51
|
Liu Y, Chen S, Jiang C, Liu H, Wang J, He W, Moon D, Chen J, Chen L, Ma J. Combined QTL mapping, GWAS and transcriptomic analysis revealed a candidate gene associated with the timing of spring bud flush in tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2023; 10:uhad149. [PMID: 37691963 PMCID: PMC10483171 DOI: 10.1093/hr/uhad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weizhong He
- Tea Research Institute, Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, China
| | - Doogyung Moon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju 690-150, Korea
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
52
|
Shimalina NS, Antonova EV, Pozolotina VN. Multiannual Assessment of Quality of Plantago major L. Seed Progeny from Kyshtym Radiation Accident Area: Weather-Dependent Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2528. [PMID: 37447088 DOI: 10.3390/plants12132528] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The effects of low-dose radiation that are observed in plant populations in radioactively contaminated areas are variable. One of the reasons is the influence of fluctuating weather conditions and the interaction of radiation with weather factors. This article summarizes results of 12-year research on the viability and radioresistance of greater plantain (Plantago major L.) seed progeny growing in the East Ural Radioactive Trace (EURT) zone and in control (nonradioactive) areas, with consideration of weather conditions' variability. The EURT was formed by the Kyshtym accident, which occurred in 1957 at the Mayak Production Association. Absorbed dose rates of P. major parental plants in the pollution gradient were 14.5-165.9 μGy h-1, which correspond to a low-dose range. Seed progeny quality was evaluated as seed weight, the survival rate, and root length of 21-day seedlings. Interannual variability in the studied parameters was high, and their ranges overlapped between EURT groups of seeds and control groups in most cases. The number of significant correlations between the parameters of seed quality and weather conditions was higher in EURT groups than in control populations. In the control groups of seeds, 88.9% of correlations were negative, whereas in the EURT groups, 78.5% were positive.
Collapse
Affiliation(s)
- Nadezhda S Shimalina
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| | - Elena V Antonova
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| | - Vera N Pozolotina
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta Str. 202, Ekaterinburg 620144, Russia
| |
Collapse
|
53
|
Jiao MY, Zhang J, Cheng WW, Song X, Long YH, Xing ZB. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress. 3 Biotech 2023; 13:259. [PMID: 37405267 PMCID: PMC10314890 DOI: 10.1007/s13205-023-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
In this study, through analysis of the genome of Eleutherococcus senticosus (ES). 228 AP2/ERF genes were identified and classified into 5 groups AP2 (47 genes), ERF (108 genes), RAV (6 genes), DREB (64 genes), and soloist (3 genes). According to the AP2/ERF classification of Arabidopsis thaliana, the ES AP2/ERF proteins were subdivided into 15 groups. The gene structure and motifs of each group of AP2/ERF in ES were highly similar, which confirmed the conservation of AP2/ERF genes. The ES AP2/ERF genes were unevenly distributed on chromosomes, and a total of four pairs of tandem repeats, and 84 co-linear gene pairs were found, so the AP2/ERF genes expanded in a fragment replication manner, and dominated by pure selection during evolution. By analyzing the transcriptome data of ES under different drought stress conditions, 87 AP2/ERF genes with differential expression were obtained, of which 10 genes with highly significant differences were further analyzed and screened for qRT-PCR validation. To the best of our knowledge, this is the first report on the AP2/ERF gene of Eleutherococcus senticosus, and the bioinformatics analysis and experimental validation provided valuable information about them, which is of great significance for further research on the molecular mechanisms of ES in response to drought stress.
Collapse
Affiliation(s)
- Meng-Ying Jiao
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Jie Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Wen-wen Cheng
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Xin Song
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Yue-Hong Long
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| | - Zhao-Bin Xing
- College of Life Science, North China University of Science and Technology, Tangshan, 063210 Hebei China
| |
Collapse
|
54
|
Abbas S, Basit F, Tanwir K, Zhu X, Hu J, Guan Y, Hu W, Sheteiwy MS, Yang H, El-Keblawy A, El-Tarabily KA, AbuQamar SF, Lou J. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. PHYSIOLOGIA PLANTARUM 2023; 175:e13985. [PMID: 37616000 DOI: 10.1111/ppl.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Xiaobo Zhu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah, United Arab Emirates
| | - Khaled A El-Tarabily
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jianfeng Lou
- Shanghai Agro-Technology Extension Service Center, Shanghai, China
| |
Collapse
|
55
|
Zhang Y, Xia P. The DREB transcription factor, a biomacromolecule, responds to abiotic stress by regulating the expression of stress-related genes. Int J Biol Macromol 2023:125231. [PMID: 37301338 DOI: 10.1016/j.ijbiomac.2023.125231] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Abiotic stress is a crucial factor that affects plant survival and growth and even leads to plant death in severe cases. Transcription factors can enhance the ability of plants to fight against various stresses by controlling the expression of downstream genes. The dehydration response element binding protein (DREB) is the most extensive subfamily of AP2/ERF transcription factors involved in abiotic stress. However, insufficient research on the signal network of DREB transcription factors has limited plant growth and reproduction. Furthermore, field planting of DREB transcription factors and their roles under multiple stress also require extensive research. Previous reports on DREB transcription factors have focused on the regulation of DREB expression and its roles in plant abiotic stress. In recent years, there has been new progress in DREB transcription factors. Here, the structure and classification, evolution and regulation, role in abiotic stress, and application in crops of DREB transcription factors were reviewed. And this paper highlighted the evolution of DREB1/CBF, as well as the regulation of DREB transcription factors under the participation of plant hormone signals and the roles of subgroups in abiotic stress. In the future, it will lay a solid foundation for further study of DREB transcription factors and pave the way for the cultivation of resistant plants.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
56
|
Laksana C, Sophiphun O, Chanprame S. In vitro and in vivo screening for the identification of salt-tolerant sugarcane ( Saccharum officinarum L.) clones: molecular, biochemical, and physiological responses to salt stress. Saudi J Biol Sci 2023; 30:103655. [PMID: 37213693 PMCID: PMC10193298 DOI: 10.1016/j.sjbs.2023.103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/23/2023] Open
Abstract
Sugarcane is a glycophyte whose growth and yield can be negatively affected by salt stress. As the arable lands with potential saline soils expand annually, the increase of salt-tolerance in sugarcane cultivars is highly desired. We, herein, employed in vitro and in vivo conditions in order to screen sugarcane plants for salt tolerance at the cellular and at the whole plant levels. Calli of sugarcane cv. Khon Kaen 3 (KK3) were selected after culturing in selective media containing various NaCl concentrations, and regenerated plants were then reselected after culturing in selective media containing higher NaCl concentrations. The surviving plants were finally selected after an exposure to 254 mM NaCl under greenhouse conditions. A total of 11 sugarcane plants survived the selection process. Four plants that exhibited tolerance to the four different salt concentrations applied during the aforementioned screening process were then selected for the undertaking of further molecular, biochemical, and physiological studies. The construction of a dendrogram has revealed that the most salt-tolerant plant was characterized by the lowest genetic similarity to the original cultivar. The relative expression levels of six genes (i.e., SoDREB, SoNHX1, SoSOS1, SoHKT, SoBADH, and SoMIPS) were found to be significantly higher in the salt-tolerance clones than those measured in the original plant. The measured proline levels, the glycine betaine content, the relative water content, the SPAD unit, the contents of chlorophyll a and b, as well as the K+/Na+ ratios of the salt-tolerant clones were also found to be significantly higher than those of the original plant.When the salt-tolerant clones were grown in a low saline soil, they exhibited a higher Brix percentage than that of the original cultivar.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140,Thailand
- Corresponding author.
| |
Collapse
|
57
|
Jarambasa T, Regon P, Jyoti SY, Gupta D, Panda SK, Tanti B. Genome-wide identification and expression analysis of the Pisum sativum (L.) APETALA2/ethylene-responsive factor (AP2/ERF) gene family reveals functions in drought and cold stresses. Genetica 2023; 151:225-239. [PMID: 37269422 DOI: 10.1007/s10709-023-00190-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
AP2/ERF (APETALA2/Ethylene Response Factor) is a family of transcription factors that play essential roles in regulating gene expression in response to various environmental stimuli, including biotic and abiotic stresses, hormone signaling, and developmental processes. Pisum sativum (L.), commonly known as garden pea, is a winter crop sensitive to high temperatures and can also be affected by extreme cold and drought conditions. This study performed a genome-wide analysis of AP2/ERF genes and identified 153 AP2/ERF genes in P. sativum. Based on the conserved AP2/ERF domain and sequence homology, they were classified into AP2 (APETALA2), ERF (Ethylene Response Factor), DREB (Dehydration responsive element-binding), RAV (Related to Abscisic Acid Insensitive 3/ Viviparous 1) and Soloist subfamily. The DREB and ERF subfamily were further divided into groups A1-6 and B1-B6. Tandem and segmental duplication events were more frequent in the ERF subfamily, which can have important implications for their evolution and functional diversification. Under cold stress, the expression of DREB1A was highly induced in leaves, whereas DREB1B was suppressed. Similarly, the DREB2A, DREB2C, DREB2E, and DREB2F were induced in leaves under drought stress. The putative target genes of AP2/ERF transcription factors are highly diversified, suggesting that they play essential roles in various physiological responses in plants, including responses to biotic and abiotic stresses as well as developmental processes. Thus, this study of AP2/ERF genes and their functions provides valuable insight into how P. sativum responds to different environmental conditions, including cold and drought stresses.
