51
|
Léon D, Vermeuel MP, Gupta P, Bunagan MR. The effect of salt and temperature on the conformational changes of P1LEA-22, a repeat unit of plant Late Embryogenesis Abundant proteins. J Pept Sci 2020; 26:e3247. [PMID: 32162463 DOI: 10.1002/psc.3247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/11/2022]
Abstract
The effect of choline chloride on the conformational dynamics of the 11-mer repeat unit P1LEA-22 of group 3 Late Embryogenesis Abundant (G3LEA) proteins was studied. Circular dichroism data of aqueous solutions of P1LEA-22 revealed that the peptide favors a polyproline II (PPII) helix structure at low temperature, with increasing temperature promoting a gain of unstructured conformations. Furthermore, increases in sample FeCl3 or choline chloride concentrations causes a gain in PPII helical structure at low temperature. The potential role of PPII structure in intrinsically disordered and G3LEA proteins is discussed, including its ability to easily access other secondary structural conformations such as α-helix and β-sheet, which have been observed for dehydrated G3LEA proteins. The observed effect of FeCl3 and choline chloride salts on P1LEA-22 suggests favorable cation interactions with the PPII helix, supporting ion sequestration as a G3LEA protein function. As choline chloride is suggested to improve salt tolerance and protect cell membrane in plants at low temperature, our results support adoption of the PPII structure as a possible damage-preventing measure of Late Embryogenesis Abundant proteins.
Collapse
Affiliation(s)
- David Léon
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | | - Priya Gupta
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | |
Collapse
|
52
|
Zhao N, Cheng M, Lv W, Wu Y, Liu D, Zhang X. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2263-2275. [PMID: 31986019 DOI: 10.1021/acs.jafc.9b05568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth conditions and age of Panax ginseng are vital for determining the quality of the ginseng plant. However, the considerable difference in price according to the cultivation method and period of P. ginseng leads to its adulteration in the trade market. We herein focused on ginseng peptides and the possibility of these peptides to be used as biomarker(s) for discrimination of P. ginseng. We applied an ultraperformance liquid chromatography-high resolution mass spectrometry-based peptidomics approach to characterize ginseng peptides and discover novel peptide biomarkers for authentication of mountain-cultivated ginseng (MCG). We identified 52 high-confidence peptides and screened 20 characteristic peptides differentially expressed between MCG and cultivated ginseng (CG). Intriguingly, 6 differential peptides were expressed significantly in MCG and originated from dehydrins that accumulated during cold or drought conditions. In addition, 14 other differential peptides that were significantly expressed in CG derived from ginseng major protein, an essential protein for nitrogen storage. These biological associations confirmed the reliability and credibility of the differential peptides. Additionally, we determined several robust peptide biomarkers for discrimination of MCG through a precise selection process. These findings demonstrate the potential of peptide biomarkers for identification and quality control of P. ginseng in addition to ginsenoside analysis.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- University of Chinese Academy of Sciences , Yuquan Road 19 , Beijing 100049 , China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Wei Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- School of Chemistry and Chemical Engineering , North Minzu University , Yinchuan 750021 , China
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- Henan University of Chinese Medicine , Jinshui East Road 156 , Zhengzhou 450046 , China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
53
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
54
|
Genome-wide identification and characterization of late embryogenesis abundant protein-encoding gene family in wheat: Evolution and expression profiles during development and stress. Gene 2020; 736:144422. [PMID: 32007584 DOI: 10.1016/j.gene.2020.144422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are involved in plant stress responses and osmotic regulation, and they are accumulated in the late embryonic stage. There have been no previous genome-wide analyses of the LEA gene family members in wheat and its close relatives. In this study, 281, 53, 151, 89, 99, and 99 LEA genes were identified in wheat (Triticum aestivum), Triticum urartu, Triticum dicoccoides, Aegilops tauschii, barley, and Brachypodium distachyon, respectively. The wheat LEA gene family (TaLEA genes) was divided into eight subfamilies according to the conserved domains. All TaLEA genes contain very few introns (<3) and they are unevenly distributed on the 21 chromosomes. We identified 39 pairs of tandem duplication genes and 9 pairs of segmental duplication genes in the wheat LEA gene family. This proved that the tandem duplication and segmental duplication played an important role in the expansion of the TaLEA gene family. According to published transcriptome data and qRT-PCR analysis, the TaLEA genes exhibit different tissue expression patterns and they are regulated by various abiotic stresses, especially salt and cold stress. This study provides a comprehensive understanding of the wheat LEA gene family.
