51
|
Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:148-159. [PMID: 23294290 DOI: 10.1111/tpj.12112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/11/2012] [Accepted: 01/02/2013] [Indexed: 05/28/2023]
Abstract
In both plants and animals, cell-to-cell signaling controls key aspects of development. In plants, cells communicate through direct transfer of transcription factors between cells. It is thought that most, if not all, mobile transcription factors move via plasmodesmata, membrane-lined channels that connect nearly all cells in the plant. However, the mechanisms by which these proteins access the plasmodesmata are not known. Using four independent assays, we examined the movement of the SHORT-ROOT (SHR) transcription factor under conditions that affect microtubule stability, organization or dynamics. We found that intact microtubules are required for cell-to-cell trafficking of SHR. Either chemical or genetic disruption of microtubules results in a significant reduction in SHR transport. Interestingly, inhibition of microtubules also results in mis-localization of the SHR-INTERACTING EMBRYONIC LETHAL (SIEL) protein, which has been shown to bind directly to SHR and is required for SHR movement. These results show that microtubules facilitate cell-to-cell transport of an endogenous plant protein.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
52
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
53
|
Oh SA, Allen T, Kim GJ, Sidorova A, Borg M, Park SK, Twell D. Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:308-19. [PMID: 22709276 DOI: 10.1111/j.1365-313x.2012.05077.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The conserved Fused kinase plays vital but divergent roles in many organisms from Hedgehog signalling in Drosophila to polarization and chemotaxis in Dictyostelium. Previously we have shown that Arabidopsis Fused kinase termed TWO-IN-ONE (TIO) is essential for cytokinesis in both sporophytic and gametophytic cell types. Here using in vivo imaging of GFP-tagged microtubules in dividing microspores we show that TIO is required for expansion of the phragmoplast. We identify the phragmoplast-associated kinesins, PAKRP1/Kinesin-12A and PAKRP1L/Kinesin-12B, as TIO-interacting proteins and determine TIO-Kinesin-12 interaction domains and their requirement in male gametophytic cytokinesis. Our results support the role of TIO as a functional protein kinase that interacts with Kinesin-12 subfamily members mainly through the C-terminal ARM repeat domain, but with a contribution from the N-terminal kinase domain. The interaction of TIO with Kinesin proteins and the functional requirement of their interaction domains support the operation of a Fused kinase signalling module in phragmoplast expansion that depends upon conserved structural features in diverse Fused kinases.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | | | | | | | | | |
Collapse
|
54
|
Cvrčková F. Formins: emerging players in the dynamic plant cell cortex. SCIENTIFICA 2012; 2012:712605. [PMID: 24278734 PMCID: PMC3820618 DOI: 10.6064/2012/712605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/16/2012] [Indexed: 05/11/2023]
Abstract
Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague, Czech Republic
| |
Collapse
|
55
|
Lechner B, Rashbrooke MC, Collings DA, Eng RC, Kawamura E, Whittington AT, Wasteneys GO. The N-terminal TOG domain of Arabidopsis MOR1 modulates affinity for microtubule polymers. J Cell Sci 2012; 125:4812-21. [PMID: 22825869 DOI: 10.1242/jcs.107045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microtubule-associated proteins of the highly conserved XMAP215/Dis1 family promote both microtubule growth and shrinkage, and move with the dynamic microtubule ends. The plant homologue, MOR1, is predicted to form a long linear molecule with five N-terminal TOG domains. Within the first (TOG1) domain, the mor1-1 leucine to phenylalanine (L174F) substitution causes temperature-dependent disorganization of microtubule arrays and reduces microtubule growth and shrinkage rates. By expressing the two N-terminal TOG domains (TOG12) of MOR1, both in planta for analysis in living cells and in bacteria for in vitro microtubule-binding and polymerization assays, we determined that the N-terminal domain of MOR1 is crucial for microtubule polymer binding. Tagging TOG12 at the N-terminus interfered with its ability to bind microtubules when stably expressed in Arabidopsis or when transiently overexpressed in leek epidermal cells, and impeded polymerase activity in vitro. In contrast, TOG12 tagged at the C-terminus interacted with microtubules in vivo, rescued the temperature-sensitive mor1-1 phenotype, and promoted microtubule polymerization in vitro. TOG12 constructs containing the L174F mor1-1 point mutation caused microtubule disruption when transiently overexpressed in leek epidermis and increased the affinity of TOG12 for microtubules in vitro. This suggests that the mor1-1 mutant protein makes microtubules less dynamic by binding the microtubule lattice too strongly to support rapid plus-end tracking. We conclude from our results that a balanced microtubule affinity in the N-terminal TOG domain is crucial for the polymerase activity of MOR1.
Collapse
Affiliation(s)
- Bettina Lechner
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
56
|
Lipka E, Müller S. Potential roles for Kinesins at the cortical division site. FRONTIERS IN PLANT SCIENCE 2012; 3:158. [PMID: 22811684 PMCID: PMC3395808 DOI: 10.3389/fpls.2012.00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/28/2012] [Indexed: 05/21/2023]
Abstract
Spatial control of cytokinesis is critical for cell and plant morphology. The plane of cell division is established at G2/M transition and is initially demarcated at the cortex of the cell by the cytoskeletal preprophase band (PPB) and subsequently throughout mitosis by the cortical division zone (CDZ). Few kinesins, belonging to different classes of the superfamily, either display a distinct spatio-temporal localization at the PPB and CDZ, or genetic evidence proposes a specific function there. Protein phosphorylation and degradation are likely directing the cell cycle-dependent localization and activity of some of these kinesins, as indicated by mutation of respective conserved motifs. Furthermore, kinesins are required for continuous recruitment of CDZ identity markers to the CDZ. This review summarizes the limited current knowledge of kinesins potentially involved in the steps required for correctly oriented division planes, considering localization patterns and genetic evidence, and discussing kinesin function in context with interaction partners and cell cycle regulation.
