51
|
Richie JM, Patel PR, Welle EJ, Dong T, Chen L, Shih AJ, Chestek CA. Open-source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording. J Vis Exp 2021:10.3791/63099. [PMID: 34779441 PMCID: PMC10771276 DOI: 10.3791/63099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.
Collapse
Affiliation(s)
- Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Tianshu Dong
- Department of Mechanical Engineering, University of Michigan, Ann Arbor
| | - Lei Chen
- Department of Mechanical Engineering, University of Massachusetts Lowell
| | - Albert J Shih
- Department of Mechanical Engineering, University of Michigan, Ann Arbor
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor; Neuroscience Graduate Program, University of Michigan, Ann Arbor; Robotics Graduate Program, University of Michigan, Ann Arbor;
| |
Collapse
|
52
|
Zou L, Tian H, Guan S, Ding J, Gao L, Wang J, Fang Y. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology. Nat Commun 2021; 12:5871. [PMID: 34620851 PMCID: PMC8497603 DOI: 10.1038/s41467-021-26168-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022] Open
Abstract
Optogenetics combined with electrical recording has emerged as a powerful tool for investigating causal relationships between neural circuit activity and function. However, the size of optogenetically manipulated tissue is typically 1-2 orders of magnitude larger than that can be electrically recorded, rendering difficulty for assigning functional roles of recorded neurons. Here we report a viral vector-delivery optrode (VVD-optrode) system for precise integration of optogenetics and electrophysiology in the brain. Our system consists of flexible microelectrode filaments and fiber optics that are simultaneously self-assembled in a nanoliter-scale, viral vector-delivery polymer carrier. The highly localized delivery and neuronal expression of opsin genes at microelectrode-tissue interfaces ensure high spatial congruence between optogenetically manipulated and electrically recorded neuronal populations. We demonstrate that this multifunctional system is capable of optogenetic manipulation and electrical recording of spatially defined neuronal populations for three months, allowing precise and long-term studies of neural circuit functions. The authors present a viral vector-delivery optrode system to integrate optogenetics and electrophysiology. The flexible microelectrode filaments and fiber optics self-assemble in a nanoliter-scale, viral vector-delivery polymer carrier for localized delivery and expression of opsin genes at microelectrode-tissue interfaces.
Collapse
Affiliation(s)
- Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shouliang Guan
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Gao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
53
|
Wunderlich H, Kozielski KL. Next generation material interfaces for neural engineering. Curr Opin Biotechnol 2021; 72:29-38. [PMID: 34601203 DOI: 10.1016/j.copbio.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Neural implant technology is rapidly progressing, and gaining broad interest in research fields such as electrical engineering, materials science, neurobiology, and data science. As the potential applications of neural devices have increased, new technologies to make neural intervention longer-lasting and less invasive have brought attention to neural interface engineering. This review will focus on recent developments in materials for neural implants, highlighting new technologies in the fields of soft electrodes, mechanical and chemical engineering of interface coatings, and remotely powered devices. In this context, novel implantation strategies, manufacturing methods, and combinatorial device functions will also be discussed.
Collapse
Affiliation(s)
- Hannah Wunderlich
- Department of Bioengineering and Biosystems, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristen L Kozielski
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
54
|
Valle ED, Welle EJ, Chestek CA, Weiland JD. Compositional and morphological properties of platinum-iridium electrodeposited on carbon fiber microelectrodes. J Neural Eng 2021; 18:10.1088/1741-2552/ac20bb. [PMID: 34428753 PMCID: PMC10756281 DOI: 10.1088/1741-2552/ac20bb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022]
Abstract
Objective. Neural interfaces based on carbon fiber (CF) electrodes have demonstrated key positive attributes such as minimal foreign body response and mechanical strength to self-insert in brain tissue. However, carbon does not form a low impedance electrode interface with neural tissue. Electrodeposited platinum iridium (PtIr) has been used to improve electrode interface properties for metallic bioelectrodes.Approach. In this study, a PtIr electrodeposition process has been performed on CF microelectrode arrays to improve the interfacial properties of these arrays. We study the film morphology and composition as well as electrode durability and impedance.Results. A PtIr coating with a composition of 70% Pt, 30% Ir and a thickness of ∼400 nm was observed. Pt and Ir were evenly distributed within the film. Impedance was decreased by 89% @ 1 kHz. Accelerated soak testing in a heated (T= 50∘C) saline solution showed impedance increase (@ 1 kHz) of ∼12% after 36 days (89 equivalent) of soaking.
Collapse
Affiliation(s)
- Elena della Valle
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Elissa J Welle
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - James D Weiland
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, United States of America
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
55
|
Devi M, Vomero M, Fuhrer E, Castagnola E, Gueli C, Nimbalkar S, Hirabayashi M, Kassegne S, Stieglitz T, Sharma S. Carbon-based neural electrodes: promises and challenges. J Neural Eng 2021; 18. [PMID: 34404037 DOI: 10.1088/1741-2552/ac1e45] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075 India
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany
| | - Surabhi Nimbalkar
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Mieko Hirabayashi
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Sam Kassegne
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Swati Sharma
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| |
Collapse
|
56
|
Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. MICROMACHINES 2021; 12:mi12080972. [PMID: 34442594 PMCID: PMC8400387 DOI: 10.3390/mi12080972] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
While microelectrode arrays (MEAs) offer the promise of elucidating functional neural circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demonstrating chronically reliable technology remains. Numerous studies report “chronic” data but the actual time spans and performance measures corresponding to the experimental work vary. In this study, we reviewed the experimental durations that constitute chronic studies across a range of MEA types and animal species to gain an understanding of the widespread variability in reported study duration. For rodents, which are the most commonly used animal model in chronic studies, we examined active electrode yield (AEY) for different array types as a means to contextualize the study duration variance, as well as investigate and interpret the performance of custom devices in comparison to conventional MEAs. We observed wide-spread variance within species for the chronic implantation period and an AEY that decayed linearly in rodent models that implanted commercially-available devices. These observations provide a benchmark for comparing the performance of new technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully derive performance under chronic conditions, the duration of abiotic failure modes, biological processes induced by indwelling probes, and intended application of the device are key determinants.
Collapse
|
57
|
Abstract
Brain-machine interfaces (BMI) are being developed to restore upper limb function for persons with spinal cord injury or other motor degenerative conditions. BMI and implantable sensors for myoelectric prostheses directly extract information from the central or peripheral nervous system to provide users with high fidelity control of their prosthetic device. Control algorithms have been highly transferable between the 2 technologies but also face common issues. In this review of the current state of the art in each field, the authors point out similarities and differences between the 2 technologies that may guide the implementation of common solutions to these challenges.
