51
|
Environmental Risk Factors for Childhood Central Nervous System Tumors: an Umbrella Review. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
52
|
Pasqual E, Schonfeld S, Morton LM, Villoing D, Lee C, Berrington de González A, Kitahara CM. Reply to P. Petranović Ovčariček et al. J Clin Oncol 2022; 40:3465-3466. [PMID: 35709425 DOI: 10.1200/jco.22.00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Elisa Pasqual
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Sara Schonfeld
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Lindsay M Morton
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Daphnée Villoing
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Choonsik Lee
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Amy Berrington de González
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Cari M Kitahara
- Elisa Pasqual, PhD, Sara Schonfeld, PhD, Lindsay M. Morton, PhD, Daphnée Villoing, PhD, Choonsik Lee, PhD, Amy Berrington de González, PhD, and Cari M. Kitahara, PhD, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
53
|
Canet M, Harbron R, Thierry-Chef I, Cardis E. Cancer Effects of Low to Moderate Doses of Ionizing Radiation in Young People with Cancer-Predisposing Conditions: A Systematic Review. Cancer Epidemiol Biomarkers Prev 2022; 31:1871-1889. [PMID: 35861626 PMCID: PMC9530642 DOI: 10.1158/1055-9965.epi-22-0393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Moderate to high doses of ionizing radiation (IR) are known to increase the risk of cancer, particularly following childhood exposure. Concerns remain regarding risks from lower doses and the role of cancer-predisposing factors (CPF; genetic disorders, immunodeficiency, mutations/variants in DNA damage detection or repair genes) on radiation-induced cancer (RIC) risk. We conducted a systematic review of evidence that CPFs modify RIC risk in young people. Searches were performed in PubMed, Scopus, Web of Science, and EMBASE for epidemiologic studies of cancer risk in humans (<25 years) with a CPF, exposed to low-moderate IR. Risk of bias was considered. Fifteen articles focusing on leukemia, lymphoma, breast, brain, and thyroid cancers were included. We found inadequate evidence that CPFs modify the risk of radiation-induced leukemia, lymphoma, brain/central nervous system, and thyroid cancers and limited evidence that BRCA mutations modify radiation-induced breast cancer risk. Heterogeneity was observed across studies regarding exposure measures, and the numbers of subjects with CPFs other than BRCA mutations were very small. Further studies with more appropriate study designs are needed to elucidate the impact of CPFs on RIC. They should focus either on populations of carriers of specific gene mutations or on common susceptible variants using polygenic risk scores.
Collapse
Affiliation(s)
- Maelle Canet
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Richard Harbron
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Isabelle Thierry-Chef
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| |
Collapse
|
54
|
Kadlcikova D, Musilova P, Hradska H, Vozdova M, Petrovova M, Svoboda M, Rubes J. Chromosomal damage in occupationally exposed health professionals assessed by two cytogenetic methods. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2022; 78:158-169. [PMID: 36073861 DOI: 10.1080/19338244.2022.2118213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study assessed occupationally induced chromosomal damage in hospital personnel at risk of exposure to antineoplastic drugs and/or low doses of ionizing radiation by two cytogenetic methods. Cultured peripheral blood lymphocytes of eighty-five hospital workers were examined twice over 2 to 3 years by classical chromosomal aberration analysis and fluorescence in situ hybridization. The comparison of the 1st and the 2nd sampling of hospital workers showed a significant increase in chromatid and chromosomal aberrations (all p < .05) examined by classical chromosomal aberration analysis, and in unstable aberrations (all p < .05) detected by fluorescence in situ hybridization. Both cytogenetic methods were able to detect an increase of unstable aberrations in the 2nd sampling. The raised frequency of unstable cytogenetic parameters suggested higher recent exposure to genotoxic agents.
Collapse
Affiliation(s)
- Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Hana Hradska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Marketa Petrovova
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marek Svoboda
- Clinic of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
55
|
Tsuda T, Miyano Y, Yamamoto E. Demonstrating the undermining of science and health policy after the Fukushima nuclear accident by applying the Toolkit for detecting misused epidemiological methods. Environ Health 2022; 21:77. [PMID: 36002833 PMCID: PMC9400325 DOI: 10.1186/s12940-022-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
It is well known that science can be misused to hinder the resolution (i.e., the elimination and/or control) of a health problem. To recognize distorted and misapplied epidemiological science, a 33-item "Toolkit for detecting misused epidemiological methods" (hereinafter, the Toolkit) was published in 2021. Applying the Toolkit, we critically evaluated a review paper entitled, "Lessons learned from Chernobyl and Fukushima on thyroid cancer screening and recommendations in the case of a future nuclear accident" in Environment International in 2021, published by the SHAMISEN (Nuclear Emergency Situations - Improvement of Medical and Health Surveillance) international expert consortium. The article highlighted the claim that overdiagnosis of childhood thyroid cancers greatly increased the number of cases detected in ultrasound thyroid screening following the 2011 Fukushima nuclear accident. However, the reasons cited in the SHAMISEN review paper for overdiagnosis in mass screening lacked important information about the high incidence of thyroid cancers after the accident. The SHAMISEN review paper ignored published studies of screening results in unexposed areas, and included an invalid comparison of screenings among children with screenings among adults. The review omitted the actual state of screening in Fukushima after the nuclear accident, in which only nodules > 5 mm in diameter were examined. The growth rate of thyroid cancers was not slow, as emphasized in the SHAMISEN review paper; evidence shows that cancers detected in second-round screening grew to more than 5 mm in diameter over a 2-year period. The SHAMISEN consortium used an unfounded overdiagnosis hypothesis and misguided evidence to refute that the excess incidence of thyroid cancer was attributable to the nuclear accident, despite the findings of ongoing ultrasound screening for thyroid cancer in Fukushima and around Chernobyl. By our evaluation, the SHAMISEN review paper includes 20 of the 33 items in the Toolkit that demonstrate the misuse of epidemiology. The International Agency for Research on Cancer meeting in 2017 and its publication cited in the SHAMISEN review paper includes 12 of the 33 items in the Toolkit. Finally, we recommend a few enhancements to the Toolkit to increase its utility.
Collapse
Affiliation(s)
- Toshihide Tsuda
- Department of Human Ecology, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Yumiko Miyano
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
56
|
Little MP, Wakeford R, Bouffler SD, Abalo K, Hauptmann M, Hamada N, Kendall GM. Cancer risks among studies of medical diagnostic radiation exposure in early life without quantitative estimates of dose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154723. [PMID: 35351505 PMCID: PMC9167801 DOI: 10.1016/j.scitotenv.2022.154723] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 04/14/2023]
Abstract
BACKGROUND There is accumulating evidence of excess risk of cancer in various populations exposed at acute doses below several tens of mSv or doses received over a protracted period. There is also evidence that relative risks are generally higher after radiation exposures in utero or in childhood. METHODS AND FINDINGS We reviewed and summarised evidence from 89 studies of cancer following medical diagnostic exposure in utero or in childhood, in which no direct estimates of radiation dose are available. In all of the populations studied exposure was to sparsely ionizing radiation (X-rays). Several of the early studies of in utero exposure exhibit modest but statistically significant excess risks of several types of childhood cancer. There is a highly significant (p < 0.0005) negative trend of odds ratio with calendar period of study, so that more recent studies tend to exhibit reduced excess risk. There is no significant inter-study heterogeneity (p > 0.3). In relation to postnatal exposure there are significant excess risks of leukaemia, brain and solid cancers, with indications of variations in risk by cancer type (p = 0.07) and type of exposure (p = 0.02), with fluoroscopy and computed tomography scans associated with the highest excess risk. However, there is highly significant inter-study heterogeneity (p < 0.01) for all cancer endpoints and all but one type of exposure, although no significant risk trend with calendar period of study. CONCLUSIONS Overall, this large body of data relating to medical diagnostic radiation exposure in utero provides support for an associated excess risk of childhood cancer. However, the pronounced heterogeneity in studies of postnatal diagnostic exposure, the implied uncertainty as to the meaning of summary measures, and the distinct possibilities of bias, substantially reduce the strength of the evidence from the associations we observe between radiation imaging in childhood and the subsequent risk of cancer being causally related to radiation exposure.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, UK
| | - Simon D Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, UK
| | - Kossi Abalo
- Laboratoire d'Épidémiologie, Institut de Radioprotection et de Sûreté Nucléaire, BP 17 92262 Fontenay-aux-Roses Cedex, France
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Strasse 38, 16816 Neuruppin, Germany
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Gerald M Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford OX3 7LF, UK
| |
Collapse
|
57
|
Wakeford R, Hauptmann M. The risk of cancer following high, and very high, doses of ionising radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020518. [PMID: 35671754 DOI: 10.1088/1361-6498/ac767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
It is established that moderate-to-high doses of ionising radiation increase the risk of subsequent cancer in the exposed individual, but the question arises as to the risk of cancer from higher doses, such as those delivered during radiotherapy, accidents, or deliberate acts of malice. In general, the cumulative dose received during a course of radiation treatment is sufficiently high that it would kill a person if delivered as a single dose to the whole body, but therapeutic doses are carefully fractionated and high/very high doses are generally limited to a small tissue volume under controlled conditions. The very high cumulative doses delivered as fractions during radiation treatment are designed to inactivate diseased cells, but inevitably some healthy cells will also receive high/very high doses. How the doses (ranging from <1 Gy to tens of Gy) received by healthy tissues during radiotherapy affect the risk of second primary cancer is an increasingly important issue to address as more cancer patients survive the disease. Studies show that, except for a turndown for thyroid cancer, a linear dose-response for second primary solid cancers seems to exist over a cumulative gamma radiation dose range of tens of gray, but with a gradient of excess relative risk per Gy that varies with the type of second cancer, and which is notably shallower than that found in the Japanese atomic bomb survivors receiving a single moderate-to-high acute dose. The risk of second primary cancer consequent to high/very high doses of radiation is likely to be due to repopulation of heavily irradiated tissues by surviving stem cells, some of which will have been malignantly transformed by radiation exposure, although the exact mechanism is not known, and various models have been proposed. It is important to understand the mechanisms that lead to the raised risk of second primary cancers consequent to the receipt of high/very high doses, in particular so that the risks associated with novel radiation treatment regimens-for example, intensity modulated radiotherapy and volumetric modulated arc therapy that deliver high doses to the target volume while exposing relatively large volumes of healthy tissue to low/moderate doses, and treatments using protons or heavy ions rather than photons-may be properly assessed.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, Fehrbelliner Strasse 38, 16816 Neuruppin, Germany