Collapse
Affiliation(s)
| | - Sabine Müller
- Cell and Developmental Genetics, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
57
|
Ho CMK, Lee YRJ, Kiyama LD, Dinesh-Kumar SP, Liu B. Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. THE PLANT CELL 2012; 24:2071-85. [PMID: 22570443 PMCID: PMC3442588 DOI: 10.1105/tpc.111.092569] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 05/19/2023]
Abstract
Plant cytokinesis is brought about by the phragmoplast, which contains an antiparallel microtubule (MT) array. The MT-associated protein MAP65-3 acts as an MT-bundling factor that specifically cross-links antiparallel MTs near their plus ends. MAP65 family proteins contain an N-terminal dimerization domain and C-terminal MT interaction domain. Compared with other MAP65 isoforms, MAP65-3 contains an extended C terminus. A MT binding site was discovered in the region between amino acids 496 and 588 and found to be essential for the organization of phragmoplast MTs. The frequent cytokinetic failure caused by loss of MAP65-3 was not rescued by ectopic expression of MAP65-1 under the control of the MAP65-3 promoter, indicating nonoverlapping functions between the two isoforms. In the presence of MAP65-3, however, ectopic MAP65-1 appeared in the phragmoplast midline. We show that MAP65-1 could acquire the function of MAP65-3 when the C terminus of MAP65-3, which contains the MT binding site, was grafted to it. Our results also show that MAP65-1 and MAP65-3 may share redundant functions in MT stabilization. Such a stabilization effect was likely brought about by MT binding and bundling. We conclude that MAP65-3 contains a distinct C-terminal MT binding site with a specific role in cross-linking antiparallel MTs toward their plus ends in the phragmoplast.
Collapse
Affiliation(s)
| | | | | | | | - Bo Liu
- Address correspondence to
| |
Collapse
|
58
|
Hotta T, Kong Z, Ho CMK, Zeng CJT, Horio T, Fong S, Vuong T, Lee YRJ, Liu B. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. THE PLANT CELL 2012; 24:1494-509. [PMID: 22505726 PMCID: PMC3398559 DOI: 10.1105/tpc.112.096610] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/10/2012] [Accepted: 03/20/2012] [Indexed: 05/19/2023]
Abstract
Plant cells assemble the bipolar spindle and phragmoplast microtubule (MT) arrays in the absence of the centrosome structure. Our recent findings in Arabidopsis thaliana indicated that AUGMIN subunit3 (AUG3), a homolog of animal dim γ-tubulin 3, plays a critical role in γ-tubulin-dependent MT nucleation and amplification during mitosis. Here, we report the isolation of the entire plant augmin complex that contains eight subunits. Among them, AUG1 to AUG6 share low sequence similarity with their animal counterparts, but AUG7 and AUG8 share homology only with proteins of plant origin. Genetic analyses indicate that the AUG1, AUG2, AUG4, and AUG5 genes are essential, as stable mutations in these genes could only be transmitted to heterozygous plants. The sterile aug7-1 homozygous mutant in which AUG7 expression is significantly reduced exhibited pleiotropic phenotypes of seriously retarded vegetative and reproductive growth. The aug7-1 mutation caused delocalization of γ-tubulin in the mitotic spindle and phragmoplast. Consequently, spindles were abnormally elongated, and their poles failed to converge, as MTs were splayed to discrete positions rendering deformed arrays. In addition, the mutant phragmoplasts often had disorganized MT bundles with uneven edges. We conclude that assembly of MT arrays during plant mitosis depends on the augmin complex, which includes two plant-specific subunits.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cui Jing Tracy Zeng
- Department of Plant Biology, University of California, Davis, California 95616
| | - Tetsuya Horio
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Sophia Fong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Trang Vuong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
59
|
Müller S. Universal rules for division plane selection in plants. PROTOPLASMA 2012; 249:239-53. [PMID: 21611883 DOI: 10.1007/s00709-011-0289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 05/08/2023]
Abstract
Coordinated cell divisions and cell expansion are the key processes that command growth in all organisms. The orientation of cell divisions and the direction of cell expansion are critical for normal development. Symmetric divisions contribute to proliferation and growth, while asymmetric divisions initiate pattern formation and differentiation. In plants these processes are of particular importance since their cells are encased in cellulosic walls that determine their shape and lock their position within tissues and organs. Several recent studies have analyzed the relationship between cell shape and patterns of symmetric cell division in diverse organisms and employed biophysical and mathematical considerations to develop computer simulations that have allowed accurate prediction of cell division patterns. From these studies, a picture emerges that diverse biological systems follow simple universal rules of geometry to select their division planes and that the microtubule cytoskeleton takes a major part in sensing the geometric information and translates this information into a specific division outcome. In plant cells, the division plane is selected before mitosis, and spatial information of the division plane is preserved throughout division by the presence of reference molecules at a distinct region of the plasma membrane, the cortical division zone. The recruitment of these division zone markers occurs multiple times by several mechanisms, suggesting that the cortical division zone is a highly dynamic region.
Collapse
Affiliation(s)
- Sabine Müller
- Center for Plant Molecular Biology-Developmental Genetics, University of Tübingen, Auf der Morgenstelle 3, 72076, Tübingen, Germany.
| |
Collapse
|
60
|
Kirik A, Ehrhardt DW, Kirik V. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. THE PLANT CELL 2012; 24:1158-70. [PMID: 22395485 PMCID: PMC3336111 DOI: 10.1105/tpc.111.094367] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 05/19/2023]
Abstract
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B'' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.
Collapse
Affiliation(s)
- Angela Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - David W. Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
- Address correspondence to
| |
Collapse
|
61
|
Chaimovitsh D, Rogovoy Stelmakh O, Altshuler O, Belausov E, Abu-Abied M, Rubin B, Sadot E, Dudai N. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:354-64. [PMID: 22039835 DOI: 10.1111/j.1438-8677.2011.00511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ-tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral's effect on microtubules was both dose- and time-dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ-tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP-Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral's effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules.
Collapse
Affiliation(s)
- D Chaimovitsh
- Division of Aromatic Plants, ARO, Newe Ya'ar, Ramat Yishai, Israel
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Lucas JR, Sack FD. Polar development of preprophase bands and cell plates in the Arabidopsis leaf epidermis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:501-509. [PMID: 21972819 DOI: 10.1111/j.1365-313x.2011.04809.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Preprophase bands are belts of cortical microtubules that appear at the end of interphase and predict where cell plates will fuse with parental walls during division. Phragmoplasts are microtubule-rich arrays that orchestrate the growth and guidance of cell plates during cytokinesis. Descriptions of the development of these arrays often assume non-polar formation, with preprophase bands developing more or less simultaneously around the cell circumference. Phragmoplasts are often described as initiating at the cell center and then expanding evenly outwards until fusion with parent cell walls. We analyzed the spatio-temporal development of both arrays because initial observations of array growth in the Arabidopsis leaf epidermis revealed directional variability. Almost all preprophase bands formed in a polar fashion, with initiation and maturation occurring first in the cell cortex near the inside of the leaf, and later in the outer cell cortex. A similar polarity developed in phragmoplasts and cell plates, raising the possibility that polarized division is common in plants. Together, these findings identify additional polar features of the epidermis, and thereby provide a visually accessible system for identifying new proteins and subcellular components involved in the development of cell division and the previously formed division site.