Collapse
Affiliation(s)
- Trishna Jarambasa
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India
| | - Preetom Regon
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India
| | - Sabnoor Yeasrin Jyoti
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati, Assam, 781014, India.
| |
Collapse
|
58
|
Hou L, Wu Q, Zhu X, Li X, Fan X, Hui M, Ye Q, Liu G, Liu X. Transcription Factor VvDREB2A from Vitis vinifera Improves Cold Tolerance. Int J Mol Sci 2023; 24:ijms24119381. [PMID: 37298332 DOI: 10.3390/ijms24119381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar 'Zuoyouhong' tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels.
Collapse
Affiliation(s)
- Lixia Hou
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiqi Wu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Zhu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyu Li
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Fan
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengling Hui
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Ye
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
59
|
Chen Q, Shi X, Ai L, Tian X, Zhang H, Tian J, Wang Q, Zhang M, Cui S, Yang C, Zhao H. Genome-wide identification of genes encoding SWI/SNF components in soybean and the functional characterization of GmLFR1 in drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1176376. [PMID: 37255551 PMCID: PMC10225534 DOI: 10.3389/fpls.2023.1176376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
ATP-dependent SWI/SNF chromatin remodeling complexes (CRCs) are evolutionarily conserved multi-component machines that regulate transcription, replication, and genome stability in eukaryotes. SWI/SNF components play pivotal roles in development and various stress responses in plants. However, the compositions and biological functions of SWI/SNF complex subunits remain poorly understood in soybean. In this study, we used bioinformatics to identify 39 genes encoding SWI/SNF subunit distributed on the 19 chromosomes of soybean. The promoter regions of the genes were enriched with several cis-regulatory elements that are responsive to various hormones and stresses. Digital expression profiling and qRT-PCR revealed that most of the SWI/SNF subunit genes were expressed in multiple tissues of soybean and were sensitive to drought stress. Phenotypical, physiological, and molecular genetic analyses revealed that GmLFR1 (Leaf and Flower-Related1) plays a negative role in drought tolerance in soybean and Arabidopsis thaliana. Together, our findings characterize putative components of soybean SWI/SNF complex and indicate possible roles for GmLFR1 in plants under drought stress. This study offers a foundation for comprehensive analyses of soybean SWI/SNF subunit and provides mechanistic insight into the epigenetic regulation of drought tolerance in soybean.
Collapse
Affiliation(s)
- Qiang Chen
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lijuan Ai
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xuan Tian
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Hongwei Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Jiawang Tian
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Qianying Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
60
|
Li J, Dai X, Li Q, Jiang F, Xu X, Guo T, Zhang H. Low temperatures inhibit the pectin degradation of 'Docteur Jules Guyot' pear (Pyrus communis L.). Int J Biol Macromol 2023; 242:124719. [PMID: 37150373 DOI: 10.1016/j.ijbiomac.2023.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
The most remarkable characteristic of European pears is extremely perishable and difficult to store after postharvest softening. Low-temperature storage is one of the most commonly used methods to prolong the shelf life of European pears. However, the regulatory mechanism of the low-temperature delay of the softening of European pears is still unclear. In this study, the fruit firmness, pectin polysaccharide content, pectin-degrading enzyme activity, and pectin degradation gene expression of 'Docteur Jules Guyot' pears under low temperature (LT) and room temperature (RT) were analyzed. It was found that water-soluble pectin (WSP) was significantly negatively correlated with fruit flesh firmness, and the activities of several pectin-degrading enzymes were inhibited under LT storage conditions. In addition, it was also found that the gene expression patterns of PcPME2, PcPME3, PcPG1, PcPG2, PcPL, PcGAL1, PcGAL2, PcGAL4, and PcARF1 were inhibited by LT. The C-repeat binding factors PcCBF1 and PcCBF2 were also inhibited by long-term LT storage. Correlation analysis showed that the expression of PcCBFs was positively correlated with pectin-degradation enzyme genes, and we found that the promoters of many pectin-degradation enzyme genes contain the CRT/DRE motif, which CBF can directly bind. Therefore, it is speculated that long-term low-temperature conditions inhibit pectin degradation through PcCBFs.
Collapse
Affiliation(s)
- Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China.
| | - Xiaonan Dai
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong Province 265500, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong Province 265500, China
| | - Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Tingting Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, Shandong Province 264001, China.
| |
Collapse
|
61
|
Mishra DC, Majumdar SG, Kumar A, Bhati J, Chaturvedi KK, Kumar RR, Goswami S, Rai A, Budhlakoti N. Regulatory Networks of lncRNAs, miRNAs, and mRNAs in Response to Heat Stress in Wheat (Triticum Aestivum L.): An Integrated Analysis. Int J Genomics 2023; 2023:1774764. [PMID: 37033711 PMCID: PMC10079388 DOI: 10.1155/2023/1774764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 04/03/2023] Open
Abstract
Climate change has become a major source of concern, particularly in agriculture, because it has a significant impact on the production of economically important crops such as wheat, rice, and maize. In the present study, an attempt has been made to identify differentially expressed heat stress-responsive long non-coding RNAs (lncRNAs) in the wheat genome using publicly available wheat transcriptome data (24 SRAs) representing two conditions, namely, control and heat-stressed. A total of 10,965 lncRNAs have been identified and, among them, 153, 143, and 211 differentially expressed transcripts have been found under 0 DAT, 1 DAT, and 4 DAT heat-stress conditions, respectively. Target prediction analysis revealed that 4098 lncRNAs were targeted by 119 different miRNA responses to a plethora of environmental stresses, including heat stress. A total of 171 hub genes had 204 SSRs (simple sequence repeats), and a set of target sequences had SNP potential as well. Furthermore, gene ontology analysis revealed that the majority of the discovered lncRNAs are engaged in a variety of cellular and biological processes related to heat stress responses. Furthermore, the modeled three-dimensional (3D) structures of hub genes encoding proteins, which had an appropriate range of similarity with solved structures, provided information on their structural roles. The current study reveals many elements of gene expression regulation in wheat under heat stress, paving the way for the development of improved climate-resilient wheat cultivars.
Collapse
|
62
|
Sanyal R, Kumar S, Pattanayak A, Kar A, Bishi SK. Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. FRONTIERS IN PLANT SCIENCE 2023; 14:1134754. [PMID: 37056499 PMCID: PMC10088399 DOI: 10.3389/fpls.2023.1134754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Plants synthesize various compounds for their growth, metabolism, and stress mitigation, and one such group of compounds is the raffinose family of oligosaccharides (RFOs). RFOs are non-reducing oligosaccharides having galactose residues attached to a sucrose moiety. They act as carbohydrate reserves in plants, assisting in seed germination, desiccation tolerance, and biotic/abiotic stress tolerance. Although legumes are among the richest sources of dietary proteins, the direct consumption of legumes is hindered by an excess of RFOs in the edible parts of the plant, which causes flatulence in humans and monogastric animals. These opposing characteristics make RFOs manipulation a complicated tradeoff. An in-depth knowledge of the chemical composition, distribution pattern, tissue mobilization, and metabolism is required to optimize the levels of RFOs. The most recent developments in our understanding of RFOs distribution, physiological function, genetic regulation of their biosynthesis, transport, and degradation in food crops have been covered in this review. Additionally, we have suggested a few strategies that can sustainably reduce RFOs in order to solve the flatulence issue in animals. The comprehensive information in this review can be a tool for researchers to precisely control the level of RFOs in crops and create low antinutrient, nutritious food with wider consumer acceptability.
Collapse
Affiliation(s)
- Rajarshi Sanyal
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Sandeep Kumar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Arunava Pattanayak
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Abhijit Kar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Sujit K. Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
63
|
Manimekalai R, Selvi A, Narayanan J, Vannish R, Shalini R, Gayathri S, Rabisha VP. Comparative physiological and transcriptome analysis in cultivated and wild sugarcane species in response to hydrogen peroxide-induced oxidative stress. BMC Genomics 2023; 24:155. [PMID: 36973642 PMCID: PMC10045617 DOI: 10.1186/s12864-023-09218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Sugarcane is an important energy crop grown worldwide,supplementing various renewable energy sources. Cultivated and wild sugarcane species respond differently to biotic and abiotic stresses. Generally, wild species are tolerant to various abiotic stresses. In the present study, the physiological and molecular responses of cultivated and wild sugarcane species to oxidative stress at the transcriptional levels were compared. Transcriptional responses were determined using RNAseq. The representative RNA-seq transcript values were validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and confirmed through physiological responses. RESULTS Oxidative stress causes leaf-rolling and -tip drying in cultivated sugarcane, but the wild species are tolerant. Higher chlorophyll fluorescence was observed in the wild species than that in the cultivated varieties under stress. Wild species can maintain a higher chlorophyll stability index than the cultivated species, which was confirmed by the lower transcripts of the chlorophyllase gene in the wild species than that in the cultivated variety. Transcription factor genes (NAC, MYB, and WRKY) were markedly expressed in response to oxidative stress, revealing their involvement in stress tolerance. The analysis revealed synchronized expression of acetyl-transferase, histone2A, cellulose synthase, and secondary cell wall biosynthetic genes in the wild species. The validation of selected genes and 15 NAC transcription factors using RT-qPCR revealed that their expression profiles were strongly correlated with RNA-seq. To the best of our knowledge, this is the first report on the oxidative stress response in cultivated and wild sugarcane species. CONCLUSION Physiological and biochemical changes in response to oxidative stress markedly differ between cultivated and wild sugarcane species. The differentially expressed stress-responsive genes are grouped intothe response to oxidative stress, heme-binding, peroxidase activity, and metal ion binding categories. Chlorophyll maintenance is a stress tolerance response enhanced by the differential regulation of the chlorophyllase gene.There is a considerable difference in the chlorophyll stability index between wild and cultivated varieties. We observed a substantial regulation of secondary wall biosynthesis genes in the wild species compared with that in the cultivated variety, suggesting differences in stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Manimekalai
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India.