Collapse
Affiliation(s)
- Alex K Vaskov
- Robotics Institute, University of Michigan, 2505 Hayward St, Ann Arbor, MI 48109, USA
| | - Cynthia A Chestek
- Robotics Institute, University of Michigan, 2505 Hayward St, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, 204 Washtenaw Ave, Ann Arbor, MI 48109, USA.
| |
Collapse
|
58
|
Chen L, Hartner J, Dong T, Li A, Watson B, Shih A. Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain. IEEE Trans Biomed Eng 2021; 68:2602-2612. [PMID: 33798065 PMCID: PMC8323825 DOI: 10.1109/tbme.2021.3070781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Understanding the in vivo force and tissue dimpling during micro-electrode implantation into the brain are important for neuro-electrophysiology to minimize damage while enabling accurate placement and stable chronic extracellular electrophysiological recordings. Prior studies were unable to measure the sub-mN forces exerted during in vivo insertion of small electrodes. Here, we have investigated the in vivo force and dimpling depth profiles during brain surface membrane rupture (including dura) in anesthetized rats. METHODS A μN-resolution cantilever beam-based measurement system was designed, built, and calibrated and adapted for in vivo use. A total of 244 in vivo insertion tests were conducted on 8 anesthetized rats with 121 through pia mater and 123 through dura and pia combined. RESULTS Both microwire tip sharpening and diameter reduction reduced membrane rupture force (insertion force) and eased brain surface penetration. But dimpling depth and rupture force are not always strongly correlated. Multi-shank silicon probes showed smaller dimpling and rupture force per shank than single shank devices. CONCLUSION A force measurement system with flexible range and μN-level resolution (up to 0.032 μN) was achieved and proved feasible. For both pia-only and dura-pia penetrations in anesthetized rats, the rupture force and membrane dimpling depth at rupture are linearly related to the microwire diameter. SIGNIFICANCE We have developed a new system with both μN-level resolution and capacity to be used in vivo for measurement of force profiles of various neural interfaces into the brain. This allows quantification of brain tissue cutting and provides design guidelines for optimal neural interfaces.
Collapse
|
59
|
Restoring upper extremity function with brain-machine interfaces. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:153-186. [PMID: 34446245 DOI: 10.1016/bs.irn.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most exciting advances to emerge in neural interface technologies has been the development of real-time brain-machine interface (BMI) neuroprosthetic devices to restore upper extremity function. BMI neuroprostheses, made possible by synergistic advances in neural recording technologies, high-speed computation and signal processing, and neuroscience, have permitted the restoration of volitional movement to patients suffering the loss of upper-extremity function. In this chapter, we review the scientific and technological advances underlying these remarkable devices. After presenting an introduction to the current state of the field, we provide an accessible technical discussion of the two fundamental requirements of a successful neuroprosthesis: signal extraction from the brain and signal decoding that results in robust prosthetic control. We close with a presentation of emerging technologies that are likely to substantially advance the field.
Collapse
|
60
|
Ravagli E, Mastitskaya S, Thompson N, Welle EJ, Chestek CA, Aristovich K, Holder D. Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays. J Neurosci Methods 2021; 358:109140. [PMID: 33774053 PMCID: PMC8249910 DOI: 10.1016/j.jneumeth.2021.109140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve. NEW METHOD We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles. RESULTS Recorded compound action potentials were larger with CF compared to SS (∼700 μV vs ∼300 μV); however, background noise was greater (6.3 μV vs 1.7 μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402 ± 30 μm) and CF MEA (414 ± 123 μm), with no statistical difference between MicroCT (625 ± 17 μm) and CF (p > 0.05) and between CF and EIT (p > 0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103 ± 51 μm, p < 0.05). COMPARISON WITH EXISTING METHODS EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results. CONCLUSIONS Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves.
Collapse
Affiliation(s)
- Enrico Ravagli
- Medical Physics and Biomedical Engineering, University College London, UK.
| | | | - Nicole Thompson
- Medical Physics and Biomedical Engineering, University College London, UK
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kirill Aristovich
- Medical Physics and Biomedical Engineering, University College London, UK
| | - David Holder
- Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
61
|
Welle EJ, Woods JE, Jiman AA, Richie JM, Bottorff EC, Ouyang Z, Seymour JP, Patel PR, Bruns TM, Chestek CA. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans Neural Syst Rehabil Eng 2021; 29:993-1003. [PMID: 34014825 PMCID: PMC8459724 DOI: 10.1109/tnsre.2021.3082056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioelectric medicine treatments target disorders of the nervous system unresponsive to pharmacological methods. While current stimulation paradigms effectively treat many disorders, the underlying mechanisms are relatively unknown, and current neuroscience recording electrodes are often limited in their specificity to gross averages across many neurons or axons. Here, we develop a novel, durable carbon fiber electrode array adaptable to many neural structures for precise neural recording. Carbon fibers ( [Formula: see text] diameter) were sharpened using a reproducible blowtorchmethod that uses the reflection of fibers against the surface of a water bath. The arrays were developed by partially embedding carbon fibers in medical-grade silicone to improve durability. We recorded acute spontaneous electrophysiology from the rat cervical vagus nerve (CVN), feline dorsal root ganglia (DRG), and rat brain. Blowtorching resulted in fibers of 72.3 ± 33.5-degree tip angle with [Formula: see text] exposed carbon. Observable neural clusters were recorded using sharpened carbon fiber electrodes fromrat CVN ( [Formula: see text]), feline DRG ( [Formula: see text]), and rat brain ( [Formula: see text]). Recordings from the feline DRG included physiologically relevant signals from increased bladder pressure and cutaneous brushing. These results suggest that this carbon fiber array is a uniquely durable and adaptable neural recordingdevice. In the future, this device may be useful as a bioelectric medicine tool for diagnosis and closed-loop neural control of therapeutic treatments and monitoring systems.