| |
Collapse
|
58
|
Chauhan V, Hamada N, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE, Locke PA. Establishing a Communication and Engagement Strategy to Facilitate the Adoption of the Adverse Outcome Pathways in Radiation Research and Regulation. Int J Radiat Biol 2022; 98:1714-1721. [PMID: 35666945 DOI: 10.1080/09553002.2022.2086716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on human health and ecological effects of ionizing radiation are rapidly evolving as innovative technologies arise and the body of scientific knowledge grows. Structuring this information could effectively support the development of decision making tools and health risk models to complement current system of radiation protection. To this end, the adverse outcome pathway (AOP) approach is being explored as a means to consolidate the most relevant research to identify causation between exposure to a chemical or non-chemical stressor and disease or adverse effect progression. This tool is particularly important for low dose and low dose rate radiation exposures because of the latency and uncertainties in the biological responses at these exposure levels. To progress this aspect, it is essential to build a community of developers, facilitators, risk assessors (in the private sector and in government), policy-makers, and regulators who understand the strengths and weaknesses of, and how to appropriately utilize AOPs for consolidating our knowledge on the impact of low dose ionizing radiation. Through co-ordination with the Organisation of Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) High-Level Group on Low-Dose Research (HLG-LDR) and OECD's AOP Programme, initiatives are under way to demonstrate this approach in radiation research and regulation. Among these, a robust communications strategy and stakeholder engagement will be essential. It will help establish best practices for AOPs in institutional project development and aid in dissemination for more efficient and timely uptake and use of AOPs. In this regard, on June 1, 2021, the Radiation and Chemical (Rad/Chem) AOP Joint Topical Group was formed as part of the initiative from the NEA's HLG-LDR. The topical group will work to develop a communication and engagement strategy to define the target audiences, establish the clear messages and identify the delivery and engagement platforms. CONCLUSION The incorporation of the best science and better decision-making should motive the radiation protection community to develop, refine and use AOPs, recognizing that their incorporation into radiation health risk assessments is critical for public health and environmental protection in the 21st century.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Paul A Locke
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
59
|
Avramova-Cholakova S, Dyakov I, Yordanov H, O'Sullivan J. Comparison of patient effective doses from multiple CT examinations based on different calculation methods. Phys Med 2022; 99:73-84. [PMID: 35660792 DOI: 10.1016/j.ejmp.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study is to compare effective dose (E) estimations based on different methods for patients with recurrent computed tomography (CT) examinations. Seventeen methods were used to determine the E of each phase as well as the total E of the CT examination. These included three groups of estimations: based on the use of published E, calculated from typical or patient-specific values of volume computed tomography dose index (CTDIvol) and dose-length product (DLP) multiplied by conversion coefficients, and based on patient-specific calculations with use of software. The E from a single phase of the examination varied with a ratio from 1.3 to 6.8 for small size patients, from 1.2 to 6.5 for normal size patients, and from 1.7 up to 18.1 for large size patients, depending on the calculation method used. The cumulative effective dose (CED) ratio per patient for the different size groups varied as follows: from 1.4 to 2.5 (small), from 1.7 to 4.3 (normal), and from 2.2 up to 6.3 (large). The minimum CED across patients varied from 38 up to 200 mSv, while the variation of maximum CED was from 122 up to 538 mSv. Although E is recommended for population estimations, it is sometimes needed and used for individual patients in clinical practice. Its value is highly dependent on the method applied. Individual estimations of E can vary up to 18.1 times and CED estimations can differ up to 6 times. The related large uncertainties should always be taken into account.
Collapse
Affiliation(s)
- Simona Avramova-Cholakova
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, Fulham Palace Rd, Hammersmith, London W6 8RF, UK.
| | - Iliya Dyakov
- Acibadem City Clinic UMBAL, Tsarigradsko shose 66 A, Sofia 1784, Bulgaria.
| | - Hristomir Yordanov
- Technical University - Sofia, FDIBA, Kliment Ohrisdki blvd 8, 1754 Sofia, Bulgaria.
| | - James O'Sullivan
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, Fulham Palace Rd, Hammersmith, London W6 8RF, UK. James.O'
| |
Collapse
|
60
|
Little MP, Zhang W, van Dusen R, Hamada N, Bugden M, Cao M, Thomas K, Li D, Wang Y, Chandrashekhar M, Khan MK, Coleman CN. Low-dose radiotherapy for COVID-19 pneumonia and cancer: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 99:357-371. [PMID: 35511152 PMCID: PMC11270648 DOI: 10.1080/09553002.2022.2074165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 02/03/2023]
Abstract
The lessons learned from the Coronavirus Disease 2019 (COVID-19) pandemic are numerous. Low dose radiotherapy (LDRT) was used in the pre-antibiotic era as treatment for bacterially/virally associated pneumonia. Motivated in part by these historic clinical and radiobiological data, LDRT for treatment of COVID-19-associated pneumonia was proposed in early 2020. Although there is a large body of epidemiological and experimental data pointing to effects such as cancer at low doses, there is some evidence of beneficial health effects at low doses. It has been hypothesized that low dose radiation could be combined with immune checkpoint therapy to treat cancer. We shall review here some of these old radiobiological and epidemiological data, as well as the newer data on low dose radiation and stimulated immune response and other relevant emerging data. The paper includes a summary of several oral presentations given in a Symposium on "Low dose RT for COVID and other inflammatory diseases" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Rockville, MD 20892-9778, USA
| | - Wei Zhang
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot, OX11 0RQ, UK
| | - Roy van Dusen
- Information Management Services, Silver Spring, MD 20904, USA
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Michelle Bugden
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Meiyun Cao
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Kiersten Thomas
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Deyang Li
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Yi Wang
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Ontario, Canada
| | - Megha Chandrashekhar
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30345, USA
| | - C. Norman Coleman
- Radiation Research Program, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Rockville, MD 20892-9727, Rockville, MD, USA
| |
Collapse
|
61
|
Little MP, Brenner AV, Grant EJ, Sugiyama H, Preston DL, Sakata R, Cologne J, Velazquez-Kronen R, Utada M, Mabuchi K, Ozasa K, Olson JD, Dugan GO, Pazzaglia S, Cline JM, Applegate KE. Age effects on radiation response: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 98:1-11. [PMID: 35394411 PMCID: PMC9626395 DOI: 10.1080/09553002.2022.2063962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
One of the principal uncertainties when estimating population risk of late effects from epidemiological data is that few radiation-exposed cohorts have been followed up to extinction. Therefore, the relative risk model has often been used to estimate radiation-associated risk and to extrapolate risk to the end of life. Epidemiological studies provide evidence that children are generally at higher risk of cancer induction than adults for a given radiation dose. However, the strength of evidence varies by cancer site and questions remain about site-specific age at exposure patterns. For solid cancers, there is a large body of evidence that excess relative risk (ERR) diminishes with increasing age at exposure. This pattern of risk is observed in the Life Span Study (LSS) as well as in other radiation-exposed populations for overall solid cancer incidence and mortality and for most site-specific solid cancers. However, there are some disparities by endpoint in the degree of variation of ERR with exposure age, with some sites (e.g., colon, lung) in the LSS incidence data showing no variation, or even increasing ERR with increasing age at exposure. The pattern of variation of excess absolute risk (EAR) with age at exposure is often similar, with EAR for solid cancers or solid cancer mortality decreasing with increasing age at exposure in the LSS. We shall review the human data from the Japanese LSS cohort, and a variety of other epidemiological data sets, including a review of types of medical diagnostic exposures, also some radiobiological animal data, all bearing on the issue of variations of radiation late-effects risk with age at exposure and with attained age. The paper includes a summary of several oral presentations given in a Symposium on "Age effects on radiation response" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually on 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric J. Grant
- Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Raquel Velazquez-Kronen
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Mai Utada
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John D. Olson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory O. Dugan
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
62
|
Hunter N, Haylock RGE, Gillies M, Zhang W. Extended analysis of solid cancer incidence among the Nuclear Industry Workers in the UK: 1955-2011. Radiat Res 2022; 198:1-17. [PMID: 35452522 DOI: 10.1667/rade-20-00269.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Radiation worker studies provide direct estimates of cancer risk after protracted low-dose exposures to external X-ray and gamma-ray irradiations. The National Registry for Radiation Workers (NRRW) started in 1976 and has become the largest epidemiological program of research on nuclear workers in the UK. Here, we report on the relationship between solid cancer incidence and external radiation at the low-dose levels in 172,452 NRRW cohort members of whom (90%) were men. This study is based on 5.25 million person-years of follow-up from 1955 through the end of 2011. In the range of accumulated low doses two-thirds of workers have doses of less than 10 mSv. This study is an updated analysis of solid cancer incidence data with an additional 10 years of follow-up over the previous analysis of the NRRW cohort (NRRW-3). A total of 18,310 cases of solid cancers based on a 10-year lag were registered and of these 43% of the solid cancer cases occurred during the latest 10 years. Poisson regression was used to investigate the relationship between solid cancers risk and protracted chronic low-dose radiation exposure. This study demonstrated for solid cancers a rapid decrease of risk at high external doses that appeared to be driven by the workers who were monitored for potential exposure to internal emitters and who had also received relatively high external doses. Among cohort members only exposed to external radiation, a strong association was found between external dose and solid cancers (ERR/Sv = 0.52, 95% CI: 0.11; 0.96, based on 13,199 cases). A similar pattern is also seen for lung cancer. Excluding lung cancer from the grouping of all solid cancers resulted in evidence of a linear association with external radiation dose (ERR/Sv = 0.24, 95% CI: 0.01; 0.49, based on 15,035 cases), so suggesting some degree of confounding by smoking. Statistically significantly increasing trends with dose were seen for cancers of the colorectal, bladder and pleura cancer. Some of these results should be treated with caution because of the limited corroborating evidence from other published studies. Information on internal doses as well as non-radiation factors such smoking would be helpful to make more definitive inferences.
