51
|
Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, Patterson A, Smith AM, Chang CH, Liu Z, Artyomov MN, Pearce EL, Cella M, Pearce EJ. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity 2017; 44:1325-36. [PMID: 27332732 DOI: 10.1016/j.immuni.2016.06.006] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/24/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
Abstract
Greater understanding of the complex host responses induced by type 1 interferon (IFN) cytokines could allow new therapeutic approaches for diseases in which these cytokines are implicated. We found that in response to the Toll-like receptor-9 agonist CpGA, plasmacytoid dendritic cells (pDC) produced type 1 IFNs, which, through an autocrine type 1 IFN receptor-dependent pathway, induced changes in cellular metabolism characterized by increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS). Direct inhibition of FAO and of pathways that support this process, such as fatty acid synthesis, prevented full pDC activation. Type 1 IFNs also induced increased FAO and OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO and OXPHOS in virus-infected cells. Increased FAO and OXPHOS in response to type 1 IFNs was regulated by PPARα. Our findings reveal FAO, OXPHOS and PPARα as potential targets to therapeutically modulate downstream effects of type 1 IFNs.
Collapse
Affiliation(s)
- Duojiao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - David E Sanin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Qiongyu Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jing Qiu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Michael D Buck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Annette Patterson
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Amber M Smith
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chih-Hao Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiping Liu
- Department of Biomedical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erika L Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
52
|
Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol 2017; 95:870-877. [PMID: 28875977 DOI: 10.1038/icb.2017.72] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
Targeting survival mechanisms of immune cells may provide an avenue for immune intervention to dampen unwanted responses (e.g. autoimmunity, immunopathology and transplant rejection) or enhance beneficial ones (e.g. immune deficiency, microbial defence and cancer immunotherapy). The selective survival mechanisms of the various immune cell types also avails the possibility of specific tailoring of such interventions. Here, we review the role of the BCL-2 anti-apoptotic family members (BCL-2, BCL-XL, BCL-W, MCL-1 and A1) on cell death/survival of the major immune cell types, for example, T, NK, B, dendritic cell (DC) lineages. There is both selectivity and redundancy among this family. Selectivity comes partly from the expression levels in each of the cell types. For example, plasmacytoid DC express abundant BCL-2 and are susceptible to BCL-2 antagonism or deficiency, whereas conventional DC express abundant A1 and are susceptible to A1 deficiency. There is, however, also functional redundancy; for example, overexpression of MCL-1 can override BCL-2 antagonism in plasmacytoid DC. Moreover, susceptibility to another anti-apoptotic family member can be unmasked, when one or other member is removed. These dual principles of selectivity and redundancy should guide the use of antagonists for manipulating immune cells.
Collapse
Affiliation(s)
- Emma M Carrington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Daniel H Gray
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas D Huntington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew M Lew
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
53
|
Nash WT, Gillespie AL, Brown MG. Murine Cytomegalovirus Disrupts Splenic Dendritic Cell Subsets via Type I Interferon-Dependent and -Independent Mechanisms. Front Immunol 2017; 8:251. [PMID: 28337202 PMCID: PMC5343017 DOI: 10.3389/fimmu.2017.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DC) are well-known modulators of immunity. This heterogeneous population is composed of defined subsets that exhibit functional specialization and are critical in initiating responses to pathogens. As such, many infectious agents employ strategies to disrupt DC functioning in attempts to evade the immune system. In some instances, this manifests as an outright loss of these cells. Previous work has suggested that, in the absence of an efficient natural killer (NK) cell response, murine cytomegalovirus (MCMV) induces large amounts of interferon (IFN)-I. This heightened IFN-I response is thought to contribute to conventional DC (cDC) loss and delayed development of T cell immunity. However, the precise role of IFN-I in such cDC loss remains unclear. We investigated the effects of licensed NK cells and IFN-I signaling on splenic cDC subsets during MCMV infection and found that a licensed NK cell response partially protects cDC numbers, but does not prevent increases in serum IFN-I. This suggested that high residual IFN-I could contribute to cDC loss. Therefore, we used multiple strategies to modulate IFN-I signaling during MCMV infection including plasmacytoid DC depletion, IFN-I receptor (IFNAR) blockade, and genetic ablation of IFNAR expression. Interestingly, restriction of IFN-I signals did not substantially preserve either CD8+ or CD4+ DC total numbers, but resulted in significant retention and/or accumulation of the splenic CD8− CD4− [double negative (DN)] subset. However, the DN DC effect manifested in a DC-extrinsic manner since IFNAR-deficient cells were not preferentially retained over their IFNAR wild-type counterparts in a mixed-chimera setting. Our results show that IFN-I signaling is not responsible for overt cDC toxicity in the setting of acute MCMV infection and emphasize that additional mechanisms contribute to DC loss and require exploration.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
54
|
Furuta Y, Tsai SH, Kinoshita M, Fujimoto K, Okumura R, Umemoto E, Kurashima Y, Kiyono H, Kayama H, Takeda K. E-NPP3 controls plasmacytoid dendritic cell numbers in the small intestine. PLoS One 2017; 12:e0172509. [PMID: 28225814 PMCID: PMC5321438 DOI: 10.1371/journal.pone.0172509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/05/2017] [Indexed: 01/17/2023] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) performs multiple functions including activation and induction of apoptosis of many cell types. The ATP-hydrolyzing ectoenzyme ecto-nucleotide pyrophosphatase/phosphodiesterase 3 (E-NPP3) regulates ATP-dependent chronic allergic responses by mast cells and basophils. However, E-NPP3 is also highly expressed on epithelial cells of the small intestine. In this study, we showed that E-NPP3 controls plasmacytoid dendritic cell (pDC) numbers in the intestine through regulation of intestinal extracellular ATP. In Enpp3-/- mice, ATP concentrations were increased in the intestinal lumen. pDC numbers were remarkably decreased in the small intestinal lamina propria and Peyer's patches. Intestinal pDCs of Enpp3-/- mice showed enhanced cell death as characterized by increases in annexin V binding and expression of cleaved caspase-3. pDCs were highly sensitive to ATP-induced cell death compared with conventional DCs. ATP-induced cell death was abrogated in P2rx7-/- pDCs. Accordingly, the number of intestinal pDCs was restored in Enpp3-/- P2rx7-/- mice. These findings demonstrate that E-NPP3 regulates ATP concentration and thereby prevents the decrease of pDCs in the small intestine.
Collapse
Affiliation(s)
- Yoki Furuta
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shih-Han Tsai
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kosuke Fujimoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yosuke Kurashima
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- * E-mail:
| |
Collapse
|
55
|
CD8 + T Cells Orchestrate pDC-XCR1 + Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming. Immunity 2017; 46:205-219. [PMID: 28190711 DOI: 10.1016/j.immuni.2017.01.003] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8+ T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8+ T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8+ T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1+ DCs, thereby optimizing XCR1+ DC maturation and cross-presentation. These data support a model in which CD8+ T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition.
Collapse
|
56
|
De Beuckelaer A, Grooten J, De Koker S. Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends Mol Med 2017; 23:216-226. [PMID: 28185789 DOI: 10.1016/j.molmed.2017.01.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have emerged as potent tools to elicit antitumor T cell immunity. They are characterized by a strong induction of type I interferons (IFNs), potent inflammatory cytokines affecting T cell differentiation and survival. Recent reports have attributed opposing roles for type I IFNs in modulating CD8+ T cell immunity to mRNA vaccines, from profoundly stimulatory to strongly inhibitory. The mechanisms behind this duality are unclear. Disentangling the factors governing the beneficial or detrimental impact of type I IFNs on CD8+ T cell responses is vital to the design of mRNA vaccines of increased potency. In light of recent advancements regarding the complex role of type I IFNs in regulating CD8+ T cell immunity to infectious diseases, we posit that the dual outcome of type I IFNs on CD8+ T cell responses to mRNA vaccination is determined by the timing and intensity of type I IFN induction relative to T cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ans De Beuckelaer
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cytokine Receptor Laboratory, Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
57
|
Higher Serum Levels of Type I Interferon Receptor in Adults with Chronic Hepatitis B Leading to Hepatitis B Surface Antigen Clearance. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.41319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
58
|
Transcription factor Zeb2 regulates commitment to plasmacytoid dendritic cell and monocyte fate. Proc Natl Acad Sci U S A 2016; 113:14775-14780. [PMID: 27930303 DOI: 10.1073/pnas.1611408114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.