Collapse
|
55
|
Zhao P, Hou S, Guo X, Jia J, Yang W, Liu Z, Chen S, Li X, Qi D, Liu G, Cheng L. A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC PLANT BIOLOGY 2019; 19:564. [PMID: 31852429 PMCID: PMC6921572 DOI: 10.1186/s12870-019-2159-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. RESULTS In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. CONCLUSIONS Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Management Science And Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Shenglin Hou
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences, Shijiazhuang, China
| | - Xiufang Guo
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhujiang Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
56
|
Liu D, Sun J, Zhu D, Lyu G, Zhang C, Liu J, Wang H, Zhang X, Gao D. Genome-Wide Identification and Expression Profiles of Late Embryogenesis-Abundant (LEA) Genes during Grain Maturation in Wheat ( Triticum aestivum L.). Genes (Basel) 2019; 10:genes10090696. [PMID: 31510067 PMCID: PMC6770980 DOI: 10.3390/genes10090696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.
Collapse
Affiliation(s)
- Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jing Sun
- Yangzhou University, Yangzhou 225009, China.
| | - Dongmei Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Guofeng Lyu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Chunmei Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Hui Wang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Xiao Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Derong Gao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| |
Collapse
|
57
|
Du Q, Campbell M, Yu H, Liu K, Walia H, Zhang Q, Zhang C. Network-based feature selection reveals substructures of gene modules responding to salt stress in rice. PLANT DIRECT 2019; 3:e00154. [PMID: 31417977 PMCID: PMC6689793 DOI: 10.1002/pld3.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 05/27/2023]
Abstract
Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co-expression network and rice phenotypic data under stress has penitential to identify stress-responsive genes, but there is no standard method to associate stress phenotype with gene co-expression network. A novel method for integration of gene co-expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied a LASSO-based method to the gene co-expression network of rice with salt stress to discover key genes and their interactions for salt tolerance-related phenotypes. Submodules in gene modules identified from the co-expression network were selected by the LASSO regression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co-expression network and phenotypic data.
Collapse
Affiliation(s)
- Qian Du
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Malachy Campbell
- Department of Agronomy and HorticultureCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVA
| | - Huihui Yu
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Kan Liu
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Harkamal Walia
- Department of Agronomy and HorticultureCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Qi Zhang
- Department of StatisticsUniversity of NebraskaLincolnNE
| | - Chi Zhang
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| |
Collapse
|
58
|
Afzal S, Sirohi P, Yadav AK, Singh MP, Kumar A, Singh NK. A comparative screening of abiotic stress tolerance in early flowering rice mutants. J Biotechnol 2019; 302:112-122. [DOI: 10.1016/j.jbiotec.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
59
|
Tang J, Sun Z, Chen Q, Damaris RN, Lu B, Hu Z. Nitrogen Fertilizer Induced Alterations in The Root Proteome of Two Rice Cultivars. Int J Mol Sci 2019; 20:ijms20153674. [PMID: 31357526 PMCID: PMC6695714 DOI: 10.3390/ijms20153674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrogen (N) is an essential nutrient for plants and a key limiting factor of crop production. However, excessive application of N fertilizers and the low nitrogen use efficiency (NUE) have brought in severe damage to the environment. Therefore, improving NUE is urgent and critical for the reductions of N fertilizer pollution and production cost. In the present study, we investigated the effects of N nutrition on the growth and yield of the two rice (Oryza sativa L.) cultivars, conventional rice Huanghuazhan and indica hybrid rice Quanliangyou 681, which were grown at three levels of N fertilizer (including 135, 180 and 225 kg/hm2, labeled as N9, N12, N15, respectively). Then, a proteomic approach was employed in the roots of the two rice cultivars treated with N fertilizer at the level of N15. A total of 6728 proteins were identified, among which 6093 proteins were quantified, and 511 differentially expressed proteins were found in the two rice cultivars after N fertilizer treatment. These differentially expressed proteins were mainly involved in ammonium assimilation, amino acid metabolism, carbohydrate metabolism, lipid metabolism, signal transduction, energy production/regulation, material transport, and stress/defense response. Together, this study provides new insights into the regulatory mechanism of nitrogen fertilization in cereal crops.
Collapse
Affiliation(s)
- Jichao Tang
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Zhigui Sun
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Qinghua Chen
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bilin Lu
- Hubei Collaborative Innovation Center for Grain Industry, Agricultural college, Yangtze University, Jingzhou 434025, China.