Collapse
Affiliation(s)
- Nezahat Hunter
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Richard G E Haylock
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Michael Gillies
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Wei Zhang
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
63
|
Lypska A, Riabchenko N, Rodionova N, Burdo O. Radiation-induced effects on bone marrow of bank voles inhabiting the Chornobyl exclusion zone. Int J Radiat Biol 2022; 98:1366-1375. [PMID: 35230914 DOI: 10.1080/09553002.2022.2047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the effects of chronic exposure to low-dose radiation on bone marrow hematopoiesis of bank voles inhabiting the radioactively contaminated territory of the Chornobyl exclusion zone. MATERIALS AND METHODS Animals were collected within the highly radioactive area of the so-called Red Forest located close to the destroyed 4th reactor of the Chornobyl Nuclear Power Plant. Radioecological investigations included evaluation of radiocontamination of soil samples by 90Sr and 137Cs, levels of incorporated radionuclides in animals' bodies and organs, as well as the absorbed dose rates. The study of peripheral blood and bone marrow parameters combined with cytogenetic analysis of bone marrow micronucleated polychromatic erythrocytes and standard metaphase test was carried out. RESULTS The blood system of the exposed animals manifested significant changes in peripheral blood parameters (anaemia and leucocyte formula left shift), ineffective differentiation and maturation of bone marrow cells, particularly relevant to the erythroid and granulocyte pools. Increased yields of bone marrow micronucleated polychromatic erythrocytes and chromosomal aberrations, including dicentrics and Robertsonian fusion-like configurations, were revealed. CONCLUSIONS Observed disturbances in the bone marrow and peripheral blood suggest functional instability and inefficient compensatory and recovery reactions of the blood system of the bank voles from the contaminated areas of the Chornobyl exclusion zone. We assume that they are the consequences both of direct radiation exposure and hereditary pathological changes that have formed in a number of generations inhabiting radioactively contaminated areas.
Collapse
Affiliation(s)
- Alla Lypska
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Natalia Riabchenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Natalia Rodionova
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| | - Olena Burdo
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
64
|
Little MP, Wakeford R, Bouffler SD, Abalo K, Hauptmann M, Hamada N, Kendall GM. Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. ENVIRONMENT INTERNATIONAL 2022; 159:106983. [PMID: 34959181 PMCID: PMC9118883 DOI: 10.1016/j.envint.2021.106983] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/16/2021] [Accepted: 11/13/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The detrimental health effects associated with the receipt of moderate (0.1-1 Gy) and high (>1 Gy) acute doses of sparsely ionising radiation are well established from human epidemiological studies. There is accumulating direct evidence of excess risk of cancer in a number of populations exposed at lower acute doses or doses received over a protracted period. There is evidence that relative risks are generally higher after radiation exposures in utero or in childhood. METHODS AND FINDINGS We reviewed and summarised evidence from 60 studies of cancer or benign neoplasms following low- or moderate-level exposure in utero or in childhood from medical and environmental sources. In most of the populations studied the exposure was predominantly to sparsely ionising radiation, such as X-rays and gamma-rays. There were significant (p < 0.001) excess risks for all cancers, and particularly large excess relative risks were observed for brain/CNS tumours, thyroid cancer (including nodules) and leukaemia. CONCLUSIONS Overall, the totality of this large body of data relating to in utero and childhood exposure provides support for the existence of excess cancer and benign neoplasm risk associated with radiation doses < 0.1 Gy, and for certain groups exposed to natural background radiation, to fallout and medical X-rays in utero, at about 0.02 Gy.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, UK
| | - Simon D Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, UK
| | - Kossi Abalo
- Laboratoire d'Épidémiologie, Institut de Radioprotection et de Sûreté Nucléaire, BP 17, 92262 Fontenay-aux-Roses Cedex, France
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Fehrbelliner Strasse 38, 16816 Neuruppin, Germany
| | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Gerald M Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| |
Collapse
|
65
|
Rühm W, Laurier D, Wakeford R. Cancer risk following low doses of ionising radiation - Current epidemiological evidence and implications for radiological protection. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503436. [PMID: 35094811 DOI: 10.1016/j.mrgentox.2021.503436] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 01/05/2023]
Abstract
Recent studies suggest that every year worldwide about a million patients might be exposed to doses of the order of 100 mGy of low-LET radiation, due to recurrent application of radioimaging procedures. This paper presents a synthesis of recent epidemiological evidence on radiation-related cancer risks from low-LET radiation doses of this magnitude. Evidence from pooled analyses and meta-analyses also involving epidemiological studies that, individually, do not find statistically significant radiation-related cancer risks is reviewed, and evidence from additional and more recent epidemiological studies of radiation exposures indicating excess cancer risks is also summarized. Cohorts discussed in the present paper include Japanese atomic bomb survivors, nuclear workers, patients exposed for medical purposes, and populations exposed environmentally to natural background radiation or radioactive contamination. Taken together, the overall evidence summarized here is based on studies including several million individuals, many of them followed-up for more than half a century. In summary, substantial evidence was found from epidemiological studies of exposed groups of humans that ionizing radiation causes cancer at acute and protracted doses above 100 mGy, and growing evidence for doses below 100 mGy. The significant radiation-related solid cancer risks observed at doses of several 100 mGy of protracted exposures (observed, for example, among nuclear workers) demonstrate that doses accumulated over many years at low dose rates do cause stochastic health effects. On this basis, it can be concluded that doses of the order of 100 mGy from recurrent application of medical imaging procedures involving ionizing radiation are of concern, from the viewpoint of radiological protection.
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.
| | - D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
66
|
Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, Yamada Y, Tollefsen KE. Adverse Outcome Pathway: A Path towards better Data Consolidation and Global Co-ordination of Radiation Research. Int J Radiat Biol 2021; 98:1694-1703. [PMID: 34919011 DOI: 10.1080/09553002.2021.2020363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The purpose of toxicology is to protect human health and the environment. To support this, the Organisation for Economic Co-operation and Development (OECD), operating via its Extended Advisory Group for Molecular Screening and Toxicogenomics (EAGMST), has been developing the Adverse Outcome Pathway (AOP) approach to consolidate evidence for chemical toxicity spanning multiple levels of biological organization. The knowledge transcribed into AOPs provides a structured framework to transparently organize data, examine the weight of evidence of the AOP, and identify causal relationships between exposure to stressors and adverse effects of regulatory perspective. The AOP framework has undergone substantial maturation in the field of hazard characterization of chemicals over the last decade, and has also recently gained attention from the radiation community as a means to advance the mechanistic understanding of human and ecological health effects from exposure to ionizing radiation at low dose and low dose-rates. To fully exploit the value of such approaches for facilitating risk assessment and management in the field of radiation protection, solicitation of experiences and active cooperation between chemical and radiation communities are needed. As a result, the Radiation and Chemical (Rad/Chem) AOP joint topical group was formed on June 1, 2021 as part of the initiative from the High Level Group on Low Dose Research (HLG-LDR). HLG-LDR is overseen by the OECD Nuclear Energy Agency (NEA) Committee on Radiation Protection and Public Health (CRPPH). The main aims of the joint AOP topical group are to advance the use of AOPs in radiation research and foster broader implementation of AOPs into hazard and risk assessment. With global representation, it serves as a forum to discuss, identify and develop joint initiatives that support research and take on regulatory challenges. Conclusion: The Rad/Chem AOP joint topical group will specifically engage, promote, and implement the use of the AOP framework to: a) organize and evaluate mechanistic knowledge relevant to the protection of human and ecosystem health from radiation; b) identify data gaps and research needs pertinent to expanding knowledge of low dose and low dose-rate radiation effects; and c) demonstrate utility to support risk assessment by developing radiation-relevant case studies. It is envisioned that the Rad/Chem AOP joint topical group will actively liaise with the OECD EAGMST AOP developmental program to collectively advance areas of common interest and, specifically, provide recommendations for harmonization of the AOP framework to accommodate non-chemical stressors, such as radiation.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | - Ruth Wilkins
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Julie Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Donald Cool
- Electric Power Research Institute, Charlotte, North Carolina, US
| | | | - Dominque Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Yevgeniya Le
- CANDU Owners Group Inc., Toronto, Ontario, Canada
| | - Yukata Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
67
|
Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson CM, Cousins C, Lochard J, Bouffler S, Cho K, Kai M, Laurier D, Liu S, Romanov S. Keeping the ICRP recommendations fit for purpose. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1390-1409. [PMID: 34284364 DOI: 10.1088/1361-6498/ac1611] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 05/23/2023]
Abstract
The International Commission on Radiological Protection (ICRP) has embarked on a review and revision of the system of Radiological Protection that will update the 2007 general recommendations in ICRPPublication 103. This is the beginning of a process that will take several years, involving open and transparent engagement with organisations and individuals around the world. While the system is robust and has performed well, it must adapt to address changes in science and society to remain fit for purpose. The aim of this paper is to encourage discussions on which areas of the system might gain the greatest benefit from review, and to initiate collaborative efforts. Increased clarity and consistency are high priorities. The better the system is understood, the more effectively it can be applied, resulting in improved protection and increased harmonisation. Many areas are identified for potential review including: classification of effects, with particular focus on tissue reactions; reformulation of detriment, potentially including non-cancer diseases; re-evaluation of the relationship between detriment and effective dose, and the possibility of defining detriments for males and females of different ages; individual variation in the response to radiation exposure; heritable effects; and effects and risks in non-human biota and ecosystems. Some of the basic concepts are also being considered, including the framework for bringing together protection of people and the environment, incremental improvements to the fundamental principles of justification and optimisation, a broader approach to protection of individuals, and clarification of the exposure situations introduced in 2007. In addition, ICRP is considering identifying where explicit incorporation of the ethical basis of the system would be beneficial, how to better reflect the importance of communications and stakeholder involvement, and further advice on education and training. ICRP invites responses on these and other areas relating to the review of the System of Radiological Protection.