Collapse
|
59
|
Acute Liver Damage Associated with Innate Immune Activation in a Small Nonhuman Primate Model of Hepacivirus Infection. J Virol 2016; 90:9153-62. [PMID: 27489267 DOI: 10.1128/jvi.01051-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Despite its importance in shaping adaptive immune responses, viral clearance, and immune-based inflammation, tissue-specific innate immunity remains poorly characterized for hepatitis C virus (HCV) infection due to the lack of access to acutely infected tissues. In this study, we evaluated the impact of natural killer (NK) cells and myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells on control of virus replication and virus-induced pathology caused by another, more rapidly resolving hepacivirus, GB virus B (GBV-B), in infections of common marmosets. High plasma and liver viral loads and robust hepatitis characterized acute GBV-B infection, and while viremia was generally cleared by 2 to 3 months postinfection, hepatitis and liver fibrosis persisted after clearance. Coinciding with peak viral loads and liver pathology, the levels of NK cells, mDCs, and pDCs in the liver increased up to 3-fold. Although no obvious numerical changes in peripheral innate cells occurred, circulating NK cells exhibited increased perforin and Ki67 expression levels and increased surface expression of CXCR3. These data suggested that increased NK cell arming and proliferation as well as tissue trafficking may be associated with influx into the liver during acute infection. Indeed, NK cell frequencies in the liver positively correlated with plasma (R = 0.698; P = 0.015) and liver (R = 0.567; P = 0.057) viral loads. Finally, soluble factors associated with NK cells and DCs, including gamma interferon (IFN-γ) and RANTES, were increased in acute infection and also were associated with viral loads and hepatitis. Collectively, the findings showed that mobilization of local and circulating innate immune responses was linked to acute virus-induced hepatitis, and potentially to resolution of GBV-B infection, and our results may provide insight into similar mechanisms in HCV infection. IMPORTANCE Hepatitis C virus (HCV) infection has created a global health crisis, and despite new effective antivirals, it is still a leading cause of liver disease and death worldwide. Recent evidence suggests that innate immunity may be a potential therapeutic target for HCV, but it may also be a correlate of increased disease. Due to a lack of access to human tissues with acute HCV infection, in this study we evaluated the role of innate immunity in resolving infection with a hepacivirus, GBV-B, in common marmosets. Collectively, our data suggest that NK cell and DC mobilization in acute hepacivirus infection can dampen virus replication but also regulate acute and chronic liver damage. How these two opposing effects on the host may be modulated in future therapeutic and vaccine approaches warrants further study.
Collapse
|
60
|
Mossu A, Daoui A, Bonnefoy F, Aubergeon L, Saas P, Perruche S. Plasmacytoid Dendritic Cells Die by the CD8 T Cell-Dependent Perforin Pathway during Acute Nonviral Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1672-82. [PMID: 27448589 DOI: 10.4049/jimmunol.1501875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis.
Collapse
Affiliation(s)
- Adrien Mossu
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| | - Anna Daoui
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| | - Francis Bonnefoy
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| | - Lucie Aubergeon
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| | - Philippe Saas
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098, F-25000 Besançon, France; Université Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, F-25000 Besançon, France; and LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, F-25000 Besançon, France
| |
Collapse
|
61
|
Sorrentino R, Terlizzi M, Di Crescenzo VG, Popolo A, Pecoraro M, Perillo G, Galderisi A, Pinto A. Human lung cancer-derived immunosuppressive plasmacytoid dendritic cells release IL-1α in an AIM2 inflammasome-dependent manner. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:3115-24. [PMID: 26506473 DOI: 10.1016/j.ajpath.2015.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/03/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) highly populate lung tumor masses and are strictly correlated to bad prognosis, yet their role in lung cancer is controversial. To understand their role in lung cancer, we isolated pDCs from human samples of lung obtained from non-small cell lung cancer patients undergoing thoracic surgery. Tumor masses presented a higher percentage of pDCs than healthy tissues; pDCs were in the immunosuppressive phenotype, as determined by higher levels of CD33 and PD-L1. Despite higher HLA-A and HLA-D expression, cancerous pDCs did not exert cytotoxic activity against tumor cells but instead promoted their proliferation. In this scenario, cancerous pDCs were able to produce high levels of IL-1α. This effect was observed on the specific activation of the inflammasome absent in melanoma 2 (AIM2), which led to higher cytoplasmic calcium release responsible for calpain activation underlying IL-1α release. The blockade of type I interferon receptor and of AIM2 via the addition of LL-37 significantly reduced the release of IL-1α, which was still high after Nod-like receptor P3 inhibition via glibenclamide. More important, mitochondrial-derived reactive oxygen species sequester diminished AIM2-dependent IL-1α release. Our data demonstrate that lung tumor-associated pDCs are responsive to the activation of AIM2 that promotes calcium efflux and reactive oxygen species from mitochondria, leading to calpain activation and high levels of IL-1α, which facilitate tumor cell proliferation in the lung.
Collapse
Affiliation(s)
| | | | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Giuseppe Perillo
- Division of the Respiratory System, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Antonio Galderisi
- Division of Pneumological and Bronchial Endoscopy, A.O.U. San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
62
|
Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E, Zhang X, Constant M, Park D, Wang W, Lazure T, Le Pajolec C, Ergun A, Mariette X. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren's signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol 2016; 137:1809-1821.e12. [DOI: 10.1016/j.jaci.2016.01.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
|
63
|
Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan. Sci Rep 2016; 6:25060. [PMID: 27112985 PMCID: PMC4844974 DOI: 10.1038/srep25060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the "migration time" (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence.
Collapse
|
64
|
Chopin M, Preston SP, Lun ATL, Tellier J, Smyth GK, Pellegrini M, Belz GT, Corcoran LM, Visvader JE, Wu L, Nutt SL. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity. Cell Rep 2016; 15:866-878. [PMID: 27149837 DOI: 10.1016/j.celrep.2016.03.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/18/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.
Collapse
Affiliation(s)
- Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Simon P Preston
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Aaron T L Lun
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Julie Tellier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Li Wu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Institute for Immunology, Tsinghua University School of Medicine, Beijing 100084, China
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
65
|
Charles TP, Shellito JE. Human Immunodeficiency Virus Infection and Host Defense in the Lungs. Semin Respir Crit Care Med 2016; 37:147-56. [PMID: 26974294 DOI: 10.1055/s-0036-1572553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunosuppression associated with human immunodeficiency virus (HIV) infection impacts all components of host defense against pulmonary infection. Cells within the lung have altered immune function and are important reservoirs for HIV infection. The host immune response to infected lung cells further compromises responses to a secondary pathogenic insult. In the upper respiratory tract, mucociliary function is impaired and there are decreased levels of salivary immunoglobulin A. Host defenses in the lower respiratory tract are controlled by alveolar macrophages, lymphocytes, and polymorphonuclear leukocytes. As HIV infection progresses, lung CD4 T cells are reduced in number causing a lack of activation signals from CD4 T cells and impaired defense by macrophages. CD8 T cells, on the other hand, are increased in number and cause lymphocytic alveolitis. Specific antibody responses by B-lymphocytes are decreased and opsonization of microorganisms is impaired. These observed defects in host defense of the respiratory tract explain the susceptibility of HIV-infected persons for oropharyngeal candidiasis, bacterial pneumonia, Pneumocystis pneumonia, and other opportunistic infections.
