51
|
Artur MAS, Zhao T, Ligterink W, Schranz E, Hilhorst HWM. Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants. Genome Biol Evol 2019; 11:459-471. [PMID: 30407531 PMCID: PMC6379091 DOI: 10.1093/gbe/evy248] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 01/29/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins include eight multigene families that are expressed in response to water loss during seed maturation and in vegetative tissues of desiccation tolerant species. To elucidate LEA proteins evolution and diversification, we performed a comprehensive synteny and phylogenetic analyses of the eight gene families across 60 complete plant genomes. Our integrated comparative genomic approach revealed that synteny conservation and diversification contributed to LEA family expansion and functional diversification in plants. We provide examples that: 1) the genomic diversification of the Dehydrin family contributed to differential evolution of amino acid sequences, protein biochemical properties, and gene expression patterns, and led to the appearance of a novel functional motif in angiosperms; 2) ancient genomic diversification contributed to the evolution of distinct intrinsically disordered regions of LEA_1 proteins; 3) recurrent tandem-duplications contributed to the large expansion of LEA_2; and 4) dynamic synteny diversification played a role on the evolution of LEA_4 and its function on plant desiccation tolerance. Taken together, these results show that multiple evolutionary mechanisms have not only led to genomic diversification but also to structural and functional plasticity among LEA proteins which have jointly contributed to the adaptation of plants to water-limiting environments.
Collapse
Affiliation(s)
- Mariana Aline Silva Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
52
|
Ishibashi Y, Yuasa T, Iwaya-Inoue M. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:233-257. [DOI: 10.1007/978-981-13-1244-1_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
53
|
Marques A, Buijs G, Ligterink W, Hilhorst H. Evolutionary ecophysiology of seed desiccation sensitivity. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1083-1095. [PMID: 32290970 DOI: 10.1071/fp18022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/11/2018] [Indexed: 05/28/2023]
Abstract
Desiccation sensitive (DS) seeds do not survive dry storage due to their lack of desiccation tolerance. Almost half of the plant species in tropical rainforests produce DS seeds and therefore the desiccation sensitivity of these seeds represents a problem for and long-term biodiversity conservation. This phenomenon raises questions as to how, where and why DS (desiccation sensitive)-seeded species appeared during evolution. These species evolved probably independently from desiccation tolerant (DT) seeded ancestors. They adapted to environments where the conditions are conducive to immediate germination after shedding, e.g. constant and abundant rainy seasons. These very predictable conditions offered a relaxed selection for desiccation tolerance that eventually got lost in DS seeds. These species are highly dependent on their environment to survive and they are seriously threatened by deforestation and climate change. Understanding of the ecology, evolution and molecular mechanisms associated with seed desiccation tolerance can shed light on the resilience of DS-seeded species and guide conservation efforts. In this review, we survey the available literature for ecological and physiological aspects of DS-seeded species and combine it with recent knowledge obtained from DT model species. This enables us to generate hypotheses concerning the evolution of DS-seeded species and their associated genetic alterations.
Collapse
Affiliation(s)
- Alexandre Marques
- Laboratory of Plant Physiology, Wageningen University and Research, PO Box 16, 6700AA Wageningen, The Netherlands
| | - Gonda Buijs
- Laboratory of Plant Physiology, Wageningen University and Research, PO Box 16, 6700AA Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University and Research, PO Box 16, 6700AA Wageningen, The Netherlands
| | - Henk Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, PO Box 16, 6700AA Wageningen, The Netherlands
| |
Collapse
|
54
|
Qi Z, Zhang Z, Wang Z, Yu J, Qin H, Mao X, Jiang H, Xin D, Yin Z, Zhu R, Liu C, Yu W, Hu Z, Wu X, Liu J, Chen Q. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. PLANT, CELL & ENVIRONMENT 2018; 41:2109-2127. [PMID: 29486529 DOI: 10.1111/pce.13175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.