Collapse
Affiliation(s)
- C Clement
- International Commission on Radiological Protection, 280 Slater Street, Ottawa, Ontario K1P 5S9, Canada
| | - W Rühm
- Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - J Harrison
- Oxford Brookes University, Faculty of Health and Life Sciences, OX3 0BP Oxford, United Kingdom
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, OX11 0RQ Didcot, Oxon, United Kingdom
| | - K Applegate
- University of Kentucky College of Medicine, 800 Rose Street MN 150, Lexington, KY 40506, United States of America (retired)
| | - D Cool
- Electric Power Research Institute, Charlotte, NC, United States of America
| | - C-M Larsson
- Australian Radiation Protection and Nuclear Safety Agency, PO Box 655, Miranda, NSW 1490, Australia
| | - C Cousins
- International Commission on Radiological Protection, 280 Slater Street, Ottawa, Ontario K1P 5S9, Canada
| | - J Lochard
- Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - S Bouffler
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, OX11 0RQ Didcot, Oxon, United Kingdom
| | - K Cho
- Korea Institute of Nuclear Safety, PO Box 114, Yuseong, Daejeon 305-338, Korea
| | - M Kai
- Nippon Bunri University, 1727 Ichigi, Ōita 870-0397, Japan
| | - D Laurier
- Institut de radioprotection et de Sûreté Nucléaire, BP 17-92262 Fontenay-aux-Roses Cedex, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, Île-de-France, France
| | - S Liu
- China Institute of Atomic Energy, PO Box 275 (1), Beijing CN-102413, People's Republic of China
| | - S Romanov
- Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk region, Russia
| |
Collapse
|
68
|
Borrego D, Yoder C, Balter S, Kitahara CM. Collar badge lens dose equivalent values among U.S. physicians performing fluoroscopically-guided interventional procedures. J Vasc Interv Radiol 2021; 33:219-224.e2. [PMID: 34748952 PMCID: PMC10388339 DOI: 10.1016/j.jvir.2021.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To describe the range of occupational badge dose readings and annualized dose records among physicians performing fluoroscopically guided interventional (FGI) procedures using job title information provided by the same three major medical institutions in 2009, 2012, and 2015. METHODS The Radiation Safety Office of selected hospitals was contacted to request assistance with identifying physicians in a large commercial dosimetry database. All entries judged to be uninformative of occupational doses to FGI procedures staff were excluded. Monthly and annualized doses were described with univariate statistics and box-and-whisker plots. RESULTS The dosimetry dataset of interventional radiology staff contains 169 annual dose records from 77 different physicians and 698 annual dose records from 455 non-physicians. The median annualized lens dose equivalent values among physicians (11.9 mSv; IQR=6.9-20.0) was nearly threefold higher than non-physician medical staff assisting with FGI procedures (4.0 mSv; IQR=1.8-6.7) (P<0.001). During the study period, without eye protection, 25% (23 of 93) of the physician annualized lens dose equivalent values may have exceeded 20 mSv; for non-physician medical staff, this value was may have been exceeded 3.5% (6 of 173) of the time. However, these values do not account for eye protection. CONCLUSION The findings from this study highlight the importance of mitigating occupational dose to the eyes of medical staff, particularly physicians, performing or assisting with FGI procedures. Training on radiation protection principles, the use of personal protective equipment, and patient radiation dose management can all help ensure occupational radiation dose is adequately controlled.
Collapse
Affiliation(s)
- David Borrego
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Craig Yoder
- Independent consultant, Weddington, North Carolina
| | - Stephen Balter
- Departments of Radiology and Medicine, Columbia University Medical Center, New York, New York
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
69
|
Cléro E, Bisson M, Nathalie V, Blanchardon E, Thybaud E, Billarand Y. Cancer risk from chronic exposures to chemicals and radiation: a comparison of the toxicological reference value with the radiation detriment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:531-547. [PMID: 34487227 DOI: 10.1007/s00411-021-00938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This article aims at comparing reference methods for the assessment of cancer risk from exposure to genotoxic carcinogen chemical substances and to ionizing radiation. For chemicals, cancer potency is expressed as a toxicological reference value (TRV) based on the most sensitive type of cancer generally observed in animal experiments of oral or inhalation exposure. A dose-response curve is established by modelling experimental data adjusted to apply to human exposure. This leads to a point of departure from which the TRV is derived as the slope of a linear extrapolation to zero dose. Human lifetime cancer risk can then be assessed as the product of dose by TRV and it is generally considered to be tolerable in a 10-6-10-4 range for the public in a normal situation. Radiation exposure is assessed as an effective dose corresponding to a weighted average of energy deposition in body organs. Cancer risk models were derived from the epidemiological follow-up of atomic bombing survivors. Considering a linear-no-threshold dose-risk relationship and average baseline risks, lifetime nominal risk coefficients were established for 13 types of cancers. Those are adjusted according to the severity of each cancer type and combined into an overall indicator denominated radiation detriment. Exposure to radiation is subject to dose limits proscribing unacceptable health detriment. The differences between chemical and radiological cancer risk assessments are discussed and concern data sources, extrapolation to low doses, definition of dose, considered health effects and level of conservatism. These differences should not be an insuperable impediment to the comparison of TRVs with radiation risk, thus opportunities exist to bring closer the two types of risk assessment.
Collapse
Affiliation(s)
- Enora Cléro
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Michèle Bisson
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Velly Nathalie
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Eric Blanchardon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Eric Thybaud
- Chronic Risks Division, French National Institute for Industrial Environment and Risks (INERIS), Parc technologique Alata - BP 2, 60550 , Verneuil-en-Halatte, France
| | - Yann Billarand
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), BP 17, 92262, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
70
|
Laurier D, Rühm W, Paquet F, Applegate K, Cool D, Clement C. Areas of research to support the system of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:519-530. [PMID: 34657188 PMCID: PMC8522113 DOI: 10.1007/s00411-021-00947-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 05/07/2023]
Abstract
This document presents the ICRP's updated vision on "Areas of Research to Support the System of Radiological Protection", which have been previously published in 2017. It aims to complement the research priorities promoted by other relevant international organisations, with the specificity of placing them in the perspective of the evolution of the System of Radiological Protection. This document contributes to the process launched by ICRP to review and revise the System of Radiological Protection that will update the 2007 General Recommendations in ICRP Publication 103.
Collapse
Affiliation(s)
- D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - W Rühm
- Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | - F Paquet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, France
| | - K Applegate
- University of Kentucky College of Medicine, Lexington, KY, USA
| | - D Cool
- International Commission on Radiological Protection (ICRP) Vice-Chair, Charlotte, NC, USA
| | - C Clement
- International Commission on Radiological Protection (ICRP), Ottawa, ON, Canada
| |
Collapse
|
71
|
Mazzei-Abba A, Folly CL, Kreis C, Ammann RA, Adam C, Brack E, Egger M, Kuehni CE, Spycher BD. External background ionizing radiation and childhood cancer: Update of a nationwide cohort analysis. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 238-239:106734. [PMID: 34521026 DOI: 10.1016/j.jenvrad.2021.106734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to high doses of ionizing radiation is known to cause cancer. Exposure during childhood is associated with a greater excess relative risk for leukemia and tumors of the central nervous system (CNS) than exposure in later life. Cancer risks associated with low-dose exposure (<100 mSv) are uncertain. We previously investigated the association between the incidence of childhood cancer and levels of exposure to external background radiation from terrestrial gamma and cosmic rays in Switzerland using data from a nationwide census-based cohort study. Here, we provide an update of that study using an extended follow-up period and an improved exposure model. METHODS We included all children 0-15 years of age registered in the Swiss national censuses 1990, 2000, and 2010-2015. We identified incident cancer cases during 1990-2016 using probabilistic record linkage with the Swiss Childhood Cancer Registry. Exposure to terrestrial and cosmic radiation at children's place of residence was estimated using geographic exposure models based on aerial spectrometric gamma-ray measurements. We estimated and included the contribution from 137Cs deposition after the Chernobyl accident. We created a nested case-control sample and fitted conditional logistic regression models adjusting for sex, year of birth, neighborhood socioeconomic position, and modelled outdoor NO2 concentration. We also estimated the population attributable fraction for childhood cancer due to external background radiation. RESULTS We included 3,401,113 children and identified 3,137 incident cases of cancer, including 951 leukemia, 495 lymphoma, and 701 CNS tumor cases. Median follow-up in the cohort was 6.0 years (interquartile range: 4.3-10.1) and median cumulative exposure since birth was 8.2 mSv (range: 0-31.2). Hazard ratios per 1 mSv increase in cumulative dose of external background radiation were 1.04 (95% CI: 1.01-1.06) for all cancers combined, 1.06 (1.01-1.10) for leukemia, 1.03 (0.98-1.08) for lymphoma, and 1.06 (1.01-1.11) for CNS tumors. Adjustment for potential confounders had little effect on the results. Based on these results, the estimated population attributable fraction for leukemia and CNS tumors due to external background radiation was 32% (7-49%) and 34% (5-51%), respectively. CONCLUSIONS Our results suggest that background ionizing radiation contributes to the risk of leukemia and CNS tumors in children.
