mediators.
Collapse
Affiliation(s)
| | - Y.-W. Liao
- Department of Physiology; School of Medicine, National Yang-Ming University; Taipei; Taiwan
| | - K.-H. Su
- Department of Physiology; School of Medicine, National Yang-Ming University; Taipei; Taiwan
| | - T.-M. Chang
- Department of Physiology; School of Medicine, National Yang-Ming University; Taipei; Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences, Academia Sinica; Taipei; Taiwan
| | - Y. R. Kou
- Department of Physiology; School of Medicine, National Yang-Ming University; Taipei; Taiwan
| | | |
Collapse
|
81
|
Ma D, Li Y, Hackfort B, Zhao Y, Xiao J, Swanson PC, Lappe J, Xiao P, Cullen D, Akhter M, Recker R, Xiao GG. Smoke-induced signal molecules in bone marrow cells from altered low-density lipoprotein receptor-related protein 5 mice. J Proteome Res 2012; 11:3548-60. [PMID: 22616666 DOI: 10.1021/pr2012158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism underlying smoke-induced loss of bone mass is unknown. In this study, we hypothesized that protein signals induced by smoking in bone marrow may be associated with the loss of bone mass. Using a proteomics approach, we identified 38 proteins differentially expressed in bone marrow cells from low-density lipoprotein receptor-related protein 5 (Lrp5) mice exposed to cigarette smoking. Smoking effects on protein expression in bone marrow among three genotypes (Lrp5(+/+), Lrp5(G171V), and Lrp5(-/-)) varied. On the basis of the ratio of protein expression induced by smoking versus nonsmoking, smoke induced protein expression significantly in wild-type mice compared to the other two genotypes (Lrp5(G171V) and Lrp5(-/-)). These proteins include inhibitors of β-catenin and proteins associated with differentiation of osteoclasts. We observed that S100A8 and S100A9 were overexpressed in human smokers compared to nonsmokers, which confirmed the effect of smoking on the expression of two proteins in Lrp5 mice, suggesting the role of these proteins in bone remodeling. Smoke induced expression of S100A8 and S100A9 in a time-dependent fashion, which was opposite of the changes in the ratio of OPG/RANKL in bone marrow cells, suggesting that the high levels of S100A8 and S100A9 may be associated with smoke-induced bone loss by increasing bone resorption.
Collapse
Affiliation(s)
- Danjun Ma
- Genomics & Functional Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, 601 N 30th Street, Suite 6730, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Gardi C, Valacchi G. Cigarette smoke and ozone effect on murine inflammatory responses. Ann N Y Acad Sci 2012; 1259:104-11. [DOI: 10.1111/j.1749-6632.2012.06605.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Huynh TP, Mah V, Sampson VB, Chia D, Fishbein MC, Horvath S, Alavi M, Wu DC, Harper J, Sarafian T, Dubinett SM, Langhans SA, Goodglick L, Rajasekaran AK. Na,K-ATPase is a target of cigarette smoke and reduced expression predicts poor patient outcome of smokers with lung cancer. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1150-8. [PMID: 22345575 PMCID: PMC3379038 DOI: 10.1152/ajplung.00384.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/14/2012] [Indexed: 01/04/2023] Open
Abstract
Diminished Na,K-ATPase expression has been reported in several carcinomas and has been linked to tumor progression. However, few studies have determined whether Na,K-ATPase function and expression are altered in lung malignancies. Because cigarette smoke (CS) is a major factor underlying lung carcinogenesis and progression, we investigated whether CS affects Na,K-ATPase activity and expression in lung cell lines. Cells exposed to CS in vitro showed a reduction of Na,K-ATPase activity. We detected the presence of reactive oxygen species (ROS) in cells exposed to CS before Na,K-ATPase inhibition, and neutralization of ROS restored Na,K-ATPase activity. We further determined whether Na,K-ATPase expression correlated with increasing grades of lung adenocarcinoma and survival of patients with smoking history. Immunohistochemical analysis of lung adenocarcinoma tissues revealed reduced Na,K-ATPase expression with increasing tumor grade. Using tissue microarray containing lung adenocarcinomas of patients with known smoking status, we found that high expression of Na,K-ATPase correlated with better survival. For the first time, these data demonstrate that CS is associated with loss of Na,K-ATPase function and expression in lung carcinogenesis, which might contribute to disease progression.