| | - A Selvi
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Jini Narayanan
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - Ram Vannish
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - R Shalini
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - S Gayathri
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| | - V P Rabisha
- Crop Improvement Division, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, 641 007, India
| |
Collapse
|
64
|
Liu M, Lv Y, Cao B, Chen Z, Xu K. Physiological and molecular mechanism of ginger ( Zingiber officinale Roscoe) seedling response to salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1073434. [PMID: 37008470 PMCID: PMC10064006 DOI: 10.3389/fpls.2023.1073434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
We used 'Shannong No.1' experimental material to simulate higher salt concentration in ginger and analyzed the physiological responses of different parts of ginger seedlings under salt stress. The results showed that salt stress led to a significant decrease in fresh and dry weight of ginger, lipid membrane peroxidation, increased sodium ion content and enhanced activity of antioxidant enzymes. Compared with the control, the overall plant dry weight of ginger under salt stress decreased by about 60%, and the MDA content in roots, stems, leaves, and rhizomes increased by 372.27%, 184.88%, 291.5%, and 171.13%, respectively, and the APX content increased by 188.85%, 165.56%, 195.38%, and 40.08%, respectively. After analysis of the physiological indicators, it was found that the roots and leaves of ginger were the most significantly changed parts. We analyzed the transcriptional differences between ginger roots and leaves by RNA-seq and found that they jointly initiated MAPK signaling pathways in response to salt stress. By combining physiological and molecular indicators, we elucidated the response of different tissues and parts of ginger to salt stress during the seedling stage.
Collapse
Affiliation(s)
- Miaohong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai’an, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai’an, China
| |
Collapse
|
65
|
Dong G, Wang H, Qi J, Leng Y, Huang J, Zhang H, Yan J. Transcriptome analysis of Taraxacum kok-saghyz reveals the role of exogenous methyl jasmonate in regulating rubber biosynthesis and drought tolerance. Gene 2023; 867:147346. [PMID: 36898514 DOI: 10.1016/j.gene.2023.147346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.
Collapse
Affiliation(s)
- Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hainan Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiyan Qi
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yadong Leng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jun Huang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hao Zhang
- Institute of gardening and greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
66
|
Volaire F, Barkaoui K, Grémillet D, Charrier G, Dangles O, Lamarque LJ, Martin-StPaul N, Chuine I. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? ANNALS OF BOTANY 2023; 131:245-254. [PMID: 36567631 PMCID: PMC9992932 DOI: 10.1093/aob/mcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Université Montpellier, INRAE, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Université F-34060 Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Grémillet
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont Ferrand, France
| | - Olivier Dangles
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Nicolas Martin-StPaul
- INRAE, URFM, Domaine Saint Paul, Centre de recherche PACA, 228 route de l’Aérodrome, CS 40509, Domaine Saint-Paul, Site Agroparc, France
| | - Isabelle Chuine
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| |
Collapse
|
67
|
Geng L, Ren J, Ji X, Yan S, Song XS. Over-expression of DREB46 enhances drought tolerance in Populus trichocarpa. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153923. [PMID: 36657232 DOI: 10.1016/j.jplph.2023.153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The drought responsive element binding (DREB) gene family has a significant role in plant abiotic stress responses. Here, we cloned a drought-inducible DREB gene, DREB46 (Potri.019G075500), and investigated its function in drought tolerance in Populus trichocarpa. Under treatment with exogenous abscisic acid and 6% PEG6000, DREB46 was rapidly and abundantly expressed. We successfully inserted P. trichocarpa DREB46 constructs into P. trichocarpa. After 11 d of drought stress and 3 d of rehydration treatment, the DREB46 over-expression (OE) lines exhibited significantly increased survival rates relative to the wild type (WT). Histochemical staining showed that the accumulation of reactive oxygen species (ROS) in transgenic plants under drought stress was lower than that in WT plants. Furthermore, OE plants displayed higher superoxide dismutase, peroxidase, and catalase activities and proline content, but lower malondialdehyde content than the WT plants under drought stress. In contrast, DREB46-RNA interference (RNAi) lines exhibited the opposite phenotype. Under PEG-6000 stress, OE plants produced significantly more adventitious roots (ARs) than WT plants. In contrast, RNAi-mediated DREB46-inhibited poplar exhibited fewer ARs. Quantitative real-time PCR indicated that WOX11/12a (Potri.013G066900), a gene related to root growth and development regulation, was significantly increased in OE plants. Additionally, yeast two-hybrid (Y2H) assays showed that DREB46 could interact with protein kinase MPK1 (Potri.002G032100) and protein phosphatase PP2C47 (Potri.007G058700), respectively, and this result was also verified by luciferase complementation assay. Transient co-expression results of leaves showed that PP2C47 and DREB46 Agrobacterium-transformed leaves had strong drought tolerance. These results show that DREB46 plays a key role in drought tolerance by inducing the ROS scavenging system and increasing the number of ARs.
Collapse
Affiliation(s)
- Liangzhuang Geng
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaolong Ji
- Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shaopeng Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
68
|
Hong Y, Gao Y, Pang J, Shi H, Li T, Meng H, Kong D, Chen Y, Zhu JK, Wang Z. The Sm core protein SmEb regulates salt stress responses through maintaining proper splicing of RCD1 pre-mRNA in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36661041 DOI: 10.1111/jipb.13457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Salt stress adversely impacts crop production. Several spliceosome components have been implicated in regulating salt stress responses in plants, however, the underlying molecular basis is still unclear. Here we report that the spliceosomal core protein SmEb is essential to salt tolerance in Arabidopsis. Transcriptome analysis showed that SmEb modulates alternative splicing of hundreds of pre-mRNAs in plant response to salt stress. Further study revealed that SmEb is crucial in maintaining proper ratio of two RCD1 splicing variants (RCD1.1/RCD1.2) important for salt stress response. In addition, RCD1.1 but not RCD1.2 is able to interact with the stress regulators and attenuates salt-sensitivity by decreasing salt-induced cell death in smeb-1 mutant. Together, our findings uncovered the essential role of SmEb in the regulation of alternative pre-mRNA splicing in salt stress response.
Collapse
Affiliation(s)
- Yechun Hong
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Tingting Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Huiying Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yunjuan Chen
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
69
|
Evolutionary fine-tuning of residual helix structure in disordered proteins manifests in complex structure and lifetime. Commun Biol 2023; 6:63. [PMID: 36653471 PMCID: PMC9849366 DOI: 10.1038/s42003-023-04445-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.
Collapse
|
70
|
Cheng C, An L, Li F, Ahmad W, Aslam M, Ul Haq MZ, Yan Y, Ahmad RM. Wide-Range Portrayal of AP2/ERF Transcription Factor Family in Maize ( Zea mays L.) Development and Stress Responses. Genes (Basel) 2023; 14:194. [PMID: 36672935 PMCID: PMC9859492 DOI: 10.3390/genes14010194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The APETALA2/Ethylene-Responsive Transcriptional Factors containing conservative AP2/ERF domains constituted a plant-specific transcription factor (TF) superfamily, called AP2/ERF. The configuration of the AP2/ERF superfamily in maize has remained unresolved. In this study, we identified the 229 AP2/ERF genes in the latest (B73 RefGen_v5) maize reference genome. Phylogenetic classification of the ZmAP2/ERF family members categorized it into five clades, including 27 AP2 (APETALA2), 5 RAV (Related to ABI3/VP), 89 DREB (dehydration responsive element binding), 105 ERF (ethylene responsive factors), and a soloist. The duplication events of the paralogous genes occurred from 1.724-25.855 MYA, a key route to maize evolution. Structural analysis reveals that they have more introns and few exons. The results showed that 32 ZmAP2/ERFs regulate biotic stresses, and 24 ZmAP2/ERFs are involved in responses towards abiotic stresses. Additionally, the expression analysis showed that DREB family members are involved in plant sex determination. The real-time quantitative expression profiling of ZmAP2/ERFs in the leaves of the maize inbred line B73 under ABA, JA, salt, drought, heat, and wounding stress revealed their specific expression patterns. Conclusively, this study unveiled the evolutionary pathway of ZmAP2/ERFs and its essential role in stress and developmental processes. The generated information will be useful for stress resilience maize breeding programs.