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
60
|
Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin ZS, Muhammad I, Kolapo K. Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. Int J Mol Sci 2019; 20:E3519. [PMID: 31323764 PMCID: PMC6678081 DOI: 10.3390/ijms20143519] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Drought is the leading threat to agricultural food production, especially in the cultivation of rice, a semi-aquatic plant. Drought tolerance is a complex quantitative trait with a complicated phenotype that affects different developmental stages in plants. The level of susceptibility or tolerance of rice to several drought conditions is coordinated by the action of different drought-responsive genes in relation with other stress components which stimulate signal transduction pathways. Interdisciplinary researchers have broken the complex mechanism of plant tolerance using various methods such as genetic engineering or marker-assisted selection to develop a new cultivar with improved drought resistance. The main objectives of this review were to highlight the current method of developing a durable drought-resistant rice variety through conventional breeding and the use of biotechnological tools and to comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection. The response, indicators, causes, and adaptation processes to the drought stress were discussed in the review. Overall, this review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety. This information could serve as guidance for researchers and rice breeders.
Collapse
Affiliation(s)
- Yusuff Oladosu
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Y Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang, 43400 UPM, Selangor, Malaysia.
| | - Chukwu Samuel
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Arolu Fatai
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Usman Magaji
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Isiaka Kareem
- Department of Agronomy, University of Ilorin, Ilorin, P.M.B. 1515, Nigeria
| | - Zarifth Shafika Kamarudin
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Isma'ila Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Kazeem Kolapo
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
61
|
Sultan A, Andersen B, Christensen JB, Poulsen HD, Svensson B, Finnie C. Quantitative Proteomics Analysis of Barley-Based Liquid Feed and the Effect of Protease Inhibitors and NADPH-Dependent Thioredoxin Reductase/Thioredoxin (NTR/Trx) System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6432-6444. [PMID: 31095381 DOI: 10.1021/acs.jafc.9b01708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid feeding strategies have been devised with the aim of enhancing grain nutrient availability for livestock. It is characterized by a steeping/soaking period that softens the grains and initiates mobilization of seed storage reserves. The present study uses 2D gel-based proteomics to investigate the role of proteolysis and reduction by thioredoxins over a 48 h steeping period by monitoring protein abundance dynamics in barley-based liquid feed samples supplemented with either protease inhibitors or NADPH-dependent thioredoxin reductase/thioredoxin (NTR/Trx). Several full-length storage proteins were only identified in the water-extractable fraction of feed containing protease inhibitors, illustrating significant inhibition of proteolytic activities arising during the steeping period. Application of functional NTR/Trx to liquid feed reductively increased the solubility of known and potentially new Trx-target proteins, e.g., outer membrane protein X, and their susceptibility to proteolysis. Thus, the NTR/Trx system exhibits important potential as a feed additive to enhance nutrient digestibility in monogastric animals.
Collapse
Affiliation(s)
- Abida Sultan
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Birgit Andersen
- Agricultural and Environmental Proteomics, Department of Systems Biology , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Jesper Bjerg Christensen
- Department of Animal Science, Animal Nutrition and Physiology , Aarhus University , Blichers Allé 20, Building S20 , DK-8830 Tjele , Denmark
| | - Hanne Damgaard Poulsen
- Department of Animal Science, Animal Nutrition and Physiology , Aarhus University , Blichers Allé 20, Building S20 , DK-8830 Tjele , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| | - Christine Finnie
- Agricultural and Environmental Proteomics, Department of Systems Biology , Technical University of Denmark , Søltofts Plads, Building 224 , DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
62
|
Pham AT, Maurer A, Pillen K, Brien C, Dowling K, Berger B, Eglinton JK, March TJ. Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC PLANT BIOLOGY 2019; 19:134. [PMID: 30971212 PMCID: PMC6458831 DOI: 10.1186/s12870-019-1723-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can improve adaptation of cultivated barley to drought stress. RESULTS In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC1S3 lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar 'Barke', was evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele. CONCLUSIONS Across all traits, QTL which increased phenotypic values were identified, providing a wider range of genetic diversity for the improvement of drought tolerance in barley.