Collapse
Affiliation(s)
- Antonella Mazzei-Abba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Christophe L Folly
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Christian Kreis
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
| | - Roland A Ammann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland; Kinderaerzte KurWerk, Burgdorf, Switzerland.
| | - Cécile Adam
- Woman-Mother-Child Department, Division of Pediatrics, Oncology and Hematology Unit, Lausanne University Hospital, Lausanne, Switzerland.
| | - Eva Brack
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland.
| | - Ben D Spycher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
72
|
Boice JD, Cohen SS, Mumma MT, Hagemeyer DA, Chen H, Golden AP, Yoder RC, Dauer LT. Mortality from Leukemia, Cancer and Heart Disease among U.S. Nuclear Power Plant Workers, 1957-2011. Int J Radiat Biol 2021; 98:657-678. [PMID: 34669562 DOI: 10.1080/09553002.2021.1967507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of the Million Person Study (MPS) of Low Dose Health Effects is to examine the level of radiation risk for chronic exposures received gradually over time and not acutely as was the case for the Japanese atomic bomb survivors. Nuclear power plant (NPP) workers comprise nearly 15 percent of the MPS. Leukemia, selected cancers, Parkinson's disease, ischemic heart disease (IHD) and other causes of death are evaluated. METHODS AND MATERIAL The U.S. Nuclear Regulatory Commission's Radiation Exposure Information and Reporting System (REIRS) and the Landauer, Inc. dosimetry databases identified 135,193 NPP workers first monitored 1957-1984. Annual personal dose equivalents [Hp(10)] were available for each worker. Radiation records from all places of employment were sought. Vital status was determined through 2011. Mean absorbed doses to red bone marrow (RBM), esophagus, lung, colon, brain and heart were estimated by adjusting the recorded Hp(10) for each worker by scaling factors, accounting for exposure geometry and energy of the incident gamma radiation. Standardized mortality ratios (SMR) were calculated. Radiation risks were estimated using Cox proportional hazards models. RESULTS Nearly 50% of workers were employed for more than 20 years. The mean duration of follow-up was 30.2 y. Overall, 29,076 total deaths occurred, 296 from leukemia other than chronic lymphocytic leukemia (CLL), 3,382 from lung cancer, 140 from Parkinson's disease and 5,410 from IHD. The mean dose to RBM was 37.9 mGy (maximum 1.0 Gy; percent >100 mGy was 9.2%), 43.2 mGy to lung, 43.7 mGy to colon, 33.2 mGy to brain, and 43.9 mGy to heart. The SMRs (95% CI) were 1.06 (0.94;1.19) for leukemia other than CLL, 1.10 (1.07;1.14) for lung cancer, 0.90 (0.76;1.06) for Parkinson's disease, and 0.80 (0.78; 0.82) for IHD. The excess relative risk (ERR) per 100 mGy for leukemia other than CLL was 0.15 (90% CI 0.001; 0.31). For all solid cancers the ERR per 100 mGy (95% CI) was 0.01 (-0.03; 0.05), for lung cancer -0.04 (-0.11; 0.02), for Parkinson's disease 0.24 (-0.02; 0.50), and for IHD -0.01 (-0.06; 0.04). CONCLUSION Prolonged exposure to radiation increased the risk of leukemia other than CLL among NPP workers. There was little evidence for a radiation-association for all solid cancers, lung cancer or ischemic heart disease. Increased precision will be forthcoming as the different cohorts within the MPS are combined, such as industrial radiographers and medical radiation workers who were assembled and evaluated in like manner.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Heidi Chen
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
73
|
Berrington de Gonzalez A, Pasqual E, Veiga L. Epidemiological studies of CT scans and cancer risk: the state of the science. Br J Radiol 2021; 94:20210471. [PMID: 34545766 DOI: 10.1259/bjr.20210471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
20 years ago, 3 manuscripts describing doses and potential cancer risks from CT scans in children raised awareness of a growing public health problem. We reviewed the epidemiological studies that were initiated in response to these concerns that assessed cancer risks from CT scans using medical record linkage. We evaluated the study methodology and findings and provide recommendations for optimal study design for new efforts. We identified 17 eligible studies; 13 with published risk estimates, and 4 in progress. There was wide variability in the study methodology, however, which made comparison of findings challenging. Key differences included whether the study focused on childhood or adulthood exposure, radiosensitive outcomes (e.g. leukemia, brain tumors) or all cancers, the exposure metrics (e.g. organ doses, effective dose or number of CTs) and control for biases (e.g. latency and exclusion periods and confounding by indication). We were able to compare results for the subset of studies that evaluated leukemia or brain tumors. There were eight studies of leukemia risk in relation to red bone marrow (RBM) dose, effective dose or number of CTs; seven reported a positive dose-response, which was statistically significant (p < 0.05) in four studies. Six of the seven studies of brain tumors also found a positive dose-response and in five, this was statistically significant. Mean RBM dose ranged from 6 to 12 mGy and mean brain dose from 18 to 43 mGy. In a meta-analysis of the studies of childhood exposure the summary ERR/100 mGy was 1.78 (95%CI: 0.01-3.53) for leukemia/myelodisplastic syndrome (n = 5 studies) and 0.80 (95%CI: 0.48-1.12) for brain tumors (n = 4 studies) (p-heterogeneity >0.4). Confounding by cancer pre-disposing conditions was unlikely in these five studies of leukemia. The summary risk estimate for brain tumors could be over estimated, however, due to reverse causation. In conclusion, there is growing evidence from epidemiological data that CT scans can cause cancer. The absolute risks to individual patients are, however, likely to be small. Ongoing large multicenter cohorts and future pooling efforts will provide more precise risk quantification.
Collapse
Affiliation(s)
- Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Elisa Pasqual
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lene Veiga
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
74
|
Abtahi SH, Nouri H, Moradian S, Yazdani S, Ahmadieh H. Eye Disorders in the Post-COVID Era. J Ophthalmic Vis Res 2021; 16:527-530. [PMID: 34840673 PMCID: PMC8593548 DOI: 10.18502/jovr.v16i4.9740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This is an Editorial and does not have an abstract. Please download the PDF or view the article HTML.
Collapse
Affiliation(s)
- Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Nouri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Moradian
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
75
|
Affiliation(s)
- Carly Stewart
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Rebecca Smith-Bindman
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco
| |
Collapse
|
76
|
Visweswaran S, Raavi V, Abdul Syed Basheerudeen S, Kanagaraj K, Prasad A, Selvan Gnana Sekaran T, Pattan S, Shanmugam P, Ozimuthu A, Joseph S, Perumal V. Comparative analysis of physical doses and biomarker changes in subjects underwent Computed Tomography, Positron Emission Tomography-Computed Tomography, and interventional procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503404. [PMID: 34583824 DOI: 10.1016/j.mrgentox.2021.503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (Li2B4O7: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53ser15 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19). The DLP and effective doses obtained from PET/CT procedures were significantly higher (p < 0.05) when compared to CT. Fluoroscopic time and DAP were significantly higher (p < 0.05) in therapeutic compared to diagnostic interventional procedures. All the anatomical locations registered a significant amount of ESD, the ESD obtained from CT and interventional procedures were significantly (p < 0.05) higher when compared to PET/CT. Fluoroscopic time did not correlate with the ESD (eye, head, thyroid, and shoulder; R2 = 0.03). CA frequency after PET/CT was significantly higher (p < 0.001) when compared to CT and interventional procedures. MN frequency was significantly higher in 24-hs (p < 0.001) post-interventional procedure compared to 2-hs. The mean ± SD of mean fluorescence intensity of γ-H2AX and p53ser15 obtained from all subjects underwent PET/CT and interventional procedures did not show a significant difference (p > 0.05) between pre- and post-procedure. However, the relative fluorescence intensity of γ-H2AX and p53ser15 was >1 in 58.5 % and 65.8 % of subjects respectively. Large inter-individual variation and lack of correlation between physical dose and biomarkers suggest the need for robust dosimetry with a large sample size to understand the health effects of low dose radiation.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Tamaka, Kolar, Karnataka, 563 103, India
| | - Safa Abdul Syed Basheerudeen
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Akshaya Prasad
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Tamizh Selvan Gnana Sekaran
- Central Research Lab, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575 018, India
| | - Sudha Pattan
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Panneerselvam Shanmugam
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Annalakshmi Ozimuthu
- Safety, Quality & Resource Management Group, Health Safety and Environment Group, Homi Bhabha National Institute, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
77
|
Boyd A, Byrne S, Middleton RJ, Banati RB, Liu GJ. Control of Neuroinflammation through Radiation-Induced Microglial Changes. Cells 2021; 10:2381. [PMID: 34572030 PMCID: PMC8468704 DOI: 10.3390/cells10092381] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia, the innate immune cells of the central nervous system, play a pivotal role in the modulation of neuroinflammation. Neuroinflammation has been implicated in many diseases of the CNS, including Alzheimer's disease and Parkinson's disease. It is well documented that microglial activation, initiated by a variety of stressors, can trigger a potentially destructive neuroinflammatory response via the release of pro-inflammatory molecules, and reactive oxygen and nitrogen species. However, the potential anti-inflammatory and neuroprotective effects that microglia are also thought to exhibit have been under-investigated. The application of ionising radiation at different doses and dose schedules may reveal novel methods for the control of microglial response to stressors, potentially highlighting avenues for treatment of neuroinflammation associated CNS disorders, such as Alzheimer's disease and Parkinson's disease. There remains a need to characterise the response of microglia to radiation, particularly low dose ionising radiation.
Collapse
Affiliation(s)
- Alexandra Boyd
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Sarah Byrne
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia; (A.B.); (S.B.); (R.J.M.); (R.B.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
78
|
Venturi S. Cesium in Biology, Pancreatic Cancer, and Controversy in High and Low Radiation Exposure Damage-Scientific, Environmental, Geopolitical, and Economic Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8934. [PMID: 34501532 PMCID: PMC8431133 DOI: 10.3390/ijerph18178934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Radionuclide contamination in terrestrial ecosystems has reached a dangerous level. The major artificial radionuclide present in the environment is cesium-137 (137-Cs). In humans, animals, and plants cesium ion (Cs+) behaves like potassium ion (K+) and it is localized mainly inside the cells. Pancreas and salivary glands secrete Cs in the intestine thus eliminating about 14% of ingested Cs with the feces, the remaining 86% is eliminated by the kidney with the urine. Ingested radiocesium can also cause in humans several cases of pancreatitis with secondary diabetes (type 3c), which are both on the rise in the world. The Author studied the correlation between the geographical map of mortality from pancreatic cancer (PC) and the map of nuclear plant accidents, atomic bomb testing, and radioactive fallout. The worldwide death rate of PC is increasing, but the exact cause is still not known. Published data in medical literature at World, European and Italian levels are reviewed and compared. 137-Cs, with a half-life of about 30 years, is still present in the environment for about 300-600 years. Autoradiographic studies in mice have shown that 137-Cs is concentrated in greater quantity in the pancreas, particularly in exocrine cells, where most malignant PCs originate. Some methods of radiocesium removal and PC prevention are also suggested. But there is still a persistent, and not entirely disinterested, the controversy between damage from high and low exposure to ionizing radiations.
Collapse
|
79
|
Sutcliffe J. The truth will out: a reflection on the life and times of Alice Stewart. Int J Radiat Biol 2021; 98:318-330. [PMID: 34357829 DOI: 10.1080/09553002.2021.1962569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONCLUSIONS Dr Alice Stewart's research was pioneering, fundamental and challenging, and is now widely accepted.
Collapse
Affiliation(s)
- Jill Sutcliffe
- Low Level Radiat, Billingshurst, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
80
|
Linet MS, Davis PB, Brink JA. The Need for a Broad-based Introduction to Radiation Science within U.S. Medical Schools' Educational Curriculum. Radiology 2021; 301:35-40. [PMID: 34282969 DOI: 10.1148/radiol.2021210665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martha S Linet
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, NCI Shady Grove Room 7E536, Bethesda, MD 20892-9778 (M.S.L.); Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio (P.B.D.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.A.B.)
| | - Pamela B Davis
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, NCI Shady Grove Room 7E536, Bethesda, MD 20892-9778 (M.S.L.); Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio (P.B.D.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.A.B.)
| | - James A Brink
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, NCI Shady Grove Room 7E536, Bethesda, MD 20892-9778 (M.S.L.); Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio (P.B.D.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (J.A.B.)
| |
Collapse
|
81
|
Berlivet J, Hémon D, Cléro É, Ielsch G, Laurier D, Faure L, Clavel J, Goujon S. Residential exposure to natural background radiation at birth and risk of childhood acute leukemia in France, 1990-2009. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 233:106613. [PMID: 33895630 DOI: 10.1016/j.jenvrad.2021.106613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The role of natural background radiation (NBR) in childhood acute leukemia (AL) remains unclear. Several large record based studies have recently reported heterogeneous results. Differences in exposure assessment timing may explain this heterogeneity. OBJECTIVES In a previous ecological study we did not observe any association between childhood AL incidence in France and NBR exposure at the time of diagnosis. With the same methodology, the present study focused on NBR exposure at the time of birth. Based on data from the French national registry of childhood cancer, we analyzed all AL together, and lymphoblastic and myeloid AL, separately. METHODS We included 6,059 childhood AL cases born and diagnosed in mainland France between 1990 and 2009. NBR levels in municipalities of residence at birth were estimated by cokriging models, using NBR measurements and precise geological data. The incidence rate ratio (IRR) per unit variation of exposure was estimated with Poisson regression models, with adjustment for socio-demographic indicators and ultraviolet radiation levels. NBR exposures were considered at the time of birth, and cumulatively from birth to diagnosis. We also estimated a total NBR dose to red-bone marrow (RBM). RESULTS There was no evidence for an association between NBR exposure at birth and childhood AL incidence, neither overall (gamma radiation: IRR = 0.99 (0.94,1.05) per 50 nSv/h; radon: IRR = 0.97 (0.91,1.03) per 100 Bq/m3) nor for the main AL types. The conclusions were similar with the cumulative exposures, and the total RBM dose. CONCLUSIONS The study was based on high quality incidence data, large numbers of AL cases, and validated models of NBR exposure assessment. In all, the results further support the hypothesis that NBR are not associated to childhood AL in France.
Collapse
Affiliation(s)
- Justine Berlivet
- Inserm, UMR 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (CRESS), Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris University, Villejuif, F-94807, France
| | - Denis Hémon
- Inserm, UMR 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (CRESS), Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris University, Villejuif, F-94807, France
| | - Énora Cléro
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Geraldine Ielsch
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Laure Faure
- Inserm, UMR 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (CRESS), Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris University, Villejuif, F-94807, France; French National Registry of Childhood Hematological Malignancies (RNHE), Villejuif, F-94807, France
| | - Jacqueline Clavel
- Inserm, UMR 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (CRESS), Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris University, Villejuif, F-94807, France; French National Registry of Childhood Hematological Malignancies (RNHE), Villejuif, F-94807, France
| | - Stéphanie Goujon
- Inserm, UMR 1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Center (CRESS), Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris University, Villejuif, F-94807, France; French National Registry of Childhood Hematological Malignancies (RNHE), Villejuif, F-94807, France.
| |
Collapse
|
82
|
Vassileva J, Holmberg O. Radiation protection perspective to recurrent medical imaging: what is known and what more is needed? Br J Radiol 2021; 94:20210477. [PMID: 34161167 DOI: 10.1259/bjr.20210477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This review summarises the current knowledge about recurrent radiological imaging and associated cumulative doses to patients. The recent conservative estimates are for around 0.9 million patients globally who cumulate radiation doses above 100 mSv, where evidence exists for cancer risk elevation. Around one in five is estimated to be under the age of 50. Recurrent imaging is used for managing various health conditions and chronic diseases such as malignancies, trauma, end-stage kidney disease, cardiovascular diseases, Crohn's disease, urolithiasis, cystic pulmonary disease. More studies are needed from different parts of the world to understand the magnitude and appropriateness. The analysis identified areas of future work to improve radiation protection of individuals who are submitted to frequent imaging. These include access to dose saving imaging technologies; improved imaging strategies and appropriateness process; specific optimisation tailored to the clinical condition and patient habitus; wider utilisation of the automatic exposure monitoring systems with an integrated option for individual exposure tracking in standardised patient-specific risk metrics; improved training and communication. The integration of the clinical and exposure history data will support improved knowledge about radiation risks from low doses and individual radiosensitivity. The radiation protection framework will need to respond to the challenge of recurrent imaging and high individual doses. The radiation protection perspective complements the clinical perspective, and the risk to benefit analysis must account holistically for all incidental and long-term benefits and risks for patients, their clinical history and specific needs. This is a step toward the patient-centric health care.
Collapse
Affiliation(s)
- Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | | |
Collapse
|
83
|
Villoing D, Borrego D, Preston DL, Alexander BH, Rose A, Salasky M, Linet MS, Lee C, Kitahara CM. Trends in Occupational Radiation Doses for U.S. Radiologic Technologists Performing General Radiologic and Nuclear Medicine Procedures, 1980-2015. Radiology 2021; 300:605-612. [PMID: 34156301 DOI: 10.1148/radiol.2021204501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Occupational doses to most medical radiation workers have declined substantially since the 1950s because of improvements in radiation protection practices. However, different patterns may have emerged for radiologic technologists working with nuclear medicine because of the higher per-procedure doses and increasing workloads. Purpose To summarize annual occupational doses during a 36-year period for a large cohort of U.S. radiologic technologists and to compare dose between general radiologic technologists and those specializing in nuclear medicine procedures. Materials and Methods Annual personal dose equivalents (referred to as doses) from 1980 to 2015 were summarized for 58 434 (62%) participants in the U.S. Radiologic Technologists (USRT) cohort who responded to the most recent mailed work history survey (years 2012-2014) and reported never regularly performing interventional procedures. Doses were partitioned according to the performance of nuclear medicine (yes or no, frequency, procedure type) by calendar year. Annual dose records were described by using summary statistics (eg, median and 25th and 75th percentiles). Results Median annual doses related to performance of general radiologic procedures decreased from 0.60 mSv (interquartile range [IQR], 0.10-1.9 mSv) in 1980 to levels below the limits of detection by 2015, whereas annual doses related to performance of nuclear medicine procedures remained relatively high during this period (median, 1.2 mSv; IQR, 0.12-3.0 mSv). Higher median annual doses were associated with more frequent (above vs below the median) performance of diagnostic nuclear medicine procedures (≥35 vs <35 times per week; 1.6 mSv [IQR, 0.30-3.3 mSv] and 0.9 mSv [IQR, 0.10-2.6 mSv]). Higher and more variable annual doses were associated with more frequent performance of cardiac nuclear medicine (≥10 times per week) and PET (nine or more times per week) examinations (median, 1.6 mSv [IQR, 0.30-2.2 mSv] and 2.2 mSv [IQR, 0.10-4.6 mSv], respectively). Conclusion Annual doses to U.S. radiologic technologists performing general radiologic procedures declined during a 36-year period. However, consistently higher and more variable doses were associated with the performance of nuclear medicine procedures, particularly cardiac nuclear medicine and PET procedures. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Mettler and Guiberteau in this issue.
Collapse
Affiliation(s)
- Daphnée Villoing
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - David Borrego
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Dale L Preston
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Bruce H Alexander
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - André Rose
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Mark Salasky
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Martha S Linet
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Choonsik Lee
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| | - Cari M Kitahara
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850 (D.V., D.B., A.R., M.S.L., C.L., C.M.K.); Hirosoft International, Eureka, Calif (D.L.P.); Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minn (B.H.A.); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colo (B.H.A.); and Landauer, Glenwood, Ill (M.S.)
| |
Collapse
|
84
|
Boice JD, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, Ellis ED, Bellamy MB, Dauer LT, Samuels C, Eckerman KF, Leggett RW. Mortality among workers at the Los Alamos National Laboratory, 1943-2017. Int J Radiat Biol 2021; 98:722-749. [PMID: 34047625 DOI: 10.1080/09553002.2021.1917784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley P Golden
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - David J Girardi
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Michael B Bellamy
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
85
|
Abstract
The CT manifestation of COVID-19 patients is now well known and essentially reflects pathological changes in the lungs. Actually, there is insufficient knowledge on the long-term outcomes of this new disease, and several chest CTs might be necessary to evaluate the outcomes. The aim of this study is to evaluate the radiation dose for chest CT scans in COVID-19 patients compared to a cohort with pulmonary infectious diseases at the same time of the previous year to value if there is any modification of exposure dose. The analysis of our data shows an increase in the overall mean dose in COVID-19 patients compared with non-COVID-19 patients. In our results, the higher dose increase occurs in the younger age groups (+86% range 21–30 years and +67% range 31–40 years). Our results show that COVID-19 patients are exposed to a significantly higher dose of ionizing radiation than other patients without COVID infectious lung disease, and especially in younger age groups, although some authors have proposed the use of radiotherapy in these patients, which is yet to be validated. Our study has limitations: the use of one CT machine in a single institute and a limited number of patients.
Collapse
|
86
|
Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, Dai J, Hartley SW, Schonfeld SJ, Sampson JN, Maruvka YE, Kapoor V, Ramsden DA, Carvajal-Garcia J, Perou CM, Parker JS, Krznaric M, Yeager M, Boland JF, Hutchinson A, Hicks BD, Dagnall CL, Gastier-Foster JM, Bowen J, Lee O, Machiela MJ, Cahoon EK, Brenner AV, Mabuchi K, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Hatch M, Berrington de Gonzalez A, Thomas GA, Tronko MD, Getz G, Chanock SJ. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science 2021; 372:science.abg2538. [PMID: 33888599 DOI: 10.1126/science.abg2538] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The 1986 Chernobyl nuclear power plant accident increased papillary thyroid carcinoma (PTC) incidence in surrounding regions, particularly for radioactive iodine (131I)-exposed children. We analyzed genomic, transcriptomic, and epigenomic characteristics of 440 PTCs from Ukraine (from 359 individuals with estimated childhood 131I exposure and 81 unexposed children born after 1986). PTCs displayed radiation dose-dependent enrichment of fusion drivers, nearly all in the mitogen-activated protein kinase pathway, and increases in small deletions and simple/balanced structural variants that were clonal and bore hallmarks of nonhomologous end-joining repair. Radiation-related genomic alterations were more pronounced for individuals who were younger at exposure. Transcriptomic and epigenomic features were strongly associated with driver events but not radiation dose. Our results point to DNA double-strand breaks as early carcinogenic events that subsequently enable PTC growth after environmental radiation exposure.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.,Nvidia Corporation, Santa Clara, CA 95051, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yosef E Maruvka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vidushi Kapoor
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Joseph F Boland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH 43205, USA.,Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH 43205, USA
| | - Olivia Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alina V Brenner
- Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sergii Masiuk
- Radiological Protection Laboratory, Institute of Radiation Hygiene and Epidemiology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Mykola Chepurny
- Radiological Protection Laboratory, Institute of Radiation Hygiene and Epidemiology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
87
|
Rehani MM, Heil J, Baliyan V. Multicentric study of patients receiving 50 or 100 mSv in a single day through CT imaging-frequency determination and imaging protocols involved. Eur Radiol 2021; 31:6612-6620. [PMID: 33683390 DOI: 10.1007/s00330-021-07734-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To assess the magnitude and characterization of CT imaging protocols of patients receiving 50 or 100 mSv in a single day. METHODS In this multicentric retrospective study covering up to 279 hospitals from January 2015 to December 2019, the effective dose (E) as estimated by dose management system from dose length product of patients was filtered and grouped into per-day dose bands (≤ 20, > 20-50, > 50-70, > 70-100, > 100-200, > 200 mSv). Information on patient's age and imaging protocol was noted. The data were analyzed to determine the frequency of occurrence in each dose band. Top 20 CT imaging protocols that led to patients with a dose of ≥ 50 mSv in a single acquisition were identified and their relative frequency was estimated. RESULTS A total of approx. 4.3 million (4,283,738) CT exams were performed in approx. 3.9 million (3,880,524) patient-days indicating 9.41% had more than one CT exam in a single day. There were 31,058 (0.8%) patient-days with ≥ 50 mSv and 1191 (0.03%) with ≥ 100 mSv. Nearly 1/3rd patient-days reaching ≥ 50 mSv were of patients aged 50 years or younger. The top 20 CT imaging protocols that led to ≥ 50 mSv in a single day belonged to the body region (chest or abdomen and pelvis) and nearly one-third were angiographic studies. CONCLUSIONS In the first study of its kind, we report that patients with 50 mSv+ in a single day or a single exam are not rare. The information on imaging protocols leading to such doses and their frequency has been provided to help develop dose management strategies. KEY POINTS • Our study of 4,283,738 CT exams performed in 3,880,524 patient-days indicates 0.8% with 50 mSv+ and 0.03% with 100 mSv+ in a single day. • A total of 9.41% underwent more than one CT exam in a single day; nearly 1/3rd of those with 50 mSv+ were ≤ 50 years of age. • Identified top 20 CT imaging protocols that led to 50 mSv+ doses in a single exam. All belong to chest or abdomen and pelvis and nearly 1/3rd were angiographic studies.
Collapse
Affiliation(s)
- Madan M Rehani
- Massachusetts General Hospital, 55 Fruit Str, Boston, MA, 02114, USA. .,Radiology Department, Massachusetts General Hospital, 175 Cambridge Str., Suite 244, Boston, MA, 02114, USA.
| | - John Heil
- Imalogix Research Institute, Bryn Mawr, PA, 19010, USA
| | - Vinit Baliyan
- Massachusetts General Hospital, 55 Fruit Str, Boston, MA, 02114, USA
| |
Collapse
|
88
|
Milder CM, Kendall GM, Arsham A, Schöllnberger H, Wakeford R, Cullings HM, Little MP. Summary of Radiation Research Society Online 66th Annual Meeting, Symposium on "Epidemiology: Updates on epidemiological low dose studies," including discussion. Int J Radiat Biol 2021; 97:866-873. [PMID: 33395353 PMCID: PMC8165006 DOI: 10.1080/09553002.2020.1867326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Cato M Milder
- Space Radiation Analysis Group, NASA Johnson Space Center, 2101 E NASA Pkwy, Houston, TX 77058 USA
| | - Gerald M Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Aryana Arsham
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima, Japan 732-0815
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
89
|
Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S, Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. Cognitive effects of low dose of ionizing radiation - Lessons learned and research gaps from epidemiological and biological studies. ENVIRONMENT INTERNATIONAL 2021; 147:106295. [PMID: 33341586 DOI: 10.1016/j.envint.2020.106295] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.
Collapse
Affiliation(s)
- Elisa Pasqual
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - François Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, 53 Illenko str., Kyiv, Ukraine
| | - Arvid Nordenskjold
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation. Institut of Radiation Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Florent de Vathaire
- Radiation Epidemiology Teams, INSERM Unit 1018, University Paris Saclay, Gustave Roussy, 94800 Villejuif, France
| | | | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
90
|
Brambilla M, Cannillo B, D'Alessio A, Matheoud R, Agliata MF, Carriero A. Patients undergoing multiphase CT scans and receiving a cumulative effective dose of ≥ 100 mSv in a single episode of care. Eur Radiol 2021; 31:4452-4458. [PMID: 33449187 DOI: 10.1007/s00330-020-07665-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To estimate the number of patients who receive a cumulative effective dose (CED) of ≥ 100 mSv from computed tomography (CT) in a single day or episode of care. METHODS We examined 28,870 patients who underwent 49,834 CT examinations in a tertiary care centre in Italy in 2.5 years. Radiation exposures were retrieved from the hospital's automatic exposure monitoring system. Two cohorts were identified as those who received a CED of ≥ 100 mSv in a single day and within a month starting from the first examination. Organ doses were estimated for the first cohort. RESULTS Among the 1765 (6.1%) patients who received CED ≥ 100 mSv in the observation period, 427 received a CED of ≥ 100 mSv within a month (and 70 patients in a single day). This group represented 1.5% of all patients who underwent CT exams and 24% of those who received CED ≥ 100 mSv in the observation period. The clinical indication for referral included cancer in 132 patients (31%) and non-oncological indications in 295 patients (69%). In 68/70 patients with CED > 100 mSv in a single day, at least one organ/tissue received a dose of ≥ 100 mGy. CONCLUSIONS The finding of a sizeable percentage of patients undergoing CT exams and receiving CED ≥ 100 mSv in a single episode of care points toward the need of imaging appropriateness criteria, to revise the routine protocols, to replace older machines, and to provide to the radiologist the patient's prior radiation history to facilitate an appropriate decision-making process. KEY POINTS • Patients can receive effective doses greater than 100 mSv in a single CT or in multiple CT examinations performed in a single episode of care in 1.5% of patients in a 2.5-year period. • In this study, the clinical indication for CT referral was non-oncological in 69% of patients. • The patient's prior radiation history should be provided to the referring physicians and the radiological medical practitioner to facilitate an appropriate decision-making process.