Collapse
Affiliation(s)
- Cheng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Likun An
- College of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Fangzhe Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wahaj Ahmad
- Institute of Soil and Environmental Sciences, COMSATS University Islamabad, Abbottabad 22020, Pakistan
| | - Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Zia Ul Haq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ramala Masood Ahmad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
71
|
Bushey JA, Hoffman AM, Gleason SM, Smith MD, Ocheltree TW. Water limitation reveals local adaptation and plasticity in the drought tolerance strategies of
Bouteloua gracilis. Ecosphere 2023. [DOI: 10.1002/ecs2.4335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Julie A. Bushey
- Western Ecosystems Technology, Inc. Cheyenne Wyoming USA
- Water Management and Systems Research Unit, Agricultural Research Service United States Department of Agriculture Fort Collins Colorado USA
- Department of Forest and Rangeland Stewardship, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Ava M. Hoffman
- Department of Biostatistics Fred Hutchinson Cancer Center Seattle Washington USA
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Sean M. Gleason
- Water Management and Systems Research Unit, Agricultural Research Service United States Department of Agriculture Fort Collins Colorado USA
| | - Melinda D. Smith
- Department of Biology, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland Stewardship, Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA
| |
Collapse
|
72
|
Li X, Yang R, Liang Y, Gao B, Li S, Bai W, Oliver MJ, Zhang D. The ScAPD1-like gene from the desert moss Syntrichia caninervis enhances resistance to Verticillium dahliae via phenylpropanoid gene regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:75-91. [PMID: 36416176 DOI: 10.1111/tpj.16035] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Soloist is a member of a distinct and small subfamily within the AP2/ERF transcriptional factor family that play important roles in plant biotic and abiotic stress responses. There are limited studies of Soloist genes and their functions are poorly understood. We characterized the abiotic and biotic stress tolerance function of the ScSoloist gene (designated as ScAPD1-like) from the desert moss Syntrichia caninervis. ScAPD1-like responded to multiple abiotic, biotic stresses and plant hormone treatments. ScAPD1-like protein located to the nucleus and bound to several DNA elements. Overexpression of ScAPD1-like in Arabidopsis did not alter abiotic stress resistance or inhibit Pseudomonas syringae pv. tomato (Pst) DC3000 infection. However, overexpression of ScAPD1-like significantly increased the resistance of transgenic Arabidopsis and S. caninervis to Verticillium dahliae infection, decreased reactive oxygen species accumulation and improved reactive oxygen species scavenging activity. ScAPD1-like overexpression plants altered the abundance of transcripts for lignin synthesis and promoted lignin accumulation in Arabidopsis. ScAPD1-like directly bind to RAV1, AC elements, and TATA-box in the promoters of AtPAL1 and AtC4H genes, respectively, in vitro. Chromatin immunoprecipitation-quantitative polymerase chain reaction assays demonstrated ScAPD1-like directly bound to PAL and C4H genes promoters in Arabidopsis and their homologs in S. caninervis. In S. caninervis, ScAPD1-like overexpression and RNAi directly regulated the abundance of ScPAL and ScC4H transcripts and modified the metabolites of phenylpropanoid pathway. We provide insight into the function of Soloist in plant defense mechanisms that likely occurs through activation of the phenylpropanoid biosynthesis pathway. ScAPD1-like is a promising candidate gene for breeding strategies to improve resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Shimin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Melvin J Oliver
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| |
Collapse
|
73
|
Sheng S, Guo X, Wu C, Xiang Y, Duan S, Yang W, Le W, Cao F, Liu L. Genome-wide identification and expression analysis of DREB genes in alfalfa ( Medicago sativa) in response to cold stress. PLANT SIGNALING & BEHAVIOR 2022; 17:2081420. [PMID: 35642507 PMCID: PMC9176237 DOI: 10.1080/15592324.2022.2081420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Dehydration-responsive element-binding proteins (DREBs) belong to members of the AP2/ERF transcription factor superfamily, which has been reported to involve various abiotic-stress responses and tolerance in plants. However, research on the DREB-family is still limited in alfalfa (Medicago sativa L.), a forage legume cultivated worldwide. The recent genome-sequence release of the alfalfa cultivar "XinJiangDaYe" allowed us to identify 172 DREBs by a multi-step homolog search. The phylogenetic analysis indicated that such MsDREBs could be classified into 5 groups, namely A-1 (56 members), A-2 (39), A-3 (3), A-4 (61) and 13 (A-5 (13), thus adding substantial new members to the DREB-family in alfalfa. Furthermore, a comprehensive survey in silico of conserved motif, gene structure, molecular weight, and isoelectric point (pI) as well as gene expression was conducted. The resulting data showed that, for cold-stress response, 33 differentially expressed MsDREBs were identified with a threshold of Log2-fold > 1, and most of which were transcriptionally upregulated within 48 h during a cold treatment(s). Moreover, the expression profiling of MsDREBs from two ecotypes of alfalfa subspecies i.e. M. sativa ssp. falcata (F56, from a colder region of Central Asia) and M. sativa ssp. sativa (B47, from Near East) revealed that most of the cold-stress responsive MsDREBs exhibited a significantly lower expression in F56, leading to a proposal of the existence of a distinct mechanism(s) for cold tolerance regulated by DREB-related action, which would have been evolved in alfalfa with a genotypic specificity. Additionally, by examining the transcriptome of a freezing-tolerance species (M. sativa cv. Zhaodong), eight DREBs were found to be implicated in a long-term freezing-stress adaptation with a great potential. Taken together, the current genome-wide identification in alfalfa points to the importance of some MsDREBs in the cold-stress response, providing some promising molecular targets to be functionally characterized for the improvement of cold tolerance in crops including alfalfa.
Collapse
Affiliation(s)
- Song Sheng
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Xinyu Guo
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Changzheng Wu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Weiqin Yang
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Wenrui Le
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Fengchun Cao
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, Key Lab of Plant-Soil Interaction, MOE, Center for Resources, Environment and Food Security, China Agricultural University, Beijing, China
| |
Collapse
|
74
|
Applications of Molecular Markers for Developing Abiotic-Stress-Resilient Oilseed Crops. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010088. [PMID: 36676037 PMCID: PMC9867252 DOI: 10.3390/life13010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Globally, abiotic stresses, such as temperature (heat or cold), water (drought and flooding), and salinity, cause significant losses in crop production and have adverse effects on plant growth and development. A variety of DNA-based molecular markers, such as SSRs, RFLPs, AFLPs, SNPs, etc., have been used to screen germplasms for stress tolerance and the QTL mapping of stress-related genes. Such molecular-marker-assisted selection strategies can quicken the development of tolerant/resistant cultivars to withstand abiotic stresses. Oilseeds such as rapeseed, mustard, peanuts, soybeans, sunflower, safflower, sesame, flaxseed, and castor are the most important source of edible oil worldwide. Although oilseed crops are known for their capacity to withstand abiotic challenges, there is a significant difference between actual and potential yields due to the adaptation and tolerance to severe abiotic pressures. This review summarizes the applications of molecular markers to date to achieve abiotic stress tolerance in major oilseed crops. The molecular markers that have been reported for genetic diversity studies and the mapping and tagging of genes/QTLs for drought, heavy metal stress, salinity, flooding, cold and heat stress, and their application in the MAS are presented.
Collapse
|
75
|
Transcriptomic Analysis Provides Insight into the ROS Scavenging System and Regulatory Mechanisms in Atriplex canescens Response to Salinity. Int J Mol Sci 2022; 24:ijms24010242. [PMID: 36613685 PMCID: PMC9820716 DOI: 10.3390/ijms24010242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atriplex canescens is a representative halophyte with excellent tolerance to salt. Previous studies have revealed certain physiological mechanisms and detected functional genes associated with salt tolerance. However, knowledge on the ROS scavenging system and regulatory mechanisms in this species when adapting to salinity is limited. Therefore, this study further analyzed the transcriptional changes in genes related to the ROS scavenging system and important regulatory mechanisms in A. canescens under saline conditions using our previous RNA sequencing data. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation revealed that the differentially expressed genes (DEGs) were highly enriched in signal transduction- and reactive oxygen species-related biological processes, including "response to oxidative stress", "oxidoreductase activity", "protein kinase activity", "transcription factor activity", and "plant hormone signal transduction". Further analyses suggested that the transcription abundance of many genes involved in SOD, the AsA-GSH cycle, the GPX pathway, PrxR/Trx, and the flavonoid biosynthesis pathway were obviously enhanced. These pathways are favorable for scavenging excessive ROS induced by salt and maintaining the integrity of the cell membrane. Meanwhile, many vital transcription factor genes (WRKY, MYB, ZF, HSF, DREB, and NAC) exhibited increased transcripts, which is conducive to dealing with saline conditions by regulating downstream salt-responsive genes. Furthermore, a larger number of genes encoding protein kinases (RLK, CDPK, MAPK, and CTR1) were significantly induced by saline conditions, which is beneficial to the reception/transduction of salt-related signals. This study describes the abundant genetic resources for enhancing the salt tolerance in salt-sensitive plants, especially in forages and crops.
Collapse
|
76
|
Characterization of a Stress-Enhanced Promoter from the Grass Halophyte, Spartina alterniflora L. BIOLOGY 2022; 11:biology11121828. [PMID: 36552337 PMCID: PMC9775435 DOI: 10.3390/biology11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Stress-inducible promoters are vital for the desirable expression of genes, especially transcription factors, which could otherwise compromise growth and development when constitutively overexpressed in plants. Here, we report on the characterization of the promoter region of a stress-responsive gene SaAsr1 from monocot halophyte cordgrass (Spartina alterniflora). Several cis-acting elements, such as ABRE (ABA-responsive element), DRE-CRT (dehydration responsive-element/C-Repeat), LTRE (low temperature-responsive element), ERE (ethylene-responsive element), LRE (light-responsive element), etc. contributed at varying degrees to salt-, drought- and ABA-enhanced expression of gusA reporter gene in Arabidopsis thaliana under the full-length promoter, pAsr11875 and its deletion derivatives with an assortment of cis-regulatory motifs. The smallest promoter, pAsr1491, with three cis-acting elements (a CCAAT box-heat responsive, an LRE, and a copper responsive element) conferred drought-enhanced expression of gusA; pAsr1755 (with an ABRE and a DRE) presented the highest expression in ABA and drought; and pAsr1994 with seven ABREs and two DREs conferred optimal induction of gusA, especially under drought and ABA. Arabidopsis transgenics expressing a known abiotic stress-responsive gene, SaADF2 (actin depolymerization factor 2), under both pAsr11875 and p35S promoters outperformed the wild type (WT) with enhanced drought and salt tolerance contributed by higher relative water content and membrane stability with no significant difference between pAsr11875:SaADF2 or p35S:SaADF2 lines. However, pAsr11875:SaADF2 lines produced healthy plants with robust shoot systems under salt stress and control compared to slightly stunted growth of the p35S:SaADF2 plants. This reestablished the evidence that transgene expression under a stress-inducible promoter is a better strategy for the genetic manipulation of crops.
Collapse
|
77
|
Kumar S, Muthuvel J, Sadhukhan A, Kobayashi Y, Koyama H, Sahoo L. Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:1-13. [PMID: 36306675 DOI: 10.1016/j.plaphy.2022.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Cowpea is sensitive to drought and heat stress, particularly at the reproductive stages of development. Both stresses limit growth and yield, and their effect is more devastating when occurring concurrently. Dehydration-responsive element-binding protein 2A (DREB2A) is an important signaling hub integrating information about two different abiotic stresses, drought and heat. We identified VuDREB2A as a canonical DREB ortholog in cowpea, activating downstream stress-responsive genes by binding to DREs in their promoter. Post-translational modification of a negative regulatory domain (NRD) within the VuDREB2A protein prevents its degradation. Targeted deletion of the NRD produces a stable and constitutively active form VuDREB2A-CA. However, there is very little evidence of its practical utility under field conditions. This study overexpressed the VuDREB2A-CA in a popular cowpea variety and conducted drought- and heat-tolerance experiments across various stress regimes. Transgenic cowpea exhibited significant tolerance with consistently higher yield when exposed to over 30-d drought stress and 3-d exposure to high temperature (28 °C-52 °C) without any pleiotropic alterations. The transgenic lines showed higher photosynthetic efficiency, osmotic adjustment, antioxidant defense, thermotolerance, and significantly higher survival and increased biomass than the wild type. Late embryogenesis abundant 5, heat shock protein 70, dehydrin, mitogen-activated protein kinase 2/4, isoflavonoid reductase, and myoinositol phosphate synthase were upregulated in transgenic lines under drought and heat stress. Through transcriptome analysis of the transgenic lines, we found significant up-regulation of various stress-responsive cowpea genes, having DRE in their promoter. Our results suggest that overexpression of VuDREB2A could improve cowpea production under drought and high temperatures.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - J Muthuvel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, 342030, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, 501-1193, Gifu, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, 501-1193, Gifu, Japan
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
78
|
Le Provost G, Gerardin T, Plomion C, Brendel O. Molecular plasticity to soil water deficit differs between sessile oak (Quercus Petraea (Matt.) Liebl.) high- and low-water use efficiency genotypes. TREE PHYSIOLOGY 2022; 42:2546-2562. [PMID: 35867420 DOI: 10.1093/treephys/tpac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Water use efficiency (WUE) is an important adaptive trait for soil water deficit. The molecular and physiological bases of WUE regulation in crops have been studied in detail in the context of plant breeding. Knowledge for most forest tree species lags behind, despite the need to identify populations or genotypes able to cope with the longer, more intense drought periods likely to result from climate warming. We aimed to bridge this gap in knowledge for sessile oak (Quercus petraea (Matt.) Liebl.), one of the most ecologically and economically important tree species in Europe, using a factorial design including trees with contrasted phenotypic values (low and high WUE) and two watering regimes (control and drought). By monitoring the ecophysiological response, we first qualified genotypes for their WUE (by using instantaneous and long-term measures). We then performed RNA-seq to quantify gene expression for the three most extreme genotypes exposed to the two watering regimes. By analyzing the interaction term, we were able to capture the molecular strategy of each group of plants for coping with drought. We identified putative candidate genes potentially involved in the regulation of transpiration rate in high-WUE phenotypes. Regardless of water availability, trees from the high-WUE phenotypic class overexpressed genes associated with drought responses, and in the control of stomatal density and distribution, and displayed a downregulation of genes associated with early stomatal closure and high transpiration rate. Fine physiological screening of sessile oaks with contrasting WUE, and their molecular characterization (i) highlighted subtle differences in transcription between low- and high-WUE genotypes, identifying key molecular players in the genetic control of this trait and (ii) revealed the genes underlying the molecular strategy that evolved in each group to potentially cope with water deficit, providing new insight into the within-species diversity in drought adaptation strategies.
Collapse
Affiliation(s)
| | - Theo Gerardin
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | - Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| |
Collapse
|
79
|
Liang X, Luo G, Li W, Yao A, Liu W, Xie L, Han M, Li X, Han D. Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, Increases cold and salinity tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:230-242. [PMID: 36272190 DOI: 10.1016/j.plaphy.2022.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
CBFs play a crucial role when plants are in adverse environmental conditions for growth. However, there are few reports on the role of CBF gene in stress responses of Malus plant. In this experiment, a new CBF TF was separated from M. baccata which was named MbCBF1. MbCBF1 protein was found to be localized in the nucleus after subcellular localization. Furthermore, the expression of MbCBF1 was highly accumulated in new leaves and roots due to the high influence of cold and high salt in M. baccata seedlings. After introducing MbCBF1 into A. thaliana, transgenic A. thaliana can better adapt to the living conditions of cold and high salt. The increased expression of MbCBF1 in A. thaliana also increased the contents of proline, remarkablely improved the activities of SOD, POD and CAT, but the content of MDA was decreased. Although the chlorophyll content also decreased, it decreased less in transgenic plants. In short, above date showed that MbCBF1 has a positive effect on improving A. thaliana cold and high salt tolerance. MbCBF1 can regulate the expression of its downstream gene in transgenic lines, up-regulate the expression of key genes COR15a, RD29a/bandCOR6.6/47 related to low temperature under cold conditions and NCED3, CAT1, P5CS1, RD22, DREB2A,PIF1/4, SOS1 and SnRK2.4 related to salt stress under high salt conditions, so as to further improve the adaptability and tolerance of the transgenic plants to low temperature and high salt environment.
Collapse
Affiliation(s)
- Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, China
| | - Liping Xie
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Meina Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
80
|
Maqsood H, Munir F, Amir R, Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:1031679. [PMID: 36507398 PMCID: PMC9731513 DOI: 10.3389/fpls.2022.1031679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Tomato is a drought-sensitive crop which has high susceptibility to adverse climatic changes. Dehydration-responsive element-binding (DREB) are significant plant transcription factors that have a vital role in regulating plant abiotic stress tolerance by networking with DRE/CRT cis-regulatory elements in response to stresses. In this study, bioinformatics analysis was performed to conduct the genome-wide identification and characterization of DREB genes and promoter elements in Solanum lycopersicum. In genome-wide coverage, 58 SlDREB genes were discovered on 12 chromosomes that justified the criteria of the presence of AP2 domain as conserved motifs. Intron-exon organization and motif analysis showed consistency with phylogenetic analysis and confirmed the absence of the A3 class, thus dividing the SlDREB genes into five categories. Gene expansion was observed through tandem duplication and segmental duplication gene events in SlDREB genes. Ka/Ks values were calculated in ortholog pairs that indicated divergence time and occurrence of purification selection during the evolutionary period. Synteny analysis demonstrated that 32 out of 58 and 47 out of 58 SlDREB genes were orthologs to Arabidopsis and Solanum tuberosum, respectively. Subcellular localization predicted that SlDREB genes were present in the nucleus and performed primary functions in DNA binding to regulate the transcriptional processes according to gene ontology. Cis-acting regulatory element analysis revealed the presence of 103 motifs in 2.5-kbp upstream promoter sequences of 58 SlDREB genes. Five representative SlDREB proteins were selected from the resultant DREB subgroups for 3D protein modeling through the Phyre2 server. All models confirmed about 90% residues in the favorable region through Ramachandran plot analysis. Moreover, active catalytic sites and occurrence in disorder regions indicated the structural and functional flexibility of SlDREB proteins. Protein association networks through STRING software suggested the potential interactors that belong to different gene families and are involved in regulating similar functional and biological processes. Transcriptome data analysis has revealed that the SlDREB gene family is engaged in defense response against drought and heat stress conditions in tomato. Overall, this comprehensive research reveals the identification and characterization of SlDREB genes that provide potential knowledge for improving abiotic stress tolerance in tomato.
Collapse
Affiliation(s)
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | |
Collapse
|
81
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
82
|
Cui Y, Ouyang S, Zhao Y, Tie L, Shao C, Duan H. Plant responses to high temperature and drought: A bibliometrics analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1052660. [PMID: 36438139 PMCID: PMC9681914 DOI: 10.3389/fpls.2022.1052660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Global climate change is expected to further increase the frequency and severity of extreme events, such as high temperature/heat waves as well as drought in the future. Thus, how plant responds to high temperature and drought has become a key research topic. In this study, we extracted data from Web of Science Core Collections database, and synthesized plant responses to high temperature and drought based on bibliometric methods using software of R and VOSviewer. The results showed that a stabilized increasing trend of the publications (1199 papers) was found during the period of 2008 to 2014, and then showed a rapid increase (2583 papers) from year 2015 to 2021. Secondly, the top five dominant research fields of plant responses to high temperature and drought were Plant Science, Agroforestry Science, Environmental Science, Biochemistry, and Molecular Biology, respectively. The largest amount of published article has been found in the Frontiers in Plant Science journal, which has the highest global total citations and H-index. We also found that the journal of Plant Physiology has the highest local citations. From the most cited papers and references, the most important research focus was the improvement of crop yield and vegetation stress resistance. Furthermore, "drought" has been the most prominent keyword over the last 14 years, and more attention has been paid to "climate change" over the last 5 years. Under future climate change, how to regulate growth and development of food crops subjected to high temperature and drought stress may become a hotspot, and increasing research is critical to provide more insights into plant responses to high temperature and drought by linking plant above-below ground components. To summarize, this research will contribute to a comprehensive understanding of the past, present, and future research on plant responses to high temperature and drought.
Collapse
|
83
|
Biotechnological Interventions in Tomato ( Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040048. [PMID: 36278560 PMCID: PMC9624322 DOI: 10.3390/biotech11040048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.
Collapse
|
84
|
Ogawa-Ohnishi M, Yamashita T, Kakita M, Nakayama T, Ohkubo Y, Hayashi Y, Yamashita Y, Nomura T, Noda S, Shinohara H, Matsubayashi Y. Peptide ligand-mediated trade-off between plant growth and stress response. Science 2022; 378:175-180. [PMID: 36227996 DOI: 10.1126/science.abq5735] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Deciding whether to grow or to divert energy to stress responses is a major physiological trade-off for plants surviving in fluctuating environments. We show that three leucine-rich repeat receptor kinases (LRR-RKs) act as direct ligand-perceiving receptors for PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides and mediate switching between two opposing pathways. By contrast to known LRR-RKs, which activate signaling upon ligand binding, PSY receptors (PSYRs) activate the expression of various genes encoding stress response transcription factors upon depletion of the ligands. Loss of PSYRs results in defects in plant tolerance to both biotic and abiotic stresses. This ligand-deprivation-dependent activation system potentially enables plants to exert tuned regulation of stress responses in the tissues proximal to metabolically dysfunctional damaged sites where ligand production is impaired.
Collapse
Affiliation(s)
| | | | - Mitsuru Kakita
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takuya Nakayama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuri Ohkubo
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoko Hayashi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuko Yamashita
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Taizo Nomura
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Saki Noda
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
85
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
86
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
87
|
Chen M, Qiao Y, Quan X, Shi H, Duan Z. Physiological, biochemical and phytohormone responses of Elymus nutans to α-pinene-induced allelopathy. PeerJ 2022; 10:e14100. [PMID: 36196396 PMCID: PMC9527024 DOI: 10.7717/peerj.14100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023] Open
Abstract
The α-pinene is the main allelochemical of many weeds that inhibit the growth of Elymus nutans, an important forage and ecological restoration herbage. However, the response changes of α-pinene-induced allelopathy to E. nutans is still unclear. Here, we investigated the physiological, biochemical and phytohormone changes of E. nutans exposed to different α-pinene concentrations. The α-pinene-stress had no significant effect on height and fresh weight (FW) of seedlings. The water-soluble proteins, the soluble sugars and proline (Pro) strengthened seedlings immunity at 5 and 10 µL L-1 α-pinene. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased at 5 µL L-1 α-pinene to resist stress. APX reduced the membrane lipid peroxidation quickly at 10 µL L-1 α-pinene. The high-activity of peroxidase (POD), APX along with the high level of GSH contributed to the cellular redox equilibrium at 15 µL L-1 α-pinene. The POD, glutathione reductase (GR) activity and glutathione (GSH) level remained stable at 20 µL L-1 α-pinene. The changes in antioxidant enzymes and antioxidants indicated that E. nutans was effective in counteracting the harmful effects generated by hydrogen peroxide (H2O2). The α-pinene caused severe phytotoxic effects in E. nutans seedlings at 15 and 20 µL L-1. Endogenous signal nitric oxide (NO) and cell membrane damage product Pro accumulated in leaves of E. nutans seedlings at 15 and 20 µL L-1 α-pinene, while lipid peroxidation product malondialdehyde (MDA) accumulated. The chlorophylls (Chls), chlorophyll a (Chl a), chlorophyll b (Chl b) content decreased, and biomass of seedlings was severely inhibited at 20 µL L-1 α-pinene. The α-pinene caused phytotoxic effects on E. nutans seedlings mainly through breaking the balance of the membrane system rather than with reactive oxygen species (ROS) productionat 15 and 20 µL L-1 α-pinene. Additionally, phytohormone levels were altered by α-pinene-stress. Abscisic acid (ABA) and indole acetic acid (IAA) of E. nutans seedlings were sensitive to α-pinene. As for the degree of α-pinene stress, salicylic acid (SA) and jasmonic acid (JA) played an important role in resisting allelopathic effects at 15 µL L-1 α-pinene. The ABA, Zeatin, SA, gibberellin 7 (GA7), JA and IAA levels increased at 20 µL L-1 α-pinene. The α-pinene had a greatest impact on ABA and IAA levels. Collectively, our results suggest that E. nutans seedlings were effective in counteracting the harmful effects at 5 and 10 µL L-1 α-pinene, and they were severely stressed at 15 and 20 µL L-1 α-pinene. Our findings provided references for understanding the allelopathic mechanism about allelochemicals to plants.
Collapse
Affiliation(s)
- Mengci Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Youming Qiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Xiaolong Quan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Huilan Shi
- College of Ecol-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Zhonghua Duan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
88
|
Zhang Y, Wang C, Wang C, Yun L, Song L, Idrees M, Liu H, Zhang Q, Yang J, Zheng X, Zhang Z, Gao J. OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms231810830. [PMID: 36142741 PMCID: PMC9501395 DOI: 10.3390/ijms231810830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liu Yun
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Muhammad Idrees
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
| | - Huiying Liu
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| | - Jie Gao
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| |
Collapse
|
89
|
Reboledo G, Agorio A, Vignale L, Alvarez A, Ponce De León I. The moss-specific transcription factor PpERF24 positively modulates immunity against fungal pathogens in Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2022; 13:908682. [PMID: 36186018 PMCID: PMC9520294 DOI: 10.3389/fpls.2022.908682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alfonso Alvarez
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
90
|
Zhai J, Li Z, Si J, Zhang S, Han X, Chen X. Structural and Functional Responses of the Heteromorphic Leaves of Different Tree Heights on Populus euphratica Oliv. to Different Soil Moisture Conditions. PLANTS 2022; 11:plants11182376. [PMID: 36145777 PMCID: PMC9505870 DOI: 10.3390/plants11182376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Populus euphratica Oliv., a pioneer species of desert riparian forest, is characterized heterophylly. To understand the adaptation strategies of the heteromorphic leaves of P. euphratica to soil drought, we assessed the structural and functional characteristics of the heteromorphic leaves at different heights in suitable soil moisture conditions (groundwater depth 1.5 m) and drought conditions (groundwater depth 5 m), which include morphology, anatomical structure, photosynthetic capacity, water use efficiency, osmotic adjustment capacity, and endogenous hormones. These results indicate that leaf area, leaf thickness, fence tissue, palisade-to-sea ratio, main vein xylem area, vessel area, net photosynthetic rate, transpiration rate, and proline, MDA, IAA, GA3, and ZR contents showed a positive correlation with the tree height under the two soil moisture conditions, but leaf shape index, leaf water potential (LWP), and ABA content showed a decreasing trend. In addition, the main vein vascular bundle area, main vein xylem area, and contents of malondialdehyde, ABA, GA3, and IAA were significantly greater under soil drought conditions than normal soil water content. Under soil drought stress, the heteromorphic leaves of P. euphratica showed more investment in anatomical structure and greater water use efficiency, proline, and hormone contents, and synergistic changes to maintain high photosynthetic efficiency. This is an adaptation strategy to water stress caused by soil drought and tree height changes.
Collapse
Affiliation(s)
- Juntuan Zhai
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Zhijun Li
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
- Correspondence:
| | - Jianhua Si
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shanhe Zhang
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Xiaoli Han
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Xiangxiang Chen
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| |
Collapse
|
91
|
Jo J, Lee J, Ahn Y, Hwang YS, Park J, Lee J, Choi J. Metabolome and transcriptome analyses of plants grown in naturally attenuated soil after hydrogen fluoride exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129323. [PMID: 35749895 DOI: 10.1016/j.jhazmat.2022.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Accidental chemical leaks and illegal chemical discharges are a global environmental issue. In 2012, a hydrogen fluoride leak in Gumi, South Korea, killed several people and contaminated the environment. This leak also led to a significant decline in crop yield, even after the soil concentration of hydrogen fluoride decreased to below the standard level following natural attenuation. To determine the cause of this decreased plant productivity, we designed direct and indirect exposure tests by evaluating the metabolome, transcriptome, and phenome of the plants. In an indirect exposure test, soil metabolomics revealed downregulation of metabolites in vitamin B6, lipopolysaccharide, osmolyte, and exopolysaccharide metabolism. Next-generation sequencing of the plants showed that ABR1 and DREB1A were overexpressed in response to stress. Plant metabolomics demonstrated upregulation of folate biosynthesis and nicotinate and nicotinamide metabolism associated with detoxification of reactive oxygen species. These results demonstrate impaired metabolism of soil microbes and plants even after natural attenuation of hydrogen fluoride in soil. The novel chemical exposure testing used in this study can be applied to identify hidden damage to organisms after natural attenuation of chemicals in soil, as well as biomarkers for explaining the decline in yield of plants grown in soil near pollutant-emitting industrial facilities.