Collapse
Affiliation(s)
- Anh-Tung Pham
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Chris Brien
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Phenomics and Bioinformatics Research Centre, University of South Australia, North Terrace, Adelaide, SA 5000 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Kate Dowling
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Phenomics and Bioinformatics Research Centre, University of South Australia, North Terrace, Adelaide, SA 5000 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| | - Jason K. Eglinton
- Sugar Research Australia, 71378 Bruce Highway, Gordonvale, QLD 4865 Australia
| | - Timothy J. March
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia
| |
Collapse
|
63
|
Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kavi Kishor PB. Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One 2019; 14:e0209980. [PMID: 30650107 PMCID: PMC6335061 DOI: 10.1371/journal.pone.0209980] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins, the space fillers or molecular shields, are the hydrophilic protective proteins which play an important role during plant development and abiotic stress. The systematic survey and characterization revealed a total of 68 LEA genes, belonging to 8 families in Sorghum bicolor. The LEA-2, a typical hydrophobic family is the most abundant family. All of them are evenly distributed on all 10 chromosomes and chromosomes 1, 2, and 3 appear to be the hot spots. Majority of the S. bicolor LEA (SbLEA) genes are intron less or have fewer introns. A total of 22 paralogous events were observed and majority of them appear to be segmental duplications. Segmental duplication played an important role in SbLEA-2 family expansion. A total of 12 orthologs were observed with Arabidopsis and 13 with Oryza sativa. Majority of them are basic in nature, and targeted by chloroplast subcellular localization. Fifteen miRNAs targeted to 25 SbLEAs appear to participate in development, as well as in abiotic stress tolerance. Promoter analysis revealed the presence of abiotic stress-responsive DRE, MYB, MYC, and GT1, biotic stress-responsive W-Box, hormone-responsive ABA, ERE, and TGA, and development-responsive SKn cis-elements. This reveals that LEA proteins play a vital role during stress tolerance and developmental processes. Using microarray data, 65 SbLEA genes were analyzed in different tissues (roots, pith, rind, internode, shoot, and leaf) which show clear tissue specific expression. qRT-PCR analysis of 23 SbLEA genes revealed their abundant expression in various tissues like roots, stems and leaves. Higher expression was noticed in stems compared to roots and leaves. Majority of the SbLEA family members were up-regulated at least in one tissue under different stress conditions. The SbLEA3-2 is the regulator, which showed abundant expression under diverse stress conditions. Present study provides new insights into the formation of LEAs in S. bicolor and to understand their role in developmental processes under stress conditions, which may be a valuable source for future research.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Silk Park, Prem Nagar, Dehradun, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, India
| |
Collapse
|
64
|
Yuan F, Xu Y, Leng B, Wang B. Beneficial Effects of Salt on Halophyte Growth: Morphology, Cells, and Genes. Open Life Sci 2019; 14:191-200. [PMID: 33817151 PMCID: PMC7874760 DOI: 10.1515/biol-2019-0021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
Halophytes can survive and complete their life cycle in the presence of ≥200 mM NaCl. These remarkable plants have developed various strategies to tolerate salinity and thrive in high-salt environments. At the appropriate levels, salt has a beneficial effect on the vegetative growth of halophytes but inhibits the growth of non-halophytes. In recent years, many studies have focused on elucidating the salt-tolerance mechanisms of halophytes at the molecular, physiological, and individual level. In this review, we focus on the mechanisms, from the macroscopic to the molecular, underlying the successful growth of halophytes in saline environments to explain why salt has beneficial effects on halophytes but harmful effects on non-halophytes. These mechanisms include the specialized organs of halophytes (for example, ion compartmentalization in succulent leaves), their unique structures (salt glands and hydrophobic barriers in roots), and their salt-tolerance genes. We hope to shed light on the use of halophytes for engineering salt-tolerant crops, soil conservation, and the protection of freshwater resources in the near future.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Yanyu Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, 250014, P.R. China
| |
Collapse
|
65
|