Collapse
Affiliation(s)
- Tysheena P Charles
- Section of Pulmonary/Critical Care & Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judd E Shellito
- Section of Pulmonary/Critical Care & Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
66
|
Pacella I, Timperi E, Accapezzato D, Martire C, Labbadia G, Cavallari EN, D'Ettorre G, Calvo L, Rizzo F, Severa M, Coccia EM, Vullo V, Barnaba V, Piconese S. IFN-α promotes rapid human Treg contraction and late Th1-like Treg decrease. J Leukoc Biol 2016; 100:613-23. [PMID: 26921346 DOI: 10.1189/jlb.5a0415-140r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Type I IFNs are pleiotropic cytokines that exert concerted activities in the development of antiviral responses. Regulatory T cells represent a physiologic checkpoint in the balance between immunity and tolerance, requiring fine and rapid controls. Here, we show that human regulatory T cells are particularly sensitive to the sequential effects of IFN-α. First, IFN-α exerts a rapid, antiproliferative and proapoptotic effect in vitro and in vivo, as early as after 2 d of pegylated IFN/ribavirin therapy in patients with chronic hepatitis C. Such activities result in the decline, at d 2, in circulating regulatory T cell frequency and specifically of the activated regulatory T cell subset. Later, IFN-based therapy restrains the fraction of regulatory T cells that can be polarized into IFN-γ-producing Th1-like regulatory T cells known to contribute to chronic immune activation in type 1 inflammation. Indeed, Th1-like regulatory T cell frequency significantly declines after 30 d of therapy in vivo in relation to the persistent decline of relevant IL-12 sources, namely, myeloid and 6-sulfo LacNAc-expressing dendritic cells. This event is recapitulated by experiments in vitro, providing evidence that it may be attributable to the inhibitory effect of IFN-α on IL-12-induced, Th1-like regulatory T cell polarization. In summary, our results suggest that IFN-α-driven, early regulatory T cell depletion contributes to the development of antiviral immunity, ultimately resulting in the resolution of type 1 inflammation.
Collapse
Affiliation(s)
- Ilenia Pacella
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Daniele Accapezzato
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Giancarlo Labbadia
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Ludovica Calvo
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy;
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
67
|
Pugholm LH, Petersen LR, Søndergaard EKL, Varming K, Agger R. Enhanced Humoral Responses Induced by Targeting of Antigen to Murine Dendritic Cells. Scand J Immunol 2016; 82:515-22. [PMID: 26346906 DOI: 10.1111/sji.12387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs) are superior in their ability to induce and control adaptive immune responses. These qualities have motivated the hypothesis that targeted delivery of antigen to DCs in vivo may be an effective way of enhancing immunization. Recent results show that antigen targeted to certain DC surface molecules may indeed induce robust immune responses. Targeting of antigen to DCs can be accomplished by the means of monoclonal antibodies. This study compared the humoral responses induced in mice by in vivo targeting of DCs using monoclonal antibodies specific for CD11c, CD36, CD205, Clec6A, Clec7A, Clec9A, Siglec-H and PDC-TREM. The results demonstrate that antigen delivery to different targets on DCs in vivo gives rise to humoral responses that differ in strength. Targeting of antigen to CD11c, CD36, CD205, Clec6A, Clec7A and PDC-TREM induced significantly stronger antibody responses compared to non-targeted isotype-matched controls. Targeting of Clec9A and Siglec-H did not lead to efficient antibody responses, which may be due to unfavourable properties of the targeting antibody, in which case, other antibodies with the same specificity might elicit a different outcome. Anti-CD11c was additionally used for elucidating the impact of the route of vaccination, and the results showed only minor differences between the antibody responses induced after immunization either s.c., i.v. or i.p. Altogether, these data show that targeting of different surface molecules on DCs result in very different antibody responses and that, even in the absence of adjuvants, strong humoral responses was induced.
Collapse
Affiliation(s)
- L H Pugholm
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.,Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - L R Petersen
- Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - E K L Søndergaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - K Varming
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - R Agger
- Laboratory of Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
68
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
69
|
Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated with Tissue Damage in Malaria. Cell Rep 2015; 13:2829-2841. [PMID: 26711347 DOI: 10.1016/j.celrep.2015.11.055] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/03/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
Neutrophils are the most abundant leukocyte population in the bloodstream, the primary compartment of Plasmodium sp. infection. However, the role of these polymorphonuclear cells in mediating either the resistance or the pathogenesis of malaria is poorly understood. We report that circulating neutrophils from malaria patients are highly activated, as indicated by a strong type I interferon transcriptional signature, increased expression of surface activation markers, enhanced release of reactive oxygen species and myeloperoxidase, and a high frequency of low-density granulocytes. The activation of neutrophils was associated with increased levels of serum alanine and aspartate aminotransferases, indicating liver damage. In a rodent malaria model, we observed intense recruitment of neutrophils to liver sinusoids. Neutrophil migration and IL-1β and chemokine expression as well as liver damage were all dependent on type I interferon signaling. The data suggest that type I interferon signaling has a central role in neutrophil activation and malaria pathogenesis.
Collapse
|
70
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
71
|
Scott JL, Cunningham MA, Naga OS, Wirth JR, Eudaly JG, Gilkeson GS. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:5561-71. [PMID: 26553076 DOI: 10.4049/jimmunol.1500315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/09/2015] [Indexed: 01/21/2023]
Abstract
Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease.
Collapse
Affiliation(s)
- Jennifer L Scott
- Department of Microbiology and Immunology, College of Graduate Studies, Medical University of South Carolina, Charleston, SC 29425; Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Melissa A Cunningham
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Osama S Naga
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jena R Wirth
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Jackie G Eudaly
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425; and Medical Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| |
Collapse
|
72
|
Koga-Yamakawa E, Murata M, Dovedi SJ, Wilkinson RW, Ota Y, Umehara H, Sugaru E, Hirose Y, Harada H, Jewsbury PJ, Yamamoto S, Robinson DT, Li CJ. TLR7 tolerance is independent of the type I IFN pathway and leads to loss of anti-tumor efficacy in mice. Cancer Immunol Immunother 2015; 64:1229-39. [PMID: 26091797 PMCID: PMC11029383 DOI: 10.1007/s00262-015-1730-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
Systemic administration of small molecule toll-like receptor (TLR)-7 agonists leads to potent activation of innate immunity and to the generation of anti-tumor immune responses. However, activation of TLRs with small molecule agonists may lead to the induction of TLR tolerance, defined as a state of hyporesponsiveness to subsequent agonism, which may limit immune activation, the generation of anti-tumor responses and clinical response. Our data reveal that dose scheduling impacts on the efficacy of systemic therapy with the selective TLR7 agonist, 6-amino-2-(butylamino)-9-((6-(2-(dimethylamino)ethoxy)pyridin-3-yl)methyl)-7,9-dihydro-8H-purin-8-one (DSR-6434). In a preclinical model of renal cell cancer, systemic administration of DSR-6434 dosed once weekly resulted in a significant anti-tumor response. However, twice weekly dosing of DSR-6434 led to the induction of TLR tolerance, and no anti-tumor response was observed. We show that TLR7 tolerance was independent of type I interferon (IFN) negative feedback because induction of TLR7 tolerance was also observed in IFN-α/β receptor knockout mice treated with DSR-6434. Moreover, our data demonstrate that treatment of bone marrow-derived plasmacytoid dendritic cells (BM-pDC) with DSR-6434 led to downregulation of TLR7 expression. From our data, dose scheduling of systemically administered TLR7 agonists can impact on anti-tumor activity through the induction of TLR tolerance. Furthermore, TLR7 expression on pDC may be a useful biomarker of TLR7 tolerance and aid in the optimization of dosing schedules involving systemically administered TLR7 agonists.