Collapse
|
62
|
Park S, Yuk H, Zhao R, Yim YS, Woldeghebriel EW, Kang J, Canales A, Fink Y, Choi GB, Zhao X, Anikeeva P. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat Commun 2021; 12:3435. [PMID: 34103511 PMCID: PMC8187649 DOI: 10.1038/s41467-021-23802-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
To understand the underlying mechanisms of progressive neurophysiological phenomena, neural interfaces should interact bi-directionally with brain circuits over extended periods of time. However, such interfaces remain limited by the foreign body response that stems from the chemo-mechanical mismatch between the probes and the neural tissues. To address this challenge, we developed a multifunctional sensing and actuation platform consisting of multimaterial fibers intimately integrated within a soft hydrogel matrix mimicking the brain tissue. These hybrid devices possess adaptive bending stiffness determined by the hydration states of the hydrogel matrix. This enables their direct insertion into the deep brain regions, while minimizing tissue damage associated with the brain micromotion after implantation. The hydrogel hybrid devices permit electrophysiological, optogenetic, and behavioral studies of neural circuits with minimal foreign body responses and tracking of stable isolated single neuron potentials in freely moving mice over 6 months following implantation.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for Health and Science Technology (KIHST), Daejeon, Republic of Korea
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ruike Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Yeong Shin Yim
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eyob W Woldeghebriel
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeewoo Kang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andres Canales
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gloria B Choi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
63
|
Zheng XS, Tan C, Castagnola E, Cui XT. Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 2021; 10:e2100119. [PMID: 34029008 PMCID: PMC8257249 DOI: 10.1002/adhm.202100119] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chao Tan
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
64
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
65
|
Bouadi O, Tay TL. More Than Cell Markers: Understanding Heterogeneous Glial Responses to Implantable Neural Devices. Front Cell Neurosci 2021; 15:658992. [PMID: 33912015 PMCID: PMC8071943 DOI: 10.3389/fncel.2021.658992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Faculty of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
66
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
67
|
Dryg I, Xie Y, Bergmann M, Urban G, Shain W, Hofmann UG. Long-term in vivomonitoring of gliotic sheathing of ultrathin entropic coated brain microprobes with fiber-based optical coherence tomography. J Neural Eng 2021; 18. [PMID: 33657543 DOI: 10.1088/1741-2552/abebc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
Objective.Microfabricated neuroprosthetic devices have made possible important observations on neuron activity; however, long-term high-fidelity recording performance of these devices has yet to be realized. Tissue-device interactions appear to be a primary source of lost recording performance. The current state of the art for visualizing the tissue response surrounding brain implants in animals is immunohistochemistry + confocal microscopy, which is mainly performed after sacrificing the animal. Monitoring the tissue response as it develops could reveal important features of the response which may inform improvements in electrode design.Approach.Optical coherence tomography (OCT), an imaging technique commonly used in ophthalmology, has already been adapted for imaging of brain tissue. Here, we use OCT to achieve real-time,in vivomonitoring of the tissue response surrounding chronically implanted neural devices. The employed tissue-response-provoking implants are coated with a plasma-deposited nanofilm, which has been demonstrated as a biocompatible and anti-inflammatory interface for indwelling devices. We evaluate the method by comparing the OCT results to traditional histology qualitatively and quantitatively.Main results.The differences in OCT signal across the implantation period between the plasma group and the control reveal that the plasma-type coating of otherwise rigid brain probes (glass) only slightly improve the glial encapsulation in the brain parenchyma indicating that geometrical or mechanical influences are dominating the encapsulation process.Significance.Our approach can long-term monitor and compare the tissue-response to chronically-implanted neural probes with and withour plasma coating in living animal models. Our findings provide valuable insigh to the well acknowledged yet not solved challenge.
Collapse
Affiliation(s)
- Ian Dryg
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Yijing Xie
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Michael Bergmann
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Gerald Urban
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - William Shain
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
68
|
Sperry ZJ, Na K, Jun J, Madden LR, Socha A, Yoon E, Seymour JP, Bruns TM. High-density neural recordings from feline sacral dorsal root ganglia with thin-film array. J Neural Eng 2021; 18. [PMID: 33545709 DOI: 10.1088/1741-2552/abe398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Objective. Dorsal root ganglia (DRG) are promising sites for recording sensory activity. Current technologies for DRG recording are stiff and typically do not have sufficient site density for high-fidelity neural data techniques.Approach. In acute experiments, we demonstrate single-unit neural recordings in sacral DRG of anesthetized felines using a 4.5µm thick, high-density flexible polyimide microelectrode array with 60 sites and 30-40µm site spacing. We delivered arrays into DRG with ultrananocrystalline diamond shuttles designed for high stiffness affording a smaller footprint. We recorded neural activity during sensory activation, including cutaneous brushing and bladder filling, as well as during electrical stimulation of the pudendal nerve and anal sphincter. We used specialized neural signal analysis software to sort densely packed neural signals.Main results. We successfully delivered arrays in five of six experiments and recorded single-unit sensory activity in four experiments. The median neural signal amplitude was 55μV peak-to-peak and the maximum unique units recorded at one array position was 260, with 157 driven by sensory or electrical stimulation. In one experiment, we used the neural analysis software to track eight sorted single units as the array was retracted ∼500μm.Significance. This study is the first demonstration of ultrathin, flexible, high-density electronics delivered into DRG, with capabilities for recording and tracking sensory information that are a significant improvement over conventional DRG interfaces.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Kyounghwan Na
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - James Jun
- Flatiron Institute, Simons Foundation, New York City, NY, United States of America
| | - Lauren R Madden
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Alec Socha
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - Eusik Yoon
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - John P Seymour
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,University of Texas Health Science Center, Department of Neurosurgery, Houston, TX, United States of America.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
| | - Tim M Bruns
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
69
|
Kampasi K, Ladner I, Zhou J, Soto AC, Hernandez J, Patra S, Haque RU. POEMS (POLYMERIC OPTO-ELECTRO-MECHANICAL SYSTEMS) FOR ADVANCED NEURAL INTERFACES. MATERIALS LETTERS 2021; 285:129015. [PMID: 33716365 PMCID: PMC7946108 DOI: 10.1016/j.matlet.2020.129015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been a growing interest in optical neural interfaces which is driven by the need for improvements in spatial precision, real-time monitoring, and reduced invasiveness. Here, we present unique microfabrication and packaging techniques to build implantable optoelectronics with high precision and spatial complexity. Material characterization of our hybrid polymers shows minimal in vitro degradation, greater flexibility, and lowest optical loss (4.04-4.4 dB/cm at 670 nm) among other polymers reported in prior studies. We use the developed methods to build Lawrence Livermore National Laboratory's (LLNL's) first ultra-compact, lightweight (0.38 g), scalable and minimally invasive thin-film optoelectronic neural implant that can be used for chronic studies of brain activities. The paper concludes by summarizing the progress to date and discussing future opportunities for flexible optoelectronic interfaces in next generation clinical applications.
Collapse
Affiliation(s)
- Komal Kampasi
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| | - Ian Ladner
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jenny Zhou
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Alicia Calónico Soto
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Hernandez
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Susant Patra
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Razi-ul Haque
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Kavli Institute of Fundamental Neuroscience, University of California–San Francisco, San Francisco, CA, USA
| |
Collapse
|
70
|
Yang W, Gong Y, Li W. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Front Bioeng Biotechnol 2021; 8:622923. [PMID: 33585422 PMCID: PMC7873964 DOI: 10.3389/fbioe.2020.622923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023] Open
Abstract
To date, a wide variety of neural tissue implants have been developed for neurophysiology recording from living tissues. An ideal neural implant should minimize the damage to the tissue and perform reliably and accurately for long periods of time. Therefore, the materials utilized to fabricate the neural recording implants become a critical factor. The materials of these devices could be classified into two broad categories: electrode materials as well as packaging and substrate materials. In this review, inorganic (metals and semiconductors), organic (conducting polymers), and carbon-based (graphene and carbon nanostructures) electrode materials are reviewed individually in terms of various neural recording devices that are reported in recent years. Properties of these materials, including electrical properties, mechanical properties, stability, biodegradability/bioresorbability, biocompatibility, and optical properties, and their critical importance to neural recording quality and device capabilities, are discussed. For the packaging and substrate materials, different material properties are desired for the chronic implantation of devices in the complex environment of the body, such as biocompatibility and moisture and gas hermeticity. This review summarizes common solid and soft packaging materials used in a variety of neural interface electrode designs, as well as their packaging performances. Besides, several biopolymers typically applied over the electrode package to reinforce the mechanical rigidity of devices during insertion, or to reduce the immune response and inflammation at the device-tissue interfaces are highlighted. Finally, a benchmark analysis of the discussed materials and an outlook of the future research trends are concluded.