Collapse
Affiliation(s)
- Thu P Huynh
- Molecular Biology Institute, University of California, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
In vivo hydroquinone exposure causes tracheal hyperresponsiveness due to TNF secretion by epithelial cells. Toxicol Lett 2012; 211:10-7. [DOI: 10.1016/j.toxlet.2012.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
|
85
|
Lin JCJ, Roy JP, Verreault J, Talbot S, Côté F, Couture R, Morin A. An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase. Toxicology 2012; 293:125-131. [PMID: 22266391 DOI: 10.1016/j.tox.2012.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/01/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Using a rat lung slice model, this study compared the stress responses induced by cigarette whole smoke (WS) to that induced by the vapor phase (VP) of the smoke. Following a 3-day exposure, lung slices exposed to 4, 10 and 20% WS retained 85, 42 and 16% relative survival respectively in comparison to the air-exposed ones. Consistently, histological observations revealed concentration-related alveolar damages in the lung slices. Expression of 5 stress-response genes was examined following a single 30 min exposure to 4% WS or VP. WS exposure resulted in 4, 11 and 50-fold induction of IL-1β, kinin type I receptor (B₁R) and CYP1A1 genes, respectively, while CYP1B1 and TNF-α genes expression was found only two times higher in comparison to VP group. Since cigarette WS consists of particulate and vapor phases, these results highlight the preferential or synergistic role of the particulate phase in the induction of IL-1β, B₁R and CYP1A1 genes and that VP did not have comparable effects on expression of these genes. However, both phases fairly contributed to the induction of CYP1B1 and TNF-α genes. VP was the fraction responsible for the toxic effect since WS did not produce further toxicity. The 4% whole smoke deposited about 7.1 μg/cm² of total particulate matter (TPM) to the exposure chamber which may account for observed differential stress responses in the lung slices.
Collapse
Affiliation(s)
| | | | | | - Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - France Côté
- Imperial Tobacco Canada Ltd, Montréal, QC, H4C 3P6, Canada
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - André Morin
- Imperial Tobacco Canada Ltd, Montréal, QC, H4C 3P6, Canada
| |
Collapse
|
86
|
Madureira J, Mendes A, Almeida S, Teixeira JP. Positive impact of the Portuguese smoking law on respiratory health of restaurant workers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:776-787. [PMID: 22788365 DOI: 10.1080/15287394.2012.689943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The impact of smoke-free law on the respiratory and sensory symptoms among restaurant workers was evaluated. Fifty-two workers in 10 Portuguese restaurants were interviewed before and 2 years after implementation of the smoke-free law. A significant reduction in self-reported workplace environmental tobacco smoke (ETS) exposure was observed after the enforcement of the law, as well as a marked reduction in adverse respiratory and sensory symptoms such as dry, itching, irritated, or watery eyes, nasal problems, and sore or dry throat or cough, between pre- and post-ban. This study demonstrates that the smoking ban was effective in diminishing the exposure symptoms among workers and consequently in improving their respiratory health. These observations may have implications for policymakers and legislators in other countries currently considering the nature and extent of their smoke-free workplace legislation.
Collapse
Affiliation(s)
- Joana Madureira
- Environmental Health Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| | | | | | | |
Collapse
|
87
|
Hoffmeyer F, Raulf-Heimsoth M, Lehnert M, Kendzia B, Bernard S, Berresheim H, Düser M, Henry J, Weiss T, Koch HM, Pesch B, Brüning T. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:525-532. [PMID: 22686312 DOI: 10.1080/15287394.2012.675303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total mass and composition of welding fumes are predominantly dependent on the welding technique and welding wire applied. The objective of this study was to investigate the impact of welding techniques on biological effect markers in exhaled breath condensate (EBC) of 58 healthy welders. The welding techniques applied were gas metal arc welding with solid wire (GMAW) (n=29) or flux cored wire (FCAW) (n=29). Welding fume particles were collected with personal samplers in the breathing zone inside the helmets. Levels of leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), and 8-isoprostane (8-iso-PGF(2α)) were measured with immunoassay kits and the EBC pH was measured after deaeration. Significantly higher 8-iso-PGF(2α) concentrations and a less acid pH were detected in EBC of welders using the FCAW than in EBC of welders using the GMAW technique. The lowest LTB(4) concentrations were measured in nonsmoking welders applying a solid wire. No significant influences were found in EBC concentrations of PGE(2) based upon smoking status or type of welding technique. This study suggests an enhanced irritative effect in the lower airways of mild steel welders due to the application of FCAW compared to GMAW, most likely associated with a higher emission of welding fumes.