Collapse
Affiliation(s)
- Jessica Regan Lucas
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
63
|
Samuel MA, Tang W, Jamshed M, Northey J, Patel D, Smith D, Siu KWM, Muench DG, Wang ZY, Goring DR. Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses. Mol Cell Proteomics 2011; 10:M111.011338. [PMID: 21890472 PMCID: PMC3237083 DOI: 10.1074/mcp.m111.011338] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/30/2011] [Indexed: 11/06/2022] Open
Abstract
Mate selection and maintenance of genetic diversity is crucial to successful reproduction and species survival. Plants utilize self-incompatibility system as a genetic barrier to prevent self pollen from developing on the pistil, leading to hybrid vigor and diversity. In Brassica (canola, kale, and broccoli), an allele-specific interaction between the pollen SCR/SP11 (S-locus cysteine rich protein/S locus protein 11) and the pistil S Receptor Kinase, results in the activation of SRK which recruits the Arm Repeat Containing 1 (ARC1) E3 ligase to the proteasome. The targets of Arm Repeat Containing 1 are proposed to be compatibility factors, which when targeted for degradation by Arm Repeat Containing 1 results in pollen rejection. Despite the fact that protein degradation is predicted to be important for successful self-pollen rejection, the identity of the various proteins whose abundance is altered by the SI pathway has remained unknown. To identify potential candidate proteins regulated by the SI response, we have used the two-dimensional difference gel electrophoresis analysis, coupled with matrix-assisted laser desorption ionization/time of flight/MS. We identified 56 differential protein spots with 19 unique candidate proteins whose abundance is down-regulated following self-incompatible pollinations. The identified differentials are predicted to function in various pathways including biosynthetic pathways, signaling, cytoskeletal organization, and exocytosis. From the 19 unique proteins identified, we investigated the role of tubulin and the microtubule network during both self-incompatible and compatible pollen responses. Moderate changes in the microtubule network were observed with self-incompatible pollinations; however, a more distinct localized break-down of the microtubule network was observed during compatible pollinations, that is likely mediated by EXO70A1, leading to successful pollination.
Collapse
Affiliation(s)
- Marcus A. Samuel
- From the ‡University of Calgary, Department of Biological Sciences, Canada
- §University of Toronto, Department of Cell and Systems Biology, Canada
| | - Wenqiang Tang
- ‖Department of Plant Biology, Carnegie Institution of Washington, Stanford, USA
- **College of life sciences, Hebei Normal University, Shijiazhuang, Hebei 050016, China
| | - Muhammad Jamshed
- From the ‡University of Calgary, Department of Biological Sciences, Canada
| | - Julian Northey
- §University of Toronto, Department of Cell and Systems Biology, Canada
| | - Darshan Patel
- From the ‡University of Calgary, Department of Biological Sciences, Canada
| | - Daryl Smith
- ¶York University, Department of Biological Sciences, Canada
| | | | - Douglas G. Muench
- From the ‡University of Calgary, Department of Biological Sciences, Canada
| | - Zhi-Yong Wang
- ‖Department of Plant Biology, Carnegie Institution of Washington, Stanford, USA
| | - Daphne R. Goring
- §University of Toronto, Department of Cell and Systems Biology, Canada
| |
Collapse
|
64
|
Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B. Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. THE PLANT CELL 2011; 23:2909-23. [PMID: 21873565 PMCID: PMC3180800 DOI: 10.1105/tpc.110.078204] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 06/28/2011] [Accepted: 08/04/2011] [Indexed: 05/18/2023]
Abstract
In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells.
Collapse
Affiliation(s)
- Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Fengli Guo
- Department of Plant Biology, University of California, Davis, CA 95616
| | | | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616
- Address correspondence to
| |
Collapse
|
65
|
Malcos JL, Cyr RJ. An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle-dependent manner. Cytoskeleton (Hoboken) 2011; 68:247-58. [PMID: 21387573 DOI: 10.1002/cm.20508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Past phylogenic studies have identified a plant-specific, ungrouped family of kinesins in which the motor domain does not group to one of the fourteen recognized families. Members of this family contain an N-terminal motor domain, a C-terminal armadillo repeat domain and a conserved destruction box (D-BOX) motif. This domain architecture is unique to plants and to a subset of protists. Further characterization of one representative member from Arabidopsis, Arabidopsis thaliana KINESIN ungrouped clade, gene A (AtKINUa), was completed to ascertain its functional role in plants. Fluorescence confocal microscopy revealed an accumulation of ATKINUA:GFP at the preprophase band (PPB) in a cell cycle-dependent manner in Arabidopsis epidermal cells and tobacco BY-2 cells. Fluorescence accumulation was highest during prophase and decreased after nuclear envelope breakdown. A conserved D-BOX motif was identified through alignment of AtKINU homologous sequences. Mutagenesis work with D-BOX revealed that conserved residues were necessary for the observed degradation pattern of ATKINUA:GFP, as well as the targeted accumulation at the PPB. Overall results suggest that AtKINUa is necessary for normal plant growth and/or development and is likely involved with PPB organization through microtubule association and specific cell cycle regulation. The D-BOX motif may function to bridge microtubule organization with changes that occur during progression through mitosis and may represent a novel regulatory motif in plant microtubule motor proteins.
Collapse
Affiliation(s)
- Jennelle L Malcos
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania, USA
| | | |
Collapse
|
66
|
Kimmy Ho CM, Hotta T, Kong Z, Tracy Zeng CJ, Sun J, Julie Lee YR, Liu B. Augmin plays a critical role in organizing the spindle and phragmoplast microtubule arrays in Arabidopsis. THE PLANT CELL 2011; 23:2606-18. [PMID: 21750235 PMCID: PMC3226208 DOI: 10.1105/tpc.111.086892] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/12/2011] [Accepted: 06/28/2011] [Indexed: 05/19/2023]
Abstract
In higher plant cells, microtubules (MTs) are nucleated and organized in a centrosome-independent manner. It is unclear whether augmin-dependent mechanisms underlie spindle MT organization in plant cells as they do in animal cells. When AUGMIN subunit3 (AUG3), which encodes a homolog of animal dim γ-tubulin 3/human augmin-like complex, subunit 3, was disrupted in Arabidopsis thaliana, gametogenesis frequently failed due to defects in cell division. Compared with the control microspores, which formed bipolar spindles at the cell periphery, the mutant cells often formed peripheral half spindles that only attached to condensed chromosomes or formed elongated spindles with unfocused interior poles. In addition, defective cells exhibited disorganized phragmoplast MT arrays, which caused aborted cytokinesis. The resulting pollen grains were either shrunken or contained two nuclei in an undivided cytoplasm. AUG3 was localized along MTs in the spindle and phragmoplast, and its signal was pronounced in anaphase spindle poles. An AUG3-green fluorescent protein fusion exhibited a dynamic distribution pattern, similar to that of the γ-tubulin complex protein2. When AUG3 was enriched from seedlings by affinity chromatography, AUG1 was detected by immunoblotting, suggesting an augmin-like complex was present in vivo. We conclude that augmin plays a critical role in MT organization during plant cell division.