Collapse
Affiliation(s)
- Jungman Jo
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Civil and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinkyung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongtae Ahn
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu Sik Hwang
- Environmental Fate and Exposure Research Group, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeongae Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jaeyoung Choi
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
92
|
Li X, Liang X, Li W, Yao A, Liu W, Wang Y, Yang G, Han D. Isolation and Functional Analysis of MbCBF2, a Malus baccata (L.) Borkh CBF Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23179827. [PMID: 36077223 PMCID: PMC9456559 DOI: 10.3390/ijms23179827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
CBF transcription factors (TFs) are key regulators of plant stress tolerance and play an integral role in plant tolerance to adverse growth environments. However, in the current research situation, there are few reports on the response of the CBF gene to Begonia stress. Therefore, this experiment investigated a novel CBF TF gene, named MbCBF2, which was isolated from M. baccata seedlings. According to the subcellular localization results, the MbCBF2 protein was located in the nucleus. In addition, the expression level of MbCBF2 was higher in new leaves and roots under low-temperature and high-salt induction. After the introduction of MbCBF2 into Arabidopsis thaliana, the adaptability of transgenic A. thaliana to cold and high-salt environments was significantly enhanced. In addition, the high expression of MbCBF2 can also change many physiological indicators in transgenic A. thaliana, such as increased chlorophyll and proline content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity, and reduced malondialdehyde (MDA) content. Therefore, it can be seen from the above results that MbCBF2 can positively regulate the response of A. thaliana to low-temperature and osmotic stress. In addition, MbCBF2 can also regulate the expression of its downstream genes in transgenic lines. It can not only positively regulate the expression of the downstream key genes AtCOR15a, AtERD10, AtRD29a/b and AtCOR6.6/47, related to cold stress at low temperatures, but can also positively regulate the expression of the downstream key genes AtNCED3, AtCAT1, AtP5CS, AtPIF1/4 and AtSnRK2.4, related to salt stress. That is, the overexpression of the MbCBF2 gene further improved the adaptability and tolerance of transgenic plants to low-temperature and high-salt environments.
Collapse
Affiliation(s)
- Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Guohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| |
Collapse
|
93
|
García MJ, Angulo M, Romera FJ, Lucena C, Pérez-Vicente R. A shoot derived long distance iron signal may act upstream of the IMA peptides in the regulation of Fe deficiency responses in Arabidopsis thaliana roots. FRONTIERS IN PLANT SCIENCE 2022; 13:971773. [PMID: 36105702 PMCID: PMC9465050 DOI: 10.3389/fpls.2022.971773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
When plants suffer from Fe deficiency, they develop morphological and physiological responses, mainly in their roots, aimed to facilitate Fe mobilization and uptake. Once Fe has been acquired in sufficient quantity, the responses need to be switched off to avoid Fe toxicity and to conserve energy. Several hormones and signaling molecules, such as ethylene, auxin and nitric oxide, have been involved in the activation of Fe deficiency responses in Strategy I plants. These hormones and signaling molecules have almost no effect when applied to plants grown under Fe-sufficient conditions, which suggests the existence of a repressive signal related to the internal Fe content. The nature of this repressive signal is not known yet many experimental results suggest that is not related to the whole root Fe content but to some kind of Fe compound moving from leaves to roots through the phloem. After that, this signal has been named LOng-Distance Iron Signal (LODIS). Very recently, a novel family of small peptides, "IRON MAN" (IMA), has been identified as key components of the induction of Fe deficiency responses. However, the relationship between LODIS and IMA peptides is not known. The main objective of this work has been to clarify the relationship between both signals. For this, we have used Arabidopsis wild type (WT) Columbia and two of its mutants, opt3 and frd3, affected, either directly or indirectly, in the transport of Fe (LODIS) through the phloem. Both mutants present constitutive activation of Fe acquisition genes when grown in a Fe-sufficient medium despite the high accumulation of Fe in their roots. Arabidopsis WT Columbia plants and both mutants were treated with foliar application of Fe, and later on the expression of IMA and Fe acquisition genes was analyzed. The results obtained suggest that LODIS may act upstream of IMA peptides in the regulation of Fe deficiency responses in roots. The possible regulation of IMA peptides by ethylene has also been studied. Results obtained with ethylene precursors and inhibitors, and occurrence of ethylene-responsive cis-acting elements in the promoters of IMA genes, suggest that IMA peptides could also be regulated by ethylene.
Collapse
Affiliation(s)
- María José García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
94
|
Sugarcane ScDREB2B-1 Confers Drought Stress Tolerance in Transgenic Nicotiana benthamiana by Regulating the ABA Signal, ROS Level and Stress-Related Gene Expression. Int J Mol Sci 2022; 23:ijms23179557. [PMID: 36076957 PMCID: PMC9455921 DOI: 10.3390/ijms23179557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The dehydration-responsive element-binding protein (DREB) is a subgroup member of the AP2/ERF family and actively participates in the response of plants to abiotic stress. Although DREB genes have been studied in a variety of plant species, there are few reports of DREB genes in sugarcane (Saccharum spp.). In this study, a novel full-length cDNA sequence of the ScDREB2B-1 gene was cloned from the Saccharum hybrid ROC22, whose encoding protein contained only one AP2-conserved domain and was clustered into the DREB (A-2) subgroup. The diverse promoter elements in the ScDREB2B-1 gene and the accumulated transcripts of its homologous gene (SsAP2/ERF-107) in S. spontaneum under drought stress suggest that the ScDREB2B-1 gene may play a role in drought response. In addition, reverse transcription quantitative PCR analysis showed that the expression level of the ScDREB2B-1 gene was upregulated in the root and leaf of ROC22 under polyethylene glycol, sodium chloride and abscisic acid (ABA) treatments. The yeast two-hybrid experiment demonstrated that ScDREB2B-1 had transcriptional self-activation activity. Compared with wild-type plants, the overexpression of the ScDREB2B-1 gene improved the drought tolerance of the transgenic Nicotiana benthamiana by activating the ABA pathway to enhance the expression of the ABA-responsive gene (NbNCED) and ABA content, regulate the intracellular reactive oxygen species (ROS) level (enhance the transcripts of ROS synthase-related gene NbRbohB and the activities of catalase, peroxidase and superoxide dismutase) and increase the relative water content, proline content and expression level of osmotic stress-related genes (NbERD and NbLEA). Collectively, our data indicate that ScDREB2B-1 is a stress-inducible and ABA-responsive transcription factor gene that responds to drought stress by regulating ABA signaling, ROS levels and stress-related gene expression. This study contributes to a better understanding of the biological function of ScDREB2B-1, which could serve as a foundation for future resistance breeding in sugarcane.
Collapse
|
95
|
Ling Y, Zhao Y, Cheng B, Tan M, Zhang Y, Li Z. Seed Priming with Chitosan Improves Germination Characteristics Associated with Alterations in Antioxidant Defense and Dehydration-Responsive Pathway in White Clover under Water Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2015. [PMID: 35956492 PMCID: PMC9370098 DOI: 10.3390/plants11152015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Water stress decreases seed-germination characteristics and also hinders subsequent seedling establishment. Seed priming with bioactive compounds has been proven as an effective way to improve seed germination under normal and stressful conditions. However, effect and mechanism of seed priming with chitosan (CTS) on improving seed germination and seedling establishment were not well-understood under water-deficit conditions. White clover (Trifolium repens) seeds were pretreated with or without 5 mg/L CTS before being subjected to water stress induced by 18% (w/v) polyethylene glycol 6000 for 7 days of germination in a controlled growth chamber. Results showed that water stress significantly decreased germination percentage, germination vigor, germination index, seed vigor index, and seedling dry weight and also increased mean germination time and accumulation of reactive oxygen species, leading to membrane lipid peroxidation during seed germination. These symptoms could be significantly alleviated by the CTS priming through activating superoxide dismutase, catalase, and peroxidase activities. In addition, seeds pretreated with CTS exhibited significantly higher expression levels of genes encoding dehydration-responsive transcription factors (DREB2, DREB4, and DREB5) and dehydrins (Y2K, Y2SK, and SK2) than those seeds without the CTS priming. Current findings indicated that the CTS-induced tolerance to water stress could be associated with the enhancement in dehydration-responsive pathway during seed germination.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.Z.); (B.C.); (M.T.); (Y.Z.)
| |
Collapse
|
96
|
Singh R, Kaur N, Praba UP, Kaur G, Tanin MJ, Kumar P, Neelam K, Sandhu JS, Vikal Y. A Prospective Review on Selectable Marker-Free Genome Engineered Rice: Past, Present and Future Scientific Realm. Front Genet 2022; 13:882836. [PMID: 35754795 PMCID: PMC9219106 DOI: 10.3389/fgene.2022.882836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
As a staple food crop, rice has gained mainstream attention in genome engineering for its genetic improvement. Genome engineering technologies such as transgenic and genome editing have enabled the significant improvement of target traits in relation to various biotic and abiotic aspects as well as nutrition, for which genetic diversity is lacking. In comparison to conventional breeding, genome engineering techniques are more precise and less time-consuming. However, one of the major issues with biotech rice commercialization is the utilization of selectable marker genes (SMGs) in the vector construct, which when incorporated into the genome are considered to pose risks to human health, the environment, and biodiversity, and thus become a matter of regulation. Various conventional strategies (co-transformation, transposon, recombinase systems, and MAT-vector) have been used in rice to avoid or remove the SMG from the developed events. However, the major limitations of these methods are; time-consuming, leftover cryptic sequences in the genome, and there is variable frequency. In contrast to these methods, CRISPR/Cas9-based marker excision, marker-free targeted gene insertion, programmed self-elimination, and RNP-based delivery enable us to generate marker-free engineered rice plants precisely and in less time. Although the CRISPR/Cas9-based SMG-free approaches are in their early stages, further research and their utilization in rice could help to break the regulatory barrier in its commercialization. In the current review, we have discussed the limitations of traditional methods followed by advanced techniques. We have also proposed a hypothesis, “DNA-free marker-less transformation” to overcome the regulatory barriers posed by SMGs.
Collapse
Affiliation(s)
- Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
97
|
Park SJ, Bae EK, Choi H, Yoon SK, Jang HA, Choi YI, Lee H. Knockdown of PagSAP11 Confers Drought Resistance and Promotes Lateral Shoot Growth in Hybrid Poplar ( Populus alba × Populus tremula var. glandulosa). FRONTIERS IN PLANT SCIENCE 2022; 13:925744. [PMID: 35812954 PMCID: PMC9263715 DOI: 10.3389/fpls.2022.925744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved defense mechanisms to overcome unfavorable climatic conditions. The growth and development of plants are regulated in response to environmental stress. In this study, we investigated the molecular and physiological characteristics of a novel gene PagSAP11 in hybrid poplar (Populus alba × Populus tremula var. glandulosa) under drought stress. PagSAP11, a stress-associated protein (SAP) family gene, encodes a putative protein containing an A20 and AN1 zinc-finger domain at its N- and C-termini, respectively. Knockdown of PagSAP11 transgenic poplars (SAP11-Ri) enhanced their tolerance to drought stress compared with wild type plants. Moreover, the RNAi lines showed increased branching of lateral shoots that led to a gain in fresh weight, even when grown in the living modified organism (LMO) field. In SAP11-Ri transgenic plants, the expression levels of genes involved in axillary bud outgrowth and cell proliferation such as DML10, CYP707A and RAX were increased while the DRM gene which involved in bud dormancy was down-regulated. Taken together, these results indicate that PagSAP11 represents a promising candidate gene for engineering trees with improved stress tolerance and growth during unfavorable conditions.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Eun-Kyung Bae
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Hyunmo Choi
- Forest Biomaterials Research Center, National Institute of Forest Science, Jinju, South Korea
| | - Seo-Kyung Yoon
- Department of Forest Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-A Jang
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| | - Young-Im Choi
- National Forest Seed and Variety Center, Forest Service, Chungju, South Korea
| | - Hyoshin Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, South Korea
| |
Collapse
|
98
|
Chakraborty A, Viswanath A, Malipatil R, Semalaiyappan J, Shah P, Ronanki S, Rathore A, Singh SP, Govindaraj M, Tonapi VA, Thirunavukkarasu N. Identification of Candidate Genes Regulating Drought Tolerance in Pearl Millet. Int J Mol Sci 2022; 23:ijms23136907. [PMID: 35805919 PMCID: PMC9266394 DOI: 10.3390/ijms23136907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and fodder production. The greater tolerance to drought stress attracts us to examine its cellular and molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we studied the drought response of 48 inbreds representing four different maturity groups at the flowering stage. A set of 74 drought-responsive genes were separated into five major phylogenic groups belonging to eight functional groups, namely ABA signaling, hormone signaling, ion and osmotic homeostasis, TF-mediated regulation, molecular adaptation, signal transduction, physiological adaptation, detoxification, which were comprehensively studied. Among the conserved motifs of the drought-responsive genes, the protein kinases and MYB domain proteins were the most conserved ones. Comparative in-silico analysis of the drought genes across millet crops showed foxtail millet had most orthologs with pearl millet. Of 698 haplotypes identified across millet crops, MyC2 and Myb4 had maximum haplotypes. The protein–protein interaction network identified ABI2, P5CS, CDPK, DREB, MYB, and CYP707A3 as major hub genes. The expression assay showed the presence of common as well as unique drought-responsive genes across maturity groups. Drought tolerant genotypes in respective maturity groups were identified from the expression pattern of genes. Among several gene families, ABA signaling, TFs, and signaling proteins were the prospective contributors to drought tolerance across maturity groups. The functionally validated genes could be used as promising candidates in backcross breeding, genomic selection, and gene-editing schemes in pearl millet and other millet crops to increase the yield in drought-prone arid and semi-arid ecologies.
Collapse
Affiliation(s)
- Animikha Chakraborty
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Aswini Viswanath
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Renuka Malipatil
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Janani Semalaiyappan
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Priya Shah
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Swarna Ronanki
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India;
| | - Sumer Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India;
- Correspondence: (M.G.); (N.T.)
| | - Vilas A. Tonapi
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
| | - Nepolean Thirunavukkarasu
- ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (A.C.); (A.V.); (R.M.); (J.S.); (P.S.); (S.R.); (V.A.T.)
- Correspondence: (M.G.); (N.T.)
| |
Collapse
|
99
|
Wang X, Song S, Wang X, Liu J, Dong S. Transcriptomic and Metabolomic Analysis of Seedling-Stage Soybean Responses to PEG-Simulated Drought Stress. Int J Mol Sci 2022; 23:6869. [PMID: 35743316 PMCID: PMC9224651 DOI: 10.3390/ijms23126869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Soybean is an important crop grown worldwide, and drought stress seriously affects the yield and quality of soybean. Therefore, it is necessary to elucidate the molecular mechanisms underlying soybean resistance to drought stress. In this study, RNA-seq technology and ultra-performance liquid chromatography-tandem mass spectrometry were used to analyze the transcriptome and metabolome changes in soybean leaves at the seedling stage under drought stress. The results showed that there were 4790 and 3483 DEGs (differentially expressed genes) and 156 and 124 DAMs (differentially expressed metabolites), respectively, in the HN65CK vs. HN65S0 and HN44CK vs. HN44S0 comparison groups. Comprehensive analysis of transcriptomic and metabolomic data reveals metabolic regulation of seedling soybean in response to drought stress. Some candidate genes such as LOC100802571, LOC100814585, LOC100777350 and LOC100787920, LOC100800547, and LOC100785313 showed different expression trends between the two cultivars, which may cause differences in drought resistance. Secondly, a large number of flavonoids were identified, and the expression of Monohydroxy-trimethoxyflavone-O-(6″-malonyl)glucoside was upregulated between the two varieties. Finally, several key candidate genes and metabolites involved in isoflavone biosynthesis and the TCA cycle were identified, suggesting that these metabolic pathways play important roles in soybean response to drought. Our study deepens the understanding of soybean drought resistance mechanisms and provides references for soybean drought resistance breeding.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.W.); (S.S.); (X.W.)
| | - Shuang Song
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.W.); (S.S.); (X.W.)
| | - Xin Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.W.); (S.S.); (X.W.)
| | - Jun Liu
- Lab of Functional Genomics and Bioinformatics, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (X.W.); (S.S.); (X.W.)
| |
Collapse
|
100
|
Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 2022; 60:108006. [PMID: 35732256 DOI: 10.1016/j.biotechadv.2022.108006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Common wheat is a major source of nutrition around the globe, but unlike maize and rice hybrids, no breakthrough has been made to enhance wheat yield since Green Revolution. With the availability of reference genome sequence of wheat and advancement of allied genomics technologies, understanding of genes involved in grain yield components and disease resistance/susceptibility has opened new avenues for crop improvement. Wheat has a huge hexaploidy genome of approximately 17 GB with 85% repetition, and it is a daunting task to induce any mutation across three homeologues that can be helpful for the enhancement of agronomic traits. The CRISPR-Cas9 system provides a promising platform for genome editing in a site-specific manner. In wheat, CRISPR-Cas9 is being used in the improvement of yield, grain quality, biofortification, resistance against diseases, and tolerance against abiotic factors. The promising outcomes of the CRISPR-based multiplexing approach circumvent the constraint of targeting merely one gene at a time. Deployment of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) 9 endonuclease (CRISPR-Cas9) and Cas9 variant systems such as cytidine base editing, adenosine base editing, and prime editing in wheat has been used to induce point mutations more precisely. Scientists have acquired major events such as induction of male sterility, fertility restoration, and alteration of seed dormancy through Cas9 in wheat that can facilitate breeding programs for elite variety development. Furthermore, a recent discovery in tissue culturing enables scientists to significantly enhance regeneration efficiency in wheat by transforming the GRF4-GIF1 cassette. Rapid generation advancement by speed breeding technology provides the opportunity for the generation advancement of the desired plants to segregate out unwanted transgenes and allows rapid integration of gene-edited wheat into the breeding pipeline. The combination of these novel technologies addresses some of the most important limiting factors for sustainable and climate-smart wheat that should lead to the second "Green Revolution" for global food security.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Komal Pervaiz
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China office, 12 Zhongguanccun South Street, Beijing 100081, China
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Nasir A Saeed
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Kanwarpal S Dhugga
- Corteva Agriscience, Johnston, IA, USA; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|