51
|
Arwood ML, Sun IH, Patel CH, Sun IM, Oh MH, Bettencourt IA, Claiborne MD, Chan-Li Y, Zhao L, Waickman AT, Mavrothalassitis O, Wen J, Aja S, Powell JD. Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism. Immunohorizons 2023; 7:493-507. [PMID: 37358498 PMCID: PMC10580127 DOI: 10.4049/immunohorizons.2300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
Collapse
Affiliation(s)
- Matthew L. Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirag H. Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian A. Bettencourt
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael D. Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam T. Waickman
- State University of New York Upstate Medical University, Syracuse, NY
| | - Orestes Mavrothalassitis
- Department of Anesthesia, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D. Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
52
|
Bandyopadhayaya S, Yadav P, Sharma A, Dey SK, Nag A, Maheshwari R, Ford BM, Mandal CC. Oncogenic role of an uncharacterized cold-induced zinc finger protein 726 in breast cancer. J Cell Biochem 2023. [PMID: 37192271 DOI: 10.1002/jcb.30417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The unobtrusive cold environmental temperature can be linked to the development of cancer. This study, for the first time, envisaged cold stress-mediated induction of a zinc finger protein 726 (ZNF726) in breast cancer. However, the role of ZNF726 in tumorigenesis has not been defined. This study investigated the putative role of ZNF726 in breast cancer tumorigenic potency. Gene expression analysis using multifactorial cancer databases predicted overexpression of ZNF726 in various cancers, including breast cancer. Experimental observations found that malignant breast tissues and highly aggressive MDA-MB-231 cells showed an elevated ZNF726 expression as compared to benign and luminal A type (MCF-7), respectively. Furthermore, ZNF726 silencing decreased breast cancer cell proliferation, epithelial-mesenchymal transition, and invasion accompanied by the inhibition of colony-forming ability. Concordantly, ZNF726 overexpression significantly demonstrated opposite outcomes than ZNF726 knockdown. Taken together, our findings propose cold-inducible ZNF726 as a functional oncogene demonstrating its prominent role in facilitating breast tumorigenesis. An inverse correlation between environmental temperature and total serum cholesterol was observed in the previous study. Furthermore, experimental outcomes illustrate that cold stress elevated cholesterol content hinting at the involvement of the cholesterol regulatory pathway in cold-induced ZNF726 gene regulation. This observation was bolstered by a positive correlation between the expression of cholesterol-regulatory genes and ZNF726. Exogenous cholesterol treatment elevated ZNF726 transcript levels while knockdown of ZNF726 decreased the cholesterol content via downregulating various cholesterol regulatory gene expressions (e.g., SREBF1/2, HMGCoR, LDLR). Moreover, an underlying mechanism supporting cold-driven tumorigenesis is proposed through interdependent regulation of cholesterol regulatory pathway and cold-inducible ZNF726 expression.
Collapse
Affiliation(s)
- Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sanjay Kumar Dey
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rekha Maheshwari
- Department of General Surgery, JLN Medical College, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, Texas, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
53
|
Doucette CC, Nguyen DC, Barteselli D, Blanchard S, Pelletier M, Kesharwani D, Jachimowicz E, Su S, Karolak M, Brown AC. Optogenetic activation of UCP1-dependent thermogenesis in brown adipocytes. iScience 2023; 26:106560. [PMID: 37123235 PMCID: PMC10139976 DOI: 10.1016/j.isci.2023.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Brown adipocytes are unique in that they expend energy and produce heat to maintain euthermia through expression of uncoupling protein-1 (UCP1). Given their propensity to stimulate weight loss and promote resistance to obesity, they are a compelling interventional target for obesity-related disorders. Here, we tested whether an optogenetic approach could be used to activate UCP1-dependent thermogenesis in brown adipocytes. We generated brown adipocytes expressing a bacterial-derived photoactivatable adenylyl cyclase (bPAC) that, upon blue light stimulation, increases UCP1 expression, fuel uptake and thermogenesis. This unique system allows for precise, chemical free, temporal control of UCP1-dependent thermogenesis, which can aid in our understanding of brown adipocyte biology and development of therapies that target obesity-related disorders.
Collapse
Affiliation(s)
- Chad C. Doucette
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Daniel C. Nguyen
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Davide Barteselli
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Sophia Blanchard
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Mason Pelletier
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Devesh Kesharwani
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Ed Jachimowicz
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Su Su
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Michele Karolak
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
- Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
54
|
Li X, Hager M, McPherson M, Lee M, Hagalwadi R, Skinner ME, Lombard D, Miller RA. Recapitulation of anti-aging phenotypes by global, but not by muscle-specific, deletion of PAPP-A in mice. GeroScience 2023; 45:931-948. [PMID: 36542300 PMCID: PMC9886707 DOI: 10.1007/s11357-022-00692-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Deletion of pregnancy-associated plasma protein-A (PAPP-A), a protease that cleaves some but not all IGF1 binding proteins, postpones late-life diseases and extends lifespan in mice, but the mechanism of this effect is unknown. Here we show that PAPP-A knockout (PKO) mice display a set of changes, in multiple tissues, that are characteristic of other varieties of slow-aging mice with alterations in GH production or GH responsiveness, including Ames dwarf, Snell dwarf, and GHRKO mice. PKO mice have elevated UCP1 in brown and white adipose tissues (WAT), and a change in fat-associated macrophage subsets that leads to diminished production of inflammatory cytokines. PKO mice also show increased levels of muscle FNDC5 and its cleavage product, the myokine irisin, thought to cause changes in fat cell differentiation. PKO mice have elevated production of hepatic GPLD1 and plasma GPLD1, consistent with their elevation of hippocampal BDNF and DCX, used as indices of neurogenesis. In contrast, disruption of PAPP-A limited to muscle ("muPKO" mice) produces an unexpectedly complex set of changes, in most cases opposite in direction from those seen in PKO mice. These include declines in WAT UCP1, increases in inflammatory macrophages and cytokines in WAT, and a decline in muscle FNDC5 and plasma irisin. muPKO mice do, however, resemble global PKO mice in their elevation of hippocampal BDNF and DCX. The data for the PKO mice support the idea that these changes in fat, macrophages, liver, muscle, plasma, and brain are consistent and biologically significant features of the slow-aging phenotype in mice. The results on the muPKO mice provide a foundation for further investigation of the complex, local, and global circuits by which PAPP-A modulates signals ordinarily controlled by GH and/or IGF1.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- , Ann Arbor, USA.
| | - Mary Hager
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madaline McPherson
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Lee
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Riha Hagalwadi
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary E Skinner
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - David Lombard
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| |
Collapse
|
55
|
Anderson JM, Boardman AA, Bates R, Zou X, Huang W, Cao L. Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS One 2023; 18:e0282566. [PMID: 36893171 PMCID: PMC9997972 DOI: 10.1371/journal.pone.0282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.
Collapse
Affiliation(s)
- Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Amber A. Boardman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
56
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
57
|
Koppe L, Mak RH. Is There a Need to "Modernize" and "Simplify" the Diagnostic Criteria of Protein-Energy Wasting? Semin Nephrol 2023; 43:151403. [PMID: 37541069 DOI: 10.1016/j.semnephrol.2023.151403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Protein energy wasting(PEW) is a term that most nephrologists used to define nutritional disorders in patients with acute kidney injury and chronic kidney disease. Although this nomenclature is well implemented in the field of nephrology, the use of other terms such as cachexia or malnutritionin the majority of chronic diseases can induce confusion regarding the definition and interpretation of these terms. There is ample evidence in the literature that the pathways involved in cachexia/malnutrition and PEW are common. However, in kidney diseases, there are pathophysiological conditions such as accumulation of uremic toxins, and the use of dialysis, which may induce a phenotypic specificity justifying the original term PEW. In light of the latest epidemiologic studies, the criteria for PEW used in 2008 probably need to be updated. The objective of this review is to summarize the main mechanisms involved in cachexia/malnutrition and PEW. We discuss the need to modernize and simplify the current definition and diagnostic criteria of PEW. We consider the interest of proposing a specific nomenclature of PEW for children and elderly patients with kidney diseases.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; University Lyon, Cardiovasculaire, Métabolisme, Diabète et Nutrition Laboratory, Institut National des Sciences Appliquées-Lyon, Institut National de la Santé et de la Recherche Médicale U1060, l'Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California San Diego, La Jolla, California
| |
Collapse
|
58
|
Neuro-immunohistochemical and molecular expression variations during hibernation and activity phases between Rana mascareniensis and Rana ridibunda. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
59
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
60
|
Zhang Y, Huang Q, Xiong X, Yin T, Chen S, Yuan W, Zeng G, Huang Q. Acacetin alleviates energy metabolism disorder through promoting white fat browning mediated by AC-cAMP pathway. J Physiol Biochem 2023:10.1007/s13105-023-00947-3. [PMID: 36781604 DOI: 10.1007/s13105-023-00947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Acacetin (ACA), a flavone isolated from Chinese traditional medical herbs, has numerous pharmacological activities. However, little is known about the roles in white fat browning and energy metabolism. In the present study, we investigated whether and how ACA would improve energy metabolism in vivo and in vitro. ACA (20 mg/kg) was intraperitoneally injected to the mice with obesity induced by HFD for 14 consecutive days (in vivo); differentiated 3T3-L1 adipocytes were treated with ACA (20 µmol/L and 40 µmol/L) for 24 h (in vitro). The metabolic profile, lipid accumulation, fat-browning and mitochondrial contents, and so on were respectively detected. The results in vivo showed that ACA significantly reduced the body weight and visceral adipose tissue weight, alleviated the energy metabolism disorder, and enhanced the browning-related protein expressions in adipose tissue of rats. Besides, the data in vitro revealed that ACA significantly reduced the lipid accumulation, induced the expressions of the browning-related proteins and cAMP-dependent protein kinase A (PKA), and increased the mitochondrium contents, especially enhanced the energy metabolism of adipocytes; however, treatment with beta-adrenergic receptor blocker (propranolol, Pro) or adenyl cyclase (AC) inhibitor (SQ22536, SQ) abrogated the ACA-mediated effects. The data demonstrate that ACA alleviates the energy metabolism disorder through the pro-browning effects mediated by the AC-cAMP pathway. The findings would provide the experimental foundation for ACA to prevent and treat obesity and related metabolism disorders.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qianqian Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaowei Xiong
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Tingting Yin
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Sheng Chen
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wanwan Yuan
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guohua Zeng
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, 330006, Jiangxi, People's Republic of China. .,Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
61
|
Li T, Bai H, Yang L, Wang H, Wei S, Yan P. Cold exposure induces browning of bovine subcutaneous white fat in vivo and in vitro. J Therm Biol 2023; 112:103446. [PMID: 36796901 DOI: 10.1016/j.jtherbio.2022.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
White adipocytes can be transformed into beige adipocytes through the process of browning under cold exposure. To investigate the effects and underlying mechanisms of cold exposure on subcutaneous white fat in cattle, in vitro and in vivo studies were performed. Eight bulls of Jinjiang cattle breed (Bos taurus) aged 18 months were allocated to the control group (n = 4, autumn) or the cold group (n = 4, winter) by different slaughter seasons. Biochemical and histomorphological parameters were detected in blood and backfat samples. Subcutaneous adipocytes from Simental cattle (Bos taurus) were then isolated and cultured at a normal body temperature (37 °C) and at a cold temperature (31 °C) in vitro. In the in vivo study, cold exposure stimulated subcutaneous white adipose tissue (sWAT) browning by reducing adipocyte sizes and up-regulating the expression levels of browning-specific makers (UCP1, PRDM16, and PGC-1α) in cattle. In addition, cold-exposed cattle displayed lower lipogenesis transcriptional regulator levels (PPARγ and CEBPα) and higher lipolysis regulator levels (HSL) in sWAT. In the in vitro study, cold temperature inhibited subcutaneous white adipocytes (sWA) adipogenic differentiation by reducing lipid contents and decreasing the expression of adipogenic marker genes and proteins. Furthermore, cold temperature led to sWA browning which was characterized by increased browning-related genes, mitochondrial contents, and mitochondrial biogenesis-specific markers. In addition, p38 MAPK signaling pathway activity was stimulated by the incubation in cold temperature for 6 h in sWA. We concluded that the cold-induced browning of the subcutaneous white fat was beneficial to the production of heat and the maintenance of body temperature regulation in cattle.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongzhuang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
62
|
Gou W, Wei H, Swaby L, Green E, Wang H. Deletion of Spinophilin Promotes White Adipocyte Browning. Pharmaceuticals (Basel) 2023; 16:91. [PMID: 36678589 PMCID: PMC9864510 DOI: 10.3390/ph16010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from SPL KO mice had a higher expression of classic browning-related genes, including uncoupling protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16 (PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice. When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed. The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of SPL in the regulation of WAT browning.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hua Wei
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
63
|
Brown AC. Optogenetics Sheds Light on Brown and Beige Adipocytes. JOURNAL OF CELLULAR SIGNALING 2023; 4:178-186. [PMID: 37946877 PMCID: PMC10635576 DOI: 10.33696/signaling.4.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Excessive food intake leads to lipid accumulation in white adipose tissue, triggering inflammation, cellular stress, insulin resistance, and metabolic syndrome. In contrast, the dynamic energy expenditure and heat generation of brown and beige adipose tissue, driven by specialized mitochondria, render it an appealing candidate for therapeutic strategies aimed at addressing metabolic disorders. This review examines the therapeutic potential of brown and beige adipocytes for obesity and metabolic disorders, focusing on recent studies that employ optogenetics for thermogenesis control in these cells. The findings delve into the mechanisms underlying UCP1-dependent and UCP1-independent thermogenesis and how optogenetic approaches can be used to precisely modulate energy expenditure and induce thermogenesis. The convergence of adipocyte biology and optogenetics presents an exciting frontier in combating metabolic disorders and advancing our understanding of cellular regulation and energy balance.
Collapse
Affiliation(s)
- Aaron Clifford Brown
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
64
|
Hu F, Li C, Ye Y, Lu X, Alimujiang M, Bai N, Sun J, Ma X, Li X, Yang Y. PARP12 is required for mitochondrial function maintenance in thermogenic adipocytes. Adipocyte 2022; 11:379-388. [PMID: 35916471 PMCID: PMC9351573 DOI: 10.1080/21623945.2022.2091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
PARP12 is a member of poly-ADP-ribosyl polymerase (PARPs), which has been characterized for its antiviral function. Yet its physiological implication in adipocytes remains unknown. Here, we report a central function of PARP12 in thermogenic adipocytes. We show that PARP12 is highly expressed in brown adipose tissue and is mainly localized to the mitochondria. Knockdown of PARP12 in vitro reduced UCP1 expression. In parallel, the deficiency of PARP12 reduced mitochondrial respiration in adipocytes, while overexpression of PARP12 reversed these effects.
Collapse
Affiliation(s)
- Fan Hu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Chang Li
- Department of Endocrinology, Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yafen Ye
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xuhong Lu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Miriayi Alimujiang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Ningning Bai
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jingjing Sun
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaojing Ma
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital Affiliated to Shanghai University of TCM, Shanghai, China
| | - Ying Yang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
65
|
Ferreira V, Folgueira C, Guillén M, Zubiaur P, Navares M, Sarsenbayeva A, López-Larrubia P, Eriksson JW, Pereira MJ, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Modulation of hypothalamic AMPK phosphorylation by olanzapine controls energy balance and body weight. Metabolism 2022; 137:155335. [PMID: 36272468 DOI: 10.1016/j.metabol.2022.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Spain.
| |
Collapse
|
66
|
Pan J, Kothan S, Moe Moe AT, Huang K. Dysfunction of insulin-AKT-UCP1 signalling inhibits transdifferentiation of human and mouse white preadipocytes into brown-like adipocytes. Adipocyte 2022; 11:213-226. [PMID: 35416120 PMCID: PMC9009895 DOI: 10.1080/21623945.2022.2062852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism of insulin signaling on browning of white preadipocytes remains unclear. Human and mouse primary subcutaneous white preadipocytes (hsASCs and WT lean and obese msASCs, respectively) were induced to transdifferentiate into beige adipocytes under conditions of intact or blocked insulin signaling, respectively. Level of phosphoinositide-3-kinase (PI3K) after induction of beige adipocytes under conditions of normal insulin signaling, phosphorylated protein kinase B (pAKT), peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), zinc-fifinger transcriptional factor PRD1-BF1-RIZ1 homologous domain-containing protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein beta (C/EBPβ) were significantly increased. Conversely, when insulin signaling is incompletely inhibited, the expression of the thermogenic and adipogenic factors is significantly reduced, with obvious impairment of adipogenesis. However, phosphorylation level of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and expression level of sirtuin type 1 (SIRT1) had increased. These white preadipocytes from different donors showed similar dynamic change in morphology and molecular levels during the browning. The present data indicate that insulin signaling plays a important role in regulation of browning of hsASCs and msASCs through PI3K-AKT-UCP1 signaling pathway. The insulin-AMPK-SIRT1 pathway was also involved in the adipocytes browning, while its effect is limited.
Collapse
Affiliation(s)
- Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- CONTACT Jie Pan College of Life Sciences, Shandong Normal University,, College of Life Sciences, Shandong Normal University, China
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Suchart Kothan Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences Chiang Mai University, Chiang Mai, 50200Thailand
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kun Huang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
| |
Collapse
|
67
|
Coassolo L, Dannieskiold-Samsøe NB, Zhao M, Allen H, Svensson KJ. New players of the adipose secretome: Therapeutic opportunities and challenges. Curr Opin Pharmacol 2022; 67:102302. [PMID: 36195010 PMCID: PMC9772291 DOI: 10.1016/j.coph.2022.102302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Adipose tissue is a functional endocrine organ comprised of adipocytes and other cell types that are known to secrete a multiplicity of adipose-derived factors, including lipids and proteins. It is well established that adipose tissue and its secretome can impact systemic energy homeostasis. The endocrine and paracrine effects of adipose-derived factors have been widely studied over the last several decades. Owing to technological advances in genomics and proteomics, several additional adipose-derived protein factors have recently been identified. By learning from previous efforts, the next challenge will be to leverage these discoveries for the prevention or treatment of metabolic disorders. Here, we discuss recently discovered adipose-derived proteins secreted from white or brown adipose tissue and the opportunities and challenges of translating these biological findings into disease therapeutics.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Niels Banhos Dannieskiold-Samsøe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Hobson Allen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
68
|
Nikolic M, Novakovic J, Ramenskaya G, Kokorekin V, Jeremic N, Jakovljevic V. Cooling down with Entresto. Can sacubitril/valsartan combination enhance browning more than coldness? Diabetol Metab Syndr 2022; 14:175. [PMID: 36419097 PMCID: PMC9686067 DOI: 10.1186/s13098-022-00944-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It is a growing importance to induce a new treatment approach to encourage weight loss but also to improve maintenance of lost weight. It has been shown that promotion of brown adipose tissue (BAT) function or acquisition of BAT characteristics in white adipose tissue (terms referred as "browning") can be protective against obesity. MAIN TEXT Amongst numerous established environmental influences on BAT activity, cold exposure is the best interested technique due to its not only effects on of BAT depots in proliferation process but also de novo differentiation of precursor cells via β-adrenergic receptor activation. A novel combination drug, sacubitril/valsartan, has been shown to be more efficient in reducing cardiovascular events and heart failure readmission compared to conventional therapy. Also, this combination of drugs increases the postprandial lipid oxidation contributing to energy expenditure, promotes lipolysis in adipocytes and reduces body weight. To date, there is no research examining potential of combined sacubitril/valsartan use to promote browning or mechanisms in the basis of this thermogenic process. CONCLUSION Due to the pronounced effects of cold and sacubitril/valsartan treatment on function and metabolism of BAT, the primary goal of further research should focused on investigation of the synergistic effects of the sacubitril/valsartan treatment at low temperature environmental conditions.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- First Moscow State Medical University IM Sechenov, Moscow, Russia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| |
Collapse
|
69
|
Tan PY, Moore JB, Bai L, Tang G, Gong YY. In the context of the triple burden of malnutrition: A systematic review of gene-diet interactions and nutritional status. Crit Rev Food Sci Nutr 2022; 64:3235-3263. [PMID: 36222100 PMCID: PMC11000749 DOI: 10.1080/10408398.2022.2131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic background interacts with dietary components to modulate nutritional health status. This study aimed to review the evidence for gene-diet interactions in all forms of malnutrition. A comprehensive systematic literature search was conducted through April 2021 to identify observational and intervention studies reporting the effects of gene-diet interactions in over-nutrition, under-nutrition and micronutrient status. Risk of publication bias was assessed using the Quality Criteria Checklist and a tool specifically designed for gene-diet interaction research. 167 studies from 27 populations were included. The majority of studies investigated single nucleotide polymorphisms (SNPs) in overnutrition (n = 158). Diets rich in whole grains, vegetables, fruits and low in total and saturated fats, such as Mediterranean and DASH diets, showed promising effects for reducing obesity risk among individuals who had higher genetic risk scores for obesity, particularly the risk alleles carriers of FTO rs9939609, rs1121980 and rs1421085. Other SNPs in MC4R, PPARG and APOA5 genes were also commonly studied for interaction with diet on overnutrition though findings were inconclusive. Only limited data were found related to undernutrition (n = 1) and micronutrient status (n = 9). The findings on gene-diet interactions in this review highlight the importance of personalized nutrition, and more research on undernutrition and micronutrient status is warranted.
Collapse
Affiliation(s)
- Pui Yee Tan
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - J. Bernadette Moore
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - Ling Bai
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
- School of Psychology, University of East Anglia, Norwich, United Kingdom
| | - GuYuan Tang
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| | - Yun Yun Gong
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
70
|
Exenatide increases CTRP3 gene expression in adipose cells by inhibiting adipogenesis and induces apoptosis. Toxicol In Vitro 2022; 85:105479. [PMID: 36152787 DOI: 10.1016/j.tiv.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Considering the rapidly increasing prevalence of obesity worldwide, the number of weight control drugs is very few. Incretin-based therapies are currently being developed to achieve weight control, and Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RA) are used in incretin-based therapies. This study aimed to investigate the cytotoxicity of exenatide, a GLP-1A, on 3T3-L1 adipocytes and the effect of exenatide on the expression of adipogenesis-related genes, insulin and glucose levels, and apoptosis. Cytotoxic activity of exenatide on 3T3-L1 adipocytes was determined by MTT method. Gene expression levels were determined by qPCR. Apoptosis studies were performed on the Muse Cell Analyzer. C1q/TNF-related protein-3 (CTRP3) expression levels were found to be higher in exenatide treated adipocyte cells than in control cells (p < 0.001). Adipocyte cells treated with exenatide were found to have lower PPAR-γ gene expression levels when compared to control adipocyte cells (p < 0.001). Intracellular insulin (p < 0.001) and glucose levels were higher in 3T3-L1 adipocytes treated with exenatide compared to control adipocyte cells. Total apoptosis increased approximately 1.5 times as a result of exenatide administration. The increase in CTRP3 gene expression, which is thought to be a new biomarker for obesity, and the decrease in PPAR-γ gene expression indicate that exenatide is a promising new pharmacotherapeutic agent in the treatment of obesity by regulating the expression of genes related to adipogenesis and lipogenesis and inducing apoptosis.
Collapse
|
71
|
Kim D, Yan J, Bak J, Park J, Lee H, Kim H. Sargassum thunbergii Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Modulating AMPK Activation and the Gut Microbiota. Foods 2022; 11:foods11162529. [PMID: 36010531 PMCID: PMC9407432 DOI: 10.3390/foods11162529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sargassum thunbergii (Mertens ex Roth) Kuntze (ST) is a brown alga rich in indole-2-carboxaldehyde. This study aimed to investigate the anti-obesity effects of ethanol extract from ST in in vitro and in vivo models. In 3T3-L1 cells, ST extract significantly inhibited lipid accumulation in mature adipocytes while lowering adipogenic genes (C/epba and Pparg) and enhancing metabolic sensors (Ampk, Sirt1), thermogenic genes (Pgc-1a, Ucp1), and proteins (p-AMPK/AMPK and UCP1). During animal investigation, mice were administered a chow diet, a high-fat diet (HF), or an HF diet supplemented with ST extract (at dosages of 150 and 300 mg/kg bw per day) for 8 weeks (n = 10/group). ST extract administration decreased weight gain, white adipose tissue weight, LDL-cholesterol, and serum leptin levels while improving glucose intolerance. In addition, ST extract increased the expression of Ampk and Sirt1 in adipose tissue and in the liver, as well as p-AMPK/AMPK ratio in the liver, compared to HF-fed mice. The abundance of Bacteroides vulgatus and Faecalibacterium prausnitzii in the feces increased in response to ST extract administration, although levels of Romboutsia ilealis decreased compared with those in HF-fed mice. ST extract could prevent obesity in HF-fed mice via the modulation of AMPK activation and gut microbiota composition.
Collapse
|
72
|
Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169082. [PMID: 36012349 PMCID: PMC9409331 DOI: 10.3390/ijms23169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.
Collapse
|
73
|
Colitti M, Ali U, Wabitsch M, Tews D. Transcriptomic analysis of Simpson Golabi Behmel syndrome cells during differentiation exhibit BAT-like function. Tissue Cell 2022; 77:101822. [DOI: 10.1016/j.tice.2022.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
74
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
75
|
O’Reilly C, Lin L, Wang H, Fluckey J, Sun Y. Ablation of Ghrelin Receptor Mitigates the Metabolic Decline of Aging Skeletal Muscle. Genes (Basel) 2022; 13:genes13081368. [PMID: 36011279 PMCID: PMC9407208 DOI: 10.3390/genes13081368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The orexigenic hormone ghrelin has multifaceted roles in health and disease. We have reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), protects against metabolic dysfunction of adipose tissues in aging. Our further observation interestingly revealed that GHS-R deficiency phenocopies the effects of myokine irisin. In this study, we aim to determine whether GHS-R affects the metabolic functions of aging skeletal muscle and whether GHS-R regulates the muscular functions via irisin. We first studied the expression of metabolic signature genes in gastrocnemius muscle of young, middle-aged and old mice. Then, old GHS-R knockout (Ghsr−/−) mice and their wild type counterparts were used to assess the impact of GHS-R ablation on the metabolic characteristics of gastrocnemius and soleus muscle. There was an increase of GHS-R expression in skeletal muscle during aging, inversely correlated with the decline of metabolic functions. Remarkedly the muscle of old GHS-R knockout (Ghsr−/−) mice exhibited a youthful metabolic profile and better maintenance of oxidative type 2 muscle fibers. Furthermore, old Ghsr−/− mice showed improved treadmill performance, supporting better functionality. Also intriguing to note was the fact that old GHS-R-ablated mice showed increased expression of the irisin precursor FNDC5 in the muscle and elevated plasma irisin levels in circulation, which supports a potential interrelationship between GHS-R and irisin. Overall, our work suggests that GHS-R has deleterious effects on the metabolism of aging muscle, which may be at least partially mediated by myokine irisin.
Collapse
Affiliation(s)
- Colleen O’Reilly
- Department of Health and Kinesiology, Texas A & M University, College Station, TX 77843, USA;
| | - Ligen Lin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hongying Wang
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - James Fluckey
- Department of Health and Kinesiology, Texas A & M University, College Station, TX 77843, USA;
- Correspondence: (J.F.); (Y.S.)
| | - Yuxiang Sun
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- Correspondence: (J.F.); (Y.S.)
| |
Collapse
|
76
|
Chen J, Qian D, Wang Z, Sun Y, Sun B, Zhou X, Hu L, Shan A, Ma Q. Threonine supplementation prevents the development of fat deposition in mice fed a high-fat diet. Food Funct 2022; 13:7772-7780. [PMID: 35766226 DOI: 10.1039/d2fo01201d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is the main factor involved in the onset of many diseases. Threonine supplementation has been demonstrated to reduce fat mass and serum triglycerides in already obese mice. However, it is unclear whether threonine could inhibit the development of obesity in mice without previous high-fat diet induction. In the present study, mice were fed a chow diet (CD) or a high-fat diet (HFD), supplemented or not with threonine (3.0% in drinking water) for 15 weeks. Results showed that mice subjected to chronic threonine supplementation showed decreased body weight, epididymal white adipose tissue weight, serum low-density lipoprotein cholesterol, and total cholesterol in comparison with HFD-fed mice. In the epididymal adipose tissue, gene expressions of sterol regulatory element-binding protein 1c and fatty acid synthase were up-regulated, while hormone sensitive lipase, adiponectin and fibroblast growth factor 21 were down-regulated. In the liver tissue, gene expressions of sirtuin1, adenosine monophosphate-activated protein kinase and peroxisome proliferator activated receptor γ co-activator 1α were up-regulated by threonine supplementation in HFD-fed mice. These results suggest that long-term threonine supplementation inhibited fat mass and improved lipid metabolism, making it a potential agent to prevent the development of diet-induced obesity.
Collapse
Affiliation(s)
- Jiayi Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Dali Qian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhishen Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Yutong Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Bo Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Xinbo Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Linlin Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
77
|
Bioactive Compounds and Adipocyte Browning Phenomenon. Curr Issues Mol Biol 2022; 44:3039-3052. [PMID: 35877434 PMCID: PMC9320013 DOI: 10.3390/cimb44070210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity have become worldwide health issues in most countries. Current strategies aimed to prevent or reduce overweight and obesity have mainly focused on the genes and molecular mechanisms that give the functional characteristics to different types of adipose tissue. The Browning phenomenon in adipocytes consists of phenotypic and metabolic changes within white adipose tissue (WAT) activated by thermogenic mechanisms similar to that occurring in brown adipose tissue (BAT); this phenomenon has assumed great relevance due to its therapeutic potential against overweight and obesity. In addition, the study of inflammation in the development of overweight and obesity has also been included as a relevant factor, such as the pro-inflammatory mechanisms promoted by M1-type macrophages in adipose tissue. Studies carried out in this area are mainly performed by using the 3T3-L1 pre-adipocyte cell line, testing different bioactive compound sources such as plants and foods; nevertheless, it is necessary to standardize protocols used in vitro as well to properly scale them to animal models and clinical tests in order to have a better understanding of the mechanisms involved in overweight and obesity.
Collapse
|
78
|
Gonzalez Porras MA, Stojkova K, Acosta FM, Rathbone CR, Brey EM. Engineering Human Beige Adipose Tissue. Front Bioeng Biotechnol 2022; 10:906395. [PMID: 35845420 PMCID: PMC9283722 DOI: 10.3389/fbioe.2022.906395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we described a method for generating functional, beige (thermogenic) adipose microtissues from human microvascular fragments (MVFs). The MVFs were isolated from adipose tissue acquired from adults over 50 years of age. The tissues express thermogenic gene markers and reproduce functions essential for the potential therapeutic impact of beige adipose tissues such as enhanced lipid metabolism and increased mitochondrial respiration. MVFs serve as a potential single, autologous source of cells that can be isolated from adult patients, induced to recreate functional aspects of beige adipose tissue and enable rapid vascularization post-transplantation. This approach has the potential to be used as an autologous therapy for metabolic diseases or as a model for the development of a personalized approach to high-throughput drug development/screening for adipose tissue.
Collapse
Affiliation(s)
- Maria A. Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
79
|
Adipocyte HIF2α functions as a thermostat via PKA Cα regulation in beige adipocytes. Nat Commun 2022; 13:3268. [PMID: 35672324 PMCID: PMC9174489 DOI: 10.1038/s41467-022-30925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes. Thermogenic adipocytes maintain body temperature in response to cold, but how this is tuned during cold and re-warming is unclear. Here, the authors show HIF2α inhibits beige adipocyte retention, regulating PKA catalysis to control dynamic adipocyte remodelling.
Collapse
|
80
|
Choi HE, Jeon EJ, Kim DY, Choi MJ, Yu H, Kim JI, Cheon HG. Sodium salicylate induces browning of white adipocytes via M2 macrophage polarization by HO-1 upregulation. Eur J Pharmacol 2022; 928:175085. [PMID: 35679889 DOI: 10.1016/j.ejphar.2022.175085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Browning, a white to brown-like (beige) adipocyte conversion, offers a promising therapeutic strategy for the treatment of human obesity. In the present study, the effects of sodium salicylate, a nonsteroidal anti-inflammatory drug, on adipocyte browning were investigated. We found sodium salicylate altered the macrophage phenotype to M2 in RAW264.7 cells, mediated by up-regulation of heme oxygenase-1 (HO-1), and sodium salicylate-treated conditioned medium from macrophages (Sal-M2 CM) induced browning of fully differentiated 3T3-L1 adipocytes. Conversely, the conditioned medium obtained from macrophages when treated with sodium salicylate in the presence of either ZnPP (a HO-1 inhibitor) or HO-1 siRNA did not induce browning. In association with macrophage HO-1 induction by sodium salicylate, iron production also increased, and deferoxamine (an iron chelator) blunted the browning effects of Sal-M2 CM, suggesting that iron may play a role in the Sal-M2 CM-induced browning. The in vivo browning effects of sodium salicylate were confirmed in ob/ob mice, whereas in vivo macrophage depletion by clodronate as well as HO-1 blockade by either ZnPP or adeno-associated virus carrying HO-1 shRNA (AAV-HO-1 shRNA) attenuated the browning effects of sodium salicylate. These results reveal sodium salicylate induces browning in vitro and in vivo by up-regulating HO-1 thus promoting M2 polarization.
Collapse
Affiliation(s)
- Hye-Eun Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Eun Jeong Jeon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
81
|
Imaging Adipose Tissue Browning using Mitochondrial Complex-I Tracer [ 18F]BCPP-EF. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6113660. [PMID: 35694709 PMCID: PMC9173993 DOI: 10.1155/2022/6113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023]
Abstract
Browning of white adipose tissue (WAT) into beige adipocytes has been proposed as a strategy to tackle the ongoing obesity epidemic. Thermogenic stimuli have been investigated with the aim of converting existing white adipose tissue, primarily used for energy storage, into beige adipocytes capable of dissipating energy; however, evaluation is complicated by the dearth of noninvasive methodologies to quantify de novo beige adipocytes in WAT. Imaging with [18F]FDG is commonly used to measure brown adipose tissue (BAT) and beige adipocytes but the relationship between beige adipocytes, thermogenesis and [18F]FDG uptake is unclear. [18F]BCPP-EF, a tracer for mitochondrial complex-I (MC-I), acts as a marker of oxidative metabolism and may be useful for the detection of newly formed beige adipocytes. Mice received doses of the β3-adrenergic agonist CL-316,243 subchronically for 7 days to induce formation of beige adipocytes in inguinal white fat. PET imaging was performed longitudinally with both [18F]FDG (a marker of glycolysis) and [18F]BCPP-EF (an MC-I marker) to assess the effect of thermogenic stimulation on uptake in browning inguinal WAT and interscapular BAT. Treatment with CL-316,243 led to significant increases in both [18F]FDG and [18F]BCPP-EF in inguinal WAT. The uptake of [18F]BCPP-EF in inguinal WAT was significantly increased above control levels after 3 days of stimulation, whereas [18F]FDG only showed a significant increase after 7 days. The uptake of [18F]BCPP-EF in newly formed beige adipocytes was blocked by pretreatment with an adrenoceptor antagonist suggesting that beige adipocyte formation may be associated with the activation of MC-I. However, in BAT, uptake of [18F]BCPP-EF was unaffected by β3-adrenergic stimulation, potentially due to the high expression of MC-I. [18F]BCPP-EF can detect newly formed beige adipocytes in WAT generated after subchronic treatment with the β3-adrenergic agonist CL-316,243 and displays both higher inguinal WAT uptake and earlier detection than [18F]FDG. The MC-I tracer may be a useful tool in the evaluation of new therapeutic strategies targeting metabolic adipose tissues to tackle obesity and metabolic diseases.
Collapse
|
82
|
Dogan AE, Hamid SM, Yildirim AD, Yildirim Z, Sen G, Riera CE, Gottlieb RA, Erbay E. PACT establishes a posttranscriptional brake on mitochondrial biogenesis by promoting the maturation of miR-181c. J Biol Chem 2022; 298:102050. [PMID: 35598827 PMCID: PMC9218515 DOI: 10.1016/j.jbc.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.
Collapse
Affiliation(s)
- Asli E Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Asli D Yildirim
- Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Celine E Riera
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ebru Erbay
- David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
83
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
84
|
Um JH, Park SY, Hur JH, Lee HY, Jeong KH, Cho Y, Lee SH, Yoon SM, Choe S, Choi CS. Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure. Metabolism 2022; 129:155139. [PMID: 35063533 DOI: 10.1016/j.metabol.2022.155139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Maintaining a constant core body temperature is essential to homeothermic vertebrate survival. Adaptive thermogenesis in brown adipose tissue and skeletal muscle is the primary mechanism of adjustment to an external stimulus such as cold exposure. Recently, several reports have revealed that the liver can play a role as a metabolic hub during adaptive thermogenesis. In this study, we suggest that the liver plays a novel role in secreting thermogenic factors in adaptive thermogenesis. Bone morphogenetic protein 9 (BMP9) is a hepatokine that regulates many biological processes, including osteogenesis, chondrogenesis, hematopoiesis, and angiogenesis. Previously, BMP9 was suggested to affect preadipocyte proliferation and differentiation. However, the conditions and mechanisms underlying hepatic expression and secretion and adipose tissue browning of BMP9 remain largely unknown. In this study, we investigated the physiological conditions for secretion and the regulatory mechanism of hepatic Bmp9 expression and the molecular mechanism by which BMP9 induces thermogenic gene program activation in adipose tissue. Here, we also present the pharmacological effects of BMP9 on a high-fat-induced obese mouse model. METHODS To investigate the adaptive thermogenic role of BMP9 in vivo, we challenged mice with cold temperature exposure for 3 weeks and then examined the BMP9 plasma concentration and hepatic expression level. The cellular mechanism of hepatic Bmp9 expression under cold exposure was explored through promoter analysis. To identify the role of BMP9 in the differentiation of brown and beige adipocytes, we treated pluripotent stem cells and inguinal white adipose tissue (iWAT)-derived stromal-vascular (SV) cells with BMP9, and brown adipogenesis was monitored by examining thermogenic gene expression and signaling pathways. Furthermore, to evaluate the effect of BMP9 on diet-induced obesity, changes in body composition and glucose tolerance were analyzed in mice administered recombinant BMP9 (rBMP9) for 8 weeks. RESULTS Hepatic Bmp9 expression and plasma levels in mice were significantly increased after 3 weeks of cold exposure. Bmp9 mRNA expression in the liver was regulated by transcriptional activation induced by cAMP response-element binding protein (CREB) and CREB-binding protein (CBP) on the Bmp9 promoter. Treatment with BMP9 promoted the differentiation of multipotent stem cells and iWAT-derived SV cells into beige adipocytes, as indicated by the increased expression of brown adipocyte and mitochondrial biogenesis markers. Notably, activation of the mothers against decapentaplegic homolog 1 (Smad1) and p44/p42 mitogen-activated protein kinase (MAPK) pathways was required for the induction of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression in BMP9-induced differentiation of SVs into beige adipocytes. The administration of rBMP9 in vivo also induced browning markers in white adipose tissue. In high-fat diet-induced obese mice, rBMP9 administration conferred protection against obesity and enhanced glucose tolerance. CONCLUSIONS BMP9 is a hepatokine regulated by cold-activated CREB and CBP and enhances glucose and fat metabolism by promoting the activation of the thermogenic gene program in adipocytes. These data implicate BMP9 as a potential pharmacological tool for protecting against obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jang Ho Hur
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hui-Young Lee
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Kyeong-Hoon Jeong
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Shin-Hae Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - So-Mi Yoon
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 21999, Republic of Korea
| | - Senyon Choe
- Laboratory of Drugs to Medicine, Joint Center for Biosciences, Incheon 21999, Republic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea; Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21565, Republic of Korea; Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea.
| |
Collapse
|
85
|
Luan Y, Zhang Y, Yu SY, You M, Xu PC, Chung S, Kurita T, Zhu J, Kim SY. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle 2022; 13:1289-1301. [PMID: 35044098 PMCID: PMC8977964 DOI: 10.1002/jcsm.12864] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a complex syndrome of progressive muscle wasting and adipose loss with metabolic dysfunction, severely increasing the morbidity and mortality risk in cancer patients. However, there are limited studies focused on the underlying mechanisms of the progression of CAC due to the complexity of this syndrome and the lack of preclinical models that mimics its stagewise progression. METHODS We characterized the initiation and progression of CAC in transgenic female mice with ovarian tumours. We measured proposed CAC biomarkers (activin A, GDF15, IL-6, IL-1β, and TNF-α) in sera (n = 6) of this mouse model. The changes of activin A and GDF15 (n = 6) were correlated with the decline of bodyweight over time. Morphometry and signalling markers of muscle atrophy (n ≥ 6) and adipose tissue wasting (n ≥ 7) were assessed during CAC progression. RESULTS Cancer-associated cachexia symptoms of the transgenic mice model used in this study mimic the progression of CAC seen in humans, including drastic body weight loss, skeletal muscle atrophy, and adipose tissue wasting. Serum levels of two cachexia biomarkers, activin A and GDF15, increased significantly during cachexia progression (76-folds and 10-folds, respectively). Overactivation of proteolytic activity was detected in skeletal muscle through up-regulating muscle-specific E3 ligases Atrogin-1 and Murf-1 (16-folds and 14-folds, respectively) with decreasing cross-sectional area of muscle fibres (P < 0.001). Muscle wasting mechanisms related with p-p38 MAPK, FOXO3, and p-AMPKα were highly activated in concurrence with an elevation in serum activin A. Dramatic fat loss was also observed in this mouse model with decreased fat mass (n ≥ 6) and white adipocytes sizes (n = 6) (P < 0.0001). The adipose tissue wasting was based on thermogenesis, supported by the up-regulation of uncoupling protein 1 (UCP1). Fibrosis in adipose tissue was also observed in concurrence with adipose tissue loss (n ≥ 13) (p < 0.0001). CONCLUSIONS Our novel preclinical CAC mouse model mimics human CAC phenotypes and serum biomarkers. The mouse model in this study showed proteolysis in muscle atrophy, browning in adipose tissue wasting, elevation of serum activin A and GDF15, and atrophy of pancreas and liver. This mouse line would be the best preclinical model to aid in clarifying molecular mediators of CAC and dissecting metabolic dysfunction and tissue atrophy during the progression of CAC.
Collapse
Affiliation(s)
- Yi Luan
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaqi Zhang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seok-Yeong Yu
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Pauline C Xu
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Takeshi Kurita
- Department of Cancer Biology & Genetics, The Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jie Zhu
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
86
|
Quercetin May Improve Fat Graft Survival by Promoting Fat Browning Peripherally. Aesthetic Plast Surg 2022; 46:2517-2525. [PMID: 35325306 DOI: 10.1007/s00266-022-02857-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Adipose browning occurs after white fat transfer. But its location and effects on fat graft survival remains controversial. This study was performed to locate the browning of fat grafts, and to explore the effects of quercetin on fat graft browning and fat graft survival. METHODS Human fat granules were injected into the subcutaneous layer of 12 nude mice. Control group was injected with fat granules and 10% of normal saline, while quercetin group was injected with fat granules and 10% of quercetin. The graft samples (n = 6 for each group) were obtained in weeks 2, 4, 8 and 12. Weight retention rate of the grafts was calculated. Gene and protein expression of mitochondrial markers (silent information regulator 1, SIRT1; heat shock protein 60, HSP60), browning marker (uncoupling protein 1, UCP1), peroxisome proliferator-activated receptor-γ (PPAR-γ), vascular endothelial growth factor A (VEGF-A) were evaluated. Hematoxylin and eosin staining and anti-UCP1 staining were performed. RESULTS Clusters of small multilocular beige adipocytes were observed in the periphery of fat grafts. Compared with control group, quercetin group had a higher weight retention rate, a higher gene/protein expression of SIRT1, HSP60, UCP1, PPAR-γ and VEGF-A, and a higher occurrence of peripheral adipose browning. CONCLUSIONS Peripherally located adipose browning occurred after white fat transfer. It can be enhanced by the addition of quercetin through promoting mitochondrial function of fat cells, and may be one of the mechanisms that quercetin improves fat graft survival. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
87
|
Li J, Yi X, Li T, Yao T, Li D, Hu G, Ma Y, Chang B, Cao S. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr Connect 2022; 11:EC-21-0625.R1. [PMID: 35148278 PMCID: PMC8942313 DOI: 10.1530/ec-21-0625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity is a growing problem worldwide, and newer therapeutic strategies to combat it are urgently required. This study aimed to analyze the effect of diet and exercise interventions on energy balance in mice and elucidate the mechanism of the peroxisome proliferator-activated receptor-gamma co-activator-1-alpha-IRISIN-uncoupling protein-1 (PGC-1α-IRISIN-UCP-1) pathway in the beigeization of white adipose tissue. METHODS Four-week-old male C57BL/6 mice were randomly divided into normal (NC) and high-fat diet (HFD) groups. After 10 weeks of HFD feeding, obese mice were randomly divided into obesity control (OC), obesity diet control (OD), obesity exercise (OE), and obesity diet control exercise (ODE) groups. Mice in OE and ODE performed moderate-load treadmill exercises: for OD and ODE, the diet constituted 70% of the food intake of the OC group for 8 weeks. RESULTS Long-term HFD inhibits white adipose tissue beigeization by downregulating PGC-1α-IRISIN-UCP-1 in the adipose tissue and skeletal muscles. Eight weeks of exercise and dietary interventions alleviated obesity-induced skeletal muscle, and adipose tissue PGC-1α-IRISIN-UCP-1 pathway downregulation promoted white adipose tissue beigeization and reduced body adipose tissue. The effects of the combined intervention were better than those of single interventions. CONCLUSIONS Diet and exercise intervention after obesity and obesity itself may affect the beigeization of WAT by downregulating/upregulating the expression/secretion of skeletal muscle and adipose PGC-1α-IRISIN, thereby influencing the regulation of bodyweight. The effects of the combined intervention were better than those of single interventions.
Collapse
Affiliation(s)
- Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Xuejie Yi
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tao Li
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tingting Yao
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Dongyang Li
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yongqi Ma
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- Exercise and Health Research Center, Department of Kinesiology, Laboratory Management Center, Shenyang Sport University, Shenyang, Liaoning, China
- Correspondence should be addressed to B Chang or S Cao: or
| | - Shicheng Cao
- Department of Sports Medicine, School of Public and Basic Sciences, China Medical University, Shenyang, Liaoning, China
- Correspondence should be addressed to B Chang or S Cao: or
| |
Collapse
|
88
|
Xie F, Zou T, Chen J, Liang P, Wang Z, You J. Polysaccharides from Enteromorpha prolifera improves insulin sensitivity and promotes adipose thermogenesis in diet-induced obese mice associated with activation of PGC-1α-FNDC5/irisin pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
89
|
Song X, Han L, Lin X, Tian M, Sun F, Feng B. Jian Pi Tiao Gan Yin alleviates obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:291. [PMID: 35433951 PMCID: PMC9011225 DOI: 10.21037/atm-22-685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Background Obesity has been considered as a leading cause of multiple metabolic syndromes, such as type 2 diabetes and hypertension cardiovascular diseases. Jian Pi Tiao Gan Yin (JPTGY), a Chinese herb preparation, is used to treat obesity of liver qi stagnation and spleen deficiency. The mechanism of action of JPTGY in obesity remains unclear. This study evaluated the effect of JPTGY on obesity. Methods The mechanism of action of JPTGY on obesity was investigated in high-fat diet (HFD)-induced obese mice and palmitic acid-treated 3T3-L1 cells. Lipid droplet accumulation was detected using oil red O staining. Factors associated with lipid accumulation were detected by western blotting. Results Treatment with JPTGY reduced HFD-induced adiposity and body weight gain. JPTGY increased the levels of brown adipose tissue biomarkers in obese mice and palmitic acid-treated 3T3-L1 cells, including peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) and uncoupling protein-1 (UCP-1). Meanwhile, the protein expression of white adipose tissue biomarkers, such as AGT, primary subtalar arthrodesis (PSTA), and endothelin receptor type A (EDNRA), was decreased in obese mice and palmitic acid-treated 3T3-L1 cells. JPTGY affects browning of 3T3-L1 cells through mechanistic target of rapamycin complex 1 (mTORC1) signaling. JPTGY decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein (SREBP), and FAS. Treatment with the mTOR activator MHY reversed JPTGY-mediated protein expression. Conclusions We concluded that JPTGY relieved obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. JPTGY may benefit the attenuation of obesity.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lulu Han
- Neurology Ward 3, the Fifth People's Hospital of Jinan, Jinan, China
| | - Xiaowan Lin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fenglei Sun
- General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Feng
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
90
|
Wang L, Liu X, Liu S, Niu Y, Fu L. Sestrin2 ablation attenuates the exercise-induced browning of white adipose tissue in C57BL/6J mice. Acta Physiol (Oxf) 2022; 234:e13785. [PMID: 34995401 DOI: 10.1111/apha.13785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/11/2023]
Abstract
AIM With exercise, white adipose tissues (WAT) are readily convertible to a "brown-like" state, altering from lipid-storing to energy-catabolizing function, which counteracts obesity and increases insulin sensitivity. Sestrin2 (SESN2) is a stress-inducible protein that can regulate the cold-induced increase of uncoupling protein 1 (UCP1), which is paramount for the thermogenic capacity of brown-like WAT. This study aimed to elucidate the necessity of SESN2 in mediating exercise-induced browning of WAT. METHODS We used 8-week, male wild-type and SESN2 knockout C57BL/6J mice to explore the potential role of SESN2 in the exercise-induced WAT browning process. Over a 3-week intervention (sedentary versus treadmill exercise, normal chow versus 60% high-fat diet), we examined the exercise-induced alterations of the browning phenotype in different depots of white fat. In vitro, 3T3-L1 pre-adipocytes and primary adipocytes were used to determine the potential mechanism. RESULTS Our data revealed that SESN2 was required for the exercise-induced subcutaneous WAT (scWAT) browning. This may be mediated by higher fibronectin type III domain containing 5 (FNDC5) contents in scWAT locally, rather than skeletal muscle FNDC5 expression and circulating serum irisin levels. SESN2 ablation significantly impaired the exercise-improved glucose metabolism, where browning of scWAT may serve as an essential pathway. Moreover, SESN2 ablation significantly attenuated the exercise-promoted respiratory exchange ratio and indexes of energy metabolism (oxygen uptake and energy expenditure). CONCLUSION Taken together, our results provided evidence that SESN2 is a key integrating factor in driving the diverse metabolic benefits conferred by aerobic exercise.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Xinmeng Liu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Sujuan Liu
- Department of Anatomy and Histology School of Basic Medical Science Tianjin Medical University Tianjin China
| | - Yanmei Niu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
| | - Li Fu
- Department of Rehabilitation School of Medical Technology Tianjin Medical University Tianjin China
- Department of Physiology and Pathophysiology School of Basic Medical Science Tianjin Medical University Tianjin China
| |
Collapse
|
91
|
Abstract
Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.
Collapse
Affiliation(s)
- Ambre M. Bertholet
- Department of Physiology, University of California San Francisco, 600 16 Street, San Francisco, CA 94158, USA,Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA,Corresponding authors: ,
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
92
|
Xue T, Xu H, Du Y, Ding J, Su Y, Lin Z. Browning of white adipocytes by gold nanocluster mediated electromagnetic induction heating hyperthermia. NANOSCALE 2022; 14:1187-1194. [PMID: 35005765 DOI: 10.1039/d1nr07263c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Browning of white adipose tissue (WAT) is becoming an attractive therapeutic target for obesity. Great efforts have been made to develop effective approaches to induce browning. Unfortunately, the current methods suffer from a series of disadvantages, such as low efficiency, unsatisfactory stability, and side effects. Herein, we report a new approach to induce browning of 3T3-L1 white adipocytes based on electromagnetic induction heating (EIH) hyperthermia. In particular, adipocyte-targeting aptamer modified gold nanoclusters (Apt-AuNCs) were employed as the mediators of EIH. Apt-AuNCs had good biocompatibility and excellent targeting performance with white adipocytes. After Apt-AuNCs/EIH treatment, adipocytes with characteristic multilocular and small lipid droplets increased, and the content of triglycerides reduced effectively. Apt-AuNCs/EIH treatment also significantly increased the mitochondrial activity in adipocytes. Meanwhile, the mRNA levels of key genes that are involved in browning, for example UCP1, PRDM16, PPARγ, and PGC-1α, were upregulated. Finally, the induction mechanism of Apt-AuNCs/EIH on browning of white adipocytes was explained by the synergistic effects of EIH hyperthermia and pharmacological action of AuNCs. To the best of our knowledge, this is the first attempt on induction of browning by metal nanocluster-mediated EIH hyperthermia, thus providing an interesting and efficient channel for obesity treatment.
Collapse
Affiliation(s)
- Tiantian Xue
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Hejie Xu
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yanhui Du
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Jialuo Ding
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yu Su
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhenkun Lin
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
93
|
The transcription factor hepatocyte nuclear factor 4A acts in the intestine to promote white adipose tissue energy storage. Nat Commun 2022; 13:224. [PMID: 35017517 PMCID: PMC8752770 DOI: 10.1038/s41467-021-27934-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor 4 A (HNF4A) controls the metabolic features of several endodermal epithelia. Both HNF4A and HNF4G are redundant in the intestine and it remains unclear whether HNF4A alone controls intestinal lipid metabolism. Here we show that intestinal HNF4A is not required for intestinal lipid metabolism per se, but unexpectedly influences whole-body energy expenditure in diet-induced obesity (DIO). Deletion of intestinal HNF4A caused mice to become DIO-resistant with a preference for fat as an energy substrate and energetic changes in association with white adipose tissue (WAT) beiging. Intestinal HNF4A is crucial for the fat-induced release of glucose-dependent insulinotropic polypeptide (GIP), while the reintroduction of a stabilized GIP analog rescues the DIO resistance phenotype of the mutant mice. Our study provides evidence that intestinal HNF4A plays a non-redundant role in whole-body lipid homeostasis and points to a non-cell-autonomous regulatory circuit for body-fat management. HNF4A is a nuclear receptor that regulates liver lipid homeostasis. Here the authors show that HNF4A is not required for intestinal lipid metabolism but controls energy expenditure under diet induced obesity through the fat-induced release of glucose-dependent insulinotropic polypeptide.
Collapse
|
94
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
95
|
Acosta FM, Stojkova K, Zhang J, Garcia Huitron EI, Jiang JX, Rathbone CR, Brey EM. Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions. J Tissue Eng 2022; 13:20417314221109337. [PMID: 35782994 PMCID: PMC9248044 DOI: 10.1177/20417314221109337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Engineered beige adipose tissues could be used for screening therapeutic strategies or as a direct treatment for obesity and metabolic disease. Microvascular fragments are vessel structures that can be directly isolated from adipose tissue and may contain cells capable of differentiation into thermogenic, or beige, adipocytes. In this study, culture conditions were investigated to engineer three-dimensional, vascularized functional beige adipose tissue using microvascular fragments isolated from both healthy animals and a model of type II diabetes (T2D). Vascularized beige adipose tissues were engineered and exhibited increased expression of beige adipose markers, enhanced function, and improved cellular respiration. While microvascular fragments isolated from both lean and diabetic models were able to generate functional tissues, differences were observed in regard to vessel assembly and tissue function. This study introduces an approach that could be employed to engineer vascularized beige adipose tissues from a single, potentially autologous source of cells.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Katerina Stojkova
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jingruo Zhang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Eric Ivan Garcia Huitron
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jean X. Jiang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| | - Eric M. Brey
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| |
Collapse
|
96
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
97
|
Conceição-Furber E, Coskun T, Sloop KW, Samms RJ. Is Glucagon Receptor Activation the Thermogenic Solution for Treating Obesity? Front Endocrinol (Lausanne) 2022; 13:868037. [PMID: 35547006 PMCID: PMC9081793 DOI: 10.3389/fendo.2022.868037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
A major challenge of obesity therapy is to sustain clinically relevant weight loss over time. Achieving this goal likely requires both reducing daily caloric intake and increasing caloric expenditure. Over the past decade, advances in pharmaceutical engineering of ligands targeting G protein-coupled receptors have led to the development of highly effective anorectic agents. These include mono-agonists of the GLP-1R and dual GIPR/GLP-1R co-agonists that have demonstrated substantial weight loss in experimental models and in humans. By contrast, currently, there are no medicines available that effectively augment metabolic rate to promote weight loss. Here, we present evidence indicating that activation of the GCGR may provide a solution to this unmet therapeutic need. In adult humans, GCGR agonism increases energy expenditure to a magnitude sufficient for inducing a negative energy balance. In preclinical studies, the glucagon-GCGR system affects key metabolically relevant organs (including the liver and white and brown adipose tissue) to boost whole-body thermogenic capacity and protect from obesity. Further, activation of the GCGR has been shown to augment both the magnitude and duration of weight loss that is achieved by either selective GLP-1R or dual GIPR/GLP-1R agonism in rodents. Based on the accumulation of such findings, we propose that the thermogenic activity of GCGR agonism will also complement other anti-obesity agents that lower body weight by suppressing appetite.
Collapse
|
98
|
Li S, Zhou L, Zhang Q, Yu M, Xiao X. Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice. Food Funct 2022; 13:11715-11732. [DOI: 10.1039/d2fo01973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
99
|
Zhao Y, Li H, Donelan W, Li S, Tang D. Expression of Recombinant Rat Secretable FNDC5 in Pichia Pastoris and Detection of Its Biological Activity. Front Endocrinol (Lausanne) 2022; 13:852015. [PMID: 35321332 PMCID: PMC8936140 DOI: 10.3389/fendo.2022.852015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
FNDC5 is the precursor of the myokine irisin proposed to exhibit favorable metabolic activity, including anti-obesity and anti-diabetes effects. The diversity of FNDC5 transcripts has been reported by several studies, but the role and existence of these transcripts are not well defined. In our previous study, a novel secretable FNDC5 (sFNDC5) isoform lacking the transmembrane region was found in rat INS-1 cells and multiple rat tissues. In the current study, we established a high-yield system for the expression and purification of sFNDC5 in Pichia pastoris, and functional investigations were undertaken using 3T3-L1 cells. We discovered that this new isoform has similar and even stronger biological functions than irisin, which may be due to its more complete structure without cleavage. Hence, we believe that sFNDC5, as the first identified readily secretable derivative, can better induce lipolysis and can potentially prevent obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yi Zhao
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shiwu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Dongqi Tang,
| |
Collapse
|
100
|
Yu J, Zhu J, Deng J, Shen J, Du F, Wu X, Chen Y, Li M, Wen Q, Xiao Z, Zhao Y. Dopamine receptor D1 signaling stimulates lipolysis and browning of white adipocytes. Biochem Biophys Res Commun 2021; 588:83-89. [PMID: 34953210 DOI: 10.1016/j.bbrc.2021.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Adipocytes express several kinds of catecholamine receptors, including adrenergic receptors, and dopamine receptors. Signaling pathways mediated by catecholamine receptors, such as β3-adrenergic receptor pathway, can induce body energy expenditure via activating thermogenesis of adipose tissue. However, the roles of adipose dopamine receptors on adipocytes are still unclear. Here, we investigate the role of dopamine receptor D1 (DRD1) on adipocytes. To this end, we use DRD1 agonist Fenoldopam and antagonist SCH23390 to stimulate and inhibit DRD1 signaling, respectively. We found that, compared with control group mice, Fenoldopam-treated and SCH23390-treated high-fat-diet (HFD)-fed mice showed smaller and bigger white adipose tissue/adipocyte sizes, respectively. Meanwhile, activating of DRD1 signaling enhanced intracellular levels of cAMP, phosphorylation levels of protein kinase A substrates, and hormone-sensitive lipase, a key enzyme for lipolysis in mature 3T3-L1 adipocytes and white adipose tissue of HFD-fed mice. As a result, the levels of free fatty acid or glycerol were increased, indicating stimulation of lipolysis by DRD1 activation. Moreover, activating DRD1 can induce the browning of adipocytes, as indicated by enhanced phosphorylation of P38 MAP kinase, increased expression of beige cell markers (PGC-1α, UCP-1, and CD81), mitochondrion content, and expression of β-oxidation related genes. All of these effects were reduced after treating with SCH23390 both in vitro and in HFD-fed mice. Collectively, our study indicated that DRD1 signaling stimulates lipolysis and browning of white adipocytes in vitro and in vivo. Understanding the functions of DRD1 on human adipocytes and adipose tissues will help us to design novel strategies to treat obesity.
Collapse
Affiliation(s)
- Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Pharmacy, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jiabing Zhu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jian Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Luzhou Key Laboratory of Cell Therapy and Cell Drugs, Southwest Medical University, Luzhou, Sichuan, 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China.
| |
Collapse
|