51
|
Yang CH, Albietz J, Harkin DG, Kimlin MG, Schmid KL. Impact of oral vitamin D supplementation on the ocular surface in people with dry eye and/or low serum vitamin D. Cont Lens Anterior Eye 2017; 41:69-76. [PMID: 28919183 DOI: 10.1016/j.clae.2017.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the possible association between serum vitamin D levels and dry eye symptoms, and the impact of an oral vitamin D supplement. METHODS Three linked studies were performed. (i) 29 older adult participants, (ii) 29 dry eyed participants, and (iii) 2-month vitamin D supplementation for 32 dry eyed/low serum vitamin D levelled participants. All participants were assessed by the Ocular Surface Diseases Index (OSDI) to determine dry eye symptoms, and the phenol red thread test (PRT) and/or Schirmer's tear test, tear meniscus height, non-invasive tear break up time, grading ocular surface redness and fluorescein staining of the cornea to detect the tear quality and ocular surface conditions. Blood samples were collected for serum vitamin D analysis and interleukin-6 (IL-6) levels. RESULTS Among older adult participants, vitamin D levels were negatively correlated with dry eye symptoms, the severity of dry eye, and associated with tired eye symptom. Vitamin D levels of people with dry eye diagnosis were not correlated with OSDI scores and IL-6 levels; while IL-6 levels showed correlation with tear production. In supplement study, vitamin D levels increased by 29mol/l, while dry eye symptoms and grading of corneal staining appeared significant reductions. No significant changes in IL-6 levels. CONCLUSIONS Low vitamin D levels (<50nmol/l) were associated with dry eye symptoms in older individuals but not those diagnosed with dry eye. Vitamin D supplement increased the vitamin D levels, and improved dry eye symptoms, the tear quality and ocular surface conditions.
Collapse
Affiliation(s)
- Chih-Huang Yang
- School of Optometry and Vision Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Julie Albietz
- School of Optometry and Vision Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Damien G Harkin
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Queensland Eye Institute, Brisbane, Queensland, Australia
| | - Michael G Kimlin
- Health Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Katrina L Schmid
- School of Optometry and Vision Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia; Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Queensland Eye Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
52
|
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 2017; 118:1786-807. [PMID: 27230642 DOI: 10.1161/circresaha.115.306885] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
Collapse
Affiliation(s)
- José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| |
Collapse
|
53
|
Voiriot G, Razazi K, Amsellem V, Tran Van Nhieu J, Abid S, Adnot S, Mekontso Dessap A, Maitre B. Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. Respir Res 2017; 18:64. [PMID: 28424078 PMCID: PMC5397701 DOI: 10.1186/s12931-017-0553-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Interleukin 6 (IL-6) is a predictive factor of poor prognosis in patients with acute respiratory distress syndrome (ARDS). However, its acute pulmonary hemodynamic effects and role in lung injury have not been investigated in a clinically relevant murine model of ARDS. Methods We used adult C57Bl6 wild-type (WT) and IL-6 knock-out (IL-6KO) mice. The animals received intravenous recombinant human IL-6 (rHuIL-6) or vehicle followed by intratracheal lipopolysaccharide (LPS) or saline before undergoing low tidal volume mechanical ventilation (MV) for 5 h. Before sacrifice, right ventricular systolic pressure and cardiac output were measured and total pulmonary resistance was calculated. After sacrifice, lung inflammation, edema and injury were assessed with bronchoalveolar lavage (BAL) and histology. In other experiments, right ventricular systolic pressure was recorded during hypoxic challenges in uninjured WT mice pretreated with rHuIL-6 or rHuIL-6 + non-selective nitric oxide synthase inhibitor L-NAME or vehicle. Results IL-6KO(LPS+MV) mice showed a faster deterioration of lung elastic properties and more severe bronchoalveolar cellular inflammation as compared to WT(LPS+MV). Treatment with rHuIL-6 partially prevented this lung deterioration. Total pulmonary resistance was higher in IL-6KO(LPS+MV) mice and this increase was abolished in rHuIL-6-treated IL-6KO mice. Finally, rHuIL-6 reduced hypoxic pulmonary vasoconstriction in uninjured WT mice, an effect that was abolished by co-treatment with L-NAME. Conclusions In a double-hit murine model of ARDS, IL-6 deficient mice experienced more severe bronchoalveolar cellular inflammation as compared to wild-type littermates. Furthermore, IL-6 deficiency caused marked acute pulmonary hypertension, which may be, at least partially, due to vasoactive mechanisms. A dysregulation of nitric oxide synthase may account for this observation, a hypothesis that will need to be investigated in future studies.
Collapse
Affiliation(s)
- Guillaume Voiriot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France. .,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.
| | - Keyvan Razazi
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Valérie Amsellem
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Jeanne Tran Van Nhieu
- Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service d'Anatomie et Cytologie Pathologiques, AP-HP, Créteil, France
| | - Shariq Abid
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France
| | - Serge Adnot
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service des Explorations Fonctionnelles, AP-HP, Créteil, France
| | - Armand Mekontso Dessap
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| | - Bernard Maitre
- INSERM, Unité U955 (Institut Mondor de Recherche Biomédicale), Créteil, France.,Faculté de Médecine, Groupe de recherche clinique CARMAS, Université Paris Est, Créteil, France.,Groupe Henri Mondor-Albert Chenevier, Hôpital Henri Mondor, Service de Réanimation Médicale, AP-HP, Créteil, France
| |
Collapse
|
54
|
Hu L, Yu Y, Huang H, Fan H, Hu L, Yin C, Li K, Fulton DJR, Chen F. Epigenetic Regulation of Interleukin 6 by Histone Acetylation in Macrophages and Its Role in Paraquat-Induced Pulmonary Fibrosis. Front Immunol 2017; 7:696. [PMID: 28194150 PMCID: PMC5276821 DOI: 10.3389/fimmu.2016.00696] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
Overexpression of interleukin 6 (IL-6) has been proposed to contribute to pulmonary fibrosis and other fibrotic diseases. However, the regulatory mechanisms and the role of IL-6 in fibrosis remain poorly understood. Epigenetics refers to alterations of gene expression without changes in the DNA sequence. Alternation of chromatin accessibility by histone acetylation acts as a critical epigenetic mechanism to regulate various gene transcriptions. The goal of this study was to determine the impact of IL-6 in paraquat (PQ)-induced pulmonary fibrosis and to explore whether the epigenetic regulations may play a role in transcriptional regulation of IL-6. In PQ-treated lungs and macrophages, we found that the mRNA and protein expression of IL-6 was robustly increased in a time-dependent and a dose-dependent manner. Our data demonstrated that PQ-induced IL-6 expression in macrophages plays a central role in pulmonary fibrosis through enhanced epithelial-to-mesenchymal transition (EMT). IL-6 expression and its role to enhance PQ-induced pulmonary fibrosis were increased by histone deacetylase (HDAC) inhibition and prevented by histone acetyltransferase (HAT) inhibition. In addition, the ability of CRISPR-ON transcription activation system (CRISPR-ON) to promote transcription of IL-6 was enhanced by HDAC inhibitor and blocked by HAT inhibitor. Chromatin immunoprecipitation experiments revealed that HDAC inhibitor increased histones activation marks H3K4me3 and H3K9ac at IL-6 promoter regions. In conclusion, IL-6 functioning through EMT in PQ-induced pulmonary fibrosis was regulated dynamically by HDAC and HAT both in vitro and in vivo via epigenetically regulating chromatin accessibility.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Hanting Fan
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Caiyong Yin
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University , Nanjing , China
| | - David J R Fulton
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology, Augusta University, Augusta, GA, USA
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China; Vascular Biology Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
55
|
Mastronardi CA, Yu WH, McCann SM. Comparisons of the Effects of Anesthesia and Stress on Release of Tumor Necrosis Factor-α, Leptin, and Nitric Oxide in Adult Male Rats. Exp Biol Med (Maywood) 2016; 226:296-300. [PMID: 11368420 DOI: 10.1177/153537020122600405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) stimulates massive release of tumor necrosis factor-alpha (TNF-α) together with nitric oxide (NO) and a lessor release of leptin. We hypothesized that other types of stress such as that of surgery might also release these cytokines and NO. Adult male rats were anesthetized with ketamine/acepromazine/xylazine anesthesia (90 + 2 + 6 mg/ml, respectively) and an external jugular catheter was inserted for removal of blood samples (0.6 ml) at various times postoperatively. Plasma TNF-α was almost undetectable in decapitated rats and was near zero immediately following the placement of the jugular catheter (time zero [to]). As the rats awakened from anesthesia, there was a rise in TNF-α at 30 min that peaked at 2 hr with a 400-fold increase and then precipitously declined 40-fold to a level still greater than zero at 3 hr. At 6 hr on the following morning, TNF-α values were near zero, but following connection of tubing and withdrawal of the initial blood sample, there was a 100-fold increase 1 hr later, followed by a decline over the next 3 hr. In contrast, plasma [NO3/NO2] from decapitated rats was 117 μM. Values at t0 were decreased and plummeted 4-fold within 30 min, then rose slightly in the ensuing 3 hr. At 6 hr on the next day [NO3/NO2] values were lower than at t0 and declined gradually during the next 4 hr. Leptin gradually declined from pre-operative concentrations, reaching a minimum at 3 hr and its concentration was unaffected by the bleeding stress of the second day. We conclude that release of TNF-α, [NO3/NO2], and leptin are neurally controlled since plasma levels of all three declined as a result of anesthesia. TNF-α secretion was remarkably stress responsive, whereas NO release appeared to be suppressed by the combined operative and bleeding stress, and leptin was stress unresponsive.