Collapse
Affiliation(s)
- Marco Brambilla
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy.
| | - Barbara Cannillo
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Andrea D'Alessio
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Roberta Matheoud
- Medical Physics Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Maria F Agliata
- Radiology Department, University Hospital "Maggiore della Carità", Novara, Italy
| | - Alessandro Carriero
- Radiology Department, University Hospital "Maggiore della Carità", Novara, Italy
| |
Collapse
|
91
|
Affiliation(s)
- Halit Nahit Şendur
- From the Gazi University Faculty of Medicine, Department of
Radiology, Mevlana Bulvarı No:29 06560 Yenimahalle, Ankara, Turkey
| |
Collapse
|
92
|
Affiliation(s)
- Choonsik Lee
- From the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850
| |
Collapse
|
93
|
Shin E, Lee S, Kang H, Kim J, Kim K, Youn H, Jin YW, Seo S, Youn B. Organ-Specific Effects of Low Dose Radiation Exposure: A Comprehensive Review. Front Genet 2020; 11:566244. [PMID: 33133150 PMCID: PMC7565684 DOI: 10.3389/fgene.2020.566244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Kyeongmin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
94
|
Visweswaran S, Joseph S, Dhanasekaran J, Paneerselvam S, Annalakshmi O, Jose MT, Perumal V. Exposure of patients to low doses of X-radiation during neuro-interventional imaging and procedures: Dose estimation and analysis of γ-H2AX foci and gene expression in blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503237. [PMID: 32928370 DOI: 10.1016/j.mrgentox.2020.503237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
Radiation has widespread applications in medicine. However, despite the benefits of medical radiation exposures, adverse long-term health effects are cause for concern. Protein and gene biomarkers are early indicators of cellular response after low-dose exposure. We examined DNA damage by quantifying γ-H2AX foci and expression of twelve candidate genes in the blood lymphocytes of patients exposed to low doses of X-radiation during neuro-interventional procedures. Entrance surface dose (ESD; 10.92-1062.55 mGy) was measured by thermoluminescence dosimetry (TLD). Absorbed dose was estimated using γ-H2AX focus frequency and gene expression, with in vitro dose-response curves generated for the same biomarkers. γ-H2AX foci in post-exposure samples were significantly higher than in pre-exposure samples. Among the genes analysed, FDXR, ATM, BCL2, MDM2, TNFSF9, and PCNA showed increased expression; CDKN1A, DDB2, SESN1, BAX, and TNFRSF10B showed unchanged or decreased expression. Absorbed dose, estimated based on γ-H2AX focus frequency and gene expression changes, did not show any correlation with measured ESD. Patients undergoing interventional procedures receive considerable radiation doses, resulting in DNA damage and altered gene expression. Medical procedures should be carried out using the lowest radiation doses possible without compromising treatment.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - Jagadeesan Dhanasekaran
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - S Paneerselvam
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India
| | - O Annalakshmi
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - M T Jose
- Radiation Safety Division Unit, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, 603102, Tamil Nadu, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, 600116, India.
| |
Collapse
|
95
|
Steenland K, Schubauer-Berigan M, Vermeulen R, Lunn R, Straif K, Zahm S, Stewart P, Arroyave W, Mehta S, Pearce N. Risk of Bias Assessments and Evidence Syntheses for Observational Epidemiologic Studies of Environmental and Occupational Exposures: Strengths and Limitations. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:95002. [PMID: 32924579 PMCID: PMC7489341 DOI: 10.1289/ehp6980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Increasingly, risk of bias tools are used to evaluate epidemiologic studies as part of evidence synthesis (evidence integration), often involving meta-analyses. Some of these tools consider hypothetical randomized controlled trials (RCTs) as gold standards. METHODS We review the strengths and limitations of risk of bias assessments, in particular, for reviews of observational studies of environmental exposures, and we also comment more generally on methods of evidence synthesis. RESULTS Although RCTs may provide a useful starting point to think about bias, they do not provide a gold standard for environmental studies. Observational studies should not be considered inherently biased vs. a hypothetical RCT. Rather than a checklist approach when evaluating individual studies using risk of bias tools, we call for identifying and quantifying possible biases, their direction, and their impacts on parameter estimates. As is recognized in many guidelines, evidence synthesis requires a broader approach than simply evaluating risk of bias in individual studies followed by synthesis of studies judged unbiased, or with studies given more weight if judged less biased. It should include the use of classical considerations for judging causality in human studies, as well as triangulation and integration of animal and mechanistic data. CONCLUSIONS Bias assessments are important in evidence synthesis, but we argue they can and should be improved to address the concerns we raise here. Simplistic, mechanical approaches to risk of bias assessments, which may particularly occur when these tools are used by nonexperts, can result in erroneous conclusions and sometimes may be used to dismiss important evidence. Evidence synthesis requires a broad approach that goes beyond assessing bias in individual human studies and then including a narrow range of human studies judged to be unbiased in evidence synthesis. https://doi.org/10.1289/EHP6980.
Collapse
Affiliation(s)
- Kyle Steenland
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - R. Vermeulen
- Institute for Risk Assessment Science, University of Utrecht, Utrecht, Netherlands
| | - R.M. Lunn
- Division of the National Toxicology Program (NTP), NIEHS, Research Triangle Park, North Carolina, USA
| | - K. Straif
- Global Observatory on Pollution and Health, Boston College, Boston, Massachusetts, USA
- ISGlobal, Barcelona, Spain
| | - S. Zahm
- Shelia Zahm Consulting, Hermon, Maine, USA
| | - P. Stewart
- Stewart Exposure Assessments, LLC, Arlington, Virginia, USA
| | - W.D. Arroyave
- Integrated Laboratory Systems, Morrisville, North Carolina, USA
| | - S.S. Mehta
- Division of the National Toxicology Program (NTP), NIEHS, Research Triangle Park, North Carolina, USA
| | - N. Pearce
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
96
|
Rehani MM, Hauptmann M. Estimates of the number of patients with high cumulative doses through recurrent CT exams in 35 OECD countries. Phys Med 2020; 76:173-176. [PMID: 32693353 DOI: 10.1016/j.ejmp.2020.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To estimate the number of patients in OECD (Organization for Economic Co-operation and Development) countries who receive a cumulative effective dose (CED) ≥ 100 mSv from recurrent computed tomography (CT) exams. METHODS Taking into account recently published data on the number of CTs per patient and the fraction of patients with CED ≥ 100 mSv as well as country-specific data for the number of CT exams/1,000 population from OECD publication, this paper makes estimations for 35 OECD countries. RESULTS The estimated total number of patients with CED ≥ 100 mSv for all 35 OECD countries combined in a 5-year period is around 2.5 million (2,493,685) in a population of 1.2 billion (1,176,641,900), i.e., 0.21% of the population. Expressed per 1,000 population, the range is from 0.51 for Finland to 2.94 for the US, a nearly six-fold difference. Countries with more than 2 patients with CED ≥ 100 mSv in a 5-yr period per 1,000 population are: Belgium, France, Iceland, Japan, Korea, Luxembourg, Portugal, Turkey, and US. CONCLUSIONS The first estimates of the number of patients likely receiving CED ≥ 100 mSv through recurrent CT exams in 35 OECD countries indicate that 2.5 million patients reach this level in a 5-year period. There is an urgent need for various stakeholders including medical physicists, referring physicians, health policy makers, manufacturers of CT equipment and epidemiologists to attend to the issue in the interest of patient radiation safety.
Collapse
Affiliation(s)
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School, 16816 Neuruppin, Germany.
| |
Collapse
|
97
|
Gilbert ES, Little MP, Preston DL, Stram DO. Issues in Interpreting Epidemiologic Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation. J Natl Cancer Inst Monogr 2020; 2020:176-187. [PMID: 32657345 PMCID: PMC7355296 DOI: 10.1093/jncimonographs/lgaa004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
This article addresses issues relevant to interpreting findings from 26 epidemiologic studies of persons exposed to low-dose radiation. We review the extensive data from both epidemiologic studies of persons exposed at moderate or high doses and from radiobiology that together have firmly established radiation as carcinogenic. We then discuss the use of the linear relative risk model that has been used to describe data from both low- and moderate- or high-dose studies. We consider the effects of dose measurement errors; these can reduce statistical power and lead to underestimation of risks but are very unlikely to bring about a spurious dose response. We estimate statistical power for the low-dose studies under the assumption that true risks of radiation-related cancers are those expected from studies of Japanese atomic bomb survivors. Finally, we discuss the interpretation of confidence intervals and statistical tests and the applicability of the Bradford Hill principles for a causal relationship.
Collapse
Affiliation(s)
- Ethel S Gilbert
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Daniel O Stram
- Department of Preventive Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
98
|
Berrington de Gonzalez A, Daniels RD, Cardis E, Cullings HM, Gilbert E, Hauptmann M, Kendall G, Laurier D, Linet MS, Little MP, Lubin JH, Preston DL, Richardson DB, Stram D, Thierry-Chef I, Schubauer-Berigan MK. Epidemiological Studies of Low-Dose Ionizing Radiation and Cancer: Rationale and Framework for the Monograph and Overview of Eligible Studies. J Natl Cancer Inst Monogr 2020; 2020:97-113. [PMID: 32657348 PMCID: PMC7610154 DOI: 10.1093/jncimonographs/lgaa009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Whether low-dose ionizing radiation can cause cancer is a critical and long-debated question in radiation protection. Since the Biological Effects of Ionizing Radiation report by the National Academies in 2006, new publications from large, well-powered epidemiological studies of low doses have reported positive dose-response relationships. It has been suggested, however, that biases could explain these findings. We conducted a systematic review of epidemiological studies with mean doses less than 100 mGy published 2006-2017. We required individualized doses and dose-response estimates with confidence intervals. We identified 26 eligible studies (eight environmental, four medical, and 14 occupational), including 91 000 solid cancers and 13 000 leukemias. Mean doses ranged from 0.1 to 82 mGy. The excess relative risk at 100 mGy was positive for 16 of 22 solid cancer studies and 17 of 20 leukemia studies. The aim of this monograph was to systematically review the potential biases in these studies (including dose uncertainty, confounding, and outcome misclassification) and to assess whether the subset of minimally biased studies provides evidence for cancer risks from low-dose radiation. Here, we describe the framework for the systematic bias review and provide an overview of the eligible studies.
Collapse
Affiliation(s)
| | - Robert D Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Ethel Gilbert
- Division of Cancer Epidemiology & Genetics, Radiation Epidemiology Branch, Bethesda, MD, USA
| | - Michael Hauptmann
- Department of Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Brandenburg Medical School Theodor Fontane, Institute of Biostatistics and Registry Research, Neuruppin, Germany
| | | | | | - Martha S Linet
- Division of Cancer Epidemiology & Genetics, Radiation Epidemiology Branch, Bethesda, MD, USA
| | - Mark P Little
- Division of Cancer Epidemiology & Genetics, Radiation Epidemiology Branch, Bethesda, MD, USA
| | - Jay H Lubin
- Division of Cancer Epidemiology & Genetics, Radiation Epidemiology Branch, Bethesda, MD, USA
| | | | | | - Daniel Stram
- University of Southern California, Los Angeles, CA
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | |
Collapse
|