Collapse
Affiliation(s)
- Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, California 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Cui Jing Tracy Zeng
- Department of Plant Biology, University of California, Davis, California 95616
| | - Jie Sun
- Department of Plant Biology, University of California, Davis, California 95616
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
67
|
Yasuhara H, Oe Y. TMBP200, a XMAP215 homologue of tobacco BY-2 cells, has an essential role in plant mitosis. PROTOPLASMA 2011; 248:493-502. [PMID: 20703504 DOI: 10.1007/s00709-010-0189-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/28/2010] [Indexed: 05/26/2023]
Abstract
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.
Collapse
Affiliation(s)
- Hiroki Yasuhara
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan.
| | | |
Collapse
|
68
|
Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL. Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. THE PLANT CELL 2011; 23:1889-903. [PMID: 21551389 PMCID: PMC3123956 DOI: 10.1105/tpc.111.084970] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/05/2011] [Accepted: 04/18/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.
Collapse
|
69
|
The Preprophase Band and Division Site Determination in Land Plants. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
70
|
Rasmussen CG, Humphries JA, Smith LG. Determination of symmetric and asymmetric division planes in plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:387-409. [PMID: 21391814 DOI: 10.1146/annurev-arplant-042110-103802] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
71
|
Vaughn LM, Baldwin KL, Jia G, Verdonk JC, Strohm AK, Masson PH. The Cytoskeleton and Root Growth Behavior. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
72
|
|
73
|
Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. THE PLANT CELL 2011; 23:185-209. [PMID: 21216945 PMCID: PMC3051261 DOI: 10.1105/tpc.110.074005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Sook Pai
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
74
|
Rasmussen CG, Sun B, Smith LG. Tangled localization at the cortical division site of plant cells occurs by several mechanisms. J Cell Sci 2010; 124:270-9. [PMID: 21172800 DOI: 10.1242/jcs.073676] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
TANGLED (TAN) is the founding member of a family of plant-specific proteins required for correct orientation of the division plane. Arabidopsis thaliana TAN is localized before prophase until the end of cytokinesis at the cortical division site (CDS), where it appears to help guide the cytokinetic apparatus towards the cortex. We show that TAN is actively recruited to the CDS by distinct mechanisms before and after preprophase band (PPB) disassembly. Colocalization with the PPB is mediated by one region of TAN, whereas another region mediates its recruitment to the CDS during cytokinesis. This second region binds directly to POK1, a kinesin that is required for TAN localization. Although this region of TAN is recruited to the CDS during cytokinesis without first colocalizing with the PPB, pharmacological evidence indicates that the PPB is nevertheless required for both early and late localization of TAN at the CDS. Finally, we show that phosphatase activity is required for maintenance of early but not late TAN localization at the CDS. We propose a new model in which TAN is actively recruited to the CDS by several mechanisms, indicating that the CDS is dynamically modified from prophase through to the completion of cytokinesis.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- University of California, San Diego, Section of Cell and Developmental Biology, 9500 Gilman Dr., La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
75
|
Arsovski AA, Haughn GW, Western TL. Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. PLANT SIGNALING & BEHAVIOR 2010; 5:796-801. [PMID: 20505351 PMCID: PMC3014532 DOI: 10.4161/psb.5.7.11773] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 05/17/2023]
Abstract
Plant cells are encased within a complex polysaccharide wall that strengthens the cell and has key roles in all aspects of plant cell growth, differentiation, and interaction with the environment. This dynamic structure is under continual modification during plant development, and its synthesis and modification require the activity of a myriad of enzymes. The mucilage secretory cells (MSCs) of the Arabidopsis thaliana seed coat provide a model for the discovery of novel genes involved in the synthesis, secretion and modification of cell wall components, particularly pectin. These cells synthesize copious amounts of pectinaceous mucilage during development and, upon hydration of the desiccated seed, the mucilage rapidly swells, bursts from the MSCs and surrounds the seed in a gelatinous capsule. Several genes affecting MSC differentiation, pectin synthesis, and mucilage release have been identified and additional genes involved in these and related processes including pectin secretion and the mechanical alteration of cell walls await to be discovered.
Collapse
|
76
|
Abstract
Microtubules are required throughout plant development for a wide variety of processes, and different strategies have been evolved to visualize them. This chapter summarizes the most effective of these methods and points out potential problems and pitfalls. We outline the freeze-shattering method for immunolabeling microtubules in aerial organs such as leaves that require mechanical permeabilization, discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide different fixation protocols for preserving MTs for transmission electron microscopy including chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining procedures for transmission electron microscopy.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Department of Physiology and Cell Physiology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
77
|
Oh SA, Pal MD, Park SK, Johnson JA, Twell D. The tobacco MAP215/Dis1-family protein TMBP200 is required for the functional organization of microtubule arrays during male germline establishment. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:969-81. [PMID: 20022922 PMCID: PMC2826647 DOI: 10.1093/jxb/erp367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 05/19/2023]
Abstract
The haploid microspore division during pollen development in flowering plants is an intrinsically asymmetric division which establishes the male germline for sexual reproduction. Arabidopsis gem1 mutants lack the male germline as a result of disturbed microspore polarity, division asymmetry, and cytokinesis and represent loss-of-function mutants in MOR1/GEM1, a plant orthologue of the conserved MAP215/Dis1 microtubule associated protein (MAP) family. This provides genetic evidence for the role of MAP215/Dis1 in the organization of gametophytic microtubule arrays, but it has remained unknown how microtubule arrays are affected in gem1 mutant microspores. Here, novel male gametophytic microtubule-reporter Nicotiana tabacum plants were constructed, expressing a green fluorescent protein-alpha-TUBULIN fusion protein (GFP-TUA6) under the control of a microspore-specific promoter. These plants allow effective visualization of all major male gametophytic microtubule arrays and provide useful tools to study the regulation of microtubule arrays by MAPs and other effectors. Depletion of TMBP200, a tobacco homologue of MOR1/GEM1 in gametophytic microtubule-reporter plants using microspore-targeted RNA interference, induced defects in microspore polarity, division asymmetry and cytokinesis that were associated with striking defects in phragmoplast position, orientation, and structure. Our observations further reveal a requirement for TMBP200 in gametophytic spindle organization and a novel role in spindle position and orientation in polarized microspores. These results provide direct evidence for the function of MAP215/Dis1 family protein TMBP200 in the organization of microtubule arrays critical for male germline formation in plants.