Collapse
Affiliation(s)
- Frank Hoffmeyer
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Harting JR, Gleason A, Romberger DJ, Von Essen SG, Qiu F, Alexis N, Poole JA. Chronic obstructive pulmonary disease patients have greater systemic responsiveness to ex vivo stimulation with swine dust extract and its components versus healthy volunteers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1456-70. [PMID: 23116451 PMCID: PMC4001714 DOI: 10.1080/15287394.2012.722186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an airway and systemic inflammatory response. Bioaerosols/organic dusts are important agricultural pollutants that may lead to COPD. These environments are complex, containing a rich source of various microbial components. The objective of this study was to determine whether individuals with COPD have enhanced systemic responsiveness to settled swine facility organic dust extract (ODE) or its main pathogenic components (peptidoglycan [PGN], lipopolysaccharide [LPS]) versus healthy volunteers. A modified whole blood assay (WBA) that included occupational levels of ODE and concentrations of LPS and PGN found in ODE was used to determine systemic responsiveness (mediator release), and sputum inflammatory markers were measured to explore for systemic and airway associations. Sputum samples were evaluated for cell counts, and tumor necrosis factor (TNF)-α, interleukin (IL)-8/CXCL8, IL-6, and IL-10. Ex vivo whole blood stimulation with ODE, LPS, and PGN each resulted in significant mediator release in all subjects, with the highest occurring with ODE; PGN resulted in significantly enhanced TNF-α and IL-8 as compared to LPS. COPD subjects demonstrated greater systemic responsiveness using the modified WBA versus healthy controls. Within COPD subjects, blood baseline TNF-α, IL-8, and IL-10 and ODE-, PGN-, and LPS-stimulated IL-8 levels significantly correlated with lung function. In conclusion, dust-induced mediator release was robust, and PGN, in part, resembled dust-induced mediator release. Subjects with COPD demonstrated increased mediator release following ex vivo whole blood stimulation with bioaerosol components, suggesting that circulating blood cells in COPD subjects may be primed to respond greater to microbial/inflammatory insult.
Collapse
Affiliation(s)
- Janel R. Harting
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Angela Gleason
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Debra J. Romberger
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | | | - Fang Qiu
- College of Public Health, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Neil Alexis
- University of North Carolina School of Medicine, Center for Environmental Medicine, Asthma & Lung Biology, Chapel Hill, NC 27599-7310
| | - Jill A. Poole
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| |
Collapse
|
89
|
Lobo Torres LH, Moreira WL, Tamborelli Garcia RC, Annoni R, Nicoletti Carvalho AL, Teixeira SA, Pacheco-Neto M, Muscará MN, Camarini R, de Melo Loureiro AP, Yonamine M, Mauad T, Marcourakis T. Environmental tobacco smoke induces oxidative stress in distinct brain regions of infant mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:971-80. [PMID: 22852847 DOI: 10.1080/15287394.2012.695985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Collapse
Affiliation(s)
- Larissa Helena Lobo Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Pacheco SA, Aguiar F, Ruivo P, Proença MC, Sekera M, Penque D, Simões T. Occupational exposure to environmental tobacco smoke: a study in Lisbon restaurants. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:857-866. [PMID: 22788372 DOI: 10.1080/15287394.2012.690690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmental tobacco smoke (ETS), also referred to as secondhand smoke (SHS), is a major threat to public health and is increasingly recognized as an occupational hazard to workers in the hospitality industry. Therefore, several countries have implemented smoke-free regulations at hospitality industry sites. In Portugal, since 2008, legislation partially banned smoking in restaurants and bars but until now no data have been made available on levels of indoor ETS pollution/exposure at these locations. The aim of this study was to examine the occupational exposure to ETS/SHS in several restaurants in Lisbon, measured by indoor fine particles (PM(2.5)) and urinary cotinine concentration in workers, after the partial smoking ban in Portugal. Results showed that the PM(2.5) median level in smoking designated areas was 253 μg/m³, eightfold higher than levels recorded in canteens or outdoor. The nonsmoking rooms of mixed restaurants exhibited PM(2.5) median level of 88 μg/m³, which is higher than all smoke-free locations studied, approximately threefold greater than those found in canteens. Importantly, urinary cotinine concentrations were significantly higher in nonsmoker employees working in those smoking designated areas, confirming exposure to ETS. The proportion of smokers in those rooms was found to be significantly positively correlated with nonsmoker urinary cotinine and indoor PM(2.5) levels, establishing that both markers were occupational-ETS derived. The use of reinforced ventilation systems seemed not to be sufficient to decrease the observed ETS pollution/exposure in those smoking locations. Taken together, these findings demonstrate that the partial restrictions on smoking in Portuguese venues failed to provide adequate protection to their employees, irrespective of protective measures used. Therefore, a smoke-free legislation protecting individuals from exposure to ETS/SHS in all public places and workplaces is urgently needed in Portugal.