Yu Z, Wang X, Tian Y, Zhang D, Zhang L. The functional analysis of a wheat group 3 late embryogenesis abundant protein in Escherichia coli and Arabidopsis under abiotic stresses. PLANT SIGNALING & BEHAVIOR 2019; 14:1667207. [PMID: 31524548 PMCID: PMC6804706 DOI: 10.1080/15592324.2019.1667207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are highly hydrophilic and thermostable proteins that could be induced by abiotic stresses in plants. Previously, we have isolated a group 3 LEA gene WZY3-1 (GenBank: KX090360.1) in wheat. In this study, the recombinant plasmid with WZY3-1 was transformed into Escherichia coli BL21 for protein expression. Furthermore, we transformed WZY3-1 into Arabidopsis. Overexpression of WZY3-1 in E.coli enhanced their tolerance to mannitol and NaCl. WZY3-1 protein could protect lactate dehydrogenase (LDH) under freeze and heat stress. Overexpression of WZY3-1 showed that WZY3-1 could help to improve the drought tolerance of transgenic Arabidopsis. In summary, our works show that WZY3-1 plays an important role in abiotic stress resistance in prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ye Tian
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Dapeng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- CONTACT Dapeng Zhang
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Linsheng Zhang Northwest A&F University, Yangling, China
| |
Collapse
|
66
|
Liu J, Li L, Foroud NA, Gong X, Li C, Li T. Proteomics of Bulked Rachides Combined with Documented QTL Uncovers Genotype Nonspecific Players of the Fusarium Head Blight Responses in Wheat. PHYTOPATHOLOGY 2019; 109:111-119. [PMID: 30040027 DOI: 10.1094/phyto-03-18-0086-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease of wheat that reduces yield and grain quality. High-throughput proteomic techniques have been used to identify a wide range of candidate proteins involved in host resistance. The majority of the published works on the proteomics of the wheat response to Fusarium graminearum infection are case specific. In the current study, a high-throughput quantitative label-free strategy was employed on bulked rachides of F. graminearum-infected wheat collected from multiple genotypes. Differentially accumulated proteins among the following four pools were identified: mock-inoculated FHB-resistant accessions (RM), mock-inoculated FHB-susceptible accessions (SM), F. graminearum-inoculated FHB-resistant accessions (RFg), and F. graminearum-inoculated FHB-susceptible accessions (SFg). Four pairs of comparisons were made: RFg versus RM, SFg versus SM, RM versus SM, and RFg versus SFg. Proteins were projected onto the consensus intervals of previously reported quantitative trait loci in the FHB-resistant pool by blasting against the Chinese Spring reference sequences. In addition to proteins previously reported in the host response to Fusarium spp., new candidates have emerged in association with resistance or susceptibility, including a group 3 late embryogenesis abundant as a resistance-related protein and a purple acid phosphatase as a susceptibility protein. The protein atlas presented here provides new perspectives on the interaction between F. graminearum and wheat.
Collapse
Affiliation(s)
- Jiajun Liu
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Lei Li
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nora A Foroud
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Xuan Gong
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Changcheng Li
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tao Li
- First, second, fourth, fifth, and sixth authors: Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; and third author: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
67
|
Bang SW, Lee D, Jung H, Chung PJ, Kim YS, Choi YD, Suh J, Kim J. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:118-131. [PMID: 29781573 PMCID: PMC6330637 DOI: 10.1111/pbi.12951] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 05/19/2023]
Abstract
Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms. Overexpression of the OsTF1L in rice significantly increased drought tolerance at the vegetative stages of growth and promoted both effective photosynthesis and a reduction in the water loss rate under drought conditions. Importantly, the OsTF1L overexpressing plants showed a higher drought tolerance at the reproductive stage of growth with a higher grain yield than nontransgenic controls under field-drought conditions. Genomewide analysis of OsTF1L overexpression plants revealed up-regulation of drought-inducible, stomatal movement and lignin biosynthetic genes. Overexpression of OsTF1L promoted accumulation of lignin in shoots, whereas the RNAi lines showed opposite patterns of lignin accumulation. OsTF1L is mainly expressed in outer cell layers including the epidermis, and the vasculature of the shoots, which coincides with areas of lignification. In addition, OsTF1L overexpression enhances stomatal closure under drought conditions resulted in drought tolerance. More importantly, OsTF1L directly bound to the promoters of lignin biosynthesis and drought-related genes involving poxN/PRX38, Nodulin protein, DHHC4, CASPL5B1 and AAA-type ATPase. Collectively, our results provide a new insight into the role of OsTF1L in enhancing drought tolerance through lignin biosynthesis and stomatal closure in rice.