Collapse
Affiliation(s)
- Erina Koga-Yamakawa
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Masashi Murata
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Simon J. Dovedi
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
- Present Address: Manchester Cancer Research Centre, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Robert W. Wilkinson
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
- Present Address: MedImmune Ltd, Milstein Building, Granta Park, Cambridge, UK
| | - Yosuke Ota
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Hiroki Umehara
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
- Boston Biomedical, Inc., 640 Memorial Drive, Cambridge, MA USA
| | - Eiji Sugaru
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Yuko Hirose
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - Hideyuki Harada
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94, Enoki-cho, Suita, Osaka 564-0053 Japan
| | - Philip J. Jewsbury
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Setsuko Yamamoto
- Sumitomo Dainippon Pharma (DSP) Cancer Institute, Sumitomo Dainippon Pharma, 3-1-98, Kasugade Naka, Konohana-ku, Osaka, 554-0022 Japan
| | - David T. Robinson
- Oncology Innovative Medicines and Early Development (iMed), AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Chiang J. Li
- Boston Biomedical, Inc., 640 Memorial Drive, Cambridge, MA USA
| |
Collapse
|
73
|
Tamura T, Kimura K, Yui K, Yoshida S. Reduction of conventional dendritic cells during Plasmodium infection is dependent on activation induced cell death by type I and II interferons. Exp Parasitol 2015; 159:127-35. [PMID: 26420463 DOI: 10.1016/j.exppara.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 09/24/2015] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection.
Collapse
Affiliation(s)
- Takahiko Tamura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan; Global COE Program, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan; Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan; Global COE Program, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
74
|
Duraes FV, Lippens C, Steinbach K, Dubrot J, Brighouse D, Bendriss-Vermare N, Issazadeh-Navikas S, Merkler D, Hugues S. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation. J Autoimmun 2015; 67:8-18. [PMID: 26341385 PMCID: PMC4758828 DOI: 10.1016/j.jaut.2015.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. pDC therapy ameliorates established EAE. CNS inflammation is locally modulated after pDC transfer. Upon pDC transfer, resting endogenous pDCs are selectively recruited to the CNS via chemerin/CMKLR1 axis. Therapeutic pDC injection promotes a tolerogenic environment and inhibits encephalitogenic T cells in the CNS.
Collapse
Affiliation(s)
- Fernanda V Duraes
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Carla Lippens
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nathalie Bendriss-Vermare
- Université Lyon 1, INSERM U1052, CNRS, UMR5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, LabEx DEVweCAN, Lyon, France
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland; Department of Pathology and Immunology, Division of Clinical Pathology, University & University Hospital of Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
75
|
Mandl M, Drechsler M, Jansen Y, Neideck C, Noels H, Faussner A, Soehnlein O, Weber C, Döring Y. Evaluation of the BDCA2-DTR Transgenic Mouse Model in Chronic and Acute Inflammation. PLoS One 2015; 10:e0134176. [PMID: 26252890 PMCID: PMC4529211 DOI: 10.1371/journal.pone.0134176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS Plasmacytoid dendritic cells (pDCs) are a small subset of dendritic cells and the main producers of type I interferons. Besides their contribution to tolerance, they are known to be involved in autoimmune diseases and have recently been implicated in atherosclerosis. However, their precise involvement, particularly in advanced lesion development, remains elusive. Hence, we investigated the role of pDCs in atherogenesis vs atheroprogression by specifically depleting this cell population using the BDCA2-DTR mouse model bred to Apolipoprotein E (Apoe-/-) deficient mice. METHODS AND RESULTS Our results revealed that continuous diphtheria toxin-induced pDC depletion in Apoe-/- BDCA2-DTR mice receiving a high-fat diet (HFD) for 4 weeks did not alter lesion size or composition. Instead, these mice displayed increased B cell numbers and altered levels of inflammatory cytokines. Analysis of depletion efficiency showed that complete pDC depletion could only be sustained for one week and reoccurring pDCs sorted after 4 weeks did not express DTR anymore. Consequently, we analyzed lesion development in a model of partial carotid ligation, inducing established lesions after 5 weeks of HFD feeding, and only depleted pDCs during the last week of 5 weeks HFD feeding. Despite short-term, but efficient pDC depletion, we observed no differences in atherosclerotic lesion development, but changes in inflammatory cytokine titers. To assure the functionality of the BDCA2-DTR model in acute settings, we additionally examined the effect of pDC depletion in an indirect acute lung injury (iALI) model. This time, efficient pDC depletion resulted in a significantly reduced macrophage and neutrophil accumulation in the lung 12 hours after LPS challenge, underlining a pro-inflammatory role of pDCs in the innate immune response in iALI. CONCLUSION Taken together, the BDCA2-DTR mouse model only allows efficient pDC depletion for one week, which subsequently restricts its usability to more acute but not chronic inflammatory disease models.
Collapse
Affiliation(s)
- Manuela Mandl
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maik Drechsler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; Academic Medical Center, Department of Pathology, Amsterdam University, Amsterdam, the Netherlands; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carlos Neideck
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Aachen, Germany
| | - Alexander Faussner
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; Academic Medical Center, Department of Pathology, Amsterdam University, Amsterdam, the Netherlands; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
76
|
Sheehan KCF, Lazear HM, Diamond MS, Schreiber RD. Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection. PLoS One 2015; 10:e0128636. [PMID: 26010249 PMCID: PMC4444312 DOI: 10.1371/journal.pone.0128636] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/30/2015] [Indexed: 01/12/2023] Open
Abstract
Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity.
Collapse
Affiliation(s)
- Kathleen C. F. Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Helen M. Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
77
|
Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest 2015; 125:2532-46. [PMID: 25938786 DOI: 10.1172/jci79915] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/02/2015] [Indexed: 11/17/2022] Open
Abstract
Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.
Collapse
|
78
|
Biron CA, Tarrio ML. Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med Microbiol Immunol 2015; 204:345-54. [PMID: 25850988 DOI: 10.1007/s00430-015-0412-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Innate immunity defends against infection but also mediates immunoregulatory effects shaping innate and adaptive responses. Studies of murine cytomegalovirus (MCMV) infections have helped elucidate the mechanisms inducing, as well as the elicited soluble and cellular networks contributing to, innate immunity. Specialized receptors are engaged by infection-induced structures to stimulate production of key innate cytokines. These then stimulate cytokine and cellular responses such as activation of natural killer (NK) cells to mediate elevated killing by type 1 interferon (IFN) and/or to produce the pro-inflammatory and antiviral cytokine IFN-γ by interleukin 12 (IL-12). An inter-systemic loop, with IL-6 inducing glucocorticoid release, negatively regulates these early cytokine responses. As infections advance into periods of overlapping innate and adaptive responses, however, the cells are intrinsically conditioned to modify the biological effects of exposure to individual cytokines. Some pathways are turned off to inhibit an existing, whereas others are broadened for acquisition of a new, response function. Remarkably, extended NK cell proliferation during MCMV infection is associated with epigenetic modifications shifting the state of the inhibitory cytokine IL-10 gene from closed to open and results in their becoming equipped to produce this cytokine. When induced, NK cell IL-10 negatively regulates the magnitude of adaptive responses to protect against immune pathology. Thus, innate immunoregulatory cytokine networks are integral to pro-inflammatory and defense functions, but responding cells have the flexibility to undergo cell intrinsic conditioning with changing network characteristics to result in a new negative immunoregulatory function, and consequently, both promote beneficial and limit detrimental immune responses.