Collapse
Affiliation(s)
- Sung Aeong Oh
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - Madhumita Das Pal
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Soon Ki Park
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, South Korea
| | - James Andrew Johnson
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David Twell
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
78
|
Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, Van Damme D, Russinova E. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. PLANT PHYSIOLOGY 2010; 152:553-65. [PMID: 20018602 PMCID: PMC2815867 DOI: 10.1104/pp.109.148643] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/08/2009] [Indexed: 05/18/2023]
Abstract
Cell division depends on the correct localization of the cyclin-dependent kinases that are regulated by phosphorylation, cyclin proteolysis, and protein-protein interactions. Although immunological assays can define cell cycle protein abundance and localization, they are not suitable for detecting the dynamic rearrangements of molecular components during cell division. Here, we applied an in vivo approach to trace the subcellular localization of 60 Arabidopsis (Arabidopsis thaliana) core cell cycle proteins fused to green fluorescent proteins during cell division in tobacco (Nicotiana tabacum) and Arabidopsis. Several cell cycle proteins showed a dynamic association with mitotic structures, such as condensed chromosomes and the preprophase band in both species, suggesting a strong conservation of targeting mechanisms. Furthermore, colocalized proteins were shown to bind in vivo, strengthening their localization-function connection. Thus, we identified unknown spatiotemporal territories where functional cell cycle protein interactions are most likely to occur.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eugenia Russinova
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium (J.B., E.M., M.D., R.D.C., S.R., P.H., D.I., D.V.D., E.R.); and Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, B–9000 Ghent, Belgium (D.G.)
| |
Collapse
|
79
|
BARTON D, GARDINER J, OVERALL R. Towards correlative imaging of plant cortical microtubule arrays: combining ultrastructure with real-time microtubule dynamics. J Microsc 2009; 235:241-51. [DOI: 10.1111/j.1365-2818.2009.03224.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
80
|
Beyer D, Surányi G, Vasas G, Roszik J, Erdodi F, M-Hamvas M, Bácsi I, Bátori R, Serfozo Z, Szigeti ZM, Vereb G, Demeter Z, Gonda S, Máthé C. Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 2009; 54:440-9. [PMID: 19464311 DOI: 10.1016/j.toxicon.2009.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/12/2009] [Indexed: 12/29/2022]
Abstract
We aimed to study the histological and cytological alterations induced by cylindrospermopsin (CYN), a protein synthesis inhibitory cyanotoxin in roots of common reed (Phragmites australis). Reed is an ecologically important emergent aquatic macrophyte, a model for studying cyanotoxin effects. We analyzed the histology and cytology of reed roots originated from tissue cultures and treated with 0.5-40 microg ml(-1) (1.2-96.4 microM) CYN. The cyanotoxin decreased root elongation at significantly lower concentrations than the elongation of shoots. As general stress responses of plants to phytotoxins, CYN increased root number and induced the formation of a callus-like tissue and necrosis in root cortex. Callus-like root cortex consisted of radially swollen cells that correlated with the reorientation of microtubules (MTs) and the decrease of MT density in the elongation zone. Concomitantly, the cyanotoxin did not decrease, rather it increased the amount of beta-tubulin in reed plantlets. CYN caused the formation of double preprophase bands; the disruption of mitotic spindles led to incomplete sister chromatid separation and disrupted phragmoplasts in root tip meristems. This work shows that CYN alters reed growth and anatomy through the alteration of MT organization.
Collapse
Affiliation(s)
- Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen H-4010, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M. The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. PLANT PHYSIOLOGY 2009; 149:1785-96. [PMID: 19176723 PMCID: PMC2663734 DOI: 10.1104/pp.108.135160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 01/23/2009] [Indexed: 05/20/2023]
Abstract
The brush mutant of Lotus japonicus exhibits a temperature-dependent impairment in nodule, root, and shoot development. At 26 degrees C, brush formed fewer nodules, most of which were not colonized by rhizobia bacteria. Primary root growth was retarded and the anatomy of the brush root apical meristem revealed distorted cellular organization and reduced cell expansion. Reciprocal grafting of brush with wild-type plants indicated that this genotype only affected the root and that the shoot phenotype was a secondary effect. The root and nodulation phenotype cosegregated as a single Mendelian trait and the BRUSH gene could be mapped to the short arm of chromosome 2. At 18 degrees C, the brush root anatomy was rescued and similar to the wild type, and primary root length, number of infection threads, and nodule formation were partially rescued. Superficially, the brush root phenotype resembled the ethylene-related thick short root syndrome. However, treatment with ethylene inhibitor did not recover the observed phenotypes, although brush primary roots were slightly longer. The defects of brush in root architecture and infection thread development, together with intact nodule architecture and complete absence of symptoms from shoots, suggest that BRUSH affects cellular differentiation in a tissue-dependent way.
Collapse
|
82
|
Müller S, Wright AJ, Smith LG. Division plane control in plants: new players in the band. Trends Cell Biol 2009; 19:180-8. [PMID: 19285867 DOI: 10.1016/j.tcb.2009.02.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 01/03/2023]
Abstract
Unique mechanisms are used to orient cell division planes in plants. A cortical ring of cytoskeletal filaments called the preprophase band (PPB) predicts the future division plane during G2 and is disassembled as the mitotic spindle forms, leaving behind a 'cortical division site' (CDS) that guides the placement of the new cell wall (cell plate) during cytokinesis. The molecular features of the CDS have remained elusive for decades. Recently, a few proteins have at last been identified that are specifically localized to or excluded from the CDS and that participate in the orientation, attachment or maturation of cell plates. Recent progress has also been made in identifying proteins needed for PPB formation and thus for division plane establishment.
Collapse
Affiliation(s)
- Sabine Müller
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle, Germany.
| | | | | |
Collapse
|
83
|
Krupnova T, Sasabe M, Ghebreghiorghis L, Gruber CW, Hamada T, Dehmel V, Strompen G, Stierhof YD, Lukowitz W, Kemmerling B, Machida Y, Hashimoto T, Mayer U, Jürgens G. Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Curr Biol 2009; 19:518-23. [DOI: 10.1016/j.cub.2009.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/01/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
|
84
|
Ruggenthaler P, Fichtenbauer D, Krasensky J, Jonak C, Waigmann E. Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity. PLANT PHYSIOLOGY 2009; 149:1354-65. [PMID: 19074626 PMCID: PMC2649411 DOI: 10.1104/pp.108.130450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/25/2008] [Indexed: 05/20/2023]
Abstract
AtMPB2C is the Arabidopsis (Arabidopsis thaliana) homolog of MPB2C, a microtubule-associated host factor of tobacco mosaic virus movement protein that was been previously identified in Nicotiana tabacum. To analyze the endogenous function of AtMPB2C and its role in viral infections, transgenic Arabidopsis plant lines stably overexpressing green fluorescent protein (GFP)-AtMPB2C were established. The GFP-AtMPB2C fusion protein was detectable in various cell types and organs and localized at microtubules in a punctuate pattern or in filaments. To determine whether overexpression impacted on the cortical microtubular cytoskeleton, GFP-AtMPB2C-overexpressing plants were compared to known microtubular marker lines. In rapidly elongated cell types such as vein cells and root cells, GFP-AtMPB2C overexpression caused highly unordered assemblies of cortical microtubules, a disturbed, snake-like microtubular shape, and star-like crossing points of microtubules. Phenotypically, GFP-AtMPB2C transgenic plants showed retarded growth but were viable and fertile. Seedlings of GFP-AtMPB2C transgenic plants were characterized by clockwise twisted leaves, clustered stomata, and enhanced drought tolerance. GFP-AtMPB2C-overexpressing plants showed increased resistance against oilseed rape mosaic virus, a close relative of tobacco mosaic virus, but not against cucumber mosaic virus when compared to Arabidopsis wild-type plants. These results suggest that AtMPB2C is involved in the alignment of cortical microtubules, the patterning of stomata, and restricting tobamoviral infections.
Collapse
Affiliation(s)
- Pia Ruggenthaler
- Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
85
|
Guo Y. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103. [PMID: 19106179 PMCID: PMC2707882 DOI: 10.1093/aob/mcp023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
|
86
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
87
|
Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 2009; 19:62-71. [PMID: 19144522 DOI: 10.1016/j.tcb.2008.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 01/22/2023]
Abstract
The shape of plant cells depends on cortical microtubules. Their freedom from central microtubule organizing centres provides a powerful experimental system to study microtubule self-organization. New ideas have emerged from live-cell imaging of microtubules, particularly in the model system Arabidopsis thaliana, revealing the importance of encounters between microtubules in driving self-organization. Encounters are modulated by intrinsic microtubule-assembly dynamics, along with polymer activities that include cortical attachment, bundling and severing. Balancing the activities of microtubule-associated proteins (such as MOR1, CLASP, MAP65s and katanins) that control these processes is crucial for fine-tuning the organization of microtubule arrays. Too much or too little of any given activity tips the balance, with often dramatic effects on array organization, cell morphogenesis and even organ chirality.
Collapse
|
88
|
Wright AJ, Gallagher K, Smith LG. discordia1 and alternative discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize. THE PLANT CELL 2009; 21:234-47. [PMID: 19168717 PMCID: PMC2648079 DOI: 10.1105/tpc.108.062810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/15/2008] [Accepted: 01/06/2009] [Indexed: 05/18/2023]
Abstract
In plants, cell wall placement during cytokinesis is determined by the position of the preprophase band (PPB) and the subsequent expansion of the phragmoplast, which deposits the new cell wall, to the cortical division site delineated by the PPB. New cell walls are often incorrectly oriented during asymmetric cell divisions in the leaf epidermis of maize (Zea mays) discordia1 (dcd1) mutants, and this defect is associated with aberrant PPB formation in asymmetrically dividing cells. dcd1 was cloned and encodes a putative B'' regulatory subunit of the PP2A phosphatase complex highly similar to Arabidopsis thaliana FASS/TONNEAU2, which is required for PPB formation. We also identified alternative discordia1 (add1), a second gene in maize nearly identical to dcd1. While loss of add1 function does not produce a noticeable phenotype, knock down of both genes in add1(RNAi) dcd1(RNAi) plants prevents PPB formation and causes misorientation of symmetric and asymmetric cell divisions. Immunolocalization studies with an antibody that recognizes both DCD1 and ADD1 showed that these proteins colocalize with PPBs and remain at the cortical division site through metaphase. Our results indicate that DCD1 and ADD1 function in PPB formation, that this function is more critical in asymmetrically dividing cells than in symmetrically dividing cells, and that DCD1/ADD1 may have other roles in addition to promoting PPB formation at the cortical division site.
Collapse
Affiliation(s)
- Amanda J Wright
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0116, USA.
| | | | | |
Collapse
|
89
|
Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J, Haseloff J, Scheres B. The NAC Domain Transcription Factors FEZ and SOMBRERO Control the Orientation of Cell Division Plane in Arabidopsis Root Stem Cells. Dev Cell 2008; 15:913-22. [DOI: 10.1016/j.devcel.2008.09.019] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/05/2008] [Accepted: 09/29/2008] [Indexed: 12/18/2022]
|
90
|
Lloyd C, Chan J. The parallel lives of microtubules and cellulose microfibrils. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:641-6. [PMID: 18977684 DOI: 10.1016/j.pbi.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 05/08/2023]
Abstract
A major breakthrough was the recent discovery that cellulose synthases really do move along the plasma membrane upon tracks provided by the underlying cortical microtubules. It emphasized the cytoplasmic contribution to cell wall organization. A growing number of microtubule-associated proteins has been identified and shown to affect the way that microtubules are ordered, with downstream effects on the pattern of growth. The dynamic properties of microtubules turn out to be key in understanding the behaviour of the global array and good progress has been made in deciphering the rules by which the array is self-organized.
Collapse
Affiliation(s)
- Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
91
|
Kawamura E, Wasteneys GO. MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 2008; 121:4114-23. [PMID: 19033380 DOI: 10.1242/jcs.039065] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MOR1, the Arabidopsis thaliana homologue of the Xenopus microtubule-associated protein MAP215, is required for spatial organization of the acentrosomal microtubule arrays of plant cells. To determine how loss of MOR1 function affects microtubule dynamics, we compared various parameters of microtubule dynamics in the temperature-sensitive mor1-1 mutant at its permissive and restrictive temperatures, 21 degrees C and 31 degrees C, respectively. Dynamic events were tracked in live cells expressing either GFP-tagged beta-tubulin or the plus end tracking EB1. Microtubule growth and shrinkage velocities were both dramatically reduced in mor1-1 at 31 degrees C and the incidence and duration of pause events increased. Interestingly, the association of EB1 with microtubule plus ends was reduced in mor1-1 whereas side wall binding increased, suggesting that MOR1 influences the association of EB1 with microtubules either by modulating microtubule plus end structure or by interacting with EB1. Although mor1-1 microtubules grew and shrank more slowly than wild-type microtubules at 21 degrees C, the incidence of pause was not altered, suggesting that pause events, which occur more frequently at 31 degrees C, have a major detrimental role in the spatial organization of cortical microtubules. Extensive increases in microtubule dynamics in wild-type cells when shifted from 21 degrees C to 31 degrees C underline the importance of careful temperature control in live cell imaging.
Collapse
Affiliation(s)
- Eiko Kawamura
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
92
|
Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D. Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. THE PLANT CELL 2008; 20:2146-59. [PMID: 18757558 PMCID: PMC2553619 DOI: 10.1105/tpc.107.056812] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant cells have specific microtubule structures involved in cell division and elongation. The tonneau1 (ton1) mutant of Arabidopsis thaliana displays drastic defects in morphogenesis, positioning of division planes, and cellular organization. These are primarily caused by dysfunction of the cortical cytoskeleton and absence of the preprophase band of microtubules. Characterization of the ton1 insertional mutant reveals complex chromosomal rearrangements leading to simultaneous disruption of two highly similar genes in tandem, TON1a and TON1b. TON1 proteins are conserved in land plants and share sequence motifs with human centrosomal proteins. The TON1 protein associates with soluble and microsomal fractions of Arabidopsis cells, and a green fluorescent protein-TON1 fusion labels cortical cytoskeletal structures, including the preprophase band and the interphase cortical array. A yeast two-hybrid screen identified Arabidopsis centrin as a potential TON1 partner. This interaction was confirmed both in vitro and in plant cells. The similarity of TON1 with centrosomal proteins and its interaction with centrin, another key component of microtubule organizing centers, suggests that functions involved in the organization of microtubule arrays by the centrosome were conserved across the evolutionary divergence between plants and animals.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes UR254, Institut National de la Recherche Agronomique, Centre de Versailles, F-78000 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Pickard BG. "Second extrinsic organizational mechanism" for orienting cellulose: modeling a role for the plasmalemmal reticulum. PROTOPLASMA 2008; 233:7-29. [PMID: 18648731 DOI: 10.1007/s00709-008-0301-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/13/2007] [Indexed: 05/26/2023]
Abstract
Oriented deposition of cellulose fibers by cellulose-synthesizing complexes typically occurs across the plasma membrane from microtubule bundles and is guided by them. However, aligned movement of the complexes can be shown even after applied oryzalin has depolymerized microtubules. Further, there is a claim that when (1) microtubules are depolymerized with oryzalin, (2) a microtubule-orienting stimulus is applied temporarily, and (3) oryzalin is washed out, the newly forming cellulose fibers are oriented with respect to the stimulus. With this in mind, the present paper gathers evidence from a diverse literature to suggest that the plasmalemmal reticulum, a major and structurally important form of cytoskeleton which connects cortical cytoplasm with wall, is a candidate to both independently and cooperatively participate in orienting microtubules and routing movements of cellulose-synthesizing complexes. Critical to this proposed function, the adhesion sites of the plasmalemmal reticulum have some morphological and molecular similarities to animal cell adhesion sites, known to play numerous integrative roles. The reticulum itself may be the morphological manifestation of the so-called lipid raft, previously known only on the basis of biochemical properties. According to the working model, the trusses interconnecting the adhesion sites shape the reticulum into apparently situation-dependent geometries. For example, in nongrowing or nonpolarized cells in which cellulose is deposited in brushy meshes, they form a nonpolar or weakly polar net; however, in elongating cells with oblique or otherwise polarized microtubules and newly forming cellulose fibers, there is suggestive evidence that net formation is dominated by trusses organized with correspondingly biased orientation. Consideration of such geometries and roles of the reticulum suggests several tests that could affirm, deny, or replace key aspects of this proposal to expand the theory of the peripheral cytoskeleton.
Collapse
Affiliation(s)
- Barbara G Pickard
- Gladys Levis Allen Laboratory of Plant Sensory Physiology, Biology Department, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
94
|
Yao M, Wakamatsu Y, Itoh TJ, Shoji T, Hashimoto T. Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci 2008; 121:2372-81. [DOI: 10.1242/jcs.030221] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SPIRAL2 (SPR2) of Arabidopsis thaliana is a microtubule-associated protein containing multiple HEAT repeats that are found only in the plant lineage. We show that SPR2 and SP2L, their closest Arabidopsis homolog, are expressed in various tissues with partially overlapping patterns, and spr2-sp2l double mutants exhibit enhanced right-handed helical growth. Fusion to green fluorescent protein (GFP) expressed under the control of the native regulatory elements showed that both SPR2 and SP2L were localized to cortical microtubules, mainly in particles of various sizes. Along the microtubule, the GFP-fused forms also distributed partly at the plus ends. In the spr2-mutant background, cortical microtubules were less dynamic, and the pause state – in which microtubules undergo neither growth nor shrinkage – increased at the plus ends. The continuous plus-end tracking of GFP-EB1 was occasionally interrupted in the mutant cells. Recombinant SPR2 protein promoted microtubule polymerization, and bound to microtubules with an N-terminal segment that contained two HEAT repeats as well as to those with a C-terminal region. In vitro analyses of microtubule dynamics revealed that SPR2 and SP2L suppressed the pause state at microtubule ends, thereby leading to enhanced microtubule growth. We propose that the SPR2-family proteins act on the pause state to facilitate a transition to microtubule growth.