Collapse
Affiliation(s)
| | | | - Wen Li
- Microtechnology Lab, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
71
|
Schiavone G, Kang X, Fallegger F, Gandar J, Courtine G, Lacour SP. Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation. Neuron 2020; 108:238-258. [PMID: 33120021 DOI: 10.1016/j.neuron.2020.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Electrical stimulation of nervous structures is a widely used experimental and clinical method to probe neural circuits, perform diagnostics, or treat neurological disorders. The recent introduction of soft materials to design electrodes that conform to and mimic neural tissue led to neural interfaces with improved functionality and biointegration. The shift from stiff to soft electrode materials requires adaptation of the models and characterization methods to understand and predict electrode performance. This guideline aims at providing (1) an overview of the most common techniques to test soft electrodes in vitro and in vivo; (2) a step-by-step design of a complete study protocol, from the lab bench to in vivo experiments; (3) a case study illustrating the characterization of soft spinal electrodes in rodents; and (4) examples of how interpreting characterization data can inform experimental decisions. Comprehensive characterization is paramount to advancing soft neurotechnology that meets the requisites for long-term functionality in vivo.
Collapse
Affiliation(s)
- Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Xiaoyang Kang
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jérôme Gandar
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies (NeuroRestore), Department of Neurosurgery, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland.
| |
Collapse
|
72
|
Dong T, Chen L, Shih A. Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording. JOURNAL OF MICRO- AND NANO-MANUFACTURING 2020; 8:041013. [PMID: 35833189 PMCID: PMC8597551 DOI: 10.1115/1.4049780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Indexed: 06/15/2023]
Abstract
Microwire microelectrode arrays (MEAs) are implanted in the brain for recording neuron activities to study the brain function. Among various microwire materials, carbon fiber stands out due to its small diameter (5-10 μm), relatively high Young's modulus, and low electrical resistance. Microwire tips in MEAs are often sharpened to reduce the insertion force and prevent the thin microwires from buckling. Currently, carbon fiber MEAs are sharpened by either torch burning, which limits the positions of wire tips to a water bath surface plane, or electrical discharge machining, which is difficult to implement to the nonelectrically conductive carbon fiber with parylene-C insulation. A laser-based carbon fiber sharpening method proposed in this study enables the fabrication of carbon fiber MEAs with sharp tips and custom lengths. Experiments were conducted to study effects of laser input voltage and transverse speed on carbon fiber tip geometry. Results of the tip sharpness and stripped length of the insulation as well as the electrochemical impedance spectroscopy measurement at 1 kHz were evaluated and analyzed. The laser input voltage and traverse speed have demonstrated to be critical for the sharp tip, short stripped length, and low electrical impedance of the carbon fiber electrode for brain recording MEAs. A carbon fiber MEA with custom electrode lengths was fabricated to validate the laser-based approach.
Collapse
Affiliation(s)
- Tianshu Dong
- Mechanical Engineering, University of Michigan, 2370 GG Brown, 2350 Hayward Street, Ann Arbor, MI 48109
| | - Lei Chen
- Mechanical Engineering, University of Massachusetts Lowell, Dandeneau Hall 231, 1 University Ave., Lowell, MA 01854
| | - Albert Shih
- Mechanical Engineering, Biomedical Engineering, University of Michigan, 3001E EECS, 1301 Beal Ave., Ann Arbor, MI 48109
| |
Collapse
|
73
|
Patel PR, Popov P, Caldwell CM, Welle EJ, Egert D, Pettibone JR, Roossien DH, Becker JB, Berke JD, Chestek CA, Cai D. High density carbon fiber arrays for chronic electrophysiology, fast scan cyclic voltammetry, and correlative anatomy. J Neural Eng 2020; 17:056029. [PMID: 33055366 DOI: 10.1088/1741-2552/abb1f6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Multimodal measurements at the neuronal level allow for detailed insight into local circuit function. However, most behavioral studies focus on one or two modalities and are generally limited by the available technology. APPROACH Here, we show a combined approach of electrophysiology recordings, chemical sensing, and histological localization of the electrode tips within tissue. The key enabling technology is the underlying use of carbon fiber electrodes, which are small, electrically conductive, and sensitive to dopamine. The carbon fibers were functionalized by coating with Parylene C, a thin insulator with a high dielectric constant, coupled with selective re-exposure of the carbon surface using laser ablation. MAIN RESULTS We demonstrate the use of this technology by implanting 16 channel arrays in the rat nucleus accumbens. Chronic electrophysiology and dopamine signals were detected 1 month post implant. Additionally, electrodes were left in the tissue, sliced in place during histology, and showed minimal tissue damage. SIGNIFICANCE Our results validate our new technology and methods, which will enable a more comprehensive circuit level understanding of the brain.
Collapse
Affiliation(s)
- Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Jiman AA, Ratze DC, Welle EJ, Patel PR, Richie JM, Bottorff EC, Seymour JP, Chestek CA, Bruns TM. Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array. Sci Rep 2020; 10:15501. [PMID: 32968177 PMCID: PMC7511947 DOI: 10.1038/s41598-020-72512-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8-9 µm in diameter, 150-250 µm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1-91.7 µV and signal-to-noise ratios of 2.0-8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7-4.4 m/s) and efferent (0.7-8.8 m/s) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMA is a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.
Collapse
Affiliation(s)
- Ahmad A Jiman
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David C Ratze
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth C Bottorff
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - John P Seymour
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
Egert D, Pettibone JR, Lemke S, Patel PR, Caldwell CM, Cai D, Ganguly K, Chestek CA, Berke JD. Cellular-scale silicon probes for high-density, precisely localized neurophysiology. J Neurophysiol 2020; 124:1578-1587. [PMID: 32965150 DOI: 10.1152/jn.00352.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural implants with large numbers of electrodes have become an important tool for examining brain functions. However, these devices typically displace a large intracranial volume compared with the neurons they record. This large size limits the density of implants, provokes tissue reactions that degrade chronic performance, and impedes the ability to accurately visualize recording sites within intact circuits. Here we report next-generation silicon-based neural probes at a cellular scale (5 × 10 µm cross section), with ultra-high-density packing (as little as 66 µm between shanks) and 64 or 256 closely spaced recording sites per probe. We show that these probes can be inserted into superficial or deep brain structures and record large spikes in freely behaving rats for many weeks. Finally, we demonstrate a slice-in-place approach for the precise registration of recording sites relative to nearby neurons and anatomical features, including striatal µ-opioid receptor patches. This scalable technology provides a valuable tool for examining information processing within neural circuits and potentially for human brain-machine interfaces.NEW & NOTEWORTHY Devices with many electrodes penetrating into the brain are an important tool for investigating neural information processing, but they are typically large compared with neurons. This results in substantial damage and makes it harder to reconstruct recording locations within brain circuits. This paper presents high-channel-count silicon probes with much smaller features and a method for slicing through probe, brain, and skull all together. This allows probe tips to be directly observed relative to immunohistochemical markers.