Collapse
Affiliation(s)
- Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhanguo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhongyu Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jingyao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hongtao Qin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xinrui Mao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Zhengong Yin
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Rongsheng Zhu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Wei Yu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhenbang Hu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| |
Collapse
|
55
|
Transcriptome and Expression Profiling Analysis of Recalcitrant Tea ( Camellia sinensis L.) Seeds Sensitive to Dehydration. Int J Genomics 2018; 2018:5963797. [PMID: 29967765 PMCID: PMC6008840 DOI: 10.1155/2018/5963797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Kuntze) is an economically important woody perennial nonalcoholic health beverage crop. Tea seeds are categorized as recalcitrant and are sensitive to dehydration treatment. However, the molecular basis of this phenomenon has not been investigated. Thus, we analyzed the genome-wide expression profiles of three dehydration stages using RNA-Seq and digital gene expression (DGE) technologies. We performed de novo assembly and obtained a total of 91,925 nonredundant unigenes, of which 58,472 were extensively annotated. By a hierarchical clustering of differentially expressed genes (DEGs), we found that 8929 DEGs were downregulated and 5875 DEGs were upregulated during dehydration treatment. A series of genes related to ABA biosynthesis and signal transduction, transcription factor, antioxidant enzyme, LEA protein, and proline metabolism that have been reported to function in dehydration process were found to be downregulated. Additionally, the expression profiles of 12 selected genes related to tea seed dehydration treatment were confirmed by qRT-PCR analysis. To our knowledge, this is the first genome-wide study elucidating the possible molecular mechanisms of sensitivity of recalcitrant tea seeds to dehydration. The results obtained in this study contribute to the preservation of tea seeds as genetic resources and can also be used to explore the mechanism of dehydration sensitivity of other recalcitrant seeds.
Collapse
|
56
|
Xu Z, Xin T, Bartels D, Li Y, Gu W, Yao H, Liu S, Yu H, Pu X, Zhou J, Xu J, Xi C, Lei H, Song J, Chen S. Genome Analysis of the Ancient Tracheophyte Selaginella tamariscina Reveals Evolutionary Features Relevant to the Acquisition of Desiccation Tolerance. MOLECULAR PLANT 2018; 11:983-994. [PMID: 29777775 DOI: 10.1016/j.molp.2018.05.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 05/18/2023]
Abstract
Resurrection plants, which are the "gifts" of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dorothea Bartels
- Institute of Molecular Plant Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ying Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Wei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caicai Xi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Shilin Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
57
|
Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T. Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1583-1597. [PMID: 29361125 PMCID: PMC5888931 DOI: 10.1093/jxb/erx492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 05/24/2023]
Abstract
The 'intermediate seed' category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage and has implications for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone contents, and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis, and respiration, and the up-regulation of genes coding for late-embryogenesis abundant (LEA) proteins, heat-shock proteins (HSPs), and antioxidant enzymes. Analysis of the heat-stable proteome in mature coffee seeds confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggested a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ, and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Valérie Rofidal
- Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Université Montpellier, France
| | | | | | | |
Collapse
|
58
|
Moothoo-Padayachie A, Macdonald A, Varghese B, Pammenter NW, Govender P. Uncovering the basis of viability loss in desiccation sensitive Trichilia dregeana seeds using differential quantitative protein expression profiling by iTRAQ. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:119-131. [PMID: 29275215 DOI: 10.1016/j.jplph.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Recalcitrant seeds, unlike orthodox types, are desiccation sensitive and hence, cannot be stored using conventional seed storage methods In this study, relative changes of protein expression in T. dregeana seeds during desiccation and hydrated storage (a short- to medium-term storage method) were analysed to understand the basis of their desiccation- and storage-induced viability loss. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) were used to compare (selected) protein expression levels across fresh, partially dehydrated and stored seeds. A total of 114 proteins were significantly differentially expressed in embryonic axes of fresh seeds and those seeds exposed to dehydration and hydrated storage (which exposed seeds to a mild dehydration stress). Proteins involved in protein synthesis were up-regulated in stored and dehydrated seeds, possibly in response to dehydration-induced repair processes and/or germinative development. A range of proteins related to antioxidant protection were variably up- and down-regulated in stored and dehydrated seeds, respectively. Additionally, a class I heat shock protein was down-regulated in dehydrated and stored seeds; no late embryogenesis abundant proteins were identified in both stored and dehydrated seeds; and storage and dehydration up-regulated proteins involved in the provision of energy for cell survival. The results suggest that dehydration- and storage-induced viability loss in recalcitrant seeds may be based on proteomic changes that lead to cellular redox imbalance and increased cell energy demands. This, together with the absence/down-regulation of proteins associated with desiccation tolerance in plant tissues may form part of the proteomic footprint for desiccation sensitivity in seeds.
Collapse
Affiliation(s)
- Anushka Moothoo-Padayachie
- School of Life Sciences, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 4001, South Africa
| | - Angus Macdonald
- School of Life Sciences, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 4001, South Africa
| | - Boby Varghese
- School of Life Sciences, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 4001, South Africa
| | - Norman W Pammenter
- School of Life Sciences, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 4001, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, South Ring Road, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
59
|
Costa MCD, Cooper K, Hilhorst HWM, Farrant JM. Orthodox Seeds and Resurrection Plants: Two of a Kind? PLANT PHYSIOLOGY 2017; 175:589-599. [PMID: 28851758 PMCID: PMC5619911 DOI: 10.1104/pp.17.00760] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 05/27/2023]
Abstract
Understanding shared strategies for desiccation tolerance in orthodox seeds and resurrection plants can yield insights for agricultural improvement.