Collapse
Affiliation(s)
- Christine A Biron
- Department of Molecular Microbiology and Immunology, The Division of Biology and Medicine and The Warren Alpert Medical School, Brown University, 171 Meeting Street, Providence, RI, 02912, USA,
| | | |
Collapse
|
79
|
Flores M, Chew C, Tyan K, Huang WQ, Salem A, Clynes R. FcγRIIB prevents inflammatory type I IFN production from plasmacytoid dendritic cells during a viral memory response. THE JOURNAL OF IMMUNOLOGY 2015; 194:4240-50. [PMID: 25821224 DOI: 10.4049/jimmunol.1401296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
The type I IFN (IFN-α) response is crucial for viral clearance during primary viral infections. Plasmacytoid dendritic cells (pDCs) are important early responders during systemic viral infections and, in some cases, are the sole producers of IFN-α. However, their role in IFN-α production during memory responses is unclear. We found that IFN-α production is absent during a murine viral memory response, despite colocalization of virus and pDCs to the splenic marginal zone. The absence of IFN was dependent on circulating Ab and was reversed by the transgenic expression of the activating human FcγRIIA receptor on pDCs. Furthermore, FcγRIIB was required for Sendai virus immune complex uptake by splenic pDCs in vitro, and internalization via FcγRIIb prevented cargo from accessing TLR signaling endosomes. Thus, pDCs bind viral immune complexes via FcγRIIB and prevent IFN-α production in vivo during viral memory responses. This Ab-dependent IFN-α regulation may be an important mechanism by which the potentially deleterious effects of IFN-α are prevented during a secondary infection.
Collapse
Affiliation(s)
- Marcella Flores
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Claude Chew
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Kevin Tyan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Wu Qing Huang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| | - Aliasger Salem
- Division of Pharmaceuticals, College of Pharmacy, University of Iowa, Iowa City, IA 52242
| | - Raphael Clynes
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032; Department of Medicine, Columbia University Medical Center, New York, NY 10032; Department of Dermatology, Columbia University Medical Center, New York, NY 10032; and
| |
Collapse
|
80
|
Coinfection with Blood-Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus Infection but Impairs Inflammation and Viral Control in the Lung. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:477-83. [PMID: 25716232 DOI: 10.1128/cvi.00051-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
Abstract
Acute lower respiratory tract infections (ALRTI) are the leading cause of global childhood mortality, with human respiratory syncytial virus (hRSV) being a major cause of viral ALRTI in young children worldwide. In sub-Saharan Africa, many young children experience severe illnesses due to hRSV or Plasmodium infection. Although the incidence of malaria in this region has decreased in recent years, there remains a significant opportunity for coinfection. Recent data show that febrile young children infected with Plasmodium are often concurrently infected with respiratory viral pathogens but are less likely to suffer from pneumonia than are non-Plasmodium-infected children. Here, we hypothesized that blood-stage Plasmodium infection modulates pulmonary inflammatory responses to a viral pathogen but does not aid its control in the lung. To test this, we established a novel coinfection model in which mice were simultaneously infected with pneumovirus of mice (PVM) (to model hRSV) and blood-stage Plasmodium chabaudi chabaudi AS (PcAS) parasites. We found that PcAS infection was unaffected by coinfection with PVM. In contrast, PVM-associated weight loss, pulmonary cytokine responses, and immune cell recruitment to the airways were substantially reduced by coinfection with PcAS. Importantly, PcAS coinfection facilitated greater viral dissemination throughout the lung. Although Plasmodium coinfection induced low levels of systemic interleukin-10 (IL-10), this regulatory cytokine played no role in the modulation of lung inflammation or viral dissemination. Instead, we found that Plasmodium coinfection drove an early systemic beta interferon (IFN-β) response. Therefore, we propose that blood-stage Plasmodium coinfection may exacerbate viral dissemination and impair inflammation in the lung by dysregulating type I IFN-dependent responses to respiratory viruses.
Collapse
|
81
|
Cho H, Kelsall BL. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Immunol Rev 2015; 260:145-67. [PMID: 24942688 DOI: 10.1111/imr.12195] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease. This review focuses on the role of type I IFNs in the intestine in health and disease and their emerging role as immune modulators. Clear understanding of type I IFN-mediated immune responses may provide avenues for fine-tuning existing IFN treatment for infection and intestinal inflammation.
Collapse
Affiliation(s)
- Hyeseon Cho
- Mucosal Immunobiology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
82
|
Constitutive but not inducible attenuation of transforming growth factor β signaling increases natural killer cell responses without directly affecting dendritic cells early after persistent viral infection. J Virol 2015; 89:3343-55. [PMID: 25589641 DOI: 10.1128/jvi.03076-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Rapid innate responses to viral encounters are crucial to shaping the outcome of infection, from viral clearance to persistence. Transforming growth factor β (TGF-β) is a potent immune suppressor that is upregulated early upon viral infection and maintained during chronic infections in both mice and humans. However, the role of TGF-β signaling in regulating individual cell types in vivo is still unclear. Using infections with two different persistent viruses, murine cytomegalovirus (MCMV) and lymphocytic choriomeningitis virus (LCMV; Cl13), in their natural rodent host, we observed that TGF-β signaling on dendritic cells (DCs) did not dampen DC maturation or cytokine production in the early stages of chronic infection with either virus in vivo. In contrast, TGF-β signaling prior to (but not during) chronic viral infection directly restricted the natural killer (NK) cell number and effector function. This restriction likely compromised both the early control of and host survival upon MCMV infection but not the long-term control of LCMV infection. These data highlight the context and timing of TGF-β signaling on different innate cells that contribute to the early host response, which ultimately influences the outcome of chronic viral infection in vivo. IMPORTANCE In vivo host responses to pathogens are complex processes involving the cooperation of many different immune cells migrating to specific tissues over time, but these events cannot be replicated in vitro. Viruses causing chronic infections are able to subvert this immune response and represent a human health burden. Here we used two well-characterized viruses that are able to persist in their natural mouse host to dissect the role of the suppressive molecule TGF-β in dampening host responses to infection in vivo. This report presents information that allows an increased understanding of long-studied TGF-β signaling by examining its direct effect on different immune cells that are activated very early after in vivo viral infection and may aid with the development of new antiviral therapeutic strategies.
Collapse
|
83
|
Mohamadkhani A, Katoonizadeh A, Poustchi H. Immune-Regulatory Events in the Clearance of HBsAg in Chronic Hepatitis B: Focuses on HLA-DP. Middle East J Dig Dis 2015; 7:5-13. [PMID: 25628847 PMCID: PMC4293802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/20/2014] [Indexed: 11/20/2022] Open
Abstract
Successful clearance of hepatitis B virus (HBV) is a promising event in which host's immune system will attempt to get rid of the virus. The immunological events of HBsAg seroclearance have attracted great attention in both natural history investigations and therapeutic trials. Recent genome-wide association studies (GWAS) has confirmed polymorphisms in the human leukocyte antigen (HLA)-DP locus associated with spontaneous HBV clearance. In this review the impact of host immune response in declining HBsAg during the natural history of the infection has been discussed.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- 1. Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aezam Katoonizadeh
- 1. Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- 1. Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
, Corresponding Author: Hossein Poustchi, MD-PhD Associate professor of Gastroenterology Digestive Disease Research Centre Tehran University of Medical Sciences Shariati Hospital, North Kargar Ave. Tehran 14117- 13135, Iran Tel: +98 21 82415204 Fax:+98 21 8241 5400
| |
Collapse
|
84
|
Feng Z, Li Y, McKnight KL, Hensley L, Lanford RE, Walker CM, Lemon SM. Human pDCs preferentially sense enveloped hepatitis A virions. J Clin Invest 2014; 125:169-76. [PMID: 25415438 DOI: 10.1172/jci77527] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/23/2014] [Indexed: 12/24/2022] Open
Abstract
Unlike other picornaviruses, hepatitis A virus (HAV) is cloaked in host membranes when released from cells, providing protection from neutralizing antibodies and facilitating spread in the liver. Acute HAV infection is typified by minimal type I IFN responses; therefore, we questioned whether plasmacytoid dendritic cells (pDCs), which produce IFN when activated, are capable of sensing enveloped virions (eHAV). Although concentrated nonenveloped virus failed to activate freshly isolated human pDCs, these cells produced substantial amounts of IFN-α via TLR7 signaling when cocultured with infected cells. pDCs required either close contact with infected cells or exposure to concentrated culture supernatants for IFN-α production. In isopycnic and rate-zonal gradients, pDC-activating material cosedimented with eHAV but not membrane-bound acetylcholinesterase, suggesting that eHAV, and not viral RNA exosomes, is responsible for IFN-α induction. pDC activation did not require virus replication and was associated with efficient eHAV uptake, which was facilitated by phosphatidylserine receptors on pDCs. In chimpanzees, pDCs were transiently recruited to the liver early in infection, during or shortly before maximal intrahepatic IFN-stimulated gene expression, but disappeared prior to inflammation onset. Our data reveal that, while membrane envelopment protects HAV against neutralizing antibody, it also facilitates an early but limited detection of HAV infection by pDCs.
Collapse
|
85
|
Martins KAO, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines 2014; 14:447-59. [PMID: 25308798 DOI: 10.1586/14760584.2015.966085] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) are stand-alone immunomodulators or 'danger signals,' that are increasingly recognized as critical components of many modern vaccines. Polyinosinic-polycytidylic acid (poly-IC) is a synthetic dsRNA that can activate multiple elements of the host defense in a pattern that parallels that of a viral infection. When properly combined with an antigen, it can be utilized as a PAMP-adjuvant, resulting in modulation and optimization of the antigen-specific immune response. We briefly review the preclinical and clinical uses of poly-IC and two poly-IC derivatives, poly-IC12U (Ampligen) and poly-ICLC (Hiltonol), as vaccine adjuvants.
Collapse
|
86
|
Leong CR, Oshiumi H, Okamoto M, Azuma M, Takaki H, Matsumoto M, Chayama K, Seya T. A MAVS/TICAM-1-independent interferon-inducing pathway contributes to regulation of hepatitis B virus replication in the mouse hydrodynamic injection model. J Innate Immun 2014; 7:47-58. [PMID: 25115498 DOI: 10.1159/000365113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) and cytoplasmic RNA sensors have been reported to be involved in the regulation of hepatitis B virus (HBV) replication, but remain controversial due to the lack of a natural infectious model. Our current study sets out to characterize aspects of the role of the innate immune system in eliminating HBV using hydrodynamic-based injection of HBV replicative plasmid and knockout mice deficient in specific pathways of the innate system. The evidence indicated that viral replication was not affected by MAVS or TICAM-1 knockout, but absence of interferon regulatory factor 3 (IRF-3) and IRF-7 transcription factors, as well as the interferon (IFN) receptor, had an adverse effect on the inhibition of HBV replication, demonstrating the dispensability of MAVS and TICAM-1 pathways in the early innate response against HBV. Myd88(-/-) mice did not have a significant increase in the initial viremia, but substantial viral antigen persisted in the mice sera, a response similar to Rag2(-/-) mice, suggesting that the MyD88-dependent pathway participated in evoking an adaptive immune response against the clearance of intrahepatic HBV. Taken together, we show that the RNA-sensing pathways do not participate in the regulation of HBV replication in a mouse model; meanwhile MyD88 is implicated in the HBV clearance.
Collapse
Affiliation(s)
- Chean Ring Leong
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Leone P, Di Tacchio M, Berardi S, Santantonio T, Fasano M, Ferrone S, Vacca A, Dammacco F, Racanelli V. Dendritic cell maturation in HCV infection: altered regulation of MHC class I antigen processing-presenting machinery. J Hepatol 2014; 61:242-51. [PMID: 24732300 PMCID: PMC8759579 DOI: 10.1016/j.jhep.2014.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/04/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Modulation of dendritic cell (DC) function has been theorized as one of the mechanisms used by hepatitis C virus (HCV) to evade the host immune response and cause persistent infection. METHODS We used a range of cell and molecular biology techniques to study DC subsets from uninfected and HCV-infected individuals. RESULTS We found that patients with persistent HCV infection have lower numbers of circulating myeloid DC and plasmacytoid DC than healthy controls or patients who spontaneously recovered from HCV infection. Nonetheless, DC from patients with persistent HCV infection display normal phagocytic activity, typical expression of the class I and II HLA and co-stimulatory molecules, and conventional cytokine production when stimulated to mature in vitro. In contrast, they do not display the strong switch from immunoproteasome to standard proteasome subunit expression and the upregulation of the transporter-associated proteins following stimulation, which were instead observed in DC from uninfected individuals. This different modulation of components of the HLA class I antigen processing-presenting machinery results in a differential ability to present a CD8(+) T cell epitope whose generation is dependent on the LMP7 immunoproteasome subunit. CONCLUSIONS Overall, these findings establish that under conditions of persistent HCV antigenemia, HLA class I antigen processing and presentation are distinctively regulated during DC maturation.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Mariangela Di Tacchio
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Simona Berardi
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Massimo Fasano
- Department of Infectious Diseases, University of Foggia, Foggia, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Franco Dammacco
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
88
|
Frenz T, Graalmann L, Detje CN, Döring M, Grabski E, Scheu S, Kalinke U. Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2496-503. [DOI: 10.4049/jimmunol.1400215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens. J Virol 2014; 88:10758-66. [PMID: 25008918 DOI: 10.1128/jvi.01501-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Plasmacytoid dendritic cells (pDCs) are key components of the innate immune response that are capable of synthesizing and rapidly releasing vast amounts of type I interferons (IFNs), particularly IFN-α. Here we investigated whether pDCs, often regarded as a mere source of IFN, discriminate between various functionally discrete stimuli and to what extent this reflects differences in pDC responses other than IFN-α release. To examine the ability of pDCs to differentially respond to various doses of intact and infectious HIV, hepatitis C virus, and H1N1 influenza virus, whole-genome gene expression analysis, enzyme-linked immunosorbent assays, and flow cytometry were used to investigate pDC responses at the transcriptional, protein, and cellular levels. Our data demonstrate that pDCs respond differentially to various viral stimuli with significant changes in gene expression, including those involved in pDC activation, migration, viral endocytosis, survival, or apoptosis. In some cases, the expression of these genes was induced even at levels comparable to that of IFN-α. Interestingly, we also found that depending on the viral entity and the viral titer used for stimulation, induction of IFN-α gene expression and the actual release of IFN-α are not necessarily temporally coordinated. In addition, our data suggest that high-titer influenza A (H1N1) virus infection can stimulate rapid pDC apoptosis. IMPORTANCE Plasmacytoid dendritic cells (pDCs) are key players in the viral immune response. With the host response to viral infection being dependent on specific virus characteristics, a thorough examination and comparison of pDC responses to various viruses at various titers is beneficial for the field of virology. Our study illustrates that pDC infection with influenza virus, HIV, or hepatitis C virus results in a unique and differential response to each virus. These results have implications for future virology research, vaccine development, and virology as a whole.
Collapse
|
90
|
Yue C, Xu J, Tan Estioko MD, Kotredes KP, Lopez-Otalora Y, Hilliard BA, Baker DP, Gallucci S, Gamero AM. Host STAT2/type I interferon axis controls tumor growth. Int J Cancer 2014; 136:117-26. [PMID: 24895110 DOI: 10.1002/ijc.29004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
The role of STAT2 in mediating the antigrowth effects of type I interferon (IFN) is well-documented in vitro. Yet evidence of IFN-activated STAT2 as having tumor suppressor function in vivo and participation in antitumor immunity is lacking. Here we show in a syngeneic tumor transplantation model that STAT2 reduces tumor growth. Stat2(-/-) mice formed larger tumors compared to wild type (WT) mice. IFN-β treatment of Stat2(-/-) mice did not cause tumor regression. Gene expression analysis revealed a small subset of immunomodulatory genes to be downregulated in tumors established in Stat2(-/-) mice. Additionally, we found tumor antigen cross-presentation by Stat2(-/-) dendritic cells to T cells to be impaired. Adoptive transfer of tumor antigen specific CD8(+) T cells primed by Stat2(-/-) dendritic cells into tumor-bearing Stat2(-/-) mice did not induce tumor regression with IFN-β intervention. We observed that an increase in the number of CD4(+) and CD8(+) T cells in the draining lymph nodes of IFN-β-treated tumor-bearing WT mice was absent in IFN-β treated Stat2(-/-) mice. Thus our study provides evidence for further evaluation of STAT2 function in cancer patients receiving type I IFN based immunotherapy.
Collapse
Affiliation(s)
- Chanyu Yue
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Buskiewicz IA, Koenig A, Roberts B, Russell J, Shi C, Lee SH, Jung JU, Huber SA, Budd RC. c-FLIP-Short reduces type I interferon production and increases viremia with coxsackievirus B3. PLoS One 2014; 9:e96156. [PMID: 24816846 PMCID: PMC4015977 DOI: 10.1371/journal.pone.0096156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Cellular FLIP (c-FLIP) is an enzymatically inactive paralogue of caspase-8 and as such can block death receptor-induced apoptosis. However, independent of death receptors, c-FLIP-Long (c-FLIPL) can heterodimerize with and activate caspase-8. This is critical for promoting the growth and survival of T lymphocytes as well as the regulation of the RIG-I helicase pathway for type I interferon production in response to viral infections. Truncated forms of FLIP also exist in mammalian cells (c-FLIPS) and certain viruses (v-FLIP), which lack the C-terminal domain that activates caspase-8. Thus, the ratio of c-FLIPL to these short forms of FLIP may greatly influence the outcome of an immune response. We examined this model in mice transgenically expressing c-FLIPS in T cells during infection with Coxsackievirus B3 (CVB3). In contrast to our earlier findings of reduced myocarditis and mortality with CVB3 infection of c-FLIPL-transgenic mice, c-FLIPS-transgenic mice were highly sensitive to CVB3 infection as manifested by increased cardiac virus titers, myocarditis score, and mortality compared to wild-type C57BL/6 mice. This observation was paralleled by a reduction in serum levels of IL-10 and IFN-α in CVB3-infected c-FLIPS mice. In vitro infection of c-FLIPS T cells with CVB3 confirmed these results. Furthermore, molecular studies revealed that following infection of cells with CVB3, c-FLIPL associates with mitochondrial antiviral signaling protein (MAVS), increases caspase-8 activity and type I IFN production, and reduces viral replication, whereas c-FLIPS promotes the opposite phenotype.
Collapse
Affiliation(s)
- Iwona A. Buskiewicz
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Andreas Koenig
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| | - Brian Roberts
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| | - Jennifer Russell
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| | - Cuixia Shi
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| | - Sun-Hwa Lee
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America.
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America.
| | - Sally A. Huber
- Department of Pathology, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| | - Ralph C. Budd
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
92
|
Neyt K, Lambrecht BN. The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol Rev 2014; 255:57-67. [PMID: 23947347 DOI: 10.1111/imr.12100] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Viral infections are a common cause of acute respiratory disease. The clinical course of infection and symptoms depend on the viral strain, the health status of the host, and the immunological status of the host. Dendritic cells (DCs) play a crucial role in recognizing and presenting viral antigens and in inducing adaptive immune responses that clear the virus. Because the lung is continuously exposed to the air, the lung is equipped with an elaborate network of DCs to sense incoming foreign pathogens. Increasing knowledge on DC biology has informed us that DCs are not a single cell type. In the steady state lung, three DC subsets can be defined: CD11b(+) or CD103(+) conventional DCs and plasmacytoid DCs. Upon inflammation, inflammatory monocyte-derived DCs are recruited to the lung. It is only recently that tools became available to allow DC subsets to be clearly studied. This review focuses on the activation of DCs and the function of lung DCs in the context of respiratory virus infection and highlights some cautionary points for interpreting older experiments.
Collapse
Affiliation(s)
- Katrijn Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium
| | | |
Collapse
|
93
|
Taraldsrud E, Fevang B, Aukrust P, Beiske KH, Fløisand Y, Frøland S, Rollag H, Olweus J. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9. Clin Exp Immunol 2014; 175:439-48. [PMID: 24237110 DOI: 10.1111/cei.12239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/21/2023] Open
Abstract
Patients with common variable immunodeficiency (CVID) have reduced numbers and frequencies of dendritic cells (DCs) in blood, and there is also evidence for defective activation through Toll-like receptors (TLRs). Collectively, these observations may point to a primary defect in the generation of functional DCs. Here, we measured frequencies of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in peripheral blood of 26 CVID patients and 16 healthy controls. The results show that the patients have reduced absolute counts of both subsets. However, the decreased numbers in peripheral blood were not reflected in reduced frequencies of CD34(+) pDC progenitors in the bone marrow. Moreover, studies at the single cell level showed that DCs from CVID patients and healthy controls produced similar amounts of interferon-α or interleukin-12 and expressed similar levels of activation markers in response to human cytomegalovirus and ligands for TLR-7 and TLR-9. The study represents the most thorough functional characterization to date, and the first to assess bone marrow progenitor output, of naturally occurring DCs in CVID. In conclusion, it seems unlikely that CVID is secondary to insufficient production of naturally occurring DCs or a defect in their signalling through TLR-7 or TLR-9.
Collapse
Affiliation(s)
- E Taraldsrud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy and K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
94
|
HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated mechanisms. J Virol 2014; 88:6672-89. [PMID: 24696476 DOI: 10.1128/jvi.00825-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs). We found that treatment of DCs with whole HIV-1 Tat protein significantly upregulated the level of expression of PD-L1. This PD-L1 upregulation was observed in monocyte-derived dendritic cells (MoDCs) obtained from either uninfected or HIV-1-infected patients as well as in primary myeloid DCs from HIV-negative donors. In contrast, no effect on the expression of PD-L2 or PD-1 molecules was detected. The induction of PD-L1 on MoDCs by HIV-1 Tat (i) occurred in dose- and time-dependent manners, (ii) was mediated by the N-terminal 1-45 fragment of Tat, (iii) did not require direct cell-cell contact but appeared rather to be mediated by soluble factor(s), (iv) was abrogated following neutralization of tumor necrosis factor alpha (TNF-α) or blocking of Toll-like receptor 4 (TLR4), (v) was absent in TLR4-knockoout (KO) mice but could be restored following incubation with Tat-conditioned medium from wild-type DCs, (vi) impaired the capacity of MoDCs to functionally stimulate T cells, and (vii) was not reversed functionally following PD-1/PD-L1 pathway blockade, suggesting the implication of other Tat-mediated coinhibitory pathways. Our results demonstrate that HIV-1 Tat protein upregulates PD-L1 expression on MoDCs through TNF-α- and TLR4-mediated mechanisms, functionally compromising the ability of DCs to stimulate T cells. The findings offer a novel potential molecular target for the development of an anti-HIV-1 treatment. IMPORTANCE The objective of this study was to investigate the effect of human immunodeficiency virus type 1 (HIV-1) Tat on the PD-1/PD-L1 coinhibitory pathway on human monocyte-derived dendritic cells (MoDCs). We found that treatment of MoDCs from either healthy or HIV-1-infected patients with HIV-1 Tat protein stimulated the expression of PD-L1. We demonstrate that this stimulation was mediated through an indirect mechanism, involving tumor necrosis factor alpha (TNF-α) and Toll-like receptor 4 (TLR4) pathways, and resulted in compromised ability of Tat-treated MoDCs to functionally stimulate T-cell proliferation.