Collapse
Affiliation(s)
- Solange A Pacheco
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, INSA, IP, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
91
|
Kosmider B, Messier EM, Chu HW, Mason RJ. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One 2011; 6:e26059. [PMID: 22163265 PMCID: PMC3233536 DOI: 10.1371/journal.pone.0026059] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Background Cigarette smoke (CS) is a highly complex mixture and many of its components are known carcinogens, mutagens, and other toxic substances. CS induces oxidative stress and cell death, and this cell toxicity plays a key role in the pathogenesis of several pulmonary diseases. Methodology/Principal Findings We studied the effect of cigarette smoke extract (CSE) in human alveolar epithelial type I-like (ATI-like) cells. These are isolated type II cells that are differentiating toward the type I cell phenotype in vitro and have lost many type II cell markers and express type I cell markers. ATI-like cells were more sensitive to CSE than alveolar type II cells, which maintained their differentiated phenotype in vitro. We observed disruption of mitochondrial membrane potential, apoptosis and necrosis that were detected by double staining with acridine orange and ethidium bromide or Hoechst 33342 and propidium iodide and TUNEL assay after treatment with CSE. We also detected caspase 3 and caspase 7 activities and lipid peroxidation. CSE induced nuclear translocation of Nrf2 and increased expression of Nrf2, HO-1, Hsp70 and Fra1. Moreover, we found that Nrf2 knockdown sensitized ATI-like cells to CSE and Nrf2 overexpression provided protection against CSE-induced cell death. We also observed that two antioxidant compounds N-acetylcysteine and trolox protected ATI-like cells against injury by CSE. Conclusions Our study indicates that Nrf2 activation is a major factor in cellular defense of the human alveolar epithelium against CSE-induced toxicity and oxidative stress. Therefore, antioxidant agents that modulate Nrf2 would be expected to restore antioxidant and detoxifying enzymes and to prevent CS-related lung injury and perhaps lessen the development of emphysema.