Collapse
Affiliation(s)
- Seung Woon Bang
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Center for Nutraceutical and Pharmaceutical MaterialsDivision of BioinformaticsMyongji UniversityYongin, GyeonggiKorea
| | - Dong‐Keun Lee
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
- Present address:
NUS Synthetic Biology for Clinical and Technological InnovationDepartment of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore117596Singapore
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| | - Yang Do Choi
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Joo‐Won Suh
- Center for Nutraceutical and Pharmaceutical MaterialsDivision of BioinformaticsMyongji UniversityYongin, GyeonggiKorea
| | - Ju‐Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
68
|
Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Vara Prasad PV, Siddique KHM, Nayyar H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. PLANT, CELL & ENVIRONMENT 2019; 42:198-211. [PMID: 29744880 DOI: 10.1111/pce.13328] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/23/2018] [Indexed: 05/20/2023]
Abstract
Terminal droughts, along with high temperatures, are becoming more frequent to strongly influence the seed development in cool-season pulses like lentil. In the present study, the lentil plants growing outdoors under natural environment were subjected to following treatments at the time of seed filling till maturity: (a) 28/23 °C day/night temperature as controls; (b) drought stressed, plants maintained at 50% field capacity, under the same growth conditions as in a; (c) heat stressed, 33/28 °C day/night temperature, under the same growth conditions as in a; and (d) drought + heat stressed, plants at 50% field capacity, 33/28 °C day/night temperature, under the same growth conditions as in (a). Both heat and drought resulted in marked reduction in the rate and duration of seed filling to decrease the final seed size; drought resulted in more damage than heat stress; combined stresses accentuated the damage to seed starch, storage proteins and their fractions, minerals, and several amino acids. Comparison of a drought-tolerant and a drought-sensitive genotype indicated the former type showed significantly less damage to various components of seeds, under drought as well as heat stress suggesting a cross tolerance, which was linked to its (drought tolerant) better capacity to retain more water in leaves and hence more photo-assimilation ability, compared with drought-sensitive genotype.
Collapse
Affiliation(s)
- Akanksha Sehgal
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kumari Sita
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Kalpna Bhandari
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | | - Jitendra Kumar
- Indian Institute of Pulses Research, Kanpur, 208024, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
69
|
Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance - current trends and future perspectives. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:415-433. [PMID: 30412849 DOI: 10.1016/j.jplph.2018.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/02/2023]
Abstract
With unfavourable climate changes and an increasing global population, there is a great need for more productive and stress-tolerant crops. As traditional methods of crop improvement have probably reached their limits, a further increase in the productivity of crops is expected to be possible using genetic engineering. The number of potential genes and metabolic pathways, which when genetically modified could result in improved photosynthesis and biomass production, is multiple. Photosynthesis, as the only source of carbon required for the growth and development of plants, attracts much attention is this respect, especially the question concerning how to improve CO2 fixation and limit photorespiration. The most promising direction for increasing CO2 assimilation is implementating carbon concentrating mechanisms found in cyanobacteria and algae into crop plants, while hitherto performed experiments on improving the CO2 fixation versus oxygenation reaction catalyzed by Rubisco are less encouraging. On the other hand, introducing the C4 pathway into C3 plants is a very difficult challenge. Among other points of interest for increased biomass production is engineering of metabolic regulation, certain proteins, nucleic acids or phytohormones. In this respect, enhanced sucrose synthesis, assimilate translocation to sink organs and starch synthesis is crucial, as is genetic engineering of the phytohormone metabolism. As abiotic stress tolerance is one of the key factors determining crop productivity, extensive studies are being undertaken to develop transgenic plants characterized by elevated stress resistance. This can be accomplished due to elevated synthesis of antioxidants, osmoprotectants and protective proteins. Among other promising targets for the genetic engineering of plants with elevated stress resistance are transcription factors that play a key role in abiotic stress responses of plants. In this review, most of the approaches to improving the productivity of plants that are potentially promising and have already been undertaken are described. In addition to this, the limitations faced, potential challenges and possibilities regarding future research are discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Joanna Ciura
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
70
|
|
71
|
Liu X, Zhang R, Ou H, Gui Y, Wei J, Zhou H, Tan H, Li Y. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack. BMC PLANT BIOLOGY 2018; 18:250. [PMID: 30342477 PMCID: PMC6195978 DOI: 10.1186/s12870-018-1428-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/16/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sugarcane is an important sugar and energy crop that is widely planted in the world. Among the environmental stresses, the water-deficit stress is the most limiting to plant productivity. Some groups have used PCR-based and microarray technologies to investigate the gene expression changes of multiple sugarcane cultivars under water stress. Our knowledge about sugarcane genes in response to water deficit is still poor. RESULTS A wild sugarcane type, Saccharum narenga, was selected and treated with drought stress for 22 days. Leaves from drought treated (DTS) and control (CK) plants were obtained for deep sequencing. Paired-end sequencing enabled us to assemble 104,644 genes (N50 = 1605 bp), of which 38,721 were aligned to other databases, such as UniProt, NR, GO, KEGG and Pfam. Single-end and paired-end sequencing identified 30,297 genes (> 5 TPM) in all samples. Compared to CK, 3389 differentially expressed genes (DEGs) were identified in DTS samples, comprising 1772 up-regulated and 1617 down-regulated genes. Functional analysis showed that the DEGs were involved in biological pathways like response to blue light, metabolic pathways and plant hormone signal transduction. We further observed the expression patterns of several important gene families, including aquaporins, late embryogenesis abundant proteins, auxin related proteins, transcription factors (TFs), heat shock proteins, light harvesting chlorophyll a-b binding proteins, disease resistance proteins, and ribosomal proteins. Interestingly, the regulation of genes varied among different subfamilies of aquaporin and ribosomal proteins. In addition, DIVARICATA and heat stress TFs were first reported in sugarcane leaves in response to water deficit. Further, we showed potential miRNAs that might be involved in the regulation of gene changes in sugarcane leaves under the water-deficit stress. CONCLUSIONS This is the first transcriptome study of Saccharum narenga and the assembled genes are a valuable resource for future research. Our findings will improve the understanding of the mechanism of gene regulation in sugarcane leaves under the water-deficit stress. The output of this study will also contribute to the sugarcane breeding program.