Collapse
Affiliation(s)
- Maki Yao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoshinori Wakamatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tomohiko J. Itoh
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
95
|
Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y. A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:829-44. [PMID: 18266916 DOI: 10.1111/j.1365-313x.2008.03445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To study cellular morphogenesis genetically, we isolated loss-of-function mutants of Arabidopsis thaliana, designated ibo1. The ibo1 mutations cause local outgrowth in the middle of epidermal cells of the hypocotyls and petioles, resulting in the formation of a protuberance. In Arabidopsis, the hypocotyl epidermis differentiates into two alternate cell files, the stoma cell file and the non-stoma cell file, by a mechanism involving TRANSPARENT TESTA GLABRA1 (TTG1) and GLABRA2 (GL2). The ectopic protuberances of the ibo1 mutants were preferentially induced in the non-stoma cell files, which express GL2. TTG1-dependent epidermal patterning is required for protuberance formation in ibo1, suggesting that IBO1 functions downstream from epidermal cell specification. Pharmacological and genetic analyses demonstrated that ethylene promotes protuberance formation in ibo1, implying that IBO1 acts antagonistically to ethylene to suppress radial outgrowth. IBO1 is identical to NEK6, which encodes a Never In Mitosis A (NIMA)-related protein kinase (Nek) with sequence similarity to Neks involved in microtubule organization in fungi, algae, and animals. The ibo1-1 mutation, in which a conserved Glu residue in the activation loop is substituted by Arg, completely abolishes its kinase activity. The intracellular localization of GFP-tagged NEK6 showed that NEK6 mainly accumulates in cytoplasmic spots associated with cortical microtubules and with a putative component of the gamma-tubulin complex. The localization of NEK6 is regulated by the C-terminal domain, which is truncated in the ibo1-2 allele. These results suggest that the role of NEK6 in the control of cellular morphogenesis is dependent on its kinase action and association with the cortical microtubules.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
96
|
McFarlane HE, Young RE, Wasteneys GO, Samuels AL. Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. PLANTA 2008; 227:1363-75. [PMID: 18309515 DOI: 10.1007/s00425-008-0708-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/05/2008] [Indexed: 05/08/2023]
Abstract
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.
Collapse
|
97
|
Barton DA, Vantard M, Overall RL. Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. THE PLANT CELL 2008; 20:982-94. [PMID: 18430803 PMCID: PMC2390730 DOI: 10.1105/tpc.108.058503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/30/2008] [Accepted: 04/07/2008] [Indexed: 05/20/2023]
Abstract
Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not evident using optical microscopy. Using high-resolution scanning electron microscopy, we analyzed extensive regions of cortical arrays and identified two spatially discrete microtubule subpopulations that exhibited different stabilities. Microtubules that lay adjacent to the plasma membrane were often bundled and more stable than the randomly aligned, discordant microtubules that lay deeper in the cytoplasm. Immunolabeling revealed katanin at microtubule ends, on curves, or at sites along microtubules in line with neighboring microtubule ends. End binding 1 protein also localized along microtubules, at microtubule ends or junctions between microtubules, and on the plasma membrane in direct line with microtubule ends. We show fine bands in vivo that traverse and may encircle microtubules. Comparing confocal and electron microscope images of fluorescently tagged arrays, we demonstrate that optical images are misleading, highlighting the fundamental importance of studying cortical microtubule arrays at high resolution.
Collapse
Affiliation(s)
- Deborah A Barton
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
98
|
Bannigan A, Lizotte-Waniewski M, Riley M, Baskin TI. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. ACTA ACUST UNITED AC 2008; 65:1-11. [PMID: 17968986 DOI: 10.1002/cm.20247] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of animals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broadening of the spindle pole; whereas, loss of function of a KIN-5 causes the formation of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information concerning the roles of selected structural proteins at mitosis as well as recent findings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diversity of cells.
Collapse
Affiliation(s)
- Alex Bannigan
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
99
|
Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B. MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. THE PLANT CELL 2008; 20:423-37. [PMID: 18263774 PMCID: PMC2276437 DOI: 10.1105/tpc.107.057422] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/15/2008] [Accepted: 01/23/2008] [Indexed: 05/18/2023]
Abstract
The infection of plants by obligate parasitic nematodes constitutes an interesting model for investigating plant cytoskeleton functions. Root knot nematodes have evolved the ability to manipulate host functions to their own advantage by redifferentiating root cells into multinucleate and hypertrophied feeding cells. These giant cells result from repeated rounds of karyokinesis without cell division. Detailed functional analyses demonstrated that Arabidopsis thaliana Microtubule-Associated Protein65-3 (MAP65-3) was essential for giant cell ontogenesis and that cytokinesis was initiated but not completed in giant cells. In developing giant cells, MAP65-3 was associated with a novel kind of cell plate-the giant cell mini cell plate-that separates daughter nuclei. In the absence of functional MAP65-3, giant cells developed but failed to fully differentiate and were eventually destroyed. These defects in giant cells impaired the maturation of nematode larvae. Thus, MAP65-3 is essential for giant cell development during root knot nematode infection. Subcellular localization of MAP65-3 and analysis of microtubule organization in the dyc283 T-DNA map65-3 mutant demonstrated that MAP65-3 played a critical role in organizing the mitotic microtubule array during both early and late mitosis in all plant organs. Here, we propose a model for the role of MAP65-3 in giant cell ontogenesis.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301 Interactions Biotiques et Santé Végétale, F-06903 Sophia Antipolis, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sakai T, Honing HVD, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO. Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:157-71. [PMID: 17971038 DOI: 10.1111/j.1365-313x.2007.03327.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The involvement of kinesin motor proteins in both cell-tip growth and cell-shape determination has been well characterized in various organisms. However, the functions of kinesins during cell morphogenesis in higher plants remain largely unknown. In the current study, we demonstrate that an armadillo repeat-containing kinesin-related protein, ARMADILLO REPEAT KINESIN1 (ARK1), is involved in root-hair morphogenesis. Microtubule polymers are more abundant in ark1 null allele root hairs, but analysis shows that these extra microtubules are concentrated in the endoplasm, and not in the cortical array, suggesting that ARK1 regulates tip growth by limiting the assembly and distribution of endoplasmic microtubules. The ARK1 gene has two homologues in the Arabidopsis genome, ARK2 and ARK3, and our results show that ARK2 is involved in root-cell morphogenesis. We further reveal that a NIMA-related protein kinase, NEK6, binds to the ARK family proteins and has pleiotropic effects on epidermal-cell morphogenesis, suggesting that NEK6 is involved in cell morphogenesis in Arabidopsis via microtubule functions associated with these armadillo repeat-containing kinesins. We discuss the function of NIMA-related protein kinases and armadillo repeat-containing kinesins in the cell morphogenesis of eukaryotes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|