Collapse
Affiliation(s)
- Beata Kosmider
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | |
Collapse
|
92
|
Talbot S, Lin JCJ, Lahjouji K, Roy JP, Sénécal J, Morin A, Couture R. Cigarette smoke-induced kinin B1 receptor promotes NADPH oxidase activity in cultured human alveolar epithelial cells. Peptides 2011; 32:1447-56. [PMID: 21600945 DOI: 10.1016/j.peptides.2011.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
Pulmonary inflammation is an important pathological feature of tobacco smoke-related lung diseases. Kinin B1 receptor (B1R) is up-regulated in the rat trachea chronically exposed to cigarette-smoke. This study aimed at determining (1) whether exposure to total particulate matter of the cigarette smoke (TPM) can induce B1R in human alveolar epithelial A549 cells, (2) the mechanism of B1R induction, (3) the functionality of de novo synthesized B1R, and (4) the role of B1R in TPM-induced increase of superoxide anion (O₂(●⁻)) level. Results show that A549 cells exposed to 10 μg/ml TPM increased O₂(●⁻) level along with B1R (protein and mRNA) and IL-1β mRNA. In contrast, B2R and TNF-α mRNA were not affected by TPM. The increasing effect of TPM on O₂(●⁻) level was not significantly affected by the B1R antagonist SSR240612. TPM-increased B1R mRNA was prevented by co-treatments with N-acetyl-l-cysteine (potent antioxidant), diphenyleneiodonium (NADPH oxidase inhibitor), IL-1Ra (interleukin-1R antagonist) and SN-50 (specific inhibitor of NF-kB activation) but not by pentoxifylline (TNF-α release inhibitor), indomethacin and niflumic acid (COX-1 and -2 inhibitors). Stimulation of B1R with a selective agonist (des-Arg⁹-BK, 10 μM; 30 min) increased O₂(●⁻)production which was prevented by apocynin and diphenyleneiodonium (NADPH oxidase inhibitors). Data suggest that the increased expression of B1R by TPM in A549 cells is mediated by oxidative stress, IL-1β and NF-kB but not by cyclooxygenases or TNF-α. The amplification of O₂(●⁻) levels via the activation of B1R-NADPH oxidase may exacerbate pulmonary inflammation and contribute to the chronicity of tobacco smoke-related lung diseases.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
93
|
Sellamuthu R, Umbright C, Roberts JR, Chapman R, Young SH, Richardson D, Leonard H, McKinney W, Chen B, Frazer D, Li S, Kashon M, Joseph P. Blood gene expression profiling detects silica exposure and toxicity. Toxicol Sci 2011; 122:253-64. [PMID: 21602193 DOI: 10.1093/toxsci/kfr125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood gene expression profiling was investigated as a minimally invasive surrogate approach to detect silica exposure and resulting pulmonary toxicity. Rats were exposed by inhalation to crystalline silica (15 mg/m³, 6 h/day, 5 days), and pulmonary damage and blood gene expression profiles were determined after latency periods (0-16 weeks). Silica exposure resulted in pulmonary toxicity as evidenced by histological and biochemical changes in the lungs. The number of significantly differentially expressed genes in the blood, identified by microarray analysis, correlated with the severity of silica-induced pulmonary toxicity. Functional analysis of the differentially expressed genes identified activation of inflammatory response as the major biological signal. Induction of pulmonary inflammation, as suggested by the blood gene expression data, was supported by significant increases in the number of macrophages and infiltrating neutrophils as well as the activity of pro-inflammatory chemokines observed in the lungs of the silica-exposed rats. A gene expression signature developed using the blood gene expression data predicted the exposure of rats to lower, minimally toxic and nontoxic concentrations of silica. Taken together, our findings suggest the potential application of peripheral blood gene expression profiling as a minimally invasive surrogate approach to detect pulmonary toxicity induced by silica in the rat. However, further research is required to determine the potential application of our findings specifically to monitor human exposure to silica and the resulting pulmonary effects.
Collapse
Affiliation(s)
- Rajendran Sellamuthu
- Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Arrandale VH, Brauer M, Brook JR, Brunekreef B, Gold DR, London SJ, Miller JD, Özkaynak H, Ries NM, Sears MR, Silverman FS, Takaro TK. Exposure assessment in cohort studies of childhood asthma. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:591-597. [PMID: 21081299 PMCID: PMC3094407 DOI: 10.1289/ehp.1002267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The environment is suspected to play an important role in the development of childhood asthma. Cohort studies are a powerful observational design for studying exposure-response relationships, but their power depends in part upon the accuracy of the exposure assessment. OBJECTIVE The purpose of this paper is to summarize and discuss issues that make accurate exposure assessment a challenge and to suggest strategies for improving exposure assessment in longitudinal cohort studies of childhood asthma and allergies. DATA SYNTHESIS Exposures of interest need to be prioritized, because a single study cannot measure all potentially relevant exposures. Hypotheses need to be based on proposed mechanisms, critical time windows for effects, prior knowledge of physical, physiologic, and immunologic development, as well as genetic pathways potentially influenced by the exposures. Modifiable exposures are most important from the public health perspective. Given the interest in evaluating gene-environment interactions, large cohort sizes are required, and planning for data pooling across independent studies is critical. Collection of additional samples, possibly through subject participation, will permit secondary analyses. Models combining air quality, environmental, and dose data provide exposure estimates across large cohorts but can still be improved. CONCLUSIONS Exposure is best characterized through a combination of information sources. Improving exposure assessment is critical for reducing measurement error and increasing power, which increase confidence in characterization of children at risk, leading to improved health outcomes.