Collapse
Affiliation(s)
- Maria-Cecília D Costa
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| | - Keren Cooper
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, 7701 Cape Town, South Africa
| |
Collapse
|
60
|
Giarola V, Hou Q, Bartels D. Angiosperm Plant Desiccation Tolerance: Hints from Transcriptomics and Genome Sequencing. TRENDS IN PLANT SCIENCE 2017; 22:705-717. [PMID: 28622918 DOI: 10.1016/j.tplants.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 05/21/2023]
Abstract
Desiccation tolerance (DT) in angiosperms is present in the small group of resurrection plants and in seeds. DT requires the presence of protective proteins, specific carbohydrates, restructuring of membrane lipids, and regulatory mechanisms directing a dedicated gene expression program. Many components are common to resurrection plants and seeds; however, some are specific for resurrection plants. Understanding how each component contributes to DT is challenging. Recent transcriptome analyses and genome sequencing indicate that increased expression is essential of genes encoding protective components, recently evolved, species-specific genes and non-protein-coding RNAs. Modification and reshuffling of existing cis-regulatory promoter elements seems to play a role in the rewiring of regulatory networks required for increased expression of DT-related genes in resurrection species.
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Quancan Hou
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Present address: Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
61
|
Costa MCD, Artur MAS, Maia J, Jonkheer E, Derks MFL, Nijveen H, Williams B, Mundree SG, Jiménez-Gómez JM, Hesselink T, Schijlen EGWM, Ligterink W, Oliver MJ, Farrant JM, Hilhorst HWM. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. NATURE PLANTS 2017; 3:17038. [PMID: 28346448 DOI: 10.1038/nplants.2017.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These 'resurrection species' may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic 'clusters of desiccation-associated genes' (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X. viscosa was found to be uncoupled from drought-induced senescence. We provide strong support for the hypothesis that vegetative desiccation tolerance arose by redirection of genetic information from desiccation-tolerant seeds.
Collapse
Affiliation(s)
- Maria-Cecília D Costa
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Mariana A S Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Julio Maia
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eef Jonkheer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Martijn F L Derks
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - Sagadevan G Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Thamara Hesselink
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Elio G W M Schijlen
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Melvin J Oliver
- USDA-ARS-MWA-PGRU, 205 Curtis Hall, University of Missouri, Columbia, Missouri 65211, USA
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
62
|
Kitajima S, Imamura T, Iibushi J, Ikenaga M, Tachibana Y, Andoh N, Oyabu H, Hirooka K, Shiina T, Ishizaki Y. Ferritin 2 domain-containing protein found in lacquer tree (Toxicodendron vernicifluum) sap has negative effects on laccase and peroxidase reactions. Biosci Biotechnol Biochem 2017; 81:1165-1175. [PMID: 28485213 DOI: 10.1080/09168451.2017.1289814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lacquer tree sap, a raw material of traditional paints in East Asia, is hardened through laccase-catalyzed oxidation and the following polymerization of phenolic compound urushiol. In the sap's water-insoluble fraction, we found two plantacyanins and a ferritin 2 domain-containing protein (TvFe2D, a homolog of Arabidopsis AT1G47980 and AT3G62730). The recombinant TvFe2D protein suppressed the accumulation of laccase-catalyzed oxidation products of a model substrate syringaldazine without decreasing oxygen consumption, the second substrate of laccase. The suppression was also observed when another substrate guaiacol or another oxidizing enzyme peroxidase was used. The functional domain of the suppression was the C-terminal half, downstream of the ferritin 2 domain. The results suggest that this protein may be involved in regulating the sap polymerization/hardening. We also discuss the possibility that homologous proteins of TvFe2D in other plants might be involved in the laccase- or peroxidase-mediated polymerization of phenolic compounds, such as lignin and flavonoids.
Collapse
Affiliation(s)
- Sakihito Kitajima
- a Department of Applied Biology , Kyoto Institute of Technology , Kyoto , Japan.,b The Center for Advanced Insect Research Promotion , Kyoto Institute of Technology , Kyoto , Japan
| | - Taiki Imamura
- a Department of Applied Biology , Kyoto Institute of Technology , Kyoto , Japan
| | - Junpei Iibushi
- a Department of Applied Biology , Kyoto Institute of Technology , Kyoto , Japan
| | - Makoto Ikenaga
- a Department of Applied Biology , Kyoto Institute of Technology , Kyoto , Japan.,c Kyoto Municipal Institute of Industrial Technology and Culture , Kyoto , Japan
| | - Yoichi Tachibana
- c Kyoto Municipal Institute of Industrial Technology and Culture , Kyoto , Japan
| | - Nobuyuki Andoh
- c Kyoto Municipal Institute of Industrial Technology and Culture , Kyoto , Japan
| | - Hiroshi Oyabu
- c Kyoto Municipal Institute of Industrial Technology and Culture , Kyoto , Japan
| | - Kiyoo Hirooka
- c Kyoto Municipal Institute of Industrial Technology and Culture , Kyoto , Japan
| | - Takashi Shiina
- d Graduate School of Life and Environmental Sciences , Kyoto Prefectural University Kyoto , Kyoto , Japan
| | - Yoko Ishizaki
- d Graduate School of Life and Environmental Sciences , Kyoto Prefectural University Kyoto , Kyoto , Japan
| |
Collapse
|
63
|
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:827-841. [PMID: 28391329 DOI: 10.1093/jxb/erw363] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Besides the deposition of storage reserves, seed maturation is characterized by the acquisition of functional traits including germination, desiccation tolerance, dormancy, and longevity. After seed filling, seed longevity increases up to 30-fold, concomitant with desiccation that brings the embryo to a quiescent state. The period that we define as late maturation phase can represent 10-78% of total seed development time, yet it remains overlooked. Its importance is underscored by the fact that in the seed production chain, the stage of maturity at harvest is the primary factor that influences seed longevity and seedling establishment. This review describes the major events and regulatory pathways underlying the acquisition of seed longevity, focusing on key indicators of maturity such as chlorophyll degradation, accumulation of raffinose family oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins. We discuss how these markers are correlated with or contribute to seed longevity, and highlight questions that merit further attention. We present evidence suggesting that molecular players involved in biotic defence also have a regulatory role in seed longevity. We also explore how the concept of plasticity can help understand the acquisition of longevity.
Collapse
Affiliation(s)
- Olivier Leprince
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Anthoni Pellizzaro
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Souha Berriri
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Julia Buitink
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| |
Collapse
|
64
|
Wei S, Ma X, Pan L, Miao J, Fu J, Bai L, Zhang Z, Guan Y, Mo C, Huang H, Chen M. Transcriptome Analysis of Taxillusi chinensis (DC.) Danser Seeds in Response to Water Loss. PLoS One 2017; 12:e0169177. [PMID: 28046012 PMCID: PMC5207531 DOI: 10.1371/journal.pone.0169177] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Taxillus chinensis (DC.) Danser, the official species of parasitic loranthus that grows by parasitizing other plants, is used in various traditional Chinese medicine prescriptions. ABA-dependent and ABA-independent pathways are two major pathways in response to drought stress for plants and some genes have been reported to play a key role during the dehydration including dehydration-responsive protein RD22, late embryogenesis abundant (LEA) proteins, and various transcription factors (TFs) like MYB and WRKY. However, genes responding to dehydration are still unknown in loranthus. METHODS AND RESULTS Initially, loranthus seeds were characterized as recalcitrant seeds. Then, biological replicates of fresh loranthus seeds (CK), and seeds after being dehydrated for 16 hours (Tac-16) and 36 hours (Tac-36) were sequenced by RNA-Seq, generating 386,542,846 high quality reads. A total of 164,546 transcripts corresponding to 114,971 genes were assembled by Trinity and annotated by mapping them to NCBI non-redundant (NR), UniProt, GO, KEGG pathway and COG databases. Transcriptome profiling identified 60,695, 56,027 and 66,389 transcripts (>1 FPKM) in CK, Tac-16 and Tac-36, respectively. Compared to CK, we obtained 2,102 up-regulated and 1,344 down-regulated transcripts in Tac-16 and 1,649 up-regulated and 2,135 down-regulated transcripts in Tac-36 by using edgeR. Among them some have been reported to function in dehydration process, such as RD22, heat shock proteins (HSP) and various TFs (MYB, WRKY and ethylene-responsive transcription factors). Interestingly, transcripts encoding ribosomal proteins peaked in Tac-16. It is indicated that HSPs and ribosomal proteins may function in early response to drought stress. Raw sequencing data can be accessed in NCBI SRA platform under the accession number SRA309567. CONCLUSIONS This is the first time to profile transcriptome globally in loranthus seeds. Our findings provide insights into the gene regulations of loranthus seeds in response to water loss and expand our current understanding of drought tolerance and germination of seeds.
Collapse
Affiliation(s)
- Shugen Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (XM); (JF)
| | - Limei Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Jianhua Miao
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Jine Fu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
- * E-mail: (XM); (JF)
| | - Longhua Bai
- Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Jinghong, China
| | - Zhonglian Zhang
- Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Jinghong, China
| | - Yanhong Guan
- Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Jinghong, China
| | - Changming Mo
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Hao Huang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
65
|
Joshi J, Pandurangan S, Diapari M, Marsolais F. Comparison of Gene Families: Seed Storage and Other Seed Proteins. THE COMMON BEAN GENOME 2017. [DOI: 10.1007/978-3-319-63526-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
66
|
Zinsmeister J, Lalanne D, Terrasson E, Chatelain E, Vandecasteele C, Vu BL, Dubois-Laurent C, Geoffriau E, Signor CL, Dalmais M, Gutbrod K, Dörmann P, Gallardo K, Bendahmane A, Buitink J, Leprince O. ABI5 Is a Regulator of Seed Maturation and Longevity in Legumes. THE PLANT CELL 2016; 28:2735-2754. [PMID: 27956585 PMCID: PMC5155344 DOI: 10.1105/tpc.16.00470] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/03/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1 Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes.
Collapse
Affiliation(s)
- Julia Zinsmeister
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - David Lalanne
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Emmanuel Terrasson
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Emilie Chatelain
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Céline Vandecasteele
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Benoit Ly Vu
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Cécile Dubois-Laurent
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Emmanuel Geoffriau
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | | | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, 91405 Orsay, France
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Karine Gallardo
- Agroécologie, UMR1347, INRA, BP 86510, F-21000 Dijon, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, 91405 Orsay, France
| | - Julia Buitink
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Olivier Leprince
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France
| |
Collapse
|
67
|
Costa MCD, Farrant JM, Oliver MJ, Ligterink W, Buitink J, Hilhorst HMW. Key genes involved in desiccation tolerance and dormancy across life forms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:162-168. [PMID: 27593474 DOI: 10.1016/j.plantsci.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/25/2023]
Abstract
Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a second powerful adaptation to cope with variations in the terrestrial environment. These naturally stress tolerant life forms may be a good source of genetic information to generate stress tolerant crops to face a future with predicted higher occurrence of drought. By mining for key genes and mechanisms related to DT and dormancy conserved across different species and life forms, unique candidate key genes may be identified. Here we identify several of these putative key genes, shared among multiple organisms, encoding for proteins involved in protection, growth and energy metabolism. Mutating a selection of these genes in the model plant Arabidopsis thaliana resulted in clear DT-, dormancy- and other seed-associated phenotypes, showing the efficiency and power of our approach and paves the way for the development of drought-stress tolerant crops. Our analysis supports a co-evolution of DT and dormancy by shared mechanisms that favour survival and adaptation to ever-changing environments with strong seasonal fluctuations.
Collapse
Affiliation(s)
- Maria Cecília D Costa
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Melvin J Oliver
- U.S. Department of Agriculture-ARS-MWA-PGRU, 205 Curtis Hall, University of Missouri, Columbia, MO 65211, USA
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Julia Buitink
- Institut National de la Recherch Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 Qualité et Santé du Végétal, 49045 Angers, France
| | - Henk M W Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
68
|
Bedi S, Sengupta S, Ray A, Nag Chaudhuri R. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:125-140. [PMID: 27457990 DOI: 10.1016/j.plantsci.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 05/20/2023]
Abstract
ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase.
Collapse
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Sourabh Sengupta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
69
|
Obroucheva N, Sinkevich I, Lityagina S. Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum. TREE PHYSIOLOGY 2016; 36:1127-1150. [PMID: 27259638 DOI: 10.1093/treephys/tpw037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Recalcitrant seeds are typical of some tropical and subtropical trees. Their post-shedding life activity proceeds in humid air and wet litter. They are desiccation sensitive and, for this reason, have a short life span and need some special procedures for cryopreservation. This review is devoted to the post-shedding life strategy of recalcitrant seeds, which includes the maintenance of high hydration status, metabolic readiness and ability to rapidly germinate before desiccation-induced damage exerts a lethal effect. The main physiological aspects of recalcitrant seeds are considered starting from mature seeds, followed during dormancy if occurs and resulting in germination. The collected data embrace the metabolic processes in embryonic axes and whole seeds. The up-to-date results are integrated covering the main metabolic processes, namely water status and transport, protein and carbohydrate metabolism, antioxidant defense, axis-cotyledon relations, hormonal control and germination. Among the representatives of various taxa, the seeds of which exhibit recalcitrance, attention was given to horse chestnut seeds as one of most studied recalcitrants.
Collapse
Affiliation(s)
- Natalie Obroucheva
- Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia
| | - Irina Sinkevich
- Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia
| | - Snejana Lityagina
- Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia
| |
Collapse
|
70
|
González-Morales SI, Chávez-Montes RA, Hayano-Kanashiro C, Alejo-Jacuinde G, Rico-Cambron TY, de Folter S, Herrera-Estrella L. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:E5232-41. [PMID: 27551092 PMCID: PMC5024642 DOI: 10.1073/pnas.1610985113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues.
Collapse
Affiliation(s)
- Sandra Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Ricardo A Chávez-Montes
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Corina Hayano-Kanashiro
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Gerardo Alejo-Jacuinde
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Thelma Y Rico-Cambron
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Guanajuato, Mexico
| |
Collapse
|
71
|
Visscher AM, Seal CE, Newton RJ, Frances AL, Pritchard HW. Dry seeds and environmental extremes: consequences for seed lifespan and germination. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:656-668. [PMID: 32480494 DOI: 10.1071/fp15275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/24/2016] [Indexed: 06/11/2023]
Abstract
In the context of climate change, food security and long-term human space missions, it is important to understand which species produce seeds that can tolerate extreme environmental conditions. Here we consider dry seed survival of extreme conditions encountered in both natural and artificially controlled environments. Considerable overlap exists between the two: for example, ultra-dry and anoxic conditions can be artificially imposed during seed storage and also occur naturally in the vacuum of space environments. Aside from ultra-drying and anoxia, dry seeds of many species may experience extremely high temperatures due to heat from wildfires or when exposed to solar heat in biomes such as deserts. In addition, seeds can be irradiated by UV-A and UV-B at the surface of the Earth and by the shorter wavelengths of UV-C in outer space. We focus on the effects of these extreme environmental conditions on dry seed lifespan and germination. Although it is clear that seeds from particular plant species and families can tolerate exposures to ultra-drying, high temperatures (at least 32 families) or UV radiation with minimal consequences for subsequent germination ability, further research is needed to elucidate many of the mechanisms underlying extreme tolerance of these environmental conditions found on Earth or in space.
Collapse
Affiliation(s)
- Anne M Visscher
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, West Sussex, UK
| | - Charlotte E Seal
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, West Sussex, UK
| | - Rosemary J Newton
- Department of Conservation Science, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, West Sussex, UK
| | - Alba Latorre Frances
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, West Sussex, UK
| | - Hugh W Pritchard
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Ardingly, RH17 6TN, West Sussex, UK
| |
Collapse
|
72
|
Kang Y, Li M, Sinharoy S, Verdier J. A Snapshot of Functional Genetic Studies in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2016; 7:1175. [PMID: 27555857 PMCID: PMC4977297 DOI: 10.3389/fpls.2016.01175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/21/2016] [Indexed: 05/21/2023]
Abstract
In the current context of food security, increase of plant protein production in a sustainable manner represents one of the major challenges of agronomic research, which could be partially resolved by increased cultivation of legume crops. Medicago truncatula is now a well-established model for legume genomic and genetic studies. With the establishment of genomics tools and mutant populations in M. truncatula, it has become an important resource to answer some of the basic biological questions related to plant development and stress tolerance. This review has an objective to overview a decade of genetic studies in this model plant from generation of mutant populations to nowadays. To date, the three biological fields, which have been extensively studied in M. truncatula, are the symbiotic nitrogen fixation, the seed development, and the abiotic stress tolerance, due to their significant agronomic impacts. In this review, we summarize functional genetic studies related to these three major biological fields. We integrated analyses of a nearly exhaustive list of genes into their biological contexts in order to provide an overview of the forefront research advances in this important legume model plant.
Collapse
Affiliation(s)
- Yun Kang
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Minguye Li
- University of Chinese Academy of SciencesBeijing, China
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Senjuti Sinharoy
- Department of Biotechnology, University of CalcuttaCalcutta, India
| | - Jerome Verdier
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
- *Correspondence: Jerome Verdier
| |
Collapse
|
73
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
74
|
SOARES GIULIANAC, DIAS DENISEC, FARIA JOSÉM, BORGES EDUARDOE. Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds. ACTA ACUST UNITED AC 2015; 87:2001-11. [DOI: 10.1590/0001-3765201520140195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 01/16/2015] [Indexed: 01/26/2023]
Abstract
ABSTRACT We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds.
Collapse
|
75
|
Righetti K, Vu JL, Pelletier S, Vu BL, Glaab E, Lalanne D, Pasha A, Patel RV, Provart NJ, Verdier J, Leprince O, Buitink J. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. THE PLANT CELL 2015; 27:2692-708. [PMID: 26410298 PMCID: PMC4682330 DOI: 10.1105/tpc.15.00632] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 05/20/2023]
Abstract
Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.
Collapse
Affiliation(s)
- Karima Righetti
- UMR 1345, Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, Angers, France
| | - Joseph Ly Vu
- UMR 1345, Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, Angers, France
| | - Sandra Pelletier
- UMR 1345, Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, Angers, France
| | - Benoit Ly Vu
- UMR 1345, Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - David Lalanne
- UMR 1345, Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, Angers, France
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rohan V Patel
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jerome Verdier
- Shanghai Center for Plant Stress Biology, SIBS, Chinese Academy of Sciences, Shanghai 201602, P.R. China
| | - Olivier Leprince
- UMR 1345, Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49071 Beaucouzé, France
| | - Julia Buitink
- UMR 1345, Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
76
|
Costa MCD, Righetti K, Nijveen H, Yazdanpanah F, Ligterink W, Buitink J, Hilhorst HWM. A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds. PLANTA 2015; 242:435-49. [PMID: 25809152 PMCID: PMC4498281 DOI: 10.1007/s00425-015-2283-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/16/2015] [Indexed: 05/19/2023]
Abstract
During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.
Collapse
Affiliation(s)
- Maria Cecília D Costa
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
77
|
Zolotarov Y, Strömvik M. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes. PLoS One 2015; 10:e0129016. [PMID: 26114291 PMCID: PMC4482647 DOI: 10.1371/journal.pone.0129016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/04/2015] [Indexed: 12/03/2022] Open
Abstract
Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.
Collapse
Affiliation(s)
- Yevgen Zolotarov
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Martina Strömvik
- Department of Plant Science, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
- * E-mail:
| |
Collapse
|
78
|
Dekkers BJW, Costa MCD, Maia J, Bentsink L, Ligterink W, Hilhorst HWM. Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. PLANTA 2015; 241:563-77. [PMID: 25567203 DOI: 10.1007/s00425-014-2240-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Besides being an important model to study desiccation tolerance, the induction of desiccation tolerance in germinated seeds may also play an ecological role in seedling establishment. Desiccation tolerance (DT) is the ability of certain organisms to survive extreme water losses without accumulation of lethal damage. This was a key feature in the conquering of dry land and is currently found in all taxa including bacteria, fungi, roundworms and plants. Not surprisingly, studies in various fields have been performed to unravel this intriguing phenomenon. In flowering plants, DT is rare in whole plants (vegetative tissues), yet is common in seeds. In this review, we present our current understanding of the evolution of DT in plants. We focus on the acquisition of DT in seeds and the subsequent loss during and after germination by highlighting and comparing research in two model plants Medicago truncatula and Arabidopsis thaliana. Finally, we discuss the ability of seeds to re-establish DT during post-germination, the possible ecological meaning of this phenomenon, and the hypothesis that DT, in combination with dormancy, optimizes seedling establishment.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
79
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
80
|
Plitta BP, Michalak M, Bujarska-Borkowska B, Barciszewska MZ, Barciszewski J, Chmielarz P. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of Acer platanoides L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:71-77. [PMID: 25394802 DOI: 10.1016/j.plaphy.2014.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
5-methylcytosine, an abundant epigenetic mark, plays an important role in the regulation of plant growth and development, but there is little information about stress-induced changes in DNA methylation in seeds. In the present study, changes in a global level of m5C were measured in orthodox seeds of Acer platanoides L. during seed desiccation from a WC of 1.04 to 0.05-0.06 g H2O g g(-1) dry mass (g g(-1)). Changes in the level of DNA methylation were measured using 2D TLC e based method. Quality of desiccated seeds was examined by germination and seedling emergence tests. Global m5C content (R2)increase was observed in embryonic axes isolated from seeds collected at a high WC of 1.04 g g(-1) after their desiccation to significantly lower WC of 0.17 and 0.19 g g(-1). Further desiccation of these seeds to a WC of 0.06 g g(-1), however, resulted in a significant DNA demethylation to R2 ¼ 11.52-12.22%. Similar m5C decrease was observed in seeds which undergo maturation drying on the tree and had four times lower initial WC of 0.27 g g(-1) at the time of harvest, as they were dried to a WC of 0.05 g g(-1). These data confirm that desiccation induces changes in seed m5C levels. Results were validated by seed lots derived from tree different A. platanoides provenances. It is plausible that sine wave-like alterations in m5C amount may represent a specific response of orthodox seeds to drying and play a relevant role in desiccation tolerance in seeds.
Collapse
|
81
|
Liu Y, Wang L, Jiang S, Pan J, Cai G, Li D. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:22-31. [PMID: 25240107 DOI: 10.1016/j.plaphy.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Li Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shanshan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
82
|
Amara I, Zaidi I, Masmoudi K, Ludevid MD, Pagès M, Goday A, Brini F. Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.522360] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Kleinwächter M, Radwan A, Hara M, Selmar D. Dehydrin expression in seeds: an issue of maturation drying. FRONTIERS IN PLANT SCIENCE 2014; 5:402. [PMID: 25221559 PMCID: PMC4145252 DOI: 10.3389/fpls.2014.00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/29/2014] [Indexed: 05/11/2023]
Affiliation(s)
- Maik Kleinwächter
- Institute for Plant Biology, Department of Life SciencesTechnische Universität Braunschweig, Germany
| | - Alzahraa Radwan
- Institute for Plant Biology, Department of Life SciencesTechnische Universität Braunschweig, Germany
| | - Masakazu Hara
- Laboratory of Functional Plant Physiology, Faculty of Agriculture, Shizuoka UniversityShizuoka, Japan
| | - Dirk Selmar
- Institute for Plant Biology, Department of Life SciencesTechnische Universität Braunschweig, Germany
- *Correspondence:
| |
Collapse
|
84
|
Terrasson E, Buitink J, Righetti K, Ly Vu B, Pelletier S, Zinsmeister J, Lalanne D, Leprince O. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. FRONTIERS IN PLANT SCIENCE 2013; 4:497. [PMID: 24376450 PMCID: PMC3859232 DOI: 10.3389/fpls.2013.00497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.
Collapse
Affiliation(s)
- Emmanuel Terrasson
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Buitink
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Karima Righetti
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Benoit Ly Vu
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Sandra Pelletier
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Julia Zinsmeister
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - David Lalanne
- Institut National de la Recherche Agronomique, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| | - Olivier Leprince
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAVAngers, France
| |
Collapse
|
85
|
Berjak P, Pammenter NW. Implications of the lack of desiccation tolerance in recalcitrant seeds. FRONTIERS IN PLANT SCIENCE 2013; 4:478. [PMID: 24319450 PMCID: PMC3837223 DOI: 10.3389/fpls.2013.00478] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 05/21/2023]
Abstract
A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as discussed.
Collapse
Affiliation(s)
- Patricia Berjak
- Plant Germplasm Conservation Research, School of Life Sciences, University of KwaZulu-Natal (Westville Campus)Durban, South Africa
| | | |
Collapse
|
86
|
Berjak P, Pammenter NW. Implications of the lack of desiccation tolerance in recalcitrant seeds. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 24319450 PMCID: PMC3982057 DOI: 10.3389/fpls.2014.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A suite of interacting processes and mechanisms enables tolerance of desiccation and storage (conservation) of orthodox seeds in the dry state. While this is a long-term option under optimized conditions, dry orthodox seeds are not immortal, with life spans having been characterized as short, intermediate and long. Factors facilitating desiccation tolerance are metabolic "switch-off" and intracellular dedifferentiation. Recalcitrant seeds lack these mechanisms, contributing significantly to their desiccation sensitivity. Consequently, recalcitrant seeds, which are shed at high water contents, can be stored only in the short-term, under conditions not allowing dehydration. The periods of such hydrated storage are constrained by germination that occurs without the need for extraneous water, and the proliferation of seed-associated fungi. Cryopreservation is viewed as the only option for long-term conservation of the germplasm of recalcitrant-seeded species. This is not easily achieved, as each of the necessary procedures imposes oxidative damage. Intact recalcitrant seeds cannot be cryopreserved, the common practice being to use excised embryos or embryonic axes as explants. Dehydration is a necessary procedure prior to exposure to cryogenic temperatures, but this is associated with metabolism-linked injury mediated by uncontrolled reactive oxygen species generation and failing anti-oxidant systems. While the extent to which this occurs can be curtailed by maximizing drying rate (flash drying) it cannot be completely obviated. Explant cooling for, and rewarming after, cryostorage must necessarily be rapid, to avoid ice crystallization. The ramifications of desiccation sensitivity are discussed, as are problems involved in cryostorage, particularly those accompanying dehydration and damage consequent upon ice crystallization. While desiccation sensitivity is a "fact" of seed recalcitrance, resolutions of the difficulties involved germplasm conservation are possible as discussed.
Collapse
|