Collapse
Affiliation(s)
- Xihui Liu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China
| | - Ronghua Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Huiping Ou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Yiyun Gui
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Jinju Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Hui Zhou
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Hongwei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Yangrui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China
| |
Collapse
|
72
|
Sita K, Sehgal A, Bhandari K, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H. Impact of heat stress during seed filling on seed quality and seed yield in lentil (Lens culinaris Medikus) genotypes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5134-5141. [PMID: 29635707 DOI: 10.1002/jsfa.9054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lentil, a cool-season food legume, is highly sensitive to high temperatures, which drastically reduce biomass and seed yield. The effects of heat stress on qualitative and quantitative aspects of seeds are not yet known. RESULTS In this study, we assessed the effects of high temperatures on quantitative and qualitative aspects of seeds in a heat-tolerant (HT; FLIP2009) and heat-sensitive (HS; IG4242) genotypes in a controlled environment. Initially, the plants were raised in a natural, outdoor environment (22/10 °C mean day/night temperature, 1350 µmol m-2 s-1 light intensity, 60-65% relative humidity) from November to mid-February until 50% flowering (114-115 days after sowing). After that, one set of plants was maintained in a controlled environment (28/23 °C, as mean day and night temperature, 500 µmol m-2 s-1 light intensity, 60-65% relative humidity;control) and one set was exposed to heat stress (33/28 °C, as mean day and night temperature, 500 µmol m-2 s-1 light intensity, 60-65% relative humidity), where they remained until maturity. Compared to control, heat stress reduced the seed growth rate by 30-44% and the seed-filling duration by 5.5-8.1 days, which ultimately reduced the seed yield by 38-58% and individual seed weights by 20-39%. Heat stress significantly damaged cell membranes and reduced chlorophyll concentration and fluorescence, and the photosynthetic rate, which was associated with a significant reduction in relative leaf water content. The proximate analysis of seed reserves showed that heat stress reduced starch (25-43%), protein (26-41%) and fat (39-57%) content, and increased total sugars (36-68%), relative to the controls. Heat stress also inhibited the accumulation of storage proteins including albumins, globulins, prolamins and glutelins (22-42%). Most of the amino acids decreased significantly under heat stress in comparison to control, whereas some, such as proline, followed by glycine, alanine, isoleucine, leucine and lysine, increased. Heat stress reduced Ca (13-28%), Fe (17-52%), P (10-54%), K (12.4-28.3%) and Zn (36-59%) content in seeds, compared to the controls. CONCLUSIONS High temperatures during seed filling are detrimental for seed yield and quality components in lentil genotypes, with severe impacts on heat-sensitive genotypes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | | | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Kadambot Hm Siddique
- UWA Institute of Agriculture and School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
73
|
Wu X, Shi H, Guo Z. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum. FRONTIERS IN PLANT SCIENCE 2018; 9:1355. [PMID: 30298080 PMCID: PMC6160577 DOI: 10.3389/fpls.2018.01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/28/2018] [Indexed: 06/03/2023]
Abstract
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass species. In this study we generated transgenic seashore paspalum overexpressing CdtNF-YC1, a nuclear factor Y transcription factor from hybrid bermudagrass (Cynodon dactylon × Cynodon transvaalensis). DNA blot hybridization and qRT-PCR analysis showed that CdtNF-YC1 was integrated into the genomes of transgenic seashore paspalum plants and expressed. Reduced relative water content (RWC) and survival rate and increased ion leakage were observed in both wild type (WT) and transgenic plants after drought stress, while transgenic plants had higher levels of RWC and survival rate and lower ion leakage than the WT. Maximal photochemical efficiency of photosystem II (F v/F m), chlorophyll concentration and survival rate were decreased after salt stress, while higher levels were maintained in transgenic plants than in WT. In addition, an increased Na+ content and decreased or unaltered K+ in leaves and roots were observed after salt treatment, while lower level of Na+ and higher levels of K+ and K+/ Na+ ratio were maintained in transgenic plants than in WT. The results indicated that overexpressing CdtNF-YC1 resulted in enhanced drought and salt tolerance in transgenic plants. Transcript levels of stress responsive genes including PvLEA3, PvP5CS1, PvABI2, and PvDREB1B were induced in response to drought and salt stress, and higher levels were observed in transgenic seashore paspalum than in WT. The results suggest that the enhanced drought and salt tolerance in transgenic seashore paspalum is associated with induction of a series of stress responsive genes as a result of overexpression of CdtNF-YC1.