Collapse
Affiliation(s)
- C A Mastronardi
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808-4124, USA
| | | | | |
Collapse
|
56
|
Flaig T, Douros A, Bronder E, Klimpel A, Kreutz R, Garbe E. Tocilizumab-induced pancreatitis: case report and review of data from the FDA Adverse Event Reporting System. J Clin Pharm Ther 2016; 41:718-721. [PMID: 27670839 DOI: 10.1111/jcpt.12456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tocilizumab (TCZ) is a humanized monoclonal antibody acting against the IL-6 receptor. It is a drug used in the treatment of rheumatoid arthritis and can be either given intravenously every 4 weeks or subcutaneously once a week. Known adverse events (AE) associated with TCZ include: infections of the upper respiratory tract, arterial hypertension, hypercholesterolaemia and hypertriglyceridaemia. Here, we present the first well-documented case of TCZ-induced acute pancreatitis (AP) and a systematic review of the literature including data from the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS Patient data collection was performed within the Berlin Case-Control Surveillance Study. A literature search for TCZ-induced AP was conducted. Analysis of the FAERS database concerning TCZ-associated pancreatic AE from the period of 2009 until the first quarter of 2013 was conducted. RESULTS AND DISCUSSION A 40-year-old man presented with a 2-day history of progressive upper abdominal pain with elevated serum lipase and triglyceride levels. Biliary pancreatitis was ruled out by abdominal sonography and CT scan. Cessation of intravenously administered TCZ resulted in improvement of the patient's condition and a decline in elevated laboratory values, suggesting a probable relationship between TCZ intake and AP. Analysis of the FAERS database retrieved 52 cases of TCZ-associated AP that accounted for 70% of all pancreatic AE in association with TCZ use. Further literature search detected three additional cases in which TCZ use was associated with AP. WHAT IS NEW AND CONCLUSION Physicians should be aware of the probable association between TCZ use and AP. Targeted post-authorization studies are needed to confirm and quantify the risk of TCZ-induced AP.
Collapse
Affiliation(s)
- T Flaig
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Douros
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - E Bronder
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A Klimpel
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R Kreutz
- Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - E Garbe
- Leibniz Institute for Prevention Research and Epidemiology BIPS, Bremen, Germany. .,Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
57
|
Dinarello CA. Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100040301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the `endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-α (TNF-α), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-α, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE 2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during infection.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado, USA,
| |
Collapse
|
58
|
van der Poll T, Keogh C, Helfgott D, Berman L, Buurman W, Lowry S. Effects of anti-interleukin 6 on inflammatory responses during murine septic peritonitis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-6 has a limited role in the pathogenesis of the acute systemic inflammatory response syndrome elicited by bolus administration of bacteria or bacterial products. We sought to determine the role of IL-6 in septic peritonitis induced by cecal ligation and puncture (CLP). CLP led to a rapid and sustained induction of IL-6 in plasma and organ homogenates. Pretreatment (-2 h) with an anti-IL-6 mAb (1 mg) resulted in higher plasma and hepatic levels of tumor necrosis factor (TNF), as well as higher plasma concentrations of soluble TNF receptors and IL-10, while attenuating the acute phase protein response. Administration of anti-IL-6 did not influence survival. These results suggest that IL-6 production during septic peritonitis serves to inhibit the appearance of both agonist and antagonist members of the cytokine network. The importance of IL-6 in mediating the cytokine response to infection may be underestimated in more acute sepsis models.
Collapse
Affiliation(s)
- T. van der Poll
- Laboratory of Surgical Metabolism, Department of Surgery, Cornell University Medical College, New York, NY, USA, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - C.V. Keogh
- Laboratory of Surgical Metabolism, Department of Surgery, Cornell University Medical College, New York, NY, USA
| | - D. Helfgott
- Laboratory of Surgical Metabolism, Department of Surgery, Cornell University Medical College, New York, NY, USA
| | - L. Berman
- Laboratory of Surgical Metabolism, Department of Surgery, Cornell University Medical College, New York, NY, USA
| | - W.A. Buurman
- Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | - S.F. Lowry
- Laboratory of Surgical Metabolism, Department of Surgery, Cornell University Medical College, New York, NY, USA
| |
Collapse
|
59
|
Abstract
Endotoxin is considered to be a systemic (immunological) stressor eliciting a prolonged activation of the hypothalamo-pituitary-adrenal (HPA) axis. The HPA-axis response after an endotoxin challenge is mainly due to released cytokines (IL-1, IL-6 and TNF-α) from stimulated peripheral immune cells, which in turn stimulate different levels of the HPA axis. Controversy exists regarding the main locus of action of endotoxin on glucocorticoid secretion, since the effect of endotoxin on this neuro-endocrine axis has been observed in intact animals and after ablation of the hypothalamus; however, a lack of LPS effect has been described at both pituitary and adrenocortical levels. The resulting increase in adrenal glucocorticoids has well-documented inhibitory effects on the inflammatory process and on inflammatory cytokine release. Therefore, immune activation of the adrenal gland by endotoxin is thought to occur by cytokine stimulation of corticosteroid-releasing hormone (CRH) production in the median eminence of the hypothalamus, which, in turn stimulates the secretion of ACTH from the pituitary. Acute administration of endotoxin stimulates ACTH and cortisol secretion and the release of CRH and vasopressin (AVP) in the hypophysial portal blood. During repeated endotoxemia, tolerance of both immune and HPA function develops, with a crucial role for glucocorticoids in the modulation of the HPA axis. A single exposure to a high dose of LPS can induce a long-lasting state of tolerance to a second exposure of LPS, affecting the response of plasma TNF-α and HPA hormones. Although there are gender differences in the HPA response to endotoxin and IL-1, these responses are enhanced by castration and attenuated by androgen and estrogen replacement. Estrogens attenuate the endotoxin-induced stimulation of IL-6, TNF-α and IL-1ra release and subsequent activation in postmenopausal women. There appears to be a temporal and functional relation between the HPA-axis response to endotoxin and nitric oxide formation in the neuro-endocrine hypothalamus, suggesting a stimulatory role for nitric oxide in modulating the HPA response to immune challenges.
Collapse
Affiliation(s)
- Albertus Beishuizen
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands,
| | - Lambertus G. Thijs
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
60
|
Echevarria FD, Rickman AE, Sappington RM. Interleukin-6: A Constitutive Modulator of Glycoprotein 130, Neuroinflammatory and Cell Survival Signaling in Retina. ACTA ACUST UNITED AC 2016; 7. [PMID: 27747134 PMCID: PMC5061045 DOI: 10.4172/2155-9899.1000439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective The interleukin-6 (IL-6) family of cytokines and their signal transducer glycoprotein (gp130) are implicated in inflammatory and cell survival functions in glaucoma. There are several avenues for interdependent modulation of IL-6 family members and gp130 signaling. Here we investigated whether IL-6 modulates gp130 and related neuroinflammatory, cell survival and regulatory signaling in both healthy and glaucomatous retina. Methods In naïve and glaucomatous (Microbead Occlusion Model), wildtype (WT) and IL-6 knockout (IL-6−/−) mice, we examined gp130 protein expression and localization, using western blot and immunohistochemistry. Gene targets related to IL-6 and gp130 signaling and pertinent to neuroinflammation (TNFα, IL-1β), cell health (Bax, Bcl-xl) and STAT3 regulation (Socs3) were quantified using qRTPCR. Results In the naïve retina, IL-6−/− retina contained significantly less gp130 compared to WT retina. This IL-6-related decrease in gp130 was accompanied by a reduction in mRNA expression of TNFα, Socs3 and Bax. After 4 weeks of microbead-induced ocular hypertension, both microbead- and saline-injected (control) eyes of IL-6−/− mice exhibited higher expression of TNFα, compared to WT mice. IL-1β expression was also reduced specifically in IL-6−/− retina with microbead-induced glaucoma. While saline and microbead injection increased Bcl-xl and Socs3 mRNA in both WT and IL-6−/− mice, IL-6−/− deficiency led to smaller increases for both Bcl-xl and Socs3. Conclusions Our findings support a role for IL-6 in setting baseline parameters for neuroinflammatory, cell health and gp130 regulatory signaling that can impact the nature and magnitude of retinal responses to glaucoma-related stressors.
Collapse
Affiliation(s)
| | - Abigayle E Rickman
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca M Sappington
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
61
|
Role in proinflammatory response of YghJ, a secreted metalloprotease from neonatal septicemic Escherichia coli. Int J Med Microbiol 2016; 306:554-565. [PMID: 27389679 DOI: 10.1016/j.ijmm.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/19/2023] Open
Abstract
Neonatal sepsis is the invasion of microbial pathogens into blood stream and is associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. The increased serum levels of cytokines were found to correlate with the severity and mortality in course of sepsis. There have been no reports on the role of microbial proteases in stimulation of proinflammatory response in neonatal sepsis. We have identified YghJ, a secreted metalloprotease from a neonatal septicemic Escherichia coli (NSEC) isolate. The protease was partially purified from culture supernatant by successive anion and gel filtration chromatography. MS/MS peptide sequencing of the protease showed homology with YghJ. YghJ was cloned, expressed and purified in pBAD TOPO expression vector. YghJ was found to be proteolytically active against Methoxysuccinyl Ala-Ala-Pro-Met-p-nitroanilide oligopeptide substrate, but not against casein and gelatin. YghJ showed optimal activity at pH 7-8 and at temperatures 37-40°C. YghJ showed clear changes in cellular morphologies of Int407, HT-29 and HEK293 cells. YghJ stimulated the secretion of cytokines IL-1α, IL-1β and TNF-α in murine macrophages (RAW 264.7) and IL-8 from human intestinal epithelial cells (HT-29). YghJ also down-regulated the production of anti-inflammatory cytokines such as IL-10. YghJ is present in both septicemic (78%) and fecal E. coli isolates (54%). However, expression and secretion of YghJ is significantly higher among the septicemic (89%) than the fecal isolates (33%). This is the first study to show the role of a microbial protease, YghJ in triggering proinflammatory response in NSEC.
Collapse
|
62
|
Ayala P, Meneses M, Olmos P, Montalva R, Droguett K, Ríos M, Borzone G. Acute lung injury induced by whole gastric fluid: hepatic acute phase response contributes to increase lung antiprotease protection. Respir Res 2016; 17:71. [PMID: 27301375 PMCID: PMC4907014 DOI: 10.1186/s12931-016-0379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/17/2016] [Indexed: 11/28/2022] Open
Abstract
Background Gastric contents aspiration in humans is a risk factor for severe respiratory failure with elevated mortality. Although aspiration-induced local lung inflammation has been studied in animal models, little is known about extrapulmonary effects of aspiration. We investigated whether a single orotracheal instillation of whole gastric fluid elicits a liver acute phase response and if this response contributes to enrich the alveolar spaces with proteins having antiprotease activity. Methods In anesthetized Sprague-Dawley rats receiving whole gastric fluid, we studied at different times after instillation (4 h −7 days): changes in blood cytokines and acute phase proteins (fibrinogen and the antiproteases alpha1-antitrypsin and alpha2-macroglobulin) as well as liver mRNA expression of the two antiproteases. The impact of the systemic changes on lung antiprotease defense was evaluated by measuring levels and bioactivity of antiproteases in broncho-alveolar lavage fluid (BALF). Markers of alveolar-capillary barrier derangement were also studied. Non-parametric ANOVA (Kruskall-Wallis) and linear regression analysis were used. Results Severe peribronchiolar injury involving edema, intra-alveolar proteinaceous debris, hemorrhage and PMNn cell infiltration was seen in the first 24 h and later resolved. Despite a large increase in several lung cytokines, only IL-6 was found elevated in blood, preceding increased liver expression and blood concentration of both antiproteases. These changes, with an acute phase response profile, were significantly larger for alpha2-macroglobulin (40-fold increment in expression with 12-fold elevation in blood protein concentration) than for alpha1-antitrypsin (2–3 fold increment in expression with 0.5-fold elevation in blood protein concentration). Both the increment in capillary-alveolar antiprotease concentration gradient due to increased antiprotease liver synthesis and a timely-associated derangement of the alveolar-capillary barrier induced by aspiration, contributed a 58-fold and a 190-fold increase in BALF alpha1-antitrypsin and alpha2-macroglobulin levels respectively (p < 0.001). Conclusions Gastric contents-induced acute lung injury elicits a liver acute phase response characterized by increased mRNA expression of antiproteases and elevation of blood antiprotease concentrations. Hepatic changes act in concert with derangement of the alveolar capillary barrier to enrich alveolar spaces with antiproteases. These findings may have significant implications decreasing protease burden, limiting injury in this and other models of acute lung injury and likely, in recurrent aspiration.
Collapse
Affiliation(s)
- Pedro Ayala
- Department of Respiratory Diseases and Medical Research Center, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | | | - Pablo Olmos
- Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebeca Montalva
- Department of Respiratory Diseases and Medical Research Center, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile
| | - Karla Droguett
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Ríos
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisella Borzone
- Department of Respiratory Diseases and Medical Research Center, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 350, piso 1, Santiago, Chile.
| |
Collapse
|
63
|
Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1218-27. [PMID: 27016501 DOI: 10.1016/j.bbamcr.2016.03.018] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
The cytokine interleukin-6 (IL-6) plays a critical role in the pathogenesis of inflammatory disorders and in the physiological homeostasis of neural tissue. Profound neuropathological changes, such as multiple sclerosis (MS), Parkinson's and Alzheimer's disease are associated with increased IL-6 expression in brain. Increased nocturnal concentrations of serum IL-6 are found in patients with impaired sleep whereas IL-6-deficient mice spend more time in rapid eye movement sleep associated with dreaming. IL-6 is crucial in the differentiation of oligodendrocytes, regeneration of peripheral nerves and acts as a neurotrophic factor. It exerts its cellular effects through two distinct pathways which include the anti-inflammatory pathway involving the membrane-bound IL-6 receptor (IL-6R) expressed on selective cells, including microglia, in a process known as classical signaling that is also critical for bacterial defense. In classical signaling binding of IL-6 to the membrane-bound IL-6R activates the β-receptor glycoprotein 130 (gp130) and subsequent down-stream signaling. The alternative, rather pro-inflammatory pathway, shown to mediate neurodegeneration in mice, termed trans-signaling, depends on a soluble form of the IL-6R that is capable of binding IL-6 to stimulate a response on distal cells that express gp130. A naturally occurring soluble form of gp130 (sgp130) has been identified that can specifically bind and neutralize the IL-6R/IL-6 complex. Thus, trans-signaling is blocked but classical signaling is completely unaffected. A modified, recombinant dimerized version of sgp130 (sgp130Fc) has successfully been used to block inflammatory processes in mice and may also be used in the clarification of IL-6 trans-signaling in neurological diseases.
Collapse
Affiliation(s)
- Michelle Rothaug
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
64
|
Abstract
Electrically stimulated muscle contraction is a potential clinical therapy to treat sepsis-induced myopathy; however, whether sepsis alters contraction-induced anabolic signaling is unknown. Polymicrobial peritonitis was produced by cecal ligation and puncture (CLP) in male C57BL/6 mice and time-matched, pair-fed controls (CON). At ∼24 h post-CLP, the right hindlimb was electrically stimulated via the sciatic nerve to evoke maximal muscle contractions, and the gastrocnemius was collected 2 h later. Protein synthesis was increased by muscle contraction in CON mice. Sepsis suppressed the rate of synthesis in both the nonstimulated (31%) and stimulated (57%) muscle versus CON. Contraction of muscle in CON mice increased the phosphorylation of mTORC1 (mammalian target of rapamycin [mTOR] complex 1) substrates S6K1 (70-kd ribosomal protein S6 kinase 1) Thr (8-fold), S6K1 ThrSer (7-fold) and 4E-BP1 Ser (11-fold). Sepsis blunted the contraction-induced phosphorylation of S6K1 Thr (67%), S6K1 ThrSer (46%), and 4E-BP1 Ser (85%). Conversely, sepsis did not appear to modulate protein elongation as eEF2 Thr phosphorylation was decreased similarly by muscle contraction in both groups. Mitogen-activated protein kinase signaling was discordant following contraction in septic muscle; phosphorylation of extracellular signal-regulated kinase ThrTyr and p38 ThrTyr was increased similarly in both CON and CLP mice, while sepsis prevented the contraction-induced phosphorylation of JNK ThrTyr and c-JUN Ser. The expression of interleukin 6 and tumor necrosis factor α (TNF-α) mRNA in muscle was increased by sepsis, and contraction increased TNF-α to a greater extent in muscle from septic than CON mice. Injection of the mTOR inhibitor Torin2 in separate mice confirmed that contraction-induced increases in S6K1 and 4E-BP1 were mTOR mediated. These findings demonstrate that resistance to contraction-induced anabolic signaling occurs during sepsis and is predominantly mTORC1-dependent.
Collapse
|
65
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
66
|
The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6. Mucosal Immunol 2015; 8:1285-96. [PMID: 25807183 PMCID: PMC4583322 DOI: 10.1038/mi.2015.19] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/10/2015] [Indexed: 02/04/2023]
Abstract
The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn's disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1(dm/dm) knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1(dm/dm) mice exhibited high mortality, impaired mucosal healing, and diminished interleukin-6 (IL-6) expression during the repair phase of DSS-induced colitis compared with wild-type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1-induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1(dm/dm) mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild-type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease.
Collapse
|
67
|
Anzengruber F, Avci P, de Freitas LF, Hamblin MR. T-cell mediated anti-tumor immunity after photodynamic therapy: why does it not always work and how can we improve it? Photochem Photobiol Sci 2015; 14:1492-1509. [PMID: 26062987 PMCID: PMC4547550 DOI: 10.1039/c4pp00455h] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) uses the combination of non-toxic photosensitizers and harmless light to generate reactive oxygen species that destroy tumors by a combination of direct tumor cell killing, vascular shutdown, and activation of the immune system. It has been shown in some animal models that mice that have been cured of cancer by PDT, may exhibit resistance to rechallenge. The cured mice can also possess tumor specific T-cells that recognize defined tumor antigens, destroy tumor cells in vitro, and can be adoptively transferred to protect naïve mice from cancer. However, these beneficial outcomes are the exception rather than the rule. The reasons for this lack of consistency lie in the ability of many tumors to suppress the host immune system and to actively evade immune attack. The presence of an appropriate tumor rejection antigen in the particular tumor cell line is a requisite for T-cell mediated immunity. Regulatory T-cells (CD25+, Foxp3+) are potent inhibitors of anti-tumor immunity, and their removal by low dose cyclophosphamide can potentiate the PDT-induced immune response. Treatments that stimulate dendritic cells (DC) such as CpG oligonucleotide can overcome tumor-induced DC dysfunction and improve PDT outcome. Epigenetic reversal agents can increase tumor expression of MHC class I and also simultaneously increase expression of tumor antigens. A few clinical reports have shown that anti-tumor immunity can be generated by PDT in patients, and it is hoped that these combination approaches may increase tumor cures in patients.
Collapse
Affiliation(s)
- Florian Anzengruber
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Lucas Freitas de Freitas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Programa de Pos Graduacao Interunidades Bioengenharia – USP – Sao Carlos, Brazil
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Correspondence to: Michael R Hamblin, PhD, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
68
|
Sun D, Liang D, Kaplan HJ, Shao H. The role of Th17-associated cytokines in the pathogenesis of experimental autoimmune uveitis (EAU). Cytokine 2015; 74:76-80. [PMID: 25742774 PMCID: PMC4457592 DOI: 10.1016/j.cyto.2014.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022]
Abstract
The proinflammatory and pathogenic function of Th17 cells in autoimmune diseases have been established but the mechanism by which such cells cause disease remains to be determined. Inflammatory cytokines produced by Th17 cells may either promote or inhibit disease development. The major cytokines produced by the uveitogenic T cells, such as IL-17 and IL-22, are not always pathogenic, and the disease-inducing ability of pathogenic T cells is not immediately correlated to the amount of cytokine they produce. Future studies identifying factors causing increased Th17 responses and determining the types of cells that regulating Th17 autoreactive T cells should facilitate our effort of understanding Th17-mediated disease pathogenesis.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Dongchun Liang
- Doheny Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
69
|
Kanczkowski W, Sue M, Zacharowski K, Reincke M, Bornstein SR. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol Cell Endocrinol 2015; 408:241-8. [PMID: 25543020 DOI: 10.1016/j.mce.2014.12.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
Sepsis and septic shock in response to bacterial or viral infections remain the major health problem worldwide. Despite decades of intensive research and improvements in medical care, severe sepsis is associated with high mortality. Rapid activation of the adrenal gland glucocorticoid and catecholamine production is a fundamental component of the stress response and is essential for survival of the host. However, in many critically ill patients this homeostatic function of the adrenal gland is often impaired. In these patients, plasma levels of adrenocorticotropic hormone (ACTH) and cortisol are often dissociated. This has been attributed to the stimulatory action of non-ACTH factors within the adrenal gland such as cytokines, and recently with decreased cortisol metabolism and suppressed ACTH synthesis. Regulation of the hypothalamus-pituitary-adrenal (HPA) axis function during sepsis is a complex process which involves various immune and neuroendocrine interactions occurring at the levels of the central nervous system (CNS) and the adrenal gland. A coordinated interaction of numerous cell types and systems within the adrenal gland is involved in the sustained adrenal glucocorticoid production. This review article describes and discusses recent experimental findings regarding the role of adrenal gland microenvironment including the adrenal vasculature and the immune-adrenal crosstalk in the disregulated HPA axis during sepsis conditions. In summary, in addition to the reduced cortisol breakdown and related ACTH suppression, sepsis-mediated chronic activation of the immune-adrenal crosstalk and vascular dysfunction may contribute to the HPA axis dysregulation found in septic patients.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Mariko Sue
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Kai Zacharowski
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, 60595 Frankfurt am Main, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
70
|
Dysregulation of energy balance by trichothecene mycotoxins: Mechanisms and prospects. Neurotoxicology 2015; 49:15-27. [PMID: 25956358 DOI: 10.1016/j.neuro.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/14/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022]
Abstract
Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose. Accordingly, a better understanding of trichothecene impact on health is needed. Upon exposure to low or moderate doses, DON and other trichothecenes induce anorexia, vomiting and reduced weight gain. Several recent studies have addressed the mechanisms by which trichothecenes induce these symptoms and revealed a multifaceted action targeting gut, liver and brain and causing dysregulation in neuroendocrine signaling, immune responses, growth hormone axis, and central neurocircuitries involved in energy homeostasis. Newly identified trichothecene toxicosis biomarkers are just beginning to be exploited and already open up new questions on the potential harmful effects of chronic exposure to DON at apparently asymptomatic very low levels. This review summarizes our current understanding of the effects of DON and other trichothecenes on food intake and weight growth.