Collapse
|
95
|
Swiecki M, Wang Y, Riboldi E, Kim AHJ, Dzutsev A, Gilfillan S, Vermi W, Ruedl C, Trinchieri G, Colonna M. Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4409-16. [PMID: 24683186 DOI: 10.4049/jimmunol.1303135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasmacytoid dendritic cells (pDC) produce IFN-I in response to viruses and are routinely identified in mice by SiglecH expression. SiglecH is a sialic acid-binding Ig-like lectin that has an immunomodulatory role during viral infections. In this study, we evaluated the impact of SiglecH deficiency on cytokine responses in the presence and absence of pDC. We found that lack of SiglecH enhanced IFN-I responses to viral infection, regardless of whether pDC were depleted. We also examined the expression pattern of SiglecH and observed that it was expressed by specialized macrophages and progenitors of classical dendritic cells and pDC. Accordingly, marginal zone macrophages and pDC precursors were eliminated in newly generated SiglecH-diphtheria toxin receptor (DTR)-transgenic (Tg) mice but not in CLEC4C-DTR-Tg mice after diphtheria toxin (DT) treatment. Using two bacterial models, we found that SiglecH-DTR-Tg mice injected with DT had altered bacterial uptake and were more susceptible to lethal Listeria monocytogenes infection than were DT-treated CLEC4C-DTR-Tg mice. Taken together, our findings suggest that lack of SiglecH may affect cytokine responses by cell types other than pDC during viral infections, perhaps by altering viral distribution or burden, and that cell depletion in SiglecH-DTR-Tg mice encompasses more than pDC.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM, Tam C, Mackay F. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 2014; 28:2005-15. [PMID: 24721775 PMCID: PMC4100939 DOI: 10.1038/leu.2014.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+CD19+ B cells in the peripheral blood, and in primary and secondary lymphoid organs. A major complication associated with CLL is severe recurrent infections, which are often fatal. Vulnerability to infection is due to a wide variety of immunological defects, yet the initiating events of immunodeficiency in CLL are unclear. Using CLL patient samples and a mouse model of CLL, we have discovered that plasmacytoid dendritic cells (pDCs), which underpin the activity of effector immune cells critical for anti-viral immunity and anti-tumor responses, are reduced in number and functionally impaired in progressive CLL. As a result, the levels of interferon alpha (IFNα) production, a cytokine critical for immunity, are markedly reduced. Lower pDC numbers with impaired IFNα production was due to the decreased expression of FMS-like tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9), respectively. Reduced Flt3 expression was reversed using inhibitors of TGF-β and TNF, an effect correlating with a reduction in tumor load. Defects in pDC numbers and function offer a new insight into mechanisms underpinning the profound immunodeficiency affecting CLL patients and provide a potentially novel avenue for restoring immuno-competency in CLL.
Collapse
Affiliation(s)
- D Saulep-Easton
- Department of Immunology, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| | - F B Vincent
- Department of Immunology, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| | - M Le Page
- Department of Immunology, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| | - A Wei
- 1] Department of Haematology, The Alfred Hospital, 55 Commercial Road, Melbourne, Victoria, Australia [2] Australian Centre for Blood Diseases, Division of Blood Cancers, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| | - S B Ting
- 1] Department of Haematology, The Alfred Hospital, 55 Commercial Road, Melbourne, Victoria, Australia [2] Australian Centre for Blood Diseases, Division of Blood Cancers, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| | - C M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH, USA
| | - C Tam
- Department of Haematology, Peter MacCallum Cancer Centre, St. Andrews's Place, East Melbourne, Victoria, Australia
| | - F Mackay
- Department of Immunology, Monash University Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia
| |
Collapse
|
97
|
Bruel T, Dupuy S, Démoulins T, Rogez-Kreuz C, Dutrieux J, Corneau A, Cosma A, Cheynier R, Dereuddre-Bosquet N, Le Grand R, Vaslin B. Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog 2014; 10:e1003915. [PMID: 24497833 PMCID: PMC3907389 DOI: 10.1371/journal.ppat.1003915] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα(+) pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα(+) cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα(-) production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67(+)-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67(+)-pDC precursors, none of these being IFNα(+) in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors.
Collapse
Affiliation(s)
- Timothée Bruel
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Stéphanie Dupuy
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Thomas Démoulins
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | | | - Jacques Dutrieux
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Diderot, Paris, France
| | - Aurélien Corneau
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
| | - Antonio Cosma
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Diderot, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Roger Le Grand
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
| | - Bruno Vaslin
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France
- Unité Mixte de Recherche UMR-E01, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
98
|
Mikami Y, Mizuno S, Nakamoto N, Hayashi A, Sujino T, Sato T, Kamada N, Matsuoka K, Hisamatsu T, Ebinuma H, Hibi T, Yoshimura A, Kanai T. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation. PLoS One 2014; 9:e84619. [PMID: 24392145 PMCID: PMC3879334 DOI: 10.1371/journal.pone.0084619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022] Open
Abstract
The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2−/− mice adoptively transferred with CD4+CD45RBhigh T cells; and IL-10−/− mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b−CD11clowPDCA-1+ plasmacytoid dendritic cells (DCs) abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4+CD45RBhigh T cell-transferred RAG-2−/− mice and IL-10−/− mice in parallel with the emergence of macrophages (Mφs) and conventional DCs (cDCs). Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS)-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinta Mizuno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Kamada
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katsuyoshi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshifumi Hibi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (TK); (AY)
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (TK); (AY)
| |
Collapse
|
99
|
Kelly A, Fahey R, Fletcher JM, Keogh C, Carroll AG, Siddachari R, Geoghegan J, Hegarty JE, Ryan EJ, O'Farrelly C. CD141⁺ myeloid dendritic cells are enriched in healthy human liver. J Hepatol 2014; 60:135-42. [PMID: 23968887 DOI: 10.1016/j.jhep.2013.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Extensive populations of liver immune cells detect and respond to homeostatic perturbation caused by damage, infection or malignancy. Dendritic cells (DCs) are central to these activities, governing the balance between tolerance and immunity. Most of our knowledge about human liver DCs is derived from studies on peritumoral tissue. Little is known about the phenotype and function of DCs, in particular the recently described CD141(+) subset, in healthy human liver and how this profile is altered in liver disease. METHODS During liver transplantation, healthy donor and diseased explant livers were perfused and hepatic mononuclear cells isolated. Dendritic cell subset frequency and phenotype were characterised in liver perfusates by flow cytometry and the function of CD141(+) DCs was evaluated by mixed lymphocyte reactions (MLRs) and measuring cytokine secretion. RESULTS Almost one third of liver CD11c(+) myeloid DCs (mDCs) expressed CD141 compared to <5% of circulating mDCs. Hepatic CD141(+) DCs demonstrated pro-inflammatory function in allogeneic MLRs, inducing T cell production of interferon gamma (IFN-γ) and interleukin (IL)-17. While CD123(+) plasmacytoid DCs (pDCs) and CD1c(+) mDCs were expanded in diseased liver perfusates, CD141(+) DCs were significantly depleted. Despite their depletion, CD141(+) DCs from explant livers produced markedly increased poly(I:C)-induced IFN lambda (IFN-λ) compared with donor DCs. CONCLUSIONS Accumulation of CD141(+) DCs in healthy liver, which are significantly depleted in liver disease, suggests differential involvement of mDC subsets in liver immunity.
Collapse
Affiliation(s)
- Aoife Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ronan Fahey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Catherine Keogh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anne G Carroll
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | | | - Justin Geoghegan
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - John E Hegarty
- Liver Unit, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland; School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
100
|
Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, Ramos SB, Staines DR, Marshall-Gradisnik SM. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol 2013; 26:233-42. [PMID: 24343819 DOI: 10.1093/intimm/dxt068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
Collapse
Affiliation(s)
- Ekua Weba Brenu
- School of Medical Science, Griffith University, Gold Coast, QLD 4215, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|