Collapse
Affiliation(s)
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
74
|
Wang Z, Yang Q, Shao Y, Zhang B, Feng A, Meng F, Li W. GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Glycine max (L.) Merr.), confers tolerance to abiotic stress. ACTA BIOLOGICA HUNGARICA 2018; 69:270-282. [PMID: 30257578 DOI: 10.1556/018.68.2018.3.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Late embryonic proteins (LEA) gene family was abundant mainly in higher plant embryos, which could protect the embryos from the damage caused by abiotic stress, especially drought and salt stresses. In the present study, GmLEA2-1 was cloned from soybean leaf tissue treated by 10% polyethylene glycol 6000 (PEG6000). The results of quantitative real-time PCR (qRT-PCR) revealed a variety of expression patterns of GmLEA2-1 in various tissues of soybean (root, stem, leaf, flower, pod, early embryo and late embryo). GmLEA2-1 gene shared a lower sequence similarity with other typical LEA genes of same group from different species, but similar functions. Overexpression of GmLEA2-1 in transgenic Arabidopsis thaliana conferred tolerance to drought and salt stresses. The fresh weight and dry weight of seedling, the primary root length and the lateral root density of transgenic Arabidopsis plants were higher than those of wild type Arabidopsis (WT) under drought and salt stresses. Cis-acting regulatory elements in the GmLEA2-1 promoter were also predicted. These data demonstrate that GmLEA2-1 protein play an important role in improving drought and salt tolerance in plants.
Collapse
Affiliation(s)
- Zhikun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Qiang Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Yupeng Shao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Binbin Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Aiyun Feng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| |
Collapse
|
75
|
Xiang DJ, Man LL, Zhang CL, Peng-Liu, Li ZG, Zheng GC. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice. PROTOPLASMA 2018; 255:1089-1106. [PMID: 29417232 DOI: 10.1007/s00709-018-1207-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.
Collapse
Affiliation(s)
- Dian-Jun Xiang
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Li-Li Man
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028042, China.
| | - Chun-Lan Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Peng-Liu
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Zhi-Gang Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Gen-Chang Zheng
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| |
Collapse
|
76
|
The chrysanthemum leaf and root transcript profiling in response to salinity stress. Gene 2018; 674:161-169. [PMID: 29944951 DOI: 10.1016/j.gene.2018.06.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 11/22/2022]
Abstract
RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (> 132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate Ca2+ transport. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed.
Collapse
|
77
|
Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2018; 59:916-929. [PMID: 29432551 DOI: 10.1093/pcp/pcy035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
OsLEA5 acts as a co-regulator of a transcriptional fact ZFP36 to enhance the expression and the activity of ascorbate peroxidase OsAPX1 to regulate seed germination in rice, but it it unknown whether OsLEA5 is also crucial in plant seedlings under stress conditions. To determine this, we generated OsLEA5 overexpression and knockdown rice plants. We found that overexpression of OsLEA5 in rice plants enhanced the tolerance to drought and salt stress; in contrast, an RNA interference (RNAi) mutant of OsLEA5 rice plants was more sensitive to drought and salinity. Further investigation found that various stimuli and ABA could induce OsLEA5 expression, and OsLEA5 acted downstream of ZFP36 to be involved in ABA-induced generation of hydrogen peroxide (H2O2), and the regulation of the expression and the activities of antioxidant defense enzymes in plants leaves, and OsLEA5 contributed to stabilize ZFP36. Additionally, OsLEA5 participates in the accumulation of ABA by up-regulating ABA biosynthesis genes and down-regulating ABA metabolism genes. Moreover, we found that two homologs of OsLEA5 (5C700, