51
|
Watanabe H, Higashimoto K, Miyake N, Morita S, Horii T, Kimura M, Suzuki T, Maeda T, Hidaka H, Aoki S, Yatsuki H, Okamoto N, Uemura T, Hatada I, Matsumoto N, Soejima H. DNA methylation analysis of multiple imprinted DMRs in Sotos syndrome reveals IGF2-DMR0 as a DNA methylation-dependent, P0 promoter-specific enhancer. FASEB J 2019; 34:960-973. [PMID: 31914674 PMCID: PMC6973060 DOI: 10.1096/fj.201901757r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Haploinsufficiency of NSD1, which dimethylates histone H3 lysine 36 (H3K36), causes Sotos syndrome (SoS), an overgrowth syndrome. DNMT3A and DNMT3B recognizes H3K36 trimethylation (H3K36me3) through PWWP domain to exert de novo DNA methyltransferase activity and establish imprinted differentially methylated regions (DMRs). Since decrease of H3K36me3 and genome‐wide DNA hypomethylation in SoS were observed, hypomethylation of imprinted DMRs in SoS was suggested. We explored DNA methylation status of 28 imprinted DMRs in 31 SoS patients with NSD1 defect and found that hypomethylation of IGF2‐DMR0 and IG‐DMR in a substantial proportion of SoS patients. Luciferase assay revealed that IGF2‐DMR0 enhanced transcription from the IGF2 P0 promoter but not the P3 and P4 promoters. Chromatin immunoprecipitation‐quantitative PCR (ChIP‐qPCR) revealed active enhancer histone modifications at IGF2‐DMR0, with high enrichment of H3K4me1 and H3 lysine 27 acetylation (H3K27ac). CRISPR‐Cas9 epigenome editing revealed that specifically induced hypomethylation at IGF2‐DMR0 increased transcription from the P0 promoter but not the P3 and P4 promoters. NSD1 knockdown suggested that NSD1 targeted IGF2‐DMR0; however, IGF2‐DMR0 DNA methylation and IGF2 expression were unaltered. This study could elucidate the function of IGF2‐DMR0 as a DNA methylation dependent, P0 promoter‐specific enhancer. NSD1 may play a role in the establishment or maintenance of IGF2‐DMR0 methylation during the postimplantation period.
Collapse
Affiliation(s)
- Hidetaka Watanabe
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Department of Plastic and Reconstructive Surgery, Saga University Hospital, Saga, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toshiyuki Maeda
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenori Hidaka
- Department of Internal Medicine and Gastrointestinal Endoscopy, Faculty of Medicine, Saga University, Saga, Japan
| | - Saori Aoki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tetsuji Uemura
- Department of Plastic and Reconstructive Surgery, Saga University Hospital, Saga, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
52
|
Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S. The effects of placental long noncoding RNA H19 polymorphisms and promoter methylation on H19 expression in association with preeclampsia susceptibility. IUBMB Life 2019; 72:413-425. [PMID: 31769935 DOI: 10.1002/iub.2199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The effect of DNA methylation on gene expression triggered it as a susceptibility factor in various diseases including preeclampsia (PE). The pathogenesis of PE is closely associated with the methylation status and genetic variants of relevant genes. Therefore, the aim of the study was to investigate the possible impacts of the placental DNA methylation and rs3741219, rs217727, and rs2107425 polymorphisms of the H19 gene on the PE susceptibility as well as the its mRNA expression. Moreover, eight haplotypes of three loci in the H19 gene were analyzed. In this case-control study, the placentas of 107 preeclamptic and 113 non-preeclamptic women were collected after delivery. The methylation status was assessed by methylation-specific polymerase chain reaction (PCR). The H19 polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism or amplification refractory mutation system-polymerase chain reaction methods. The quantitative real time PCR was used for mRNA expression assay. The placental H19 rs3741219 and rs2107425 polymorphisms were not associated with PE. However, H19 rs217727CT and TT genotypes might be associated with a 9.2- and 17.7-fold increased risk of PE, respectively. The Trs3741219 Crs217727 Crs2107425 and Trs3741219 Crs217727 Trs2107425 haplotypes were significantly lower, whereas the Trs3741219 Trs217727 Crs2107425 and Crs3741219 Trs217727 Crs2107425 haplotypes were significantly higher in PE women. Promoter but not upstream region hypermethylation of H19 gene could be led to decreased risk of PE (MM vs. UM + UU). No significant difference was observed in the placental mRNA expression between two groups. The H19 expression was significantly higher in women with unmethylated (UU), compared to methylated promoter (MM). The H19 expression was 17- and 15-fold higher in H19-rs2107425 CC and CT genotypes in PE women. In conclusion, the H19 rs2107425 polymorphism was associated with a higher risk of PE and increased H19 mRNA expression. The promoter hypermethylation of H19 gene was associated with a lower risk of PE and decreased H19 mRNA expression.
Collapse
Affiliation(s)
- Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leila Kohan
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
53
|
Bayarmaa B, Wu Z, Peng J, Wang Y, Xu S, Yan T, Yin W, Lu J, Zhou L. Association of LncRNA MEG3 polymorphisms with efficacy of neoadjuvant chemotherapy in breast cancer. BMC Cancer 2019; 19:877. [PMID: 31488093 PMCID: PMC6727505 DOI: 10.1186/s12885-019-6077-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, and neoadjuvant chemotherapy has been recommended to the patients with locally advanced breast cancer as the initial treatments. Long non-coding RNA (lncRNA) MEG3, an identified tumor suppressor, has been implicated in the development of various cancers. However, there is no data to evaluate the effect of MEG3 polymorphisms on neoadjuvant treatment in the breast cancer. METHODS Genotyping was performed using Nanodispenser Spectro CHIP chip spotting and Mass ARRAY Compact System. Univariate and multivariate logistic regression analyses were used to analyze the associations between the MEG3 polymorphisms and the pathological complete response (pCR). The disease-free survival (DFS) was estimated by the Kaplan-Meier method, and multivariate Cox proportional hazards models were used to calculate the hazard ratios (HRs) with a 95% confidential interval (CI). RESULTS A total of 144 patients with available pretreatment blood species were enrolled in the SHPD002 clinic trial of neoadjuvant chemotherapy for breast cancer. MEG3 rs10132552 were significantly associated with good response (Adjusted OR = 2.79, 95% CI 1.096-7.103, p = 0.031) in dominant model. Median follow-up time was 20 months. In multiple regression analysis, rs10132552 TC + CC (adjusted HR = 0.127, 95% CI 0.22-0.728, p = 0.02) and rs941576 AG + GG (adjusted HR = 0.183, 95% CI 0.041-0.807, p = 0.025) were significantly associated with good DFS. MEG3 rs7158663 (OR = 0.377, 95% CI 0.155-0.917, p = 0.032) were associated with a low risk of hemoglobin decrease in dominant models. CONCLUSIONS LncRNA MEG3 polymorphisms were associated with the chemotherapy response and toxicity of paclitaxel and cisplatin. The result indicates that MEG3 polymorphisms can be considered as the predictive and prognostic markers for the breast cancer patients. TRIAL REGISTRATION Retrospectively registered (ClinicalTrials. Gov identifier: NCT02221999 ); date of registration: Aug 20th, 2014.
Collapse
Affiliation(s)
- Battseren Bayarmaa
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Ziping Wu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Shuguang Xu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
54
|
Yamaguchi Y, Tayama C, Tomikawa J, Akaishi R, Kamura H, Matsuoka K, Wake N, Minakami H, Kato K, Yamada T, Nakabayashi K, Hata K. Placenta-specific epimutation at H19-DMR among common pregnancy complications: its frequency and effect on the expression patterns of H19 and IGF2. Clin Epigenetics 2019; 11:113. [PMID: 31370882 PMCID: PMC6676526 DOI: 10.1186/s13148-019-0712-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background H19 and IGF2 genes are imprinted and involved in regulating fetal and placental growth. The H19 differentially methylated region (DMR) is paternally methylated and maternally unmethylated and regulates the imprinted expression of H19 and IGF2. Epimutation at the H19-DMR in humans results in congenital growth disorders, Beckwith-Wiedemann and Silver-Russell syndromes, when erroneously its maternal allele becomes methylated and its paternal allele becomes unmethylated, respectively. Although H19 and IGF2 have been assessed for their involvement in pregnancy complications including fetal growth restriction (FGR) and pregnancy-induced hypertension (PIH)/hypertensive disorder of pregnancy (HDP) intensively in the last decade, it is still not established whether epimutation at the H19-DMR in the placenta results in pathogenic conditions in pregnancy. We aimed to assess the frequency of H19-DMR epimutation and its effects on the allelic expression patterns of H19 and IGF2 genes among normal and abnormal pregnancy cases. Results We enrolled two independently collected sets of placenta samples from normal pregnancies as controls and common pregnancy complications, FGR and PIH (HDP). The first set consisted of 39 controls and 140 FGR and/or PIH cases, and the second set consisted of 29 controls and 62 cases. For these samples, we initially screened for DNA methylation changes at H19-DMR and IGF2-DMRs by combined bisulfite restriction analysis, and further analyzed cases with methylation changes for their allelic methylation and expression patterns. We identified one case each of FGR and PIH showing hypomethylation of H19-DMR and IGF2-DMRs only in the placenta, but not in cord blood, from the first case/control set. For the PIH case, we were able to determine the allelic expression pattern of H19 to be biallelically expressed and the H19/IGF2 expression ratio to be highly elevated compared to controls. We also identified a PIH case with hypomethylation at H19-DMR and IGF2-DMRs in the placenta from the second case/control set. Conclusions Placental epimutation at H19-DMR was observed among common pregnancy complication cases at the frequency of 1.5% (3 out of 202 cases examined), but not in 68 normal pregnancy cases examined. Alteration of H19/IGF2 expression patterns due to hypomethylation of H19-DMR may have been involved in the pathogenesis of pregnancy complications in these cases. Electronic supplementary material The online version of this article (10.1186/s13148-019-0712-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Rina Akaishi
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kentaro Matsuoka
- Department of Pathology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.,Present Address: Department of Pathology, Dokkyo Medical University, Saitama Medical Center, Koshigaya, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hisanori Minakami
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
55
|
Pilvar D, Reiman M, Pilvar A, Laan M. Parent-of-origin-specific allelic expression in the human placenta is limited to established imprinted loci and it is stably maintained across pregnancy. Clin Epigenetics 2019; 11:94. [PMID: 31242935 PMCID: PMC6595585 DOI: 10.1186/s13148-019-0692-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Genomic imprinting, mediated by parent-of-origin-specific epigenetic silencing, adjusts the gene expression dosage in mammals. We aimed to clarify parental allelic expression in the human placenta for 396 claimed candidate imprinted genes and to assess the evidence for the proposed enrichment of imprinted expression in the placenta. The study utilized RNA-Seq-based transcriptome and genotyping data from 54 parental-placental samples representing the three trimesters of gestation, and term cases of preeclampsia, gestational diabetes, and fetal growth disturbances. Results Almost half of the targeted genes (n = 179; 45%) were either not transcribed or showed limited expression in the human placenta. After filtering for the presence of common exonic SNPs, adequacy of sequencing reads and informative families, 91 genes were retained (43 loci form Geneimprint database; 48 recently proposed genes). Only 11/91 genes (12.1%) showed confident signals of imprinting (binomial test, Bonferroni corrected P < 0.05; > 90% transcripts originating from one parental allele). The confirmed imprinted genes exhibit enriched placental expression (PHLDA2, H19, IGF2, MEST, ZFAT, PLAGL1, AIM1) or are transcribed additionally only in the adrenal gland (MEG3, RTL1, PEG10, DLK1). Parental monoallelic expression showed extreme stability across gestation and in term pregnancy complications. A distinct group of additional 14 genes exhibited a statistically significant bias in parental allelic proportions defined as having 65–90% of reads from one parental allele (e.g., KLHDC10, NLRP2, RHOBTB3, DNMT1). Molecular mechanisms behind biased parental expression are still to be clarified. However, 66 of 91 (72.5%) analyzed candidate imprinted genes showed no signals of deviation from biallelic expression. Conclusions As placental tissue is not included in The Genotype-Tissue Expression (GTEx) project, the study contributed to fill the gap in the knowledge concerning parental allelic expression. A catalog of parental allelic proportions and gene expression of analyzed loci across human gestation and in term pregnancy complications is provided as additional files. The study outcome suggested that true imprinting in the human placenta is restricted to well-characterized loci. High expression of imprinted genes during mid-pregnancy supports their critical role in developmental programming. Consistent with the data on other GTEx tissues, the number of human imprinted genes appears to be overestimated. Electronic supplementary material The online version of this article (10.1186/s13148-019-0692-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Pilvar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Mario Reiman
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia
| | - Arno Pilvar
- Veeuss OÜ, Jaama tn 185-49, 50705, Tartu, Tartu, Estonia
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Str, 19 50411, Tartu, Estonia.
| |
Collapse
|
56
|
Spinelli P, Latchney SE, Reed JM, Fields A, Baier BS, Lu X, McCall MN, Murphy SP, Mak W, Susiarjo M. Identification of the novel Ido1 imprinted locus and its potential epigenetic role in pregnancy loss. Hum Mol Genet 2019; 28:662-674. [PMID: 30403776 DOI: 10.1093/hmg/ddy383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jasmine M Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiang Lu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Winifred Mak
- Department of Obstetric Gynecology, Dell Medical School, University of Texas, Austin, TX, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
57
|
Karami K, Zerehdaran S, Javadmanesh A, Shariati MM, Fallahi H. Characterization of bovine (Bos taurus) imprinted genes from genomic to amino acid attributes by data mining approaches. PLoS One 2019; 14:e0217813. [PMID: 31170205 PMCID: PMC6553745 DOI: 10.1371/journal.pone.0217813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Genomic imprinting results in monoallelic expression of genes in mammals and flowering plants. Understanding the function of imprinted genes improves our knowledge of the regulatory processes in the genome. In this study, we have employed classification and clustering algorithms with attribute weighting to specify the unique attributes of both imprinted (monoallelic) and biallelic expressed genes. We have obtained characteristics of 22 known monoallelically expressed (imprinted) and 8 biallelic expressed genes that have been experimentally validated alongside 208 randomly selected genes in bovine (Bos taurus). Attribute weighting methods and various supervised and unsupervised algorithms in machine learning were applied. Unique characteristics were discovered and used to distinguish mono and biallelic expressed genes from each other in bovine. To obtain the accuracy of classification, 10-fold cross-validation with concerning each combination of attribute weighting (feature selection) and machine learning algorithms, was used. Our approach was able to accurately predict mono and biallelic genes using the genomics and proteomics attributes.
Collapse
Affiliation(s)
- Keyvan Karami
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Mahdi Shariati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
58
|
Perrera V, Martello G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front Cell Dev Biol 2019; 7:76. [PMID: 31143763 PMCID: PMC6521591 DOI: 10.3389/fcell.2019.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced Pluripotent Stem Cells (hiPSCs) have the capacity to generate a wide range of somatic cells, thus representing an ideal tool for regenerative medicine. Patient-derived hiPSCs are also used for in vitro disease modeling and drug screenings. Several studies focused on the identification of DNA mutations generated, or selected, during the derivation of hiPSCs, some of which are known to drive cancer formation. Avoiding such stable genomic aberrations is paramount for successful use of hiPSCs, but it is equally important to ensure that their epigenetic information is correct, given the critical role of epigenetics in transcriptional regulation and its involvement in a plethora of pathologic conditions. In this review we will focus on genomic imprinting, a prototypical epigenetic mechanism whereby a gene is expressed in a parent-of-origin specific manner, thanks to the differential methylation of specific DNA sequences. Conventional hiPSCs are thought to be in a pluripotent state primed for differentiation. They display a hypermethylated genome with an unexpected loss of DNA methylation at imprinted loci. Several groups recently reported the generation of hiPSCs in a more primitive developmental stage, called naïve pluripotency. Naïve hiPSCs share several features with early human embryos, such as a global genome hypomethylation, which is also accompanied by a widespread loss of DNA methylation at imprinted loci. Given that loss of imprinting has been observed in genetic developmental disorders as well as in a wide range of cancers, it is fundamental to make sure that hiPSCs do not show such epigenetic aberrations. We will discuss what specific imprinted genes, associated with human pathologies, have been found commonly misregulated in hiPSCs and suggest strategies to effectively detect and avoid such undesirable epigenetic abnormalities.
Collapse
Affiliation(s)
- Valentina Perrera
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padova, Padua, Italy
| |
Collapse
|
59
|
Küpers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M, Perron P, Wright RO, Hertz-Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergström A, Örtqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Håberg SE, Sørensen TIA, Taylor JA, Räikkönen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hämäläinen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melén E, Prentice AM, Kajantie E, Almqvist C, Oken E, Dabelea D, Boezen HM, Melton PE, Wright RJ, Koppelman GH, Trevisi L, Hivert MF, Sunyer J, Munthe-Kaas MC, Murphy SK, Corpeleijn E, Wiemels J, Holland N, Herceg Z, Binder EB, Davey Smith G, Jaddoe VWV, Lie RT, Nystad W, London SJ, Lawlor DA, Relton CL, Snieder H, Felix JF. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun 2019; 10:1893. [PMID: 31015461 PMCID: PMC6478731 DOI: 10.1038/s41467-019-09671-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
Collapse
Affiliation(s)
- Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatisitcs and Epidemology, Oslo University Hospital, Oslo, Norway
| | - Sarah E Reese
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexei Novoloaca
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ritu Roy
- HDF Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Computational Biology and Informatics, UCSF, San Francisco, CA, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Catherine Allard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jari Lahti
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenny van Dongen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine A S Langie
- VITO - Health, Mol, Belgium
- Theoretical Physics, Faculty of Sciences, Hasselt University, Hasselt, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zongli Xu
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- MRC/PHE Centre for Environment and Health School of Public Health Imperial College London, St Mary's Campus, Norfolk Place, London, UK
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Solomon
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Joosje H Heimovaara
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mariona Bustamante
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Patrice Perron
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis MIND Institute, Sacramento, CA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | | | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Anne K Örtqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Pia M Villa
- Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sophie E Moore
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- Department of Women and Children's Health, King's College London, London, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Yun Yun Gong
- School of Food Sciences and Nutrition, University of Leeds, Leeds, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, Turin, Italy
- AOU Citta della Salute e della Sceinza, CPO Piemonte, Turin, Italy
| | - Manolis Kogevinas
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda Eskenazi
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Raleigh, NC, USA
| | - Terence Dwyer
- The George Institute for Global Health, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Martine Vrijheid
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- ECOGENE-21 Biocluster, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Andrea A Baccarelli
- Laboratory of Precision Environmental Biosciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department for Genomics of Common Diseases, School of Public Health, Imperial College London, London, UK
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Esa Hämäläinen
- HUSLAB and the Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | | | | | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children's Hospital, Stockholm, Sweden
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, and Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Phillip E Melton
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Letizia Trevisi
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Marie-France Hivert
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jordi Sunyer
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Monica C Munthe-Kaas
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Oslo, Norway
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Joseph Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Altanta, GA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Wenche Nystad
- Department for Non-Communicable Diseases, Norwegian Institute for Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
60
|
Traustadóttir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev 2019; 46:17-27. [DOI: 10.1016/j.cytogfr.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
61
|
Monteagudo-Sánchez A, Sánchez-Delgado M, Mora JRH, Santamaría NT, Gratacós E, Esteller M, de Heredia ML, Nunes V, Choux C, Fauque P, de Nanclares GP, Anton L, Elovitz MA, Iglesias-Platas I, Monk D. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction. Clin Epigenetics 2019; 11:35. [PMID: 30808399 PMCID: PMC6390544 DOI: 10.1186/s13148-019-0630-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide studies have begun to link subtle variations in both allelic DNA methylation and parent-of-origin genetic effects with early development. Numerous reports have highlighted that the placenta plays a critical role in coordinating fetal growth, with many key functions regulated by genomic imprinting. With the recent description of wide-spread polymorphic placenta-specific imprinting, the molecular mechanisms leading to this curious polymorphic epigenetic phenomenon is unknown, as is their involvement in pregnancies complications. RESULTS Profiling of 35 ubiquitous and 112 placenta-specific imprinted differentially methylated regions (DMRs) using high-density methylation arrays and pyrosequencing revealed isolated aberrant methylation at ubiquitous DMRs as well as abundant hypomethylation at placenta-specific DMRs. Analysis of the underlying chromatin state revealed that the polymorphic nature is not only evident at the level of allelic methylation, but DMRs can also adopt an unusual epigenetic signature where the underlying histones are biallelically enrichment of H3K4 methylation, a modification normally mutually exclusive with DNA methylation. Quantitative expression analysis in placenta identified two genes, GPR1-AS1 and ZDBF2, that were differentially expressed between IUGRs and control samples after adjusting for clinical factors, revealing coordinated deregulation at the chromosome 2q33 imprinted locus. CONCLUSIONS DNA methylation is less stable at placenta-specific imprinted DMRs compared to ubiquitous DMRs and contributes to privileged state of the placenta epigenome. IUGR-associated expression differences were identified for several imprinted transcripts independent of allelic methylation. Further work is required to determine if these differences are the cause IUGR or reflect unique adaption by the placenta to developmental stresses.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Sánchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Ramon Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Tubío Santamaría
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.,Leibniz Institute on Aging, Jena, Germany
| | - Eduard Gratacós
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Miguel López de Heredia
- Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virgina Nunes
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciòn Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cecile Choux
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Guiomar Perez de Nanclares
- (Epi) Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Isabel Iglesias-Platas
- GReN (Grup de Reçerca en Neonatologia), BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Institut de Reçerca Sant Joan de Déu, Barcelona, Spain
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
62
|
Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, Nobakht F, Akhondi MM, Lakpour N, Sadeghi MR. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241-253. [PMID: 30382470 PMCID: PMC6420547 DOI: 10.1007/s10815-018-1350-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction. METHODS Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out. RESULT(S) The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = - 0.20, P < 0.05), tryptophan (r = - 0.45, P < 0.05), sperm motility (r = - 0.20, P < 0.05), sperm viability (r = - 0.23, P < 0.01), and sperm concentration (r = - 0.30, P < 0.001). CONCLUSION(S) Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Sara Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sulagna Dutta
- Faculty of Dentistry, MAHSA University, 42610, Selangor, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, 42610, Selangor, Malaysia
| | - Hamid Reza Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 1985713834, Iran
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, 13075-460, Brazil
| | - Kambiz Gilany
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mehdi Hedayati
- Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University for Medical Sciences, Tehran, 1985717413, Iran
| | - Fatemeh Nobakht
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Nishabur, 9314634814, Iran
| | - Mohammad Mehdi Akhondi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran
| | - Niknam Lakpour
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran.
| |
Collapse
|
63
|
Abi Habib W, Brioude F, Azzi S, Rossignol S, Linglart A, Sobrier ML, Giabicani É, Steunou V, Harbison MD, Le Bouc Y, Netchine I. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. SCIENCE ADVANCES 2019; 5:eaau9425. [PMID: 30801013 PMCID: PMC6382400 DOI: 10.1126/sciadv.aau9425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Imprinting disorders (IDs) often affect growth in humans, leading to diseases with overlapping features, regardless of the genomic region affected. IDs related to hypomethylation of the human 14q32.2 region and its DLK1/MEG3 domain are associated with Temple syndrome (TS14). TS14 is a rare type of growth retardation, the clinical signs of which overlap considerably with those of Silver-Russell syndrome (SRS), another ID related to IGF2 down-regulation at 11p15.5 region. We show that 14q32.2 hypomethylation affects expression, not only for genes at this locus but also for other imprinted genes, and especially lowers IGF2 levels at 11p15.5. Furthermore, expression of nonimprinted genes is also affected, some of which are also deregulated in SRS patients. These findings highlight the epigenetic regulation of gene expression at the DLK1/MEG3 domain. Expression profiling of TS14 and SRS patients highlights common signatures, which may account for the clinical overlap observed between TS14 and SRS.
Collapse
Affiliation(s)
- Walid Abi Habib
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Frédéric Brioude
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Salah Azzi
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Sylvie Rossignol
- Service de Génétique Médicale, Centre de Référence pour les Anomalies du Développement (FECLAD), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Agnès Linglart
- Endocrinology and Diabetology for Children and Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Bicêtre Paris Sud, AP-HP, Le Kremlin-Bicêtre, France
- INSERM U986, INSERM, Le Kremlin-Bicêtre, France
| | - Marie-Laure Sobrier
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Éloïse Giabicani
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Virginie Steunou
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Madeleine D. Harbison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yves Le Bouc
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- AP-HP, Hôpital Trousseau, Service d’Explorations Fonctionnelles Endocriniennes, Paris, France
| |
Collapse
|
64
|
Mustieles V, Mínguez-Alarcón L, Christou G, Ford JB, Dimitriadis I, Hauser R, Souter I, Messerlian C. Placental weight in relation to maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations among subfertile couples. ENVIRONMENTAL RESEARCH 2019; 169:272-279. [PMID: 30497002 PMCID: PMC6347561 DOI: 10.1016/j.envres.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Phthalates are known reproductive toxicants that reduce placental and fetal weight in experimental animal studies. Although phthalate exposure has been associated with reduced birth weight in humans, there is limited epidemiologic evidence on whether the placenta is also affected. OBJECTIVE To assess whether maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations are associated with placental weight, and the birth weight: placental weight (BW:PW) ratio among singletons conceived by subfertile couples. METHODS The present analysis included 132 mothers and 68 fathers, and their corresponding 132 singletons recruited in an academic hospital fertility center in Boston, Massachusetts. Urinary concentrations of eleven phthalate metabolites were measured and averaged in multiple paternal (n = 196) and maternal (n = 596) preconception, and maternal prenatal (n = 328) samples. Placental weight and birth weight (grams) were abstracted from delivery records, and the BW:PW was calculated. We estimated the association of natural log-phthalate metabolite concentrations across windows of exposure with placental weight and the BW:PW ratio using multivariable linear regression models, adjusting for a priori covariates. RESULTS In adjusted models, each log-unit increase in paternal urinary concentrations of the sum of di-(2-ethylhexyl) phthalate (ΣDEHP) metabolites was associated with a 24 g (95% CI: -48, -1) decrease in placental weight. We also observed a significant negative association between maternal preconception monoethyl phthalate (MEP) metabolite concentrations and the BW:PW ratio (β = -0.26; 95%CI: -0.49, -0.04). Additionally, each log-unit increase in prenatal MEP metabolite concentrations was associated with a 24 g (95% CI: -41, -7) decrease in placental weight. CONCLUSIONS Our results suggest that certain paternal and maternal urinary phthalate metabolites may affect placental weight and the BW:PW ratio. However, given the small sample size within a subfertile cohort and the novelty of these findings, more studies are needed to confirm the present results.
Collapse
Affiliation(s)
- Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - George Christou
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Irene Dimitriadis
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA 02114, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
65
|
Thamban T, Sowpati DT, Pai V, Nithianandam V, Abe T, Shioi G, Mishra RK, Khosla S. The putative Neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics 2019; 11:251-266. [DOI: 10.2217/epi-2018-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To investigate the regulatory potential of the Nnat second intron within the Nnat/Blcap micro-imprinted domain. Materials & methods: Mice with deletion of Nnat second intron at the endogenous Nnat/Blcap micro-imprinted domain were used to examine the effect of Nnat second intron on the transcriptional regulation of the Nnat and Blcap genes. Results & conclusion: Deletion of Nnat second intron affected Nnat expression in cis leading to the loss of Nnat expression from the active paternal allele. Nnat second intron was found to have the characteristics of an imprint control region including allele-specific DNA methylation and histone modifications and it also regulated the epigenetic profile of Nnat promoter by acting as an enhancer. Nnat second intron was also found to be regulating the expression of the Blcap transcripts.
Collapse
Affiliation(s)
- Thushara Thamban
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate studies, Manipal University, Manipal, India
| | - Divya Tej Sowpati
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Vaishnavo Pai
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| | - Vanitha Nithianandam
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Takaya Abe
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Go Shioi
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Sanjeev Khosla
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| |
Collapse
|
66
|
McNamara GI, Creeth HDJ, Harrison DJ, Tansey KE, Andrews RM, Isles AR, John RM. Loss of offspring Peg3 reduces neonatal ultrasonic vocalizations and increases maternal anxiety in wild-type mothers. Hum Mol Genet 2019; 27:440-450. [PMID: 29186532 PMCID: PMC5886183 DOI: 10.1093/hmg/ddx412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Depression and anxiety are the most common mental health conditions during pregnancy and can impair the normal development of mother-infant interactions. These adversities are associated with low birth weight and increased risk of behavioural disorders in children. We recently reported reduced expression of the imprinted gene PATERNALLY EXPRESSED GENE 3 (PEG3) in placenta of human infants born to depressed mothers. Expression of Peg3 in the brain has previously been linked maternal behaviour in rodents, at least in some studies, with mutant dams neglecting their pups. However, in our human study decreased expression was in the placenta derived from the fetus. Here, we examined maternal behaviour in response to reduced expression of Peg3 in the feto-placental unit. Prenatally we found novelty reactivity was altered in wild-type females carrying litters with a null mutation in Peg3. This behavioural alteration was short-lived and there were no significant differences the transcriptomes of either the maternal hypothalamus or hippocampus at E16.5. In contrast, while maternal gross maternal care was intact postnatally, the exposed dams were significantly slower to retrieve their pups and displayed a marked increase in anxiety. We also observed a significant reduction in the isolation-induced ultrasonic vocalizations (USVs) emitted by mutant pups separated from their mothers. USVs are a form of communication known to elicit maternal care suggesting Peg3 mutant pups drive the deficit in maternal behaviour. These data support the hypothesis that reduced placental PEG3 in human pregnancies occurs as a consequence of prenatal depression but leaves scope for feto-placental Peg3 dosage, during gestation, influencing aspects of maternal behaviour.
Collapse
Affiliation(s)
- G I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - D J Harrison
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - K E Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical & Life Sciences
| | - R M Andrews
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3XQ, UK
| | - A R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
67
|
James P, Sajjadi S, Tomar AS, Saffari A, Fall CHD, Prentice AM, Shrestha S, Issarapu P, Yadav DK, Kaur L, Lillycrop K, Silver M, Chandak GR. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol 2018; 47:1910-1937. [PMID: 30137462 PMCID: PMC6280938 DOI: 10.1093/ije/dyy153] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course. Methods We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays. Results We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review. Conclusions Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.
Collapse
Affiliation(s)
- Philip James
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Sara Sajjadi
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ashutosh Singh Tomar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ayden Saffari
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Caroline H D Fall
- MRC Life course Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Prachand Issarapu
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Dilip Kumar Yadav
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Lovejeet Kaur
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Karen Lillycrop
- Research Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Matt Silver
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
68
|
An information theoretic treatment of sequence-to-expression modeling. PLoS Comput Biol 2018; 14:e1006459. [PMID: 30256780 PMCID: PMC6175532 DOI: 10.1371/journal.pcbi.1006459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/08/2018] [Accepted: 08/24/2018] [Indexed: 11/23/2022] Open
Abstract
Studying a gene’s regulatory mechanisms is a tedious process that involves identification of candidate regulators by transcription factor (TF) knockout or over-expression experiments, delineation of enhancers by reporter assays, and demonstration of direct TF influence by site mutagenesis, among other approaches. Such experiments are often chosen based on the biologist’s intuition, from several testable hypotheses. We pursue the goal of making this process systematic by using ideas from information theory to reason about experiments in gene regulation, in the hope of ultimately enabling rigorous experiment design strategies. For this, we make use of a state-of-the-art mathematical model of gene expression, which provides a way to formalize our current knowledge of cis- as well as trans- regulatory mechanisms of a gene. Ambiguities in such knowledge can be expressed as uncertainties in the model, which we capture formally by building an ensemble of plausible models that fit the existing data and defining a probability distribution over the ensemble. We then characterize the impact of a new experiment on our understanding of the gene’s regulation based on how the ensemble of plausible models and its probability distribution changes when challenged with results from that experiment. This allows us to assess the ‘value’ of the experiment retroactively as the reduction in entropy of the distribution (information gain) resulting from the experiment’s results. We fully formalize this novel approach to reasoning about gene regulation experiments and use it to evaluate a variety of perturbation experiments on two developmental genes of D. melanogaster. We also provide objective and ‘biologist-friendly’ descriptions of the information gained from each such experiment. The rigorously defined information theoretic approaches presented here can be used in the future to formulate systematic strategies for experiment design pertaining to studies of gene regulatory mechanisms. In-depth studies of gene regulatory mechanisms employ a variety of experimental approaches such as identifying a gene’s enhancer(s) and testing its variants through reporter assays, followed by transcription factor mis-expression or knockouts, site mutagenesis, etc. The biologist is often faced with the challenging problem of selecting the ideal next experiment to perform so that its results provide novel mechanistic insights, and has to rely on their intuition about what is currently known on the topic and which experiments may add to that knowledge. We seek to make this intuition-based process more systematic, by borrowing ideas from the mature statistical field of experiment design. Towards this goal, we use the language of mathematical models to formally describe what is known about a gene’s regulatory mechanisms, and how an experiment’s results enhance that knowledge. We use information theoretic ideas to assign a ‘value’ to an experiment as well as explain objectively what is learned from that experiment. We demonstrate use of this novel approach on two extensively studied developmental genes in fruitfly. We expect our work to lead to systematic strategies for selecting the most informative experiments in a study of gene regulation.
Collapse
|
69
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
70
|
Lubinsky M. Evolutionary justifications for human reproductive limitations. J Assist Reprod Genet 2018; 35:2133-2139. [PMID: 30116921 DOI: 10.1007/s10815-018-1285-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 01/27/2023] Open
Abstract
Common human reproductive inefficiencies have multiple etiologies. Going against chance, many effects, such as polycystic ovaries, endometriosis, and folate metabolic issues, have genetic components, while aneuploid losses arise from diverse mitotic and meiotic errors at different stages, some transitory. This can be advantageous, since greater overall survival with fewer offspring can increase reproductive success. Benefits primarily accrue to mothers, who bear most child related costs, and for whom early losses are less costly than late. Different adaptations to different situations reflect human evolutionary history. For early speciation, periodic climate extremes repeatedly reduced resources, favoring limitations while contracted populations helped fix relevant genes. Later, under better conditions, evolving social cooperation could increase fecundity faster than it added resources, further supporting reproductive suppression through mitotic aneuploidy, with very early losses minimizing maternal costs. The grandmother hypothesis suggests benefits in limiting reproduction as maternal age increased pregnancy risks in order to support grandchildren as they arrived, selecting for maternal age-related meiotic aneuploidy. Finally, with variable short-term agricultural shortages, acute reproductive responses arose through chromatin "nutrient sensor"-regulated epigenetic effects that also shifted some lethal effects earlier, reducing both maternal and mutation load costs. Overall, despite suggestions to the contrary, it is likely that human selective pressures have not decreased with civilization, but that many of the costs have been shifted to early reproduction.
Collapse
|
71
|
Choi NY, Bang JS, Lee HJ, Park YS, Lee M, Jeong D, Ko K, Han DW, Chung HM, Kim GJ, Shim SH, Hwang HS, Ko K. Novel imprinted single CpG sites found by global DNA methylation analysis in human parthenogenetic induced pluripotent stem cells. Epigenetics 2018; 13:343-351. [PMID: 29613829 DOI: 10.1080/15592294.2018.1460033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.
Collapse
Affiliation(s)
- Na Young Choi
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Jin Seok Bang
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Hye Jeong Lee
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Yo Seph Park
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Minseong Lee
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Dahee Jeong
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea
| | - Kisung Ko
- c Department of Medicine, College of Medicine , Chung-Ang University , Seoul 06974 , Korea
| | - Dong Wook Han
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,d KU Open-Innovation Center , Institute of Biomedical Science and Technology, Konkuk University , Seoul 05029 , Korea
| | - Hyung-Min Chung
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea
| | - Gwang Jun Kim
- e Department of Pediatrics, College of Medicine , Chung-Ang University , Seoul 06973 , Korea
| | - Seung-Hyuk Shim
- f Department of Obstetrics and Gynecology , School of Medicine, Konkuk University , Seoul 05030 , Korea
| | - Han Sung Hwang
- f Department of Obstetrics and Gynecology , School of Medicine, Konkuk University , Seoul 05030 , Korea
| | - Kinarm Ko
- a Department of Stem Cell Biology, School of Medicine , Konkuk University , Seoul 05029 , Korea.,b Center for Stem Cell Research , Institute of Advanced Biomedical Science, Konkuk University , Seoul 05029 , Korea.,d KU Open-Innovation Center , Institute of Biomedical Science and Technology, Konkuk University , Seoul 05029 , Korea.,g Research Institute of Medical Science , Konkuk University , Seoul 05029 , Korea
| |
Collapse
|
72
|
Litzky JF, Deyssenroth MA, Everson TM, Lester BM, Lambertini L, Chen J, Marsit CJ. Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth. Pediatr Res 2018; 83. [PMID: 29538358 PMCID: PMC5959758 DOI: 10.1038/pr.2018.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDepression and/or anxiety during pregnancy have been associated with impaired fetal growth and neurodevelopment. Because placental imprinted genes play a central role in fetal development and respond to environmental stressors, we hypothesized that imprinted gene expression would be affected by prenatal depression and anxiety.MethodsPlacental gene expression was compared between mothers with prenatal depression and/or anxiety/obsessive compulsive disorder/panic and control mothers without psychiatric history (n=458) in the Rhode Island Child Health Study.ResultsTwenty-nine genes were identified as being significantly differentially expressed between placentae from infants of mothers with both depression and anxiety (n=54), with depression (n=89), or who took perinatal psychiatric medications (n=29) and control mother/infant pairs, with most genes having decreased expression in the stressed group. Among placentae from infants of mothers with depression, we found no differences in expression by medication use, indicating that our results are related to the stressor rather than the treatments. We did not find any relationship between the stress-associated gene expression and neonatal neurodevelopment, as measured using the Neonatal Intensive Care Unit Network Neurobehavioral Scale.ConclusionsThis variation in expression may be part of an adaptive mechanism by which the placenta buffers the infant from the effects of maternal stress.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Barry M. Lester
- Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Providence, RI
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY,Department of Obstetrics, Gynecology and Reproductive Science; Icahn School of Medicine at Mount Sinai; New York; NY
| | - Jia Chen
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY,Department of Pediatrics; Icahn School of Medicine at Mount Sinai; New York, NY
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA,Corresponding Author: Carmen Marsit, 1518 Clifton Road, CNR 202, Atlanta, GA 30322, Phone: (404) 712-8912, Fax: (404) 727-8744,
| |
Collapse
|
73
|
Stalman SE, Solanky N, Ishida M, Alemán-Charlet C, Abu-Amero S, Alders M, Alvizi L, Baird W, Demetriou C, Henneman P, James C, Knegt LC, Leon LJ, Mannens MMAM, Mul AN, Nibbering NA, Peskett E, Rezwan FI, Ris-Stalpers C, van der Post JAM, Kamp GA, Plötz FB, Wit JM, Stanier P, Moore GE, Hennekam RC. Genetic Analyses in Small-for-Gestational-Age Newborns. J Clin Endocrinol Metab 2018; 103:917-925. [PMID: 29342293 DOI: 10.1210/jc.2017-01843] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. OBJECTIVE The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. DESIGN A prospective cohort study of subjects with a low birth weight for gestational age. SETTING The study was conducted at an academic pediatric research institute. PATIENTS A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. INTERVENTIONS Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. MAIN OUTCOME MEASURES The numbers of CNVs, methylation disturbances, and sequence variants. RESULTS The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. CONCLUSION Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.
Collapse
Affiliation(s)
- Susanne E Stalman
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Nita Solanky
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Miho Ishida
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Cristina Alemán-Charlet
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Sayeda Abu-Amero
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas Alvizi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - William Baird
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Charalambos Demetriou
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Peter Henneman
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Chela James
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Lia C Knegt
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia J Leon
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Adi N Mul
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole A Nibbering
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Peskett
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Faisal I Rezwan
- Department of Human Development and Health, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris A M van der Post
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerdine A Kamp
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Frans B Plötz
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Philip Stanier
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Gudrun E Moore
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
74
|
Christians JK, Leavey K, Cox BJ. Associations between imprinted gene expression in the placenta, human fetal growth and preeclampsia. Biol Lett 2018; 13:rsbl.2017.0643. [PMID: 29187609 DOI: 10.1098/rsbl.2017.0643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 01/06/2023] Open
Abstract
Genomic imprinting is essential for normal placental and fetal growth. One theory to explain the evolution of imprinting is the kinship theory (KT), which predicts that genes that are paternally expressed will promote fetal growth, whereas maternally expressed genes will suppress growth. We investigated the expression of imprinted genes using microarray measurements of expression in term placentae. Correlations between birthweight and the expression levels of imprinted genes were more significant than for non-imprinted genes, but did not tend to be positive for paternally expressed genes and negative for maternally expressed genes. Imprinted genes were more dysregulated in preeclampsia (a disorder associated with placental insufficiency) than randomly selected genes, and we observed an excess of patterns of dysregulation in preeclampsia that would be expected to reduce nutrient allocation to the fetus, given the predictions of the KT. However, we found no evidence of coordinated regulation among these imprinted genes. A few imprinted genes have previously been shown to be associated with fetal growth and preeclampsia, and our results indicate that this is true for a broader set of imprinted genes.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katherine Leavey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
75
|
Taniguchi K, Kawai T, Hata K. Placental Development and Nutritional Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:63-73. [PMID: 29956195 DOI: 10.1007/978-981-10-5526-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The placenta is considered to have developed recently in mammalian evolution. While the fundamental function of the placenta, i.e., providing nutrients and oxygen to the fetus and receiving waste products, is the same in all mammals, the morphology of the placenta varies substantially in a species-dependent manner. Therefore, considerable interest exists in understanding placental development and function in mammals from a molecular biological viewpoint. Numerous recent studies have shown that various environmental factors before and during pregnancy, including nutrition, affect placental formation and function and that alterations in placental formation and function can influence the developing fetus and the offspring after birth. To date, the relationship between nutrition and the placenta has been investigated in several species, various model organisms, and humans. In this chapter, we discuss the current knowledge of the placenta and the epigenome and then highlight the effects of nutrition during pregnancy on the placenta and the fetus and on the offspring after birth.
Collapse
Affiliation(s)
- Kosuke Taniguchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
76
|
Choux C, Binquet C, Carmignac V, Bruno C, Chapusot C, Barberet J, Lamotte M, Sagot P, Bourc’his D, Fauque P. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. Hum Reprod 2017; 33:331-340. [DOI: 10.1093/humrep/dex366] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
|
77
|
Denic S, Agarwal MM. Breast cancer protection by genomic imprinting in close kin families. BMC MEDICAL GENETICS 2017; 18:136. [PMID: 29157216 PMCID: PMC5696730 DOI: 10.1186/s12881-017-0498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Abstract
Human inbreeding generally reduces breast cancer risk (BCR). When the parents are biologically related, their infants have a lower birth weight due to smaller body organs. The undersized breasts, because of fewer mammary stem cells, have a lower likelihood of malignant conversion. Fetal growth is regulated by genomically imprinted genes which are in conflict; they promote growth when derived from the father and suppress growth when derived from the mother. The kinship theory explicates that the intensity of conflict between these genes affects growth and therefore the size of the newborn. In descendants of closely related parents, this gene clash is less resulting in a smaller infant. In this review, we elucidate the different mechanisms by which human inbreeding affects BCR, and why this risk is dissimilar in different inbred populations.
Collapse
Affiliation(s)
- Srdjan Denic
- Department of Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Mukesh M Agarwal
- Department of Pathology, California University of Science and Medicine, 217 E Club Center Drive, San Bernardino, CA, 92408, USA
| |
Collapse
|
78
|
Tang L, Liu Z, Zhang R, Su C, Yang W, Yao Y, Zhao S. Imprinting alterations in sperm may not significantly influence ART outcomes and imprinting patterns in the cord blood of offspring. PLoS One 2017; 12:e0187869. [PMID: 29136648 PMCID: PMC5685618 DOI: 10.1371/journal.pone.0187869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
An increase in imprinting disorders in children conceived though assisted reproductive technologies (ARTs) has been the subject of several reports. The transmission of imprinting errors from the sperm of infertile fathers is believed to be a possible reason for the increased occurrence of these disorders. However, whether the imprinting alterations in sperm affect ART outcomes and the imprinting of offspring is unclear. In the current study, we analyzed the methylation of H19, SNRPN and KCNQ1OT1 by pyrosequencing sperm samples from 97 infertile patients and 31 proven fertile males as well as cord blood samples from 13 infantswho were conceived by infertile parents through intracytoplasmic sperm injection (ICSI) and 30 healthy newborns who were conceived naturally. After four cases were excluded owing to the lack of a sequencing signal, the infertile patients were subgrouped into normal (69 cases) and abnormal (24 cases) imprinting groups according to the reference range set by the control group. Between the groups, there were no significant differences in ART outcomes. Significantly different levels of methylation were detected in H19, but none of the imprinted genes were determined to be outside of the methylation reference range set by the values derived from the naturally conceived controls. Three CpG loci were found to be significantly hypomethylated in the maternally imprinted gene KCNQ1OT1 in two patients from the abnormal imprinting group, none of which were caused by sperm imprinting errors. In addition, the paternal H19 gene exhibited discrepant methylation patterns between the sperm controls and the cord blood controls. Our data suggest that increased imprinting errors in the sperm of infertile patients do not have an obvious influence on ART outcomes or the imprinting of offspring.
Collapse
Affiliation(s)
- Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zichao Liu
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Department of Life Science and Technology, Kunming University, Kunming, Yunnan Province, China
| | - Ruopeng Zhang
- Department of Reproductive Medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Cunmei Su
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wenjuan Yang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Youlin Yao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
- Yunnan Population and Family Planning Research Institute, Kunming, China
- * E-mail:
| |
Collapse
|
79
|
Deyssenroth MA, Li Q, Lacasaña M, Nomura Y, Marsit C, Chen J. Expression of placental regulatory genes is associated with fetal growth. J Perinat Med 2017; 45:887-893. [PMID: 28675750 PMCID: PMC5630498 DOI: 10.1515/jpm-2017-0064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
The placenta is the principal organ regulating respiratory, nutritional, endocrine and metabolic functions on behalf of the developing fetus. Changes in gene expression patterns of placenta-specific genes may influence fetal growth. We profiled the expression of 17 genes related to placenta functioning in term placentas (n=677) to identify genes differentially expressed across birth weight categories [small (SGA), appropriate (AGA) and large (LGA) for gestational age]. ABCG2, CEBPB, CRH, GCM1, GPC3, INSL4, PGF and PLAC1 were inversely associated with LGA status, with odds ratios (ORs) and 95% confidence intervals (CI) ranging from GCM1 (OR=0.44, 95% CI: 0.29, 0.70) to CRH (OR=0.73, 95% CI: 0.61, 0.88). NR3C1 was positively associated with LGA status (OR=2.33, 95% CI: 1.43, 3.78). PLAC1 (OR=0.66, 95% CI: 0.47, 0.92) and ABCG2 (OR=0.63, 95% CI: 0.44, 0.91) were additionally inversely associated with SGA status, and PGF was positively associated with SGA status (OR=1.59, 95% CI=1.08, 2.35). General trends were confirmed in an independent cohort (n=306). Given that aberrant fetal growth may have long-lasting effects, our results suggest the potential utility of placental gene expression profiles as potential early markers of disease onset later in life.
Collapse
Affiliation(s)
| | | | - Marina Lacasaña
- Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; and Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Yoko Nomura
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychology, Queens College, New York, NY, USA; and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Jia Chen
- Corresponding author: Tel.: +(212) 241-7592,
| |
Collapse
|
80
|
Xu P, Wu Z, Yang W, Wang L. Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology 2017; 390:109-116. [DOI: 10.1016/j.tox.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
|
81
|
Litzky JF, Deyssenroth MA, Everson TM, Armstrong DA, Lambertini L, Chen J, Marsit CJ. Placental imprinting variation associated with assisted reproductive technologies and subfertility. Epigenetics 2017; 12:653-661. [PMID: 28621618 PMCID: PMC5687325 DOI: 10.1080/15592294.2017.1336589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Infertility affects one in 6 couples in developed nations, resulting in an increasing use of assisted reproductive technologies (ART). Both ART and subfertility appear to be linked to lower birth weight outcomes, setting infants up for poor long-term health. Prenatal growth is, in part, regulated via epigenetically-controlled imprinted genes in the placenta. Although differences in DNA methylation between ART and control infants have been found, it remains unclear whether these differences are due to the ART procedures or to the underlying parental subfertility and how these methylation differences affect imprinted gene expression. In this study, we examined the expression of 108 imprinted genes in placental tissues from infants born to subfertile parents (n = 79), matched naturally-conceived controls (n = 158), and infants conceived using in vitro fertilization (IVF, n = 18). Forty-five genes were identified as having significantly different expression between the subfertile infants and controls, whereas no significant differences were identified between the IVF and control groups. The expression of 4 genes-IGF2, NAPIL5, PAX8-AS1, and TUBGCP5-was significantly downregulated in the IVF compared with the subfertile group. Three of the 45 genes significantly dysregulated between subfertile and control placentae-GRB10, NDN, and CD44 -were found to have a significant positive correlation between expression and birth weight. Methylation levels for these 3 genes and 4 others-MKRN3, WRB, DHCR24, and CYR61-were significantly correlated with expression. Our findings indicate that epigenetic differences in placentas resulting from IVF pregnancies may be related to the underlying subfertility in parents using IVF rather than the IVF procedure itself.
Collapse
Affiliation(s)
- Julia F. Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - David A. Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Obstetrics; Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
82
|
Eidem HR, McGary KL, Capra JA, Abbot P, Rokas A. The transformative potential of an integrative approach to pregnancy. Placenta 2017; 57:204-215. [PMID: 28864013 DOI: 10.1016/j.placenta.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. METHODS We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. RESULTS We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. CONCLUSION We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy.
Collapse
Affiliation(s)
- Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kriston L McGary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
83
|
A complex association between DNA methylation and gene expression in human placenta at first and third trimesters. PLoS One 2017; 12:e0181155. [PMID: 28704530 PMCID: PMC5509291 DOI: 10.1371/journal.pone.0181155] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
The human placenta is a maternal-fetal organ essential for normal fetal development and maternal health. During pregnancy, the placenta undergoes many structural and functional changes in response to fetal needs and environmental exposures. Previous studies have demonstrated widespread epigenetic and gene expression changes from early to late pregnancy. However, on the global level, how DNA methylation changes impact on gene expression in human placenta is not yet well understood. We performed DNA methylome analysis by reduced representation bisulfite sequencing (RRBS) and gene expression analysis by RNA-Seq for both first and third trimester human placenta tissues. From first to third trimester, 199 promoters (corresponding to 189 genes) and 2,297 gene bodies were differentially methylated, with a clear dominance of hypermethylation (96.8% and 93.0% for promoters and gene bodies, respectively). A total of 2,447 genes were differentially expressed, of which 77.2% were down-regulated. Gene ontology analysis using differentially expressed genes were enriched for cell cycle and immune response functions. The correlation between DNA methylation and gene expression was non-linear and complex, depending on the genomic context (promoter or gene body) and gene expression levels. A wide range of DNA methylation and gene expression changes were observed at different gestational ages. The non-linear association between DNA methylation and gene expression indicates that epigenetic regulation of placenta development is more complex than previously envisioned.
Collapse
|
84
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
85
|
Hăşmăşanu MG, Baizat M, Procopciuc LM, Blaga L, Văleanu MA, Drugan TC, Zaharie GC, Bolboacă SD. Serum levels and ApaI polymorphism of insulin-like growth factor 2 on intrauterine growth restriction infants. J Matern Fetal Neonatal Med 2017; 31:1470-1476. [DOI: 10.1080/14767058.2017.1319921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Monica G. Hăşmăşanu
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Melinda Baizat
- Department of Neonatology, Gynecology Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ligia Blaga
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mădălina A. Văleanu
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor C. Drugan
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela C. Zaharie
- Department of Neonatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
86
|
Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future health prospects of children. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:53-66. [PMID: 28421136 PMCID: PMC5387983 DOI: 10.1093/emph/eox004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Background and objectives Pre-eclampsia often has detrimental health effects for pregnant women and their fetuses, but whether exposure in the womb has long-term health-consequences for children as they grow up remains poorly understood. We assessed overall morbidity of children following exposure to either mild or severe pre-eclampsia up to 30 years after birth and related disease risks to duration of exposure, i.e. the time from diagnosis to delivery. Methodology We did a registry-based retrospective cohort study in Denmark covering the years 1979–2009, using the separate diagnoses of mild and severe pre-eclampsia and the duration of exposure as predictor variables for specific and overall risks of later disease. We analysed 3 537 525 diagnoses for 14 disease groups, accumulated by 758 524 singleton children, after subdividing deliveries in six gestational age categories, partialing out effects of eight potentially confounding factors. Results Exposure to mild pre-eclampsia appeared to have consistent negative effects on health later in life, although only a few specific disease cases remained significant after corrections for multiple testing. Morbidity risks associated with mild pre-eclampsia were of similar magnitude as those associated with severe pre-eclampsia. Apart from this overall trend in number of diagnoses incurred across disease groups, hazard ratios for several disorders also increased with the duration of exposure, including disorders related to the metabolic syndrome. Conclusions and implications Maternal pre-eclampsia has lasting effects on offspring health and differences between exposure to severe and mild pre-eclampsia appear to be less than previously assumed. Our results suggest that it would be prudent to include the long-term health prospects of children in the complex clinical management of mild pre-eclampsia.
Collapse
Affiliation(s)
- Birgitte Hollegaard
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Lykke
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
87
|
O'Doherty AM, O'Shea LC, Sandra O, Lonergan P, Fair T, Forde N. Imprinted and DNA methyltransferase gene expression in the endometrium during the pre- and peri-implantation period in cattle. Reprod Fertil Dev 2017; 29:1729-1738. [DOI: 10.1071/rd16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The endometrium plays a key role in providing an optimal environment for attachment of the preimplantation embryo during the early stages of pregnancy. Investigations over the past 2 decades have demonstrated that vital epigenetic processes occur in the embryo during the preimplantation stages of development. However, few studies have investigated the potential role of imprinted genes and their associated modulators, the DNA methyltransferases (DNMTs), in the bovine endometrium during the pre- and peri-implantation period. Therefore, in the present study we examined the expression profiles of the DNMT genes (3A, 3A2 and 3B) and a panel of the most comprehensively studied imprinted genes in the endometrium of cyclic and pregnant animals. Intercaruncular (Days 5, 7, 13, 16 and 20) and caruncular (Days 16 and 20) regions were analysed for gene expression changes, with protein analysis also performed for DNMT3A, DNMT3A2 and DNMT3B on Days 16 and 20. An overall effect of day was observed for expression of several of the imprinted genes. Tissue-dependent gene expression was detected for all genes at Day 20. Differences in DNMT protein abundance were mostly observed in the intercaruncular regions of pregnant heifers at Day 16 when DNMT3A, DNMT3A2 and DNMT3B were all lower when compared with cyclic controls. At Day 20, DNMT3A2 expression was lower in the pregnant caruncular samples compared with cyclic animals. This study provides evidence that epigenetic mechanisms in the endometrium may be involved with implantation of the embryo during the early stages of pregnancy in cattle.
Collapse
|
88
|
Placental examination: prognosis after delivery of the growth-restricted fetus. Curr Opin Obstet Gynecol 2016; 28:95-100. [PMID: 26825183 DOI: 10.1097/gco.0000000000000249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article describes the role of placental examination in the prognostic evaluation of fetal growth restriction (FGR) infants. RECENT FINDINGS A new comprehensive placental classification system was reported. Maternal underperfusion, fetal thrombotic vasculopathy (FTV), villitis (including villitis of unknown etiology and infectious villitis), inflammation, and immature/dysmature villi are important factors affecting FGR prognosis, whereas genomic imprinting is a key factor affecting growth and diseases, as well as placental abnormality. SUMMARY We discuss the role of placental examination in determining FGR prognosis. Maternal underperfusion, fetal thrombotic vasculopathy, and villitis (including villitis of unknown etiology and infectious villitis) are the most important findings affecting FGR prognosis. Although limited, data have suggested an association of inflammation and immature/dysmature villi with postnatal growth in FGR infants. Placental size also contributes postnatally through fetal programming. In addition, placental imprinting can be a key of pre and postnatal growth and diseases, including imprinting disorders, as well as placental abnormalities such as placental mesenchymal dysplasia.
Collapse
|
89
|
Sõber S, Rull K, Reiman M, Ilisson P, Mattila P, Laan M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci Rep 2016; 6:38439. [PMID: 27929073 PMCID: PMC5143936 DOI: 10.1038/srep38439] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Recurrent pregnancy loss (RPL) concerns ~3% of couples aiming at childbirth. In the current study, transcriptomes and miRNomes of 1st trimester placental chorionic villi were analysed for 2 RPL cases (≥6 miscarriages) and normal, but electively terminated pregnancies (ETP; n = 8). Sequencing was performed on Illumina HiSeq 2000 platform. Differential expression analyses detected 51 (27%) transcripts with increased and 138 (73%) with decreased expression in RPL compared to ETP (DESeq: FDR P < 0.1 and DESeq2: <0.05). RPL samples had substantially decreased transcript levels of histones, regulatory RNAs and genes involved in telomere, spliceosome, ribosomal, mitochondrial and intra-cellular signalling functions. Downregulated expression of HIST1H1B and HIST1H4A (Wilcoxon test, fc≤0.372, P≤9.37 × 10−4) was validated in an extended sample by quantitative PCR (RPL, n = 14; ETP, n = 24). Several upregulated genes are linked to placental function and pregnancy complications: ATF4, C3, PHLDA2, GPX4, ICAM1, SLC16A2. Analysis of the miRNA-Seq dataset identified no large disturbances in RPL samples. Notably, nearly 2/3 of differentially expressed genes have binding sites for E2F transcription factors, coordinating mammalian endocycle and placental development. For a conceptus destined to miscarriage, the E2F TF-family represents a potential key coordinator in reprogramming the placental genome towards gradually stopping the maintenance of basic nuclear and cellular functions.
Collapse
Affiliation(s)
- Siim Sõber
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Kristiina Rull
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, L. Puusepa St. 8, Tartu 51014, Estonia.,Women's Clinic of Tartu University Hospital, L. Puusepa St. 8, Tartu 51014, Estonia
| | - Mario Reiman
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Piret Ilisson
- Department of Genetics, United Laboratories of Tartu University Hospital, L. Puusepa St. 2, Tartu 51014, Estonia
| | - Pirkko Mattila
- The Institute for Molecular Medicine Finland (FIMM), Tukholmankatu 8, Helsinki FI-00014 Finland.,Finnish Red Cross Blood Service (FRCBS), Kivihaantie 7, Helsinki FI-00310, Finland
| | - Maris Laan
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50412 Tartu, Estonia
| |
Collapse
|
90
|
Wildman DE. IFPA award in placentology lecture: Phylogenomic origins and evolution of the mammalian placenta. Placenta 2016; 48 Suppl 1:S31-S39. [PMID: 27105828 DOI: 10.1016/j.placenta.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
The placenta has had the most dynamic evolutionary history of all mammalian organs. It has undergone massive shifts in anatomy, physiology, and the way in which uterine and fetal tissue interact with one another during pregnancy. The human placenta is arguably the best studied amongst mammals, yet much about its function during pregnancy is not understood. The purpose of this paper is to outline the evolutionary history of the placenta, and to point out major gaps in the current state of knowledge. I also propose novel theoretical, experimental, and computational approaches that are likely to provide insight into the normal process of placentation and the role the placenta plays in the great obstetrical syndromes.
Collapse
Affiliation(s)
- Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
91
|
Cleaton MAM, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock-Jones DS, Powell TL, Smith GCS, Ferguson-Smith AC, Charalambous M. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat Genet 2016; 48:1473-1480. [PMID: 27776119 DOI: 10.1038/ng.3699] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/23/2016] [Indexed: 01/16/2023]
Abstract
Pregnancy is a state of high metabolic demand. Fasting diverts metabolism to fatty acid oxidation, and the fasted response occurs much more rapidly in pregnant women than in non-pregnant women. The product of the imprinted DLK1 gene (delta-like homolog 1) is an endocrine signaling molecule that reaches a high concentration in the maternal circulation during late pregnancy. By using mouse models with deleted Dlk1, we show that the fetus is the source of maternal circulating DLK1. In the absence of fetally derived DLK1, the maternal fasting response is impaired. Furthermore, we found that maternal circulating DLK1 levels predict embryonic mass in mice and can differentiate healthy small-for-gestational-age (SGA) infants from pathologically small infants in a human cohort. Therefore, measurement of DLK1 concentration in maternal blood may be a valuable method for diagnosing human disorders associated with impaired DLK1 expression and to predict poor intrauterine growth and complications of pregnancy.
Collapse
Affiliation(s)
- Mary A M Cleaton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire L Dent
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | | | - Steven R Bauer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, USA
| | - D Steven Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Theresa L Powell
- Department of Pediatrics, Section for Neonatology, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, UK
| | - Anne C Ferguson-Smith
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Marika Charalambous
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
92
|
Petry CJ, Sanz Marcos N, Pimentel G, Hayes MG, Nodzenski M, Scholtens DM, Hughes IA, Acerini CL, Ong KK, Lowe WL, Dunger DB. Associations Between Fetal Imprinted Genes and Maternal Blood Pressure in Pregnancy. Hypertension 2016; 68:1459-1466. [PMID: 27777362 DOI: 10.1161/hypertensionaha.116.08261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022]
Abstract
In addition to maternal genes and environmental exposures, variation in fetal imprinted genes could also affect maternal blood pressure during pregnancy. Our objective was to test the associations between polymorphic variants in 16 imprinted genes and maternal mean arterial blood pressures in 1160 DNA trios from 2 established birth cohorts (the Cambridge Baby Growth and Wellbeing Studies) and seek replication in 1367 Hyperglycemia and Adverse Pregnancy Outcome Study participants. Significant univariate associations, all independent of fetal sex, were observed in the Cambridge cohorts, including FAM99A rs1489945 transmitted from the mother (P=2×10-4), DLK1 rs10139403 (mother; P=9×10-4), DLK1 rs12147008 (mother; P=1×10-3), H19 rs217222 (father; P=1×10-3), SNRPN rs1453556 (father; P=1×10-3), IGF2 rs6356 (father; P=1×10-3), and NNAT rs6066671 (father; P=1×10-3). In meta-analysis including additional independent Hyperglycemia and Adverse Pregnancy Outcome Study data, the association with maternally transmitted fetal DLK1 rs10139403 reached genome-wide significance (P=6.3×10-10). With the exception of fetal rs1489945 and rs217222, all of other associations were unidirectional and most were statistically significant. To further explore the significance of these relationships, we developed an allele score based on the univariate findings. The score was strongly associated with maternal blood pressure at 31 weeks (P=4.1×10-8; adjusted r2=5.6%) and 37 weeks of pregnancy (P=1.1×10-4; r2=3.6%), and during the last 2 weeks before parturition (P=1.1×10-10; r2=8.7%). It was also associated with gestational hypertension (odds ratio, 1.54 [range, 1.14-2.09] per allele; P=0.005; 45 cases and 549 controls). These data support the concept that fetal imprinted genes are related to the development of gestational hypertension.
Collapse
Affiliation(s)
- Clive J Petry
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Nuria Sanz Marcos
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gracielle Pimentel
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M Geoffrey Hayes
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Michael Nodzenski
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Denise M Scholtens
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ieuan A Hughes
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carlo L Acerini
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ken K Ong
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William L Lowe
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David B Dunger
- From the Department of Paediatrics (C.J.P., N.S.M., G.P., I.A.H., C.L.A., K.K.O., D.B.D.), Medical Research Council Epidemiology Unit (K.K.O.), and Institute of Metabolic Science (D.B.D.), University of Cambridge, United Kingdom; Hospital Sant Joan de Déu, Servicio de Pediatría, Barcelona, Spain (N.S.M.); Divisão de Endocrinologia Pediátrica, Departamento de Pediatria, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (G.P.); and Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine (M.G.H., W.L.L.) and Division of Biostatistics, Department of Preventive Medicine (M.N., D.M.S.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
93
|
Guo X, Christensen OF, Ostersen T, Wang Y, Lund MS, Su G. Genomic prediction using models with dominance and imprinting effects for backfat thickness and average daily gain in Danish Duroc pigs. Genet Sel Evol 2016; 48:67. [PMID: 27623617 PMCID: PMC5022243 DOI: 10.1186/s12711-016-0245-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/02/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dominance and imprinting genetic effects have been shown to contribute to genetic variance for certain traits but are usually ignored in genomic prediction of complex traits in livestock. The objectives of this study were to estimate variances of additive, dominance and imprinting genetic effects and to evaluate predictions of genetic merit based on genomic data for average daily gain (DG) and backfat thickness (BF) in Danish Duroc pigs. METHODS Corrected phenotypes of 8113 genotyped pigs from breeding and multiplier herds were used. Four Bayesian mixture models that differed in the type of genetic effects included: (A) additive genetic effects, (AD) additive and dominance genetic effects, (AI) additive and imprinting genetic effects, and (ADI) additive, dominance and imprinting genetic effects were compared using Bayes factors. The ability of the models to predict genetic merit was compared with regard to prediction reliability and bias. RESULTS Based on model ADI, narrow-sense heritabilities of 0.18 and 0.31 were estimated for DG and BF, respectively. Dominance and imprinting genetic effects accounted for 4.0 to 4.6 and 1.3 to 1.4 % of phenotypic variance, respectively, which were statistically significant. Across the four models, reliabilities of the predicted total genetic values (GTV, sum of all genetic effects) ranged from 16.1 (AI) to 18.4 % (AD) for DG and from 30.1 (AI) to 31.4 % (ADI) for BF. The least biased predictions of GTV were obtained with model AD, with regression coefficients of corrected phenotypes on GTV equal to 0.824 (DG) and 0.738 (BF). Reliabilities of genomic estimated breeding values (GBV, additive genetic effects) did not differ significantly among models for DG (between 16.5 and 16.7 %); however, for BF, model AD provided a significantly higher reliability (31.3 %) than model A (30.7 %). The least biased predictions of GBV were obtained with model AD with regression coefficients of 0.872 for DG and 0.764 for BF. CONCLUSIONS Dominance and genomic imprinting effects contribute significantly to the genetic variation of BF and DG in Danish Duroc pigs. Genomic prediction models that include dominance genetic effects can improve accuracy and reduce bias of genomic predictions of genetic merit.
Collapse
Affiliation(s)
- Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Ole Fredslund Christensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Tage Ostersen
- Danish Pig Research Centre, SEGES P/S, 1609 Copenhagen, Denmark
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
94
|
A new biological and clinical resource for research into pregnancy complications: The Baby Bio Bank. Placenta 2016; 46:31-37. [PMID: 27697219 PMCID: PMC5062948 DOI: 10.1016/j.placenta.2016.08.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 02/05/2023]
Abstract
About 20% of pregnancies are affected by some form of complication. Research has shown that anomalies in implantation, development, and growth of the fetus; ineffective nutrient exchange between mother and fetus due to placental dysfunction; and maternal problems such as hypertension or infection during pregnancy can all lead to adverse pregnancy outcomes. However, the molecular aetiology of such events remains poorly understood. Fetal growth restriction (FGR), recurrent miscarriage (RM), preterm birth (PTB), and pre-eclampsia (PE) are the most common pregnancy complications encountered in the UK and these outcomes can result in an array of morbidities in both mother and baby, and in the most severe cases in mortality. We need to know more about normal pregnancy and where the important triggers are for failure. This prompted us to collect a large set of biological samples with matching clinical data from over 2500 normal and abnormal pregnancies, for use in research into these conditions. This paper outlines the nature of these sample sets and their availability to academia and industry, with the intention that their widespread use in research will make significant contributions to the improvement of maternal and fetal health worldwide (http://www.ucl.ac.uk/tapb/sample-and-data-collections-at-ucl/biobanks-ucl/baby-biobank).
Collapse
|
95
|
Janssen AB, Kertes DA, McNamara GI, Braithwaite EC, Creeth HDJ, Glover VI, John RM. A Role for the Placenta in Programming Maternal Mood and Childhood Behavioural Disorders. J Neuroendocrinol 2016; 28. [PMID: 26836228 PMCID: PMC4988512 DOI: 10.1111/jne.12373] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 01/02/2023]
Abstract
Substantial data demonstrate that the early-life environment, including in utero, plays a key role in later life disease. In particular, maternal stress during pregnancy has been linked to adverse behavioural and emotional outcomes in children. Data from human cohort studies and experimental animal models suggest that modulation of the developing epigenome in the foetus by maternal stress may contribute to the foetal programming of disease. Here, we summarise insights gained from recent studies that may advance our understanding of the role of the placenta in mediating the association between maternal mood disorders and offspring outcomes. First, the placenta provides a record of exposures during pregnancy, as indicated by changes in the placental trancriptome and epigenome. Second, prenatal maternal mood may alter placental function to adversely impact foetal and child development. Finally, we discuss the less well established but interesting possibility that altered placental function, more specifically changes in placental hormones, may adversely affect maternal mood and later maternal behaviour, which can also have consequence for offspring well-being.
Collapse
Affiliation(s)
- A B Janssen
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - D A Kertes
- Department of Psychology and University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - G I McNamara
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - E C Braithwaite
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - V I Glover
- Faculty of Medicine, Imperial College London, London, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
96
|
Piyasena C, Reynolds RM, Khulan B, Seckl JR, Menon G, Drake AJ. Placental 5-methylcytosine and 5-hydroxymethylcytosine patterns associate with size at birth. Epigenetics 2016; 10:692-7. [PMID: 26091021 PMCID: PMC4623028 DOI: 10.1080/15592294.2015.1062963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.
Collapse
Affiliation(s)
- Chinthika Piyasena
- a University/British Heart Foundation Center for Cardiovascular Science; University of Edinburgh; The Queen's Medical Research Institute ; Edinburgh , UK
| | | | | | | | | | | |
Collapse
|
97
|
López-Abad M, Iglesias-Platas I, Monk D. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction. Front Genet 2016; 7:62. [PMID: 27200075 PMCID: PMC4844605 DOI: 10.3389/fgene.2016.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith–Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver–Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression.
Collapse
Affiliation(s)
- Miriam López-Abad
- Servicio de Neonatología, Sant Joan de Déu, Centro de Medicina Maternofetal y Neonatal Barcelona, Hospital Sant Joan de Déu y Hospital Clínic, Universitat de Barcelona Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Sant Joan de Déu, Centro de Medicina Maternofetal y Neonatal Barcelona, Hospital Sant Joan de Déu y Hospital Clínic, Universitat de Barcelona Barcelona, Spain
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge Barcelona, Spain
| |
Collapse
|
98
|
Burton GJ, Moffett A, Keverne B. Human evolution: brain, birthweight and the immune system. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140061. [PMID: 25602065 DOI: 10.1098/rstb.2014.0061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Barry Keverne
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK Sub-Department of Animal Behaviour, University of Cambridge, Cambridge CB23 8AA, UK
| |
Collapse
|
99
|
Kroener L, Wang ET, Pisarska MD. Predisposing Factors to Abnormal First Trimester Placentation and the Impact on Fetal Outcomes. Semin Reprod Med 2015; 34:27-35. [PMID: 26696276 DOI: 10.1055/s-0035-1570029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Normal placentation during the first trimester sets the stage for the rest of pregnancy and involves a finely orchestrated cellular and molecular interplay of maternal and fetal tissues. The resulting intrauterine environment plays an important role in fetal programming and the future health of the fetus, and is impacted by multiple genetic and epigenetic factors. Abnormalities in placentation and spiral artery invasion can lead to ischemia, placental disease, and adverse obstetrical outcomes including preeclampsia, intrauterine growth restriction, and placental abruption. Although first trimester placentation is affected by multiple factors, preconception environmental influences such as mode of conception, including assisted reproductive technologies which result in fertilization in vitro and intrauterine influences due to sex differences, are emerging as potential significant factors impacting first trimester placentation.
Collapse
Affiliation(s)
- Lindsay Kroener
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
100
|
Mukhopadhyay A, Ravikumar G, Dwarkanath P, Meraaj H, Thomas A, Crasta J, Thomas T, Kurpad A, Sridhar T. Placental expression of the insulin receptor binding protein GRB10: Relation to human fetoplacental growth and fetal gender. Placenta 2015; 36:1225-30. [DOI: 10.1016/j.placenta.2015.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/13/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022]
|