Collapse
|
71
|
Olgun NS, Hanna N, Reznik SE. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10. Toxicol Appl Pharmacol 2015; 282:275-84. [DOI: 10.1016/j.taap.2014.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 01/04/2023]
|
72
|
|
73
|
Imbalanced gp130 signalling in ApoE-deficient mice protects against atherosclerosis. Atherosclerosis 2014; 238:321-8. [PMID: 25545330 DOI: 10.1016/j.atherosclerosis.2014.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/28/2014] [Accepted: 12/21/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Interleukin (IL)-6 is a key modulator of the acute phase response (APR), and while both are implicated in atherosclerosis, the pathological role of specific IL-6 signalling cascades is ill-defined. Since IL-6 employs the cytokine receptor gp130 to primarily activate the STAT3 pathway, here we evaluate whether gp130-dependent STAT3 activation modulates atherosclerosis. METHODS High-fat diet-induced atherosclerosis was established in ApoE(-/-) mice crossed with gp130(F/F) knock-in mice displaying elevated gp130-dependent STAT3 activation and production of the APR protein, serum amyloid A (SAA). Also generated were gp130(F/F):Stat3(-/+):ApoE(-/-) mice displaying genetically-normalised STAT3 activation and SAA levels, and bone marrow chimeras involving ApoE(-/-) and gp130(F/F):ApoE(-/-) mice. At 10 weeks post high-fat diet, aortic atherosclerotic lesions, including the presence of CD68(+) macrophages, and plasma lipid and SAA profiles, were assessed. RESULTS Aortic plaque development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) mice were significantly reduced (3-fold, P < 0.001) compared to ApoE(-/-) littermates. By contrast, in gp130(F/F):ApoE(-/-) mice, atherosclerotic plaques contained augmented CD68(+) macrophage infiltrates, and plasma SAA levels were elevated, compared to ApoE(-/-) mice. Atherosclerotic lesion development and plasma triglyceride levels in gp130(F/F):ApoE(-/-) and gp130(F/F):Stat3(-/+):ApoE(-/-) mice were comparable, despite a significant (P < 0.05) reduction in macrophage numbers in lesions, and also plasma SAA levels, in gp130(F/F):Stat3(-/+):ApoE(-/-) mice. Aortic plaque development and plasma triglyceride levels were comparable in ApoE(-/-) mice reconstituted with gp130(F/F):ApoE(-/-) (ApoE(F/F:ApoE)) or ApoE(-/-) (ApoE(ApoE)) bone marrow cells. CONCLUSIONS Deregulation of gp130/STAT3 signalling augments the APR and macrophage infiltration during atherosclerosis without impacting on the development of aortic plaques.
Collapse
|
74
|
Caiello I, Minnone G, Holzinger D, Vogl T, Prencipe G, Manzo A, De Benedetti F, Strippoli R. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases. PLoS One 2014; 9:e107886. [PMID: 25271853 PMCID: PMC4182736 DOI: 10.1371/journal.pone.0107886] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023] Open
Abstract
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.
Collapse
Affiliation(s)
- Ivan Caiello
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gaetana Minnone
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Dirk Holzinger
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
- Institute of Immunology, University Hospital Muenster, Muenster, Germany
| | - Thomas Vogl
- Department of Paediatric Rheumatology and Immunology, University Children’s Hospital Muenster, Muenster, Germany
| | - Giusi Prencipe
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico S. Matteo Foundation/University of Pavia, Pavia, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- * E-mail: (FDB); (RS)
| | - Raffaele Strippoli
- Division of Rheumatology, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
- * E-mail: (FDB); (RS)
| |
Collapse
|
75
|
Sponholtz TR, Zhang X, Fontes JDT, Meigs JB, Cupples LA, Kiel DP, Hannan MT, McLean RR. Association between inflammatory biomarkers and bone mineral density in a community-based cohort of men and women. Arthritis Care Res (Hoboken) 2014; 66:1233-40. [PMID: 24375982 DOI: 10.1002/acr.22270] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/10/2013] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Based upon evidence in animal and in vitro studies, we tested the hypothesis that higher serum concentrations of the cytokines interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) and the inflammatory marker C-reactive protein (CRP) would be inversely associated with bone mineral density (BMD) in a community-based cohort of men and women, with the strongest associations among postmenopausal women not receiving menopause hormonal therapy (MHT). METHODS We ascertained fasting serum concentrations of IL-6, TNFα, and CRP and measured BMD at the femoral neck, trochanter, total femur, and spine (L2-L4) using dual x-ray absorptiometry in 2,915 members of the Framingham Offspring Study (1996-2001). We used multivariable linear regression to estimate the difference (β) in BMD at each bone site associated with a 1-unit increase in log-transformed serum concentrations of IL-6, TNFα, and CRP separately for men (n = 1,293), premenopausal women (n = 231), postmenopausal women receiving MHT (n = 498), and postmenopausal women not receiving MHT (n = 893). RESULTS Inflammatory biomarkers were not associated with BMD in men. Among premenopausal women, there were statistically significant, modest inverse associations between IL-6 and trochanter BMD (β = -0.030, P < 0.01) and between CRP and femoral neck (β = -0.015, P = 0.05) and trochanter BMD (β = -0.014, P = 0.04). TNFα was positively associated with spine BMD (β = 0.043, P = 0.01). In postmenopausal women receiving MHT, CRP was positively associated with femoral neck BMD (β = 0.011, P = 0.04). There were no associations among postmenopausal women not receiving MHT. CONCLUSION The lack of consistency in our results suggests that elevated circulating concentrations of inflammatory biomarkers may not be a risk factor for low BMD.
Collapse
Affiliation(s)
- Todd R Sponholtz
- Boston University School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
76
|
The interleukins IL-6 and IL-1Ra: a mediating role in the associations between BMI and birth weight? J Dev Orig Health Dis 2014; 1:310-8. [PMID: 25141934 DOI: 10.1017/s204017441000036x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biological mechanisms in the association between maternal body mass index (BMI) and birth weight are not well understood, but are likely to involve maternal plasma glucose levels and nutrient transport across the placenta, both important modulators of fetal growth. Adipose tissue contributes to circulating levels of interleukins that may affect glucose metabolism and possibly also placental transport of nutrients. We investigated possible mediating roles of Interleukin 6 (IL-6) and Interleukin 1 Receptor antagonist (IL-1Ra) in 208 pregnant women. Known and hypothesized dependencies between BMI in early pregnancy and fasting glucose, IL-1Ra and IL-6 at gestational weeks 30-32, and birth weight were specified in a path diagram. Standardized regression coefficients, expressing direct, indirect and total effects, were estimated by Bayesian path analysis. Mean (s.d.) BMI was 24.9 kg/m2 (4.2) and mean (s.d.) birth weight 3748 g (454). The total effect of BMI on birth weight was 0.24 (95% credibility interval (CrI) [0.12, 0.36]). The direct effect of IL-1Ra on birth weight was not statistically significant, but significant effects of BMI on IL-1Ra (0.61, 95% CrI [0.51, 0.72]), of IL-1Ra on fasting glucose (0.17, 95% CrI [0.01, 0.34]) and of fasting glucose on birth weight (0.14, 95% CrI [0.01, 0.27]) implied an indirect pathway from BMI via IL-1Ra on birth weight. Approximately 20% of the effect of BMI on birth weight was mediated through IL-1Ra. For IL-6, no such effects were found. Our results indicate that IL-1Ra may be a mediator in the association between BMI and birth weight.
Collapse
|
77
|
Ferrer B, Navia B, Giralt M, Comes G, Carrasco J, Molinero A, Quintana A, Señarís RM, Hidalgo J. Muscle-specific interleukin-6 deletion influences body weight and body fat in a sex-dependent manner. Brain Behav Immun 2014; 40:121-30. [PMID: 24632224 DOI: 10.1016/j.bbi.2014.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/04/2023] Open
Abstract
Interleukin-6 (IL-6) is a major cytokine controlling not only the immune system but also basic physiological variables such as body weight and metabolism. While central IL-6 is clearly implicated in the latter, the putative role of peripheral IL-6 controlling body weight remains unclear. We herewith report results obtained in muscle-specific IL-6 KO (mIL-6 KO) mice. mIL-6 KO male mice fed a high-fat diet (HFD, 58.4% kcal from fat) or a control diet (18%) gained less weight and body fat than littermate floxed male mice, while the opposite pattern was observed in female mice. Food intake was not affected by muscle IL-6 deficiency, but male and female mIL-6 KO mice were more and less active, respectively, in the hole-board test. Moreover, female mIL-6 KO mice did not control adequately their body temperature upon exposure to 4°C, suggesting a role of muscle IL-6 in energy expenditure. At least part of this regulatory role of muscle IL-6 may be mediated by the hypothalamus, as IL-6 deficiency regulated the expression of critical hypothalamic neuropeptides (NPY, AgRP, POMC, CRH and preproOX). Leptin and insulin changes cannot explain the phenotype of these mice. In summary, the present results demonstrate that muscle IL-6 controls body weight and body fat in a sex-specific fashion, influencing the expression of the main neuropeptides involved in energy homeostasis.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Belén Navia
- Department of Physiology, CIMUS-IDIS, University of Santiago de Compostela, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Javier Carrasco
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Albert Quintana
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Rosa M Señarís
- Department of Physiology, CIMUS-IDIS, University of Santiago de Compostela, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
78
|
Langdon JM, Yates SC, Femnou LK, McCranor BJ, Cheadle C, Xue QL, Vaulont S, Civin CI, Walston JD, Roy CN. Hepcidin-dependent and hepcidin-independent regulation of erythropoiesis in a mouse model of anemia of chronic inflammation. Am J Hematol 2014; 89:470-9. [PMID: 24415655 PMCID: PMC4200395 DOI: 10.1002/ajh.23670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 12/21/2022]
Abstract
Increased hepcidin antimicrobial peptide correlates with hypoferremia and anemia in various disease states, but its requirement for anemia of inflammation has not been adequately demonstrated. Anemia of inflammation is usually described as normocytic and normochromic, while diseases associated with over expression of hepcidin, alone, are often microcytic and hypochromic. These differences in erythrocyte parameters suggest anemia in many inflammatory states may not be fully explained by hepcidin-mediated iron sequestration. We used turpentine-induced sterile abscesses to model chronic inflammation in mice with targeted disruption of Hepcidin 1 [Hepc1 (-/-)] or its positive regulator, Interleukin-6 [IL-6 (-/-)], to determine whether these genes are required for features characteristic of anemia of inflammation. Although hemoglobin levels did not decline in Hepc1 (-/-) mice with sterile abscesses, erythrocyte numbers were significantly reduced compared to untreated Hepc1 (-/-) mice. In contrast, both hemoglobin concentration and erythrocyte number declined significantly in wild type and IL-6 (-/-) mice with sterile abscesses. Both Hepc1 (-/-) and IL-6 (-/-) mice had increased erythrocyte mean cell volume and mean cell hemoglobin following sterile abscesses, while wild types had no change. Thus, IL-6 (-/-) mice with sterile abscesses exhibit an intermediate phenotype between wild type and Hepc1 (-/-). Our results demonstrate the requirement of Hepc1 for the development of anemia in this rodent model. Simultaneously, our results demonstrate hepcidin-independent effects of inflammation on the suppression of erythropoiesis. Our results suggest chronic anemia associated with inflammation may benefit from interventions protecting erythrocyte number in addition to anti-hepcidin interventions aimed at enhancing iron availability.
Collapse
Affiliation(s)
- Jacqueline M. Langdon
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saiah C. Yates
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laurette K. Femnou
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bryan J. McCranor
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chris Cheadle
- Lowe Family Genomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qian-Li Xue
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sophie Vaulont
- Institut Cochin, Institut National de la Santé et de la Recherche Medicale U1016, Paris, France
| | - Curt I. Civin
- Center for Stem Cell Biology and Regenerative Medicine, Department of Pediatrics, University of Maryland, Baltimore, Maryland
- Center for Stem Cell Biology and Regenerative Medicine, Department of Physiology, University of Maryland, Baltimore, Maryland
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cindy N. Roy
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
79
|
Lee CC, Ho HC, Chien SH, Hsiao SH, Hung SK, Huang TT, Yu CC, Chang SM, Huang HH, Su YC. Association of acute phase protein-haptoglobin, and epithelial-mesenchymal transition in buccal cancer: a preliminary report. Clin Chem Lab Med 2014; 51:429-37. [PMID: 23093274 DOI: 10.1515/cclm-2012-0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/24/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aim of this study was to determine the influence of inflammation on acute phase protein and epithelial-mesenchymal transition (EMT) in buccal cancer. METHODS Western blotting was carried out to investigate the expression of haptoglobin and epithelial-mesenchymal transition in oral cancer cell lines with or without IL-6 stimulation. We studied patients with buccal cancer patients without distant metastasis at diagnosis. Correlation between cellular haptoglobin, EMT, and clinical characteristics of buccal cancer was analyzed to assess the prognostic value of cellular haptoglobin level and EMT. The relationship of haptoglobin, and EMT expression with survival was assessed using Cox proportional hazard models. RESULTS Western blotting analysis showed that increased haptoglobin protein was associated with overexpression of vimentin. Under IL-6 stimulation, overexpression of haptoglobin, EMT-associated motile phenotype was noted in OC2 cell lines. Overexpression of haptoglobin was also associated with an increased risk for locoregional recurrence [hazard ratio (HR) 1.04; p=0.011] after adjusting for age, gender, disease site, stage, and treatment modality. CONCLUSIONS Increased cellular expression of haptoglobin is associated with EMT in oral cancer cell lines and this phenomenon could be exaggerated with IL-6. Cellular expression of haptoglobin is related to locoregional recurrence rate in buccal cancer patients.
Collapse
Affiliation(s)
- Ching-Chih Lee
- Department of Otolaryngology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Assessment of lipocalin 2, clusterin, soluble tumor necrosis factor receptor-1, interleukin-6, homocysteine, and uric acid levels in patients with psoriasis. DISEASE MARKERS 2014; 2014:541709. [PMID: 24803721 PMCID: PMC3996950 DOI: 10.1155/2014/541709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 01/21/2023]
Abstract
Background. Chronic inflammation may play a role in psoriasis pathogenesis. Lipocalin 2, clusterin, soluble tumor necrosis factor receptor-1 (sTNFR-1), interleukin-6, homocysteine, and uric acid are inflammatory and/or biochemical markers. However, both the roles of these markers and the pathogenesis of psoriasis are unknown. Objective. The aim of this study was to investigate serum levels of lipocalin 2, clusterin, sTNFR-1, interleukin-6, homocysteine, and uric acid in patients and controls groups. Methods. Fifty-six patients with psoriasis and 33 healthy controls were included in the study. Serum concentrations of the markers were evaluated by ELISA. The Psoriasis Area and Severity Index (PASI) was evaluated in all psoriasis patients. Body mass index (BMI) was calculated by dividing weight (kg) by height (m) squared. Results. The serum value of lipocalin and sTNFR-1 were significantly higher in psoriasis patients than in controls (resp., P < 0.001, P < 0.05). The others showed no significant differences between psoriasis and the control groups (all of them P > 0.05). The mean PASI score in the patient group was 8.3 ± 6.5. Conclusions. These findings suggest that lipocalin 2 and sTNFR-1 might play a role in the pathogenesis of psoriasis and can be used as markers of the disease.
Collapse
|
81
|
Ahmed N, Zafar AU, Khan MA, Tahir S, Khan MI, Bashir H, Khan F, Sarwar S, Ilyas S, Husnain T. Matrix-assisted refolding and purification of placenta-derived recombinant human interleukin-6 produced inEscherichia coli. Biotechnol Appl Biochem 2014; 61:541-8. [DOI: 10.1002/bab.1205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/27/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Nadeem Ahmed
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Ahmad Usman Zafar
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Mohsin Ahmad Khan
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Saad Tahir
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Muhammad Islam Khan
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Hamid Bashir
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Faidad Khan
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Samreen Sarwar
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Sadaf Ilyas
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| | - Tayyab Husnain
- National Centre of Excellence in Molecular Biology; University of the Punjab; Lahore Pakistan
| |
Collapse
|
82
|
Monnerat-Cahli G, Trentin-Sonoda M, Guerra B, Manso G, Ferreira ACF, Silva DLSG, Coutinho DC, Carneiro-Ramos MS, Rodrigues DC, Cabral-da-Silva MC, Goldenberg RCS, Nascimento JHM, Campos de Carvalho AC, Medei E. Bone marrow mesenchymal stromal cells rescue cardiac function in streptozotocin-induced diabetic rats. Int J Cardiol 2014; 171:199-208. [PMID: 24374203 DOI: 10.1016/j.ijcard.2013.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/05/2013] [Accepted: 12/10/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES In the present study, we investigated whether MSC-transplantation can revert cardiac dysfunction in streptozotocin-induced diabetic rats and the immunoregulatory effects of MSC were examined. BACKGROUND Cardiac complications are one of the main causes of death in diabetes. Several studies have shown anti-diabetic effects of bone marrow mesenchymal stromal cells (MSC). METHODS/RESULTS The rats were divided in three groups: Non-diabetic, Diabetic and Diabetic-Treated with 5 × 10(6) MSC 4 weeks after establishment of diabetes. Four weeks after MSC-therapy, systemic metabolic parameters, immunological profile and cardiac function were assessed. MSC-transplantation was able to revert the hyperglycemia and body weight loss of the animals. In addition, after MSC-transplantation a decrease in corticosterone and IFN-γ sera levels without restoration of insulin and leptin plasma levels was observed. Also, MSC-therapy improved electrical remodeling, shortening QT and QTc in the ECG and action potential duration of left ventricular myocytes. No arrhythmic events were observed after MSC-transplantation. MSC-therapy rescued the cardiac beta-adrenergic sensitivity by increasing beta-1 adrenergic receptor expression. Both alpha and beta cardiac AMPK and p-AMPK returned to baseline values after MSC-therapy. However, total ERK1 and p-ERK1/2 were not different among groups. CONCLUSION The results indicate that MSC-therapy was able to rescue cardiac impairment induced by diabetes, normalize cardiac AMPK subunit expression and activity, decrease corticosterone and glycemia and exert systemic immunoregulation.
Collapse
Affiliation(s)
- Gustavo Monnerat-Cahli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mayra Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo Andre, Brasil
| | - Bárbara Guerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gabriel Manso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea C F Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diorney L S G Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Danielle C Coutinho
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Marcela S Carneiro-Ramos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brasil
| | - Deivid C Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mauricio C Cabral-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina C S Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Antonio C Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Cardiologia, Rio de Janeiro, Brasil
| | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| |
Collapse
|
83
|
Cobo C, Makosch K, Jung R, Kohlmann K, Knopf K. Enhanced Aeromonas salmonicida bacterin uptake and side effects caused by low frequency sonophoresis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 36:444-452. [PMID: 24378683 DOI: 10.1016/j.fsi.2013.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 12/12/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Low frequency sonophoresis (LFS) has been recognized as one of the most advanced technologies in transdermal delivery of substances, due to the modification of the stratum corneum lipid bilayer, in focal skin applications in mammals. Based on these findings, LFS has been suggested as a potential technology to be used for enhancement in immersion fish vaccination. In contrast to mammals where LFS is applied to discrete regions of the skin, in fish the whole individual needs to be exposed for practical purposes. The current study evaluated the impact of LFS at 37 kHz on the uptake of an Aeromonas salmonicida bacterin and side effects of the treatment in rainbow trout. Quantitative real time PCR (qPCR) and immunohistochemistry were used to examine the bacterin uptake into skin and gill tissue. Side effects were assessed by behavioural examination, histology and blood serum analysis. The sonication intensity of 171 mW/cm² was enough for increasing skin permeability, but caused heavy erratic swimming and gill haemorrhages. Sonication intensities as low as 105 mW/cm² did not modify skin permeability and enhanced the bacterin uptake into the gill tissue by factor 15 compared to conventional immersion. Following sonication, the gill permeability for the bacterin decreased after 20 min and 120 min by factor 3 and 2, respectively. However, during sonication, erratic swimming of the fish raised some concerns. Further reduction of the sonication intensity to 57 mW/cm² did not induce erratic swimming, and the bacterin uptake into the gill tissue was still increased by factor 3. In addition, a decreasing albumin-globulin ratio in the serum of the rainbow trout within 40 min revealed that LFS leads to an inflammatory response. Consequently, based on both increased bacterin uptake and the inflammatory response, low intensity LFS has the potential to enhance vaccine immunity without significant side effects.
Collapse
Affiliation(s)
- Cristóbal Cobo
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Faculty of Agriculture and Horticulture, Humboldt University of Berlin, Invaliden Str. 42, 10115 Berlin, Germany.
| | - Katarzyna Makosch
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Rainer Jung
- BANDELIN Electronic GmbH & Co. KG, Heinrichstraße 3-4, 12207 Berlin, Germany
| | - Klaus Kohlmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Klaus Knopf
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| |
Collapse
|
84
|
Leon LR, Dineen S, Blaha MD, Rodriguez-Fernandez M, Clarke DC. Attenuated thermoregulatory, metabolic, and liver acute phase protein response to heat stroke in TNF receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1421-32. [DOI: 10.1152/ajpregu.00127.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor (TNF) is considered an adverse mediator of heat stroke (HS) based on clinical studies showing high serum levels. However, soluble TNF receptors (sTNFR; TNF antagonists) were higher in survivors than nonsurvivors, and TNFR knockout (KO) mice showed a trend toward increased mortality, suggesting TNF has protective actions for recovery. We delineated TNF actions in HS by comparing thermoregulatory, metabolic, and inflammatory responses between B6129F2 (wild type, WT) and TNFR KO mice. Before heat exposure, TNFR KO mice showed ∼0.4°C lower core temperature (Tc; radiotelemetry), ∼10% lower metabolic rate (Mr; indirect calorimetry), and reduced plasma interleukin (IL)-1α and sIL-1RI than WT mice. KO mice selected warmer temperatures than WT mice in a gradient but remained hypothermic. In the calorimeter, both genotypes showed a similar heating rate, but TNFR KO maintained lower Tc and Mr than WT mice for a given heat exposure duration and required ∼30 min longer to reach maximum Tc (42.4°C). Plasma IL-6 increased at ∼3 h of recovery in both genotypes, but KO mice showed a more robust sIL-6R response. Higher sIL-6R in the KO mice was associated with delayed liver p-STAT3 protein expression and attenuated serum amyloid A3 (SAA3) gene expression, suggesting the acute phase response (APR) was attenuated in these mice. Our data suggest that the absence of TNF signaling induced a regulated hypothermic state in the KO mice, TNF-IL-1 interactions may modulate Tc and Mr during homeostatic conditions, and TNF modulates the APR during HS recovery through interactions with the liver IL-6-STAT3 pathway of SAA3 regulation.
Collapse
Affiliation(s)
- Lisa R. Leon
- Thermal Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shauna Dineen
- Thermal Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michael D. Blaha
- Thermal Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Maria Rodriguez-Fernandez
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; and
| | - David C. Clarke
- Department of Biological Engineering and Center for Cellular Decision Processes, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
85
|
Scheller J, Garbers C, Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 2013; 26:2-12. [PMID: 24325804 DOI: 10.1016/j.smim.2013.11.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/16/2022]
Abstract
Cytokines receptors exist in membrane bound and soluble form. A soluble form of the human IL-6R is generated by limited proteolysis and alternative splicing. The complex of IL-6 and soluble IL-6R stimulates target cells not stimulated by IL-6 alone, since they do not express the membrane bound IL-6R. We have named this process trans-signaling. Soluble gp130 is the natural inhibitor of IL-6/soluble IL-6R complex responses. Recombinant soluble gp130 protein is a molecular tool to discriminate between gp130 responses via membrane bound and soluble IL-6R responses. Neutralizing monoclonal antibodies for global blockade of IL-6 signaling and the sgp130Fc protein for selective blockade of IL-6 trans-signaling have been used in several animal models of human diseases. Using the sgp130Fc protein or sgp130Fc transgenic mice we demonstrate in models of inflammatory bowel disease, peritonitis, rheumatoid arthritis, atherosclerosis pancreatitis, colon cancer, ovarian cancer and pancreatic cancer, that IL-6 trans-signaling via the soluble IL-6R is the crucial step in the development and the progression of the disease. Therefore, sgp130Fc is a novel therapeutic agent for the treatment of chronic inflammatory diseases and cancer and it undergoes phase I clinical trials as an anti-inflammatory drug since June 2013.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Garbers
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
86
|
Gao LN, Cui YL, Wang QS, Wang SX. Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:772-782. [PMID: 23954279 DOI: 10.1016/j.jep.2013.07.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/13/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Systemic inflammatory response syndrome (SIRS), leading to dire consequences, is a serious and fatal disease in clinic. Danhong injection (DHI), one of the most popular medications for coronary heart disease and cerebral ischemia, plays pharmacological actions through inhibiting local inflammation. Nevertheless, the anti-inflammatory effect of DHI has not been reported before and has not been fully clarified. AIM OF THE STUDY In this study, a model of systemic acute inflammatory reaction was induced by lipopolysaccharide (LPS) to investigate whether DHI could be applied to SIRS through the anti-inflammatory effect. MATERIAL AND METHODS The anti-inflammatory effect of DHI in vivo was evaluated in ICR mice pretreated intraperitoneally (i.p.) with LPS (1mg/kg) and the serum, liver and kidney were collected. Interleukin (IL)-6, tumor necrosis factor (TNF)-α and monocyte chemotactic protein (MCP-1) in serum were measured by enzyme-linked immunosorbent assay (ELISA) and the mRNA expressions of inducible NO synthase (iNOS), IL-6, interleukin (IL)-1β, MCP-1 in mice liver and kidney were analyzed by quantitative real-time reverse-transcription polymerase chain reaction (real-time RT-PCR). Meanwhile, Proteome profiler array was used to screen the acute phase proteins, cytokines and chemokines activated in the acute inflammation. The inflammatory model of macrophages stimulated by LPS (0.2μg/mL) was used to evaluate the anti-inflammatory mechanism of DHI in vitro. The secretion of nitric oxide (NO) was measured by the Griess reagent system. The productions of prostaglandin E2 (PGE2), IL-6, TNF-α and MCP-1 were detected using ELISA, and the protein expression of cyclooxygenase (COX)-2 was determined by cell-based ELISA. As well, the mRNA expressions of these inflammatory factors were detected by real-time RT-PCR. RESULTS DHI could attenuate the inflammatory reaction via decreasing 20 cytokines and acute phase proteins analyzed by Proteome profile array in serum. The secretions of IL-6, TNF-α and MCP-1 in serum were coincidence with the result of Proteome profile array. Meanwhile, the mRNA expressions of iNOS, IL-6, IL-1β, MCP-1 in mice liver and kidney were significantly reduced by DHI. Experiments performed in vitro further revealed that the productions of NO, PGE2 and the mRNA expressions of iNOS, COX-2 were notably inhibited by DHI. Cell-based ELISA revealed that the COX-2 protein expression was diminished by DHI. The results of ELISA demonstrated that DHI significantly down-regulated the protein productions of IL-6 and MCP-1. Furthermore, the mRNA expressions of iNOS, COX-2, TNF-α, IL-1β, IL-6 and MCP-1 analyzed by real-time RT-PCR were suppressed by DHI. CONCLUSIONS These results demonstrate that DHI exerts the protective effect through inhibiting the expressions of iNOS, COX-2, IL-1β, IL-6, MCP-1 and TNF-α, which elucidate that DHI may be a strongly multi-target Chinese medicine injection on improving the inflammatory diseases.
Collapse
Affiliation(s)
- Li-Na Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | | | | | | |
Collapse
|
87
|
Hamzic N, Tang Y, Eskilsson A, Kugelberg U, Ruud J, Jönsson JI, Blomqvist A, Nilsberth C. Interleukin-6 primarily produced by non-hematopoietic cells mediates the lipopolysaccharide-induced febrile response. Brain Behav Immun 2013; 33:123-30. [PMID: 23827828 DOI: 10.1016/j.bbi.2013.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
Interleukin-6 (IL-6) is critical for the lipopolysaccharide (LPS)-induced febrile response. However, the exact source(s) of IL-6 involved in regulating the LPS-elicited fever is still to be identified. One known source of IL-6 is hematopoietic cells, such as monocytes. To clarify the contribution of hematopoietically derived IL-6 to fever, we created chimeric mice expressing IL-6 selectively either in cells of hematopoietic or, conversely, in cells of non-hematopoietic origin. This was performed by extinguishing hematopoietic cells in wild-type (WT) or IL-6 knockout (IL-6 KO) mice by whole-body irradiation and transplanting them with new stem cells. Mice on a WT background but lacking IL-6 in hematopoietic cells displayed normal fever to LPS and were found to have similar levels of IL-6 protein in the cerebrospinal fluid (CSF) and in plasma and of IL-6 mRNA in the brain as WT mice. In contrast, mice on an IL-6 KO background, but with intact IL-6 production in cells of hematopoietic origin, only showed a minor elevation of the body temperature after peripheral LPS injection. While they displayed significantly elevated levels of IL-6 both in plasma and CSF compared with control mice, the increase was modest compared with that seen in LPS injected mice on a WT background, the latter being approximately 20 times larger in magnitude. These results suggest that IL-6 of non-hematopoietic origin is the main source of IL-6 in LPS-induced fever, and that IL-6 produced by hematopoietic cells only plays a minor role.
Collapse
Affiliation(s)
- Namik Hamzic
- Linköping University, Faculty of Health Sciences, Department of Clinical and Experimental Medicine, Division of Cell Biology, SE-581 85 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Out of balance--systemic iron homeostasis in iron-related disorders. Nutrients 2013; 5:3034-61. [PMID: 23917168 PMCID: PMC3775241 DOI: 10.3390/nu5083034] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia) affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism.
Collapse
|
89
|
Li W, Fan T, Zhang Y, Niu X, Xing W. Effect of chelerythrine against endotoxic shock in mice and its modulation of inflammatory mediators in peritoneal macrophages through the modulation of mitogen-activated protein kinase (MAPK) pathway. Inflammation 2013; 35:1814-24. [PMID: 22825879 DOI: 10.1007/s10753-012-9502-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A quaternary benzo [c] alkaloid chelerythrine (CHE), which is a traditional herbal prescription, has been used for the treatment of various inflammatory diseases. To gain insight into the anti-inflammatory effect and molecular mechanisms underlying the anti-inflammatory activity of CHE, we used experimentally induced mice endotoxic shock moled and lipopolysaccharide (LPS)-induced murine peritoneal macrophages to examine the anti-inflammatory function of CHE. CHE displayed significant anti-inflammatory effects in experimentally induced mice endotoxic shock model in vivo through inhibition of LPS-induced tumor necrosis factor-alpha (TNF-α) level and nitric oxide (NO) production in serum. Additionally, our data suggest that CHE treatment inhibits LPS-induced TNF-α level and NO production in LPS-induced murine peritoneal macrophages through selective inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. Moreover, the effects of CHE on NO and cytokine TNF-α production can possibly be explained by the role of p38 MAPK and ERK1/2 in the regulation of inflammatory mediators expression.
Collapse
Affiliation(s)
- Weifeng Li
- School of Medicine, Xi'an Jiaotong University, No. 76 Western Yanta Road, Xi'an City, Shaanxi Province 710061, People's Republic of China.
| | | | | | | | | |
Collapse
|
90
|
Plasminogen activator inhibitor-1 is increased in colonic epithelial cells from patients with colitis-associated cancer. J Crohns Colitis 2013; 7:403-11. [PMID: 22921465 PMCID: PMC5279899 DOI: 10.1016/j.crohns.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with long-term ulcerative colitis are at risk for developing colorectal cancer. METHODS Archival formalin-fixed paraffin-embedded tissue from ulcerative colitis patients who underwent a colectomy for high-grade dysplasia or carcinoma was examined for changes in expression of plasminogen activator inhibitor-1 (PAI-1) as well as other mediators of inflammation-associated cancer. Epithelia from areas of colons that showed histologic evidence of carcinoma, high-grade dysplasia, and epithelia that were not dysplastic or malignant but did contain evidence of prior inflammation (quiescent colitis) was microdissected using laser capture microscopy. mRNA was extracted from the microdissected tissue and PCR array analysis was performed. To extend our findings, PAI-1 protein levels were determined using immunohistochemistry. RESULTS The mRNA expression of PAI-1 is increased 6-fold (p=0.02) when comparing the carcinoma group to the quiescent colitis group; increases were also observed in NFKB2, REL, SRC, and VEGFA. The protein levels of PAI-1 are increased by 50% (p<0.001) in high-grade dysplasia and by 60% (p<0.001) in carcinoma when compared to the quiescent colitis group. CONCLUSIONS The increase in PAI-1 in high-grade dysplasia and carcinoma suggests a functional role for PAI-1 in malignant transformation in colitis-associated cancer. PAI-1 could also prove a useful diagnostic marker to identify patients at risk for neoplasia and it may be a useful therapeutic target to treat colitis-associated cancer.
Collapse
|
91
|
Schnabel RB, Yin X, Larson MG, Yamamoto JF, Fontes JD, Kathiresan S, Rong J, Levy D, Keaney JF, Wang TJ, Murabito JM, Vasan RS, Benjamin EJ. Multiple inflammatory biomarkers in relation to cardiovascular events and mortality in the community. Arterioscler Thromb Vasc Biol 2013; 33:1728-33. [PMID: 23640499 DOI: 10.1161/atvbaha.112.301174] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Evidence suggests that chronic low-grade inflammation and oxidative stress are related to cardiovascular disease (CVD) and mortality. APPROACH AND RESULTS We examined 11 established and novel biomarkers representing inflammation and oxidative stress (C-reactive protein, fibrinogen, interleukin-6, intercellular adhesion molecule-1, lipoprotein-associated phospholipase-A2 [mass and activity], monocyte chemoattractant protein-1, myeloperoxidase, CD40 ligand, P-selectin, and tumor necrosis factor receptor II [TNFRII]) in relation to incident major CVD and mortality in the community. We studied 3035 participants (mean age, 61 ± 9 years; 53% women). During follow-up (median, 8.9 years), 253 participants experienced a CVD event and 343 died. C-reactive protein (hazard ratio [HR] reported per SD ln-transformed biomarker, 1.18; 95% confidence interval [CI], 1.02-1.35; nominal P=0.02) and TNFRII (HR, 1.15; 95% CI, 1.01-1.32; nominal P=0.04) were retained in multivariable-adjusted models for major CVD, but were not significant after adjustment for multiple testing. The biomarkers related to mortality were TNFRII (HR, 1.33; 95% CI, 1.19-1.49; P<0.0001), ICAM-1 (HR, 1.24; 95% CI, 1.12-1.37; P<0.0001), and interleukin-6 (HR, 1.25; 95% CI, 1.12-1.39; P<0.0001). The addition of these markers to the model, including traditional risk factors, increased discrimination and reclassification for risk of death (P<0.0001), but not for CVD. CONCLUSIONS Of 11 inflammatory biomarkers tumor necrosis factor receptor II was related to cardiovascular disease and mortality in the Framingham Heart Study. The combination of TNFRII with C-reactive protein in relation to CVD and with interleukin-6 to mortality increased the predictive ability in addition to CVD risk factors for total mortality but not for incident CVD.
Collapse
Affiliation(s)
- Renate B Schnabel
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Samavedam UKS, Kalies K, Scheller J, Sadeghi H, Gupta Y, Jonkman MF, Schmidt E, Westermann J, Zillikens D, Rose-John S, Ludwig RJ. Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J Autoimmun 2013; 40:74-85. [DOI: 10.1016/j.jaut.2012.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
|
93
|
Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 2012; 241:159-68. [PMID: 23261764 DOI: 10.1016/j.expneurol.2012.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6.
Collapse
Affiliation(s)
- Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Pini M, Castellanos KJ, Rhodes DH, Fantuzzi G. Obesity and IL-6 interact in modulating the response to endotoxemia in mice. Cytokine 2012; 61:71-7. [PMID: 23010503 DOI: 10.1016/j.cyto.2012.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/27/2012] [Indexed: 01/07/2023]
Abstract
Obesity is associated with elevated levels of IL-6. High IL-6 is prognostic of mortality in sepsis, while controversial data link obesity to sepsis outcome. We used Lean and diet-induced obese (DIO) WT and IL-6 KO mice to investigate the interaction between obesity and IL-6 in endotoxemia. Circulating levels of IL-6 were significantly higher in WT DIO versus WT Lean mice receiving LPS (2.5 μg/mouse, ip). Obesity lead to greater weight loss in response to LPS, with IL-6 deficiency being partially protective. Plasma TNFα, IFNγ, Galectin-3 and leptin were significantly elevated in response to LPS and were each differentially affected by obesity and/or IL-6 deficiency. Plasma Galectin-1 and adiponectin were significantly suppressed by LPS, with obesity and IL-6 deficiency modulating the response. However, LPS comparably increased IL-10 levels in each group. Leukopenia with relative neutrophilia and thrombocytopenia developed in each group after injection of LPS, with obesity and genotype affecting the kinetics, but not the magnitude, of the response. Hepatic induction of the acute-phase protein SAA by LPS was not affected by obesity or IL-6 deficiency, although baseline levels were highest in WT DIO mice. Injection of LPS significantly increased hepatic mRNA expression of PAI-1 in Lean WT and Lean KO mice, while it suppressed the high baseline levels observed in the liver of DIO WT and DIO KO mice. Thus, both IL-6 and obesity modulate the response to endotoxemia, suggesting a complex interaction that needs to be considered when evaluating the effect of obesity on the outcome of septic patients.
Collapse
Affiliation(s)
- Maria Pini
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, United States
| | | | | | | |
Collapse
|
95
|
Romano M, Faggioni R, Sironi M, Sacco S, Echtenacher B, Di Santo E, Salmona M, Ghezzi P. Carrageenan-induced acute inflammation in the mouse air pouch synovial model. Role of tumour necrosis factor. Mediators Inflamm 2012; 6:32-8. [PMID: 18472831 PMCID: PMC2365839 DOI: 10.1080/09629359791901] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We used the mouse air pouch model of inflammation to study the interaction between cytokines,
prostaglandin E2 (PGE2) and cell migration during the various phases of acute local inflammation induced by carrageenan. In serum, the levels of interleukin 1 (IL-1), interleukin 6 (IL-6), tumour necrosis factor (TNF), serum amiloid-A (SAA) and Fe++ were never different from controls, indicating that no systemic inflammatory changes were induced. Locally the exudate volume and the number of leukocytes recruited into the pouch increased progressively until 7 days after carrageenan. The same was true for PGE2 production. We could not measure IL-1 but the production of IL-6 and TNF reached a maximum after 5-24 h then quickly decreased. Anti-TNF antibodies inhibited cell migration by 50% 24 h after treatment. Pretreatment with interleukin 10 (IL-10) inhibited TNF production almost completely and cell migration by 60%. Carrageenan-induced inflammation was modulated by anti-inflammatory drugs. Pretreatment with dexamethasone (DEX) or indomethacin (INDO) inhibited cell migration and reduced the concentration of TNF in the exudate. Production of
PGE2 or vascular permeability did not correlate with the number of cells in the pouch. Local TNF seems to play an important role in this model, particularly for leukocyte migration in the first phase of the inflammatory process. In conclusion, the air pouch seems to be a good model for studying the regulation of the early events of local inflammation, particularly the role of cytokines and cell migration.
Collapse
Affiliation(s)
- M Romano
- Istituto di Ricerche Farmacologiche "Mario Negri" Via Eritrea 62 Milan 20157 Italy
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Pedroso FE, Spalding PB, Cheung MC, Yang R, Gutierrez JC, Bonetto A, Zhan R, Chan HL, Namias N, Koniaris LG, Zimmers TA. Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia. J Cachexia Sarcopenia Muscle 2012; 3:199-211. [PMID: 22476919 PMCID: PMC3424191 DOI: 10.1007/s13539-012-0062-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/15/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Burn injury results in a chronic inflammatory, hypermetabolic, and hypercatabolic state persisting long after initial injury and wound healing. Burn survivors experience a profound and prolonged loss of lean body mass, fat mass, and bone mineral density, associated with significant morbidity and reduced quality of life. Understanding the mechanisms responsible is essential for developing therapies. A complete characterization of the pathophysiology of burn cachexia in a reproducible mouse model was lacking. METHODS Young adult (12-16 weeks of age) male C57BL/6J mice were given full thickness burns using heated brass plates or sham injury. Food and water intake, organ and muscle weights, and muscle fiber diameters were measured. Body composition was determined by Piximus. Plasma analyte levels were determined by bead array assay. RESULTS Survival and weight loss were dependent upon burn size. The body weight nadir in burned mice was 14 days, at which time we observed reductions in total body mass, lean carcass mass, individual muscle weights, and muscle fiber cross-sectional area. Muscle loss was associated with increased expression of the muscle ubiquitin ligase, MuRF1. Burned mice also exhibited reduced fat mass and bone mineral density, concomitant with increased liver, spleen, and heart mass. Recovery of initial body weight occurred at 35 days; however, burned mice exhibited hyperphagia and polydipsia out to 80 days. Burned mice had significant increases in serum cytokine, chemokine, and acute phase proteins, consistent with findings in human burn subjects. CONCLUSIONS This study describes a mouse model that largely mimics human pathophysiology following severe burn injury. These baseline data provide a framework for mouse-based pharmacological and genetic investigation of burn-injury-associated cachexia.
Collapse
Affiliation(s)
- Felipe E Pedroso
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th. Street BLSB 306, Philadelphia, PA, 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
McGeough MD, Pena CA, Mueller JL, Pociask DA, Broderick L, Hoffman HM, Brydges SD. Cutting edge: IL-6 is a marker of inflammation with no direct role in inflammasome-mediated mouse models. THE JOURNAL OF IMMUNOLOGY 2012; 189:2707-11. [PMID: 22904305 DOI: 10.4049/jimmunol.1101737] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-6 is a known downstream target of IL-1β and is consistently increased in serum from patients with NLRP3 inflammasome-mediated conditions. Therefore, IL-6 could be a therapeutic target in the treatment of IL-1β-provoked inflammation. IL-6 was increased in serum with accompanying neutrophilia in tissues of an inducible mouse model of Muckle-Wells syndrome. However, an IL-6-null background failed to provide phenotypic rescue and did not significantly impact inflammatory cytokine levels. In a second model of IL-1β-driven inflammation, NLRP3 activation by monosodium urate crystals similarly increased IL-6. Consistent with our Muckle-Wells syndrome model, ablation of IL-6 did not impact an acute neutrophilic response in this in vivo evaluation of gouty arthritis. Taken together, our results indicate that IL-6 is a reliable marker of inflammation, with no direct role in inflammasome-mediated disease.
Collapse
Affiliation(s)
- Matthew D McGeough
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and gestational disorders. J Reprod Immunol 2012; 95:1-14. [PMID: 22819759 DOI: 10.1016/j.jri.2012.05.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/30/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
IL6 is a multifunctional cytokine with pivotal roles in the inflammatory response and in directing T cell differentiation in adaptive immunity. IL6 is widely expressed in the female reproductive tract and gestational tissues, and exerts regulatory functions in embryo implantation and placental development, as well as the immune adaptations required to tolerate pregnancy. Here, we summarise the current understanding of how membrane-bound and soluble receptors mediate IL6 signalling to regulate leukocytes and non-haemopoietic cells. We review the published literature regarding the expression and actions of IL6 in the uterus, decidua and placenta, and studies implicating this cytokine in pregnancy disorders. Elevated IL6 is frequently evident in the altered cytokine profiles characteristic of unexplained infertility, recurrent miscarriage, preeclampsia and preterm delivery. Notably, there is compelling evidence indicating altered systemic IL6 trans-signalling in women prone to recurrent miscarriage, with excessive IL6 bioavailability potentially inhibiting generation of CD4+ T regulatory cells required for pregnancy tolerance. Insufficient local IL6 may also contribute to fetal loss, since IL6 expression is reduced in the endometrium of women with recurrent miscarriage, and in the fetal-placental tissue of CBA×DBA/2 mice. Consistent with the role of IL6 in key reproductive events, Il6 null mutant mice exhibit elevated fetal resorption and delayed parturition. Investigation of the association between IL6 signalling components and T cell responses in pregnant women, as well as detailed analysis of the maternal immune response in IL6-deficient mice, is now required to define the mechanisms by which this cytokine exerts influence on reproductive success.
Collapse
Affiliation(s)
- Jelmer R Prins
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | | | | |
Collapse
|
99
|
Jang SY, Shin YK, Lee HY, Park JY, Suh DJ, Kim JK, Bae YS, Park HT. Local production of serum amyloid a is implicated in the induction of macrophage chemoattractants in Schwann cells during wallerian degeneration of peripheral nerves. Glia 2012; 60:1619-28. [PMID: 22777957 DOI: 10.1002/glia.22382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/07/2012] [Indexed: 02/03/2023]
Abstract
The elevation of serum levels of serum amyloid A (SAA) has been regarded as an acute reactive response following inflammation and various types of injuries. SAA from the liver and extrahepatic tissues plays an immunomodulatory role in a variety of pathophysiological conditions. Inflammatory cytokines in the peripheral nerves have been implicated in the Wallerian degeneration of peripheral nerves after injury and in certain types of inflammatory neuropathies. In the present study, we found that a sciatic nerve axotomy could induce an increase of SAA1 and SAA3 mRNA expression in sciatic nerves. Immunohistochemical staining showed that Schwann cells are the primary sources of SAA production after nerve injury. In addition, interleukin-6-null mice, but not tumor necrosis factor-α-null mice showed a defect in the production of SAA1 in sciatic nerve following injury. Dexamethasone treatment enhanced the expression and secretion of SAA1 and SAA3 in sciatic nerve explants cultures, suggesting that interleukin-6 and corticosteroids might be major regulators for SAA production in Schwann cells following injury. Moreover, the stimulation of Schwann cells with SAA1 elicited the production of the macrophage chemoattractants, Ccl2 and Ccl3, in part through a G-protein coupled receptor. Our findings suggest that locally produced SAA might play an important role in Wallerian degeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- So Young Jang
- Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Minogue AM, Barrett JP, Lynch MA. LPS-induced release of IL-6 from glia modulates production of IL-1β in a JAK2-dependent manner. J Neuroinflammation 2012; 9:126. [PMID: 22697788 PMCID: PMC3418561 DOI: 10.1186/1742-2094-9-126] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Compelling evidence has implicated neuroinflammation in the pathogenesis of a number of neurodegenerative conditions. Chronic activation of both astrocytes and microglia leads to excessive secretion of proinflammatory molecules such as TNF α, IL-6 and IL-1 β with potentially deleterious consequences for neuronal viability. Many signaling pathways involving the mitogen-activated protein kinases (MAPKs), nuclear factor κ B (NF κ B) complex and the Janus kinases (JAKs)/signal transducers and activators of transcription (STAT)-1 have been implicated in the secretion of proinflammatory cytokines from glia. We sought to identify signaling kinases responsible for cytokine production and to delineate the complex interactions which govern time-related responses to lipopolysaccharide (LPS). METHODS We examined the time-related changes in certain signaling events and the release of proinflammatory cytokines from LPS-stimulated co-cultures of astrocytes and microglia isolated from neonatal rats. RESULTS TNF α was detected in the supernatant approximately 1 to 2 hours after LPS treatment while IL-1 β and IL-6 were detected after 2 to 3 and 4 to 6 hours, respectively. Interestingly, activation of NF κ B signaling preceded release of all cytokines while phosphorylation of STAT1 was evident only after 2 hours, indicating that activation of JAK/STAT may be important in the up-regulation of IL-6 production. Additionally, incubation of glia with TNF α induced both phosphorylation of JAK2 and STAT1 and the interaction of JAK2 with the TNF α receptor (TNFR1). Co-treatment of glia with LPS and recombinant IL-6 protein attenuated the LPS-induced release of both TNF α and IL-1 β while potentiating the effect of LPS on suppressor of cytokine signaling (SOCS)3 expression and IL-10 release. CONCLUSIONS These data indicate that TNF α may regulate IL-6 production through activation of JAK/STAT signaling and that the subsequent production of IL-6 may impact on the release of TNF α, IL-1 β and IL-10.
Collapse
Affiliation(s)
- Aedín M Minogue
- Trinity College Institute for Neuroscience, Lloyd building, University of Dublin, Trinity College, College Green, Dublin 2, Ireland.
| | | | | |
Collapse
|