Collapse
Affiliation(s)
- Victoria H. Arrandale
- Dalla Lana School of Public Health, Gage Occupational and Environmental Health Unit, University of Toronto, Toronto, Ontario, Canada
| | - Michael Brauer
- School of Environmental Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R. Brook
- Dalla Lana School of Public Health, Gage Occupational and Environmental Health Unit, University of Toronto, Toronto, Ontario, Canada
- Environment Canada, Air Quality Research Division, Toronto, Ontario, Canada
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Diane R. Gold
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - J. David Miller
- College of Natural Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Halûk Özkaynak
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nola M. Ries
- Health Law Institute, University of Alberta, Edmonton, Alberta, Canada, Faculty of Law and School of Health Information Science, University of Victoria, Victoria, British Columbia, Canada
| | - Malcolm R. Sears
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Frances S. Silverman
- Dalla Lana School of Public Health, Gage Occupational and Environmental Health Unit, University of Toronto, Toronto, Ontario, Canada
| | - Tim K. Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
95
|
Al-Dissi AN, Weber LP. Resveratrol preserves cardiac function, but does not prevent endothelial dysfunction or pulmonary inflammation after environmental tobacco smoke exposure. Food Chem Toxicol 2011; 49:1584-91. [PMID: 21501646 DOI: 10.1016/j.fct.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 12/30/2022]
Abstract
The mechanisms by which environmental tobacco smoke (ETS) causes adverse cardiovascular effects remain unclear. Resveratrol is a natural polyphenol from red wine which may be beneficial to the cardiovascular system. Therefore, the ability of daily oral resveratrol (5mg/kg) to prevent adverse effects of a 14-day ETS exposure (1 h/day) on endothelial function (flow-mediated dilation), left ventricular function (echocardiography) and blood pressure (oscillometry) was assessed in juvenile male pigs (n=4 pigs/group). After a 14-day exposure to ETS, flow-mediated dilation was impaired while plasma nitrotyrosine was increased compared to sham-exposed pigs indicating impaired endothelial function. In ETS-exposed pigs, plasma C-reactive protein levels, lung cytochrome P4501A1 activity, bronchoalveolar lavage fluid total white blood cell count and leukocyte elastase activity were all significantly increased compared to sham-exposed pigs. Resveratrol treatment failed to prevent most ETS-mediated effects examined, but did increase left ventricular end-diastolic volume and ejection fraction in the presence of ETS exposure. In summary, ETS exposure impaired endothelial function and increased oxidative stress which was associated with pulmonary and systemic inflammation, but resveratrol failed to protect against these changes. More importantly, resveratrol exerted a positive effect on left ventricular function which may help explain the French paradox.
Collapse
Affiliation(s)
- Ahmad N Al-Dissi
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Canada SK S7N 5B3
| | | |
Collapse
|
96
|
Baarsma HA, Meurs H, Halayko AJ, Menzen MH, Schmidt M, Kerstjens HAM, Gosens R. Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1β-induced cytokine secretion by airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L910-9. [PMID: 21421749 DOI: 10.1152/ajplung.00232.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase that regulates multiple signaling proteins and transcription factors involved in inflammation. Its role in inflammatory lung diseases, including chronic obstructive pulmonary disease (COPD), is largely unknown. We investigated the role of GSK-3 in the secretion of chemokines and growth factors by human airway smooth muscle cells after exposure to cigarette smoke extract (CSE) or interleukin-1β (IL-1β), important factors involved in the development of COPD. Cultured human airway smooth muscle cells were exposed to increasing concentrations of CSE (1-15%) and IL-1β (0.01-1.0 ng/ml), which induced the secretion of VEGF-A and IL-8, whereas eotaxin secretion was induced by IL-1β only. Inhibition of GSK-3 by the selective inhibitor SB216763 or CHIR/CT99021 attenuated the cytokine and growth factor release induced by CSE and/or IL-1β, without affecting the basal release. Secretion of the cytokines by airway smooth muscle partially depends on NF-κB signaling, and GSK-3 has been implicated in regulating multiple steps in activating the NF-κB signaling pathway. IL-1β treatment induced degradation of the NF-κB inhibitory protein Iκ-Bα followed by nuclear translocation and DNA binding of p65 NF-κB, which were unaffected by inhibition of GSK-3. However, induction of NF-κB-dependent transcriptional activity by IL-1β and CSE was largely reduced upon GSK-3 inhibition by SB216763. Collectively, we demonstrate that CSE and IL-1β activate airway smooth muscle cells to secrete the proinflammatory cytokines IL-8, eotaxin, and VEGF-A. Furthermore, we show that GSK-3 regulates the release of these cytokines induced by CSE and IL-1β by promoting NF-κB-dependent gene transcription.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
97
|
Reynolds JH, McDonald G, Alton H, Gordon SB. Pneumonia in the immunocompetent patient. Br J Radiol 2011; 83:998-1009. [PMID: 21088086 DOI: 10.1259/bjr/31200593] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pneumonia is an acute inflammation of the lower respiratory tract. Lower respiratory tract infection is a major cause of mortality worldwide. Pneumonia is most common at the extremes of life. Predisposing factors in children include an under-developed immune system together with other factors, such as malnutrition and over-crowding. In adults, tobacco smoking is the single most important preventable risk factor. The commonest infecting organisms in children are respiratory viruses and Streptoccocus pneumoniae. In adults, pneumonia can be broadly classified, on the basis of chest radiographic appearance, into lobar pneumonia, bronchopneumonia and pneumonia producing an interstitial pattern. Lobar pneumonia is most commonly associated with community acquired pneumonia, bronchopneumonia with hospital acquired infection and an interstitial pattern with the so called atypical pneumonias, which can be caused by viruses or organisms such as Mycoplasma pneumoniae. Most cases of pneumonia can be managed with chest radiographs as the only form of imaging, but CT can detect pneumonia not visible on the chest radiograph and may be of value, particularly in the hospital setting. Complications of pneumonia include pleural effusion, empyema and lung abscess. The chest radiograph may initially indicate an effusion but ultrasound is more sensitive, allows characterisation in some cases and can guide catheter placement for drainage. CT can also be used to characterise and estimate the extent of pleural disease. Most lung abscesses respond to medical therapy, with surgery and image guided catheter drainage serving as options for those cases who do not respond.
Collapse
Affiliation(s)
- J H Reynolds
- Department of Radiology, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham, UK.
| | | | | | | |
Collapse
|
98
|
Han SG, Bhoopalan V, Akinbiyi T, Gairola CG, Bhalla DK. In utero tobacco smoke exposure alters pulmonary responses of newborn rats to ozone. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:668-677. [PMID: 21432716 DOI: 10.1080/15287394.2011.539133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prenatal tobacco smoke (TS) exposure has been implicated in various adverse health outcomes in the offspring, including poor development of lung and immune system, which in turn can alter the response of neonates to environmental challenges. This study was performed to determine whether in utero exposure to TS influences the pulmonary response of newborn rat pups to ozone (O₃). Timed pregnant Sprague-Dawley (SD) rats were exposed to TS or air for 3 h/d from gestation d 7 through 21. The pulmonary response of pups was assessed following a single 3-h exposure to air or 0.6 ppm O₃ on d 13 after birth. In all, 4 exposure groups were evaluated: (1) Air/Air (in utero air and postnatal air), (2) Air/O₃ (in utero air and postnatal O₃), (3) TS/Air (in utero TS and postnatal air), and (4) TS/O₃ (in utero TS and postnatal O₃). Bronchoalveolar lavage (BAL) was performed, and BAL cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN) and total BALF protein in the Air/O₃ group compared to the Air/Air control, reflecting the inflammatory and cytotoxic effects of O₃. However, in utero exposure to TS attenuated PMN infiltration into the air spaces for recovery in the BAL of TS/O₃ pups. Lung tissue myeloperoxidase activity significantly increased only in the TS/O₃ group but not in Air/O₃ pups, thus suggesting that PMN are sequestered in the lung tissue and that the in utero TS likely inhibits O₃-mediated influx of PMN into the air spaces. Lung tissue analyses further showed a significant rise in manganese superoxide dismutase (SOD) protein and a decrease in extracellular SOD protein in the Air/O₃ group, suggesting oxidative effects of O₃. Interestingly, in utero TS exposure again suppressed these effects in the TS/O₃ group. Overall, results suggest that in utero exposure to TS alone produced minimal acute pulmonary effects in newborn rats, but modulated adverse effects of postnatal O₃ exposure. The results are contrary to the interactive toxic responses predicted for sequential exposures to TS and O₃, and may represent the development of "cross-tolerance."
Collapse
Affiliation(s)
- Sung Gu Han
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
99
|
Leifer CA, Dietert RR. Early life environment and developmental immunotoxicity in inflammatory dysfunction and disease. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2011; 93:1463-1485. [PMID: 26146439 PMCID: PMC4486307 DOI: 10.1080/02772248.2011.586114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Components of the innate immune system such as macrophages and dendritic cells are instrumental in determining the fate of immune responses and are, also, among the most sensitive targets of early life environmental alterations including developmental immunotoxicity (DIT). DIT can impede innate immune cell maturation, disrupt tissue microenvironment, alter immune responses to infectious challenges, and disrupt regulatory responses. Dysregulation of inflammation, such as that observed with DIT, has been linked with an increased risk of chronic inflammatory diseases in both children and adults. In this review, we discuss the relationship between early-life risk factors for innate immune modulation and promotion of dysregulated inflammation associated with chronic inflammatory disease. The health risks from DIT-associated inflammation may extend beyond primary immune dysfunction to include an elevated risk of several later-life, inflammatory-mediated diseases that target a wide range of physiological systems and organs. For this reason, determination of innate immune status should be an integral part of drug and chemical safety evaluation.
Collapse
Affiliation(s)
- Cynthia A. Leifer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rodney R. Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
100
|
Vardavas CI, Plada M, Tzatzarakis M, Marcos A, Warnberg J, Gomez-Martinez S, Breidenassel C, Gonzalez-Gross M, Tsatsakis AM, Saris WH, Moreno LA, Kafatos AG. Passive smoking alters circulating naïve/memory lymphocyte T-cell subpopulations in children. Pediatr Allergy Immunol 2010; 21:1171-8. [PMID: 20561234 DOI: 10.1111/j.1399-3038.2010.01039.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
While it has been indicated that exposure to second-hand smoke (SHS) can cause a local in vivo response, limited evidence exists on its possible systemic effects from population-based levels of exposure. We investigated into a possible systemic response in the immune parameters and lymphocyte subsets, i.e. B cell (CD19+), T cell (CD4+CD45RO+, CD4+CD45RA+, CD3+CD45RO+, CD3+CD45RA+) and natural killer (CD3+CD16CD56+) lymphocyte subsets relative to exposure to SHS. Blood was drawn from healthy, verified non-smoker, adolescent subjects (n = 68, mean age 14.2) and analysed for cotinine, antioxidants and lymphocyte immunophenotyping. SHS exposure was assessed using serum cotinine. Biomarker quantified exposure to SHS was correlated with a linear dose-response reduction in the percentages of memory CD4+CD45RO+ (p = 0.005) and CD3+CD45RO+ T-cell subsets (p = 0.005 and p = 0.003, respectively) and a linear increase in the percentage of naïve CD4+CD45RA+ and CD3+CD45RA+ T-cell subsets (p = 0.006 and p = 0.003, respectively). Additionally, higher exposure to SHS was associated with a higher CD4+CD45RA+ count (532 vs. 409 cells/ml, p = 0.017). Moreover, after controlling for age, gender, body mass index and plasma antioxidants, SHS exposure was found to be associated with the percentage of circulating naïve and memory CD4+ and CD3+ T-cell subpopulations, as revealed through a linear regression analysis. These findings indicate a systemic immunological response in healthy adolescents exposed to population-based levels of SHS exposure and imply an additional biological pathway for the interaction between exposure to SHS and its adverse effects on human health.
Collapse
|