Collapse
Affiliation(s)
- Daniel Egert
- Department of Neurology, University of California, San Francisco, California
| | - Jeffrey R Pettibone
- Department of Neurology, University of California, San Francisco, California
| | - Stefan Lemke
- Neuroscience Graduate Program, University of California, San Francisco, California
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ciara M Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Dawen Cai
- Department of Molecular and Cell Biology, University of Michigan, Ann Arbor, Michigan
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, California.,Veterans Affairs Medical Center, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan.,Neurosciences Program, University of Michigan, Ann Arbor, Michigan.,Robotics Program, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Berke
- Department of Neurology, University of California, San Francisco, California.,Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
76
|
Li H, Wang J, Fang Y. Bioinspired flexible electronics for seamless neural interfacing and chronic recording. NANOSCALE ADVANCES 2020; 2:3095-3102. [PMID: 36134275 PMCID: PMC9417495 DOI: 10.1039/d0na00323a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 05/27/2023]
Abstract
Implantable neural probes are among the most widely applied tools for the understanding of neural circuit functions and the treatment of neurological disorders. Despite remarkable progress in recent years, it is still challenging for conventional rigid probes to achieve stable neural recording over long periods of time. Recently, flexible electronics with biomimetic structures and mechanical properties have been demonstrated for the formation of seamless probe-neural interfaces, enabling long-term recording stability. In this review, we provide an overview of bioinspired flexible electronics, from their structural design to probe-brain interfaces and chronic neural recording applications. Opportunities of bioinspired flexible electronics in fundamental neuroscience and clinical studies are also discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences Shanghai 200031 China
| |
Collapse
|
77
|
Fernández E, Alfaro A, González-López P. Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects. Front Neurosci 2020; 14:681. [PMID: 32848535 PMCID: PMC7431631 DOI: 10.3389/fnins.2020.00681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
The restoration of a useful visual sense in a profoundly blind person by direct electrical stimulation of the visual cortex has been a subject of study for many years. However, the field of cortically based sight restoration has made few advances in the last few decades, and many problems remain. In this context, the scientific and technological problems associated with safe and effective communication with the brain are very complex, and there are still many unresolved issues delaying its development. In this work, we review some of the biological and technical issues that still remain to be solved, including long-term biotolerability, the number of electrodes required to provide useful vision, and the delivery of information to the implants. Furthermore, we emphasize the possible role of the neuroplastic changes that follow vision loss in the success of this approach. We propose that increased collaborations among clinicians, basic researchers, and neural engineers will enhance our ability to send meaningful information to the brain and restore a limited but useful sense of vision to many blind individuals.
Collapse
Affiliation(s)
- Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Arantxa Alfaro
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Hospital Vega Baja, Orihuela, Spain
| | - Pablo González-López
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Hospital General Universitario de Alicante, Alicante, Spain
| |
Collapse
|
78
|
Cho W, Liu F, Hendrix A, McCray B, Asrat T, Connaughton V, Zestos AG. Timed Electrodeposition of PEDOT:Nafion onto Carbon Fiber-Microelectrodes Enhances Dopamine Detection in Zebrafish Retina. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:115501. [PMID: 33927449 PMCID: PMC8081298 DOI: 10.1149/1945-7111/aba33d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon fiber-microelectrodes (CFMEs) are one of the standards for the detection of neurotransmitters such as dopamine (DA). In this study, we demonstrate that CFMEs electrodeposited with poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of Nafion exhibit enhanced sensitivity for DA detection. Scanning electron microscopy (SEM) revealed the smooth outer surface morphologies of polymer coatings, which filled in the ridges and grooves of the bare unmodified carbon electrode and energy-dispersive X-ray spectroscopy (EDX) confirmed PEDOT:Nafion incorporation. PEDOT:Nafion coated CMFEs exhibited a statistically enhanced two-fold increase in DA sensitivity compared to unmodified microelectrodes, with stability and integrity of the coated microelectrodes maintained for at least 4 h. A scan rate test revealed a linear relationship with peak DA oxidative current (5 μM), indicating adsorption control of DA to the surface of the PEDOT:Nafion electrode. As proof of principle, PEDOT:Nafion coated electrodes were used to detect potassium chloride (KCl)-induced DA release in zebrafish (Danio rerio) retinal tissue ex vivo, thus illustrating their applicability as biosensors.
Collapse
Affiliation(s)
- Whirang Cho
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Favian Liu
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Aaron Hendrix
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Brazil McCray
- Department of Biology, American University, Washington, D.C. 20016, United States of America
| | - Thomas Asrat
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Victoria Connaughton
- Department of Biology, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
- Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
79
|
Nason SR, Vaskov AK, Willsey MS, Welle EJ, An H, Vu PP, Bullard AJ, Nu CS, Kao JC, Shenoy KV, Jang T, Kim HS, Blaauw D, Patil PG, Chestek CA. A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces. Nat Biomed Eng 2020; 4:973-983. [PMID: 32719512 DOI: 10.1038/s41551-020-0591-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
The large power requirement of current brain-machine interfaces is a major hindrance to their clinical translation. In basic behavioural tasks, the downsampled magnitude of the 300-1,000 Hz band of spiking activity can predict movement similarly to the threshold crossing rate (TCR) at 30 kilo-samples per second. However, the relationship between such a spiking-band power (SBP) and neural activity remains unclear, as does the capability of using the SBP to decode complicated behaviour. By using simulations of recordings of neural activity, here we show that the SBP is dominated by local single-unit spikes with spatial specificity comparable to or better than that of the TCR, and that the SBP correlates better with the firing rates of lower signal-to-noise-ratio units than the TCR. With non-human primates, in an online task involving the one-dimensional decoding of the movement of finger groups and in an offline two-dimensional cursor-control task, the SBP performed equally well or better than the TCR. The SBP may enhance the decoding performance of neural interfaces while enabling substantial cuts in power consumption.
Collapse
Affiliation(s)
- Samuel R Nason
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alex K Vaskov
- Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Willsey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hyochan An
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Philip P Vu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Autumn J Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chrono S Nu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,Neurosciences Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Neurobiology, Stanford University, Stanford, CA, USA.,The Bio-X Program, Stanford University, Stanford, CA, USA.,Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Taekwang Jang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.,Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Hun-Seok Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - David Blaauw
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Robotics Graduate Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
80
|
Chen B, Zhang B, Chen C, Hu J, Qi J, He T, Tian P, Zhang X, Ni G, Cheng MMC. Penetrating glassy carbon neural electrode arrays for brain-machine interfaces. Biomed Microdevices 2020; 22:43. [PMID: 32504225 DOI: 10.1007/s10544-020-00498-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper presents a fabrication method for glassy carbon neural electrode arrays that combines 3D printing and chemical pyrolysis technology. The carbon electrodes have excellent biological compatibility and can be used in neural signal recording. A pretreated Si wafer is used as the substrate for 3D printing, and then, stereolithography 3D printing technology is employed to print photosensitive resin into a cone shape. Next, chemical pyrolysis is applied to convert the 3D prints into glassy carbon electrodes and modify the electrochemical performance of the carbon electrodes. Finally, the glassy carbon electrodes are packed with conductive wires and PDMS. The proposed fabrication method simplifies the manufacturing process of carbon materials, and electrodes can be fabricated without the need of deep reactive ion etching (DRIE). The height of the carbon electrodes is 1.5 mm, and the exposure area of the tips is 0.78 mm2, which is convenient for the implantation procedure. The specific capacitance of the glassy carbon arrays is higher than that of a platinum electrode (9.18 mF/cm2 vs 3.32 mF/cm2, respectively), and the impedance at 1 kHz is lower (7.1 kΩ vs 8.8 kΩ). The carbon electrodes were tested in vivo, and they showed excellent performance in neural signal recording. The signal-to-noise ratio of the carbon electrodes is 50.73 ± 6.11, which is higher than that of the Pt electrode (20.15 ± 5.32) under the same testing conditions. The proposed fabrication method of glassy carbon electrodes provides a novel approach to manufacture penetrating electrodes for nerve interfaces in biomedical engineering and microelectromechanical systems.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Boshen Zhang
- Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Jie Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China.
| | - Jin Qi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Tao He
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Pan Tian
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Xinuo Zhang
- Department of Orthopedics, China Capital Medical University affiliate Beijing Chaoyang Hospital, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Mark Ming-Cheng Cheng
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
81
|
Vu PP, Chestek CA, Nason SR, Kung TA, Kemp SW, Cederna PS. The future of upper extremity rehabilitation robotics: research and practice. Muscle Nerve 2020; 61:708-718. [PMID: 32413247 PMCID: PMC7868083 DOI: 10.1002/mus.26860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/14/2023]
Abstract
The loss of upper limb motor function can have a devastating effect on people's lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body's motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain-machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain-machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.
Collapse
Affiliation(s)
- Philip P. Vu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Robotics Institute, University of Michigan, Ann Arbor, Michigan
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Samuel R. Nason
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Theodore A. Kung
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Stephen W.P. Kemp
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
82
|
Na K, Sperry ZJ, Lu J, Vöröslakos M, Parizi SS, Bruns TM, Yoon E, Seymour JP. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression. MICROSYSTEMS & NANOENGINEERING 2020; 6:37. [PMID: 32528723 PMCID: PMC7261651 DOI: 10.1038/s41378-020-0149-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/05/2023]
Abstract
The ability to deliver flexible biosensors through the toughest membranes of the central and peripheral nervous system is an important challenge in neuroscience and neural engineering. Bioelectronic devices implanted through dura mater and thick epineurium would ideally create minimal compression and acute damage as they reach the neurons of interest. We demonstrate that a three-dimensional diamond shuttle can be easily made with a vertical support to deliver ultra-compliant polymer microelectrodes (4.5-µm thick) through dura mater and thick epineurium. The diamond shuttle has 54% less cross-sectional area than an equivalently stiff silicon shuttle, which we simulated will result in a 37% reduction in blood vessel damage. We also discovered that higher frequency oscillation of the shuttle (200 Hz) significantly reduced tissue compression regardless of the insertion speed, while slow speeds also independently reduced tissue compression. Insertion and recording performance are demonstrated in rat and feline models, but the large design space of these tools are suitable for research in a variety of animal models and nervous system targets.
Collapse
Affiliation(s)
- Kyounghwan Na
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Zachariah J. Sperry
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48105 USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105 USA
| | - Jiaao Lu
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Mihaly Vöröslakos
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- The Neuroscience Institute, New York University, New York, NY 10016 USA
| | - Saman S. Parizi
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Tim M. Bruns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48105 USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105 USA
| | - Euisik Yoon
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722 Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute, Yonsei University, Seoul, 03722 Korea
| | - John P. Seymour
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- Vivian L Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA
| |
Collapse
|
83
|
Rustogi P, Judy JW. Electrical Isolation Performance of Microgasket Technology for Implant Packaging. ... ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE. ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE 2020; 2020:1601-1607. [PMID: 35586778 PMCID: PMC9112188 DOI: 10.1109/ectc32862.2020.00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-channel-count neural interfaces are typically packaged by being permanently bonded to their packaged electronics followed by encapsulation. Such interfaces are often intimately integrated into neural tissue, their removal to replace the battery or upgrade electronics is not undesirable. Gaskets are widely used to provide liquid/electrical isolation and to seal the connection between two or more mating parts. Pressure-driven microgaskets are well established in the field of microfluidics. Although rematable microgaskets for fluidic interconnects exist, the use of microgaskets for electrical isolation have not been demonstrated. Our approach is to electrically isolate 2-D arrays of contact pads using a compressible silicone microgasket. Electrochemical impedance spectroscopy (EIS) was used to quantify the electrical isolation of the microgasket on contact pads, which were formed in a polyimide flex circuit, as a function of frequency after being soaked in saline. Experiments have shown that the compressed sub-millimeter PDMSe microgasket can provide excellent isolation (i.e., >30 MΩ at 1 KHz) that is comparable to the other more conventional packaging methods, such as encapsulation in polydimethylsiloxane elastomer (PDMSe) or parylene-C. Our microgasket-based approach should be scalable to high channel counts and high channel densities enabling much smaller and higher-performance neural implants.
Collapse
Affiliation(s)
- Paritosh Rustogi
- Electrical and Computer Engineering Department, Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, USA
| | - Jack W Judy
- Electrical and Computer Engineering Department, Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, USA
| |
Collapse
|
84
|
Lycke R, Sun L, Luan L, Xie C. Spikes to Pixels: Camera Chips for Large-scale Electrophysiology. Trends Neurosci 2020; 43:269-271. [PMID: 32353330 DOI: 10.1016/j.tins.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Implanted neural probes are among the most important techniques in both fundamental and clinical neuroscience. Despite great successes and promise, neural electrodes are technically limited by their scalability. A recent study by Obaid et al. demonstrated an innovative way to greatly scale up the channel count and density of neural electrode arrays.
Collapse
Affiliation(s)
- Roy Lycke
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Liuyang Sun
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Neuorengineering Initiative, Rice University, Houston, TX, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Neuorengineering Initiative, Rice University, Houston, TX, USA.
| |
Collapse
|
85
|
Mikhaylov A, Pimashkin A, Pigareva Y, Gerasimova S, Gryaznov E, Shchanikov S, Zuev A, Talanov M, Lavrov I, Demin V, Erokhin V, Lobov S, Mukhina I, Kazantsev V, Wu H, Spagnolo B. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front Neurosci 2020; 14:358. [PMID: 32410943 PMCID: PMC7199501 DOI: 10.3389/fnins.2020.00358] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.
Collapse
Affiliation(s)
- Alexey Mikhaylov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Evgeny Gryaznov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey Shchanikov
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Anton Zuev
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Max Talanov
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Laboratory of Motor Neurorehabilitation, Kazan Federal University, Kazan, Russia
| | | | - Victor Erokhin
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
- Kurchatov Institute, Moscow, Russia
- CNR-Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parma, Italy
| | - Sergey Lobov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Irina Mukhina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Technology Group, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Huaqiang Wu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Bernardo Spagnolo
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Dipartimento di Fisica e Chimica-Emilio Segrè, Group of Interdisciplinary Theoretical Physics, Università di Palermo and CNISM, Unità di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
| |
Collapse
|
86
|
Meunier CJ, Denison JD, McCarty GS, Sombers LA. Interpreting Dynamic Interfacial Changes at Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4214-4223. [PMID: 32216254 PMCID: PMC7336537 DOI: 10.1021/acs.langmuir.9b03941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon-fiber microelectrodes are instrumental tools in neuroscience used for the electroanalysis of neurochemical dynamics and recordings of neural activity. However, performance is variable and dependent on fabrication strategies, the biological response to implantation, and the physical and chemical composition of the recording environment. This presents an analytical challenge, as electrode performance is difficult to quantitatively assess in situ, especially when electrodes are permanently implanted or cemented in place. We previously reported that electrode impedance directly impacts electrochemical performance for molecular sensing. In this work, we investigate the impacts of individual components of the electrochemical system on impedance. Equivalent circuit models for glass- and silica-insulated carbon-fiber microelectrodes were determined using electrochemical impedance spectroscopy (EIS). The models were validated based on the ability to assign individual circuit elements to physical properties of the electrochemical system. Investigations were performed to evaluate the utility of the models in providing feedback on how changes in ionic strength and carbon fiber material alter impedance properties. Finally, EIS measurements were used to investigate the electrode/solution interface prior to, during, and following implantation in live brain tissue. A significant increase in impedance and decrease in capacitance occur during tissue exposure and persist following implantation. Electrochemical conditioning, which occurs continually during fast-scan cyclic voltammetry recordings, etches and renews the carbon surface, mitigating these effects. Overall, the results establish EIS as a powerful method for characterization of carbon-fiber microelectrodes, providing unprecedented insight into how real-world factors affect the electrode/solution interface.
Collapse
|
87
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
88
|
Obaid A, Hanna ME, Wu YW, Kollo M, Racz R, Angle MR, Müller J, Brackbill N, Wray W, Franke F, Chichilnisky EJ, Hierlemann A, Ding JB, Schaefer AT, Melosh NA. Massively parallel microwire arrays integrated with CMOS chips for neural recording. SCIENCE ADVANCES 2020; 6:eaay2789. [PMID: 32219158 PMCID: PMC7083623 DOI: 10.1126/sciadv.aay2789] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/26/2019] [Indexed: 05/21/2023]
Abstract
Multi-channel electrical recordings of neural activity in the brain is an increasingly powerful method revealing new aspects of neural communication, computation, and prosthetics. However, while planar silicon-based CMOS devices in conventional electronics scale rapidly, neural interface devices have not kept pace. Here, we present a new strategy to interface silicon-based chips with three-dimensional microwire arrays, providing the link between rapidly-developing electronics and high density neural interfaces. The system consists of a bundle of microwires mated to large-scale microelectrode arrays, such as camera chips. This system has excellent recording performance, demonstrated via single unit and local-field potential recordings in isolated retina and in the motor cortex or striatum of awake moving mice. The modular design enables a variety of microwire types and sizes to be integrated with different types of pixel arrays, connecting the rapid progress of commercial multiplexing, digitisation and data acquisition hardware together with a three-dimensional neural interface.
Collapse
Affiliation(s)
- Abdulmalik Obaid
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Mina-Elraheb Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Paradromics Inc., Austin, TX, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihaly Kollo
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Romeo Racz
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
| | | | - Jan Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nora Brackbill
- Department of Physics, Stanford University, Stanford, CA, USA
| | - William Wray
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. J. Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas T. Schaefer
- Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
89
|
Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing. Biomaterials 2020; 230:119648. [DOI: 10.1016/j.biomaterials.2019.119648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023]
|
90
|
Zheng XS, Griffith AY, Chang E, Looker MJ, Fisher LE, Clapsaddle B, Cui XT. Evaluation of a conducting elastomeric composite material for intramuscular electrode application. Acta Biomater 2020; 103:81-91. [PMID: 31863910 DOI: 10.1016/j.actbio.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 01/14/2023]
Abstract
Electrical stimulation of the muscle has been proven efficacious in preventing atrophy and/or reanimating paralyzed muscles. Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes (CNT) with fluorosilicone insulation. The electrode wire has a Young's modulus of 804 (±99) kPa, which better mimics the muscle tissue modulus than conventional stainless steel (SS) electrodes. Additionally, the non-metallic composition enables metal-artifact free CT and MR imaging. These soft wire (SW) electrodes present comparable electrical impedance to SS electrodes of similar geometric surface area, activate muscle at a lower threshold, and maintain stable electrical properties in vivo up to 4 weeks. Histologically, the SW electrodes elicited significantly less fibrotic encapsulation and less IBA-1 positive macrophage accumulation than the SS electrodes at one and three months. Further phenotyping the macrophages with the iNOS (pro-inflammatory) and ARG-1 (pro-healing) markers revealed significantly less presence of pro-inflammatory macrophage around SW implants at one month. By three months, there was a significant increase in pro-healing macrophages (ARG-1) around the SW implants but not around the SS implants. Furthermore, a larger number of AchR clusters closer to SW implants were found at both time points compared to SS implants. These results suggest that a softer implant encourages a more intimate and healthier electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes with fluorosilicone insulation. This elastomeric composite results in an electrode wire with a Young's modulus mimicking that of the muscle tissue, which elicits significantly less foreign body response compared to stainless steel wires. The lack of metal in this composite also enables metal-artifact free MRI and CT imaging.
Collapse
Affiliation(s)
- X Sally Zheng
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Azante Y Griffith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Emily Chang
- TDA Research Inc., Wheat Ridge, CO 80033, United States
| | | | - Lee E Fisher
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
91
|
Lim J, Moon E, Barrow M, Nason SR, Patel PR, Patil PG, Oh S, Lee I, Kim HS, Sylvester D, Blaauw D, Chestek CA, Phillips J, Jang T. A 0.19×0.17mm 2 Wireless Neural Recording IC for Motor Prediction with Near-Infrared-Based Power and Data Telemetry. DIGEST OF TECHNICAL PAPERS. IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE 2020; 2020:416-418. [PMID: 35291209 PMCID: PMC8919679 DOI: 10.1109/isscc19947.2020.9063005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Inhee Lee
- University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | | |
Collapse
|
92
|
Welle CG, Gao YR, Ye M, Lozzi A, Boretsky A, Abliz E, Hammer DX. Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation. Biomaterials 2020; 238:119831. [PMID: 32045783 DOI: 10.1016/j.biomaterials.2020.119831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/06/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction with their local environment. However, current microelectrode arrays for BCIs lose the ability to record high-quality neural signals in the months-to-years following implantation. Very little is known regarding the dynamic response of neurons and vasculature in the months following electrode array implantation, but loss of structural integrity near the electrode may contribute to the degradation of recording signals. Here, we use in-vivo dual-modality imaging to characterize neuronal and vasculature structures in the same animal for 3 months following electrode insertion. We find ongoing neuronal atrophy, but relative vascular stability, in close proximity to the electrode, along with evidence suggesting links between rare, abrupt hypoxic events and neuronal process atrophy.
Collapse
Affiliation(s)
- Cristin G Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Departments of Neurosurgery and Physiology & Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - Yu-Rong Gao
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Department of Neuroscience and Multiphoton Imaging Core Facility, University of Rochester Medical Center, Rochester, NY, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrea Lozzi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adam Boretsky
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Engility Corporation, San Antonio, TX, USA
| | - Erkinay Abliz
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
93
|
Yang L, Lee K, Villagracia J, Masmanidis SC. Open source silicon microprobes for high throughput neural recording. J Neural Eng 2020; 17:016036. [PMID: 31731284 DOI: 10.1088/1741-2552/ab581a] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Microfabricated multielectrode arrays are widely used for high throughput recording of extracellular neural activity, which is transforming our understanding of brain function in health and disease. Currently there is a plethora of electrode-based tools being developed at higher education and research institutions. However, taking such tools from the initial research and development phase to widespread adoption by the neuroscience community is often hindered by several obstacles. The objective of this work is to describe the development, application, and open dissemination of silicon microprobes for recording neural activity in vivo. APPROACH We propose an open source dissemination platform as an alternative to commercialization. This framework promotes recording tools that are openly and inexpensively available to the community. The silicon microprobes are designed in house, but the fabrication and assembly processes are carried out by third party companies. This enables mass production, a key requirement for large-scale dissemination. MAIN RESULTS We demonstrate the operation of silicon microprobes containing up to 256 electrodes in conjunction with optical fibers for optogenetic manipulations or fiber photometry. These data provide new insights about the relationship between calcium activity and neural spiking activity. We also describe the current state of dissemination of these tools. A file repository of resources related to designing, using, and sharing these tools is maintained online. SIGNIFICANCE This paper is likely to be a valuable resource for both current and prospective users, as well as developers of silicon microprobes. Based on their extensive usage by a number of labs including ours, these tools present a promising alternative to other types of electrode-based technologies aimed at high throughput recording in head-fixed animals. This work also demonstrates the importance of validating fiber photometry measurements with simultaneous electrophysiological recordings.
Collapse
|
94
|
Mahajan S, Sharkins JA, Hunter AH, Avishai A, Ereifej ES. Focused Ion Beam Lithography to Etch Nano-architectures into Microelectrodes. J Vis Exp 2020:10.3791/60004. [PMID: 32009634 PMCID: PMC8457512 DOI: 10.3791/60004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
With advances in electronics and fabrication technology, intracortical microelectrodes have undergone substantial improvements enabling the production of sophisticated microelectrodes with greater resolution and expanded capabilities. The progress in fabrication technology has supported the development of biomimetic electrodes, which aim to seamlessly integrate into the brain parenchyma, reduce the neuroinflammatory response observed after electrode insertion and improve the quality and longevity of electrophysiological recordings. Here we describe a protocol to employ a biomimetic approach recently classified as nano-architecture. The use of focused ion beam lithography (FIB) was utilized in this protocol to etch specific nano-architecture features into the surface of non-functional and functional single shank intracortical microelectrodes. Etching nano-architectures into the electrode surface indicated possible improvements of biocompatibility and functionality of the implanted device. One of the benefits of using FIB is the ability to etch on manufactured devices, as opposed to during the fabrication of the device, facilitating boundless possibilities to modify numerous medical devices post-manufacturing. The protocol presented herein can be optimized for various material types, nano-architecture features, and types of devices. Augmenting the surface of implanted medical devices can improve the device performance and integration into the tissue.
Collapse
Affiliation(s)
- Shreya Mahajan
- Department of Electrical Engineering and Computer Science, University of Michigan
| | - Jonah A Sharkins
- Veteran Affairs Ann Arbor Healthcare System; Department of Biomedical Engineering, University of Michigan
| | - Allen H Hunter
- Michigan Center for Materials Characterization, University of Michigan
| | | | - Evon S Ereifej
- Veteran Affairs Ann Arbor Healthcare System; Department of Neurology, School of Medicine, University of Michigan; Department of Biomedical Engineering, University of Michigan;
| |
Collapse
|
95
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
96
|
Ghazavi A, Maeng J, Black M, Salvi S, Cogan SF. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording. J Neural Eng 2020; 17:016022. [PMID: 31665712 DOI: 10.1088/1741-2552/ab52ab] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE With ever increasing applications of neural recording and stimulation, the necessity for developing neural interfaces with higher selectivity and lower invasiveness is inevitable. Reducing the electrode size is one approach to achieving such goals. In this study, we investigated the effect of electrode geometric surface area (GSA), from 20 μm2 to 1960 μm2, on the electrochemical impedance and charge-injection properties of sputtered iridium oxide (SIROF) coated electrodes in response to current-pulsing typical of neural stimulation. These data were used to assess the electrochemical properties of ultra-small SIROF electrodes (GSA < 200 μm2) for stimulation and recording applications. APPROACH SIROF charge storage capacities (CSC), impedance, and charge-injection characteristics during current-pulsing of planar, circular electrodes were evaluated in an inorganic model of interstitial fluid (model-ISF). MAIN RESULTS SIROF electrodes as small as 20 μm2 could provide 1.3 nC/phase (200 μs pulse width, 0.6 V versus Ag|AgCl interpulse bias) of charge during current pulsing. The 1 kHz impedance of all electrodes used in this study were below 1 MΩ, which is suitable for neural recording. SIGNIFICANCE Ultra-small SIROF electrodes are capable of charge injection in buffered saline at levels above some reported thresholds for neural stimulation with microelectrodes.
Collapse
Affiliation(s)
- A Ghazavi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States of America
| | | | | | | | | |
Collapse
|
97
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
98
|
Shoffstall AJ, Capadona JR. Bioelectronic Neural Implants. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
Olczak KP, McDermott MD, Otto KJ. Electrochemical Evaluation of Layer-by-Layer Drug Delivery Coating for Neural Interfaces. ACS APPLIED BIO MATERIALS 2019; 2:5597-5607. [DOI: 10.1021/acsabm.9b00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
Schlink BR, Ferris DP. A Lower Limb Phantom for Simulation and Assessment of Electromyography Technology. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2378-2385. [DOI: 10.1109/tnsre.2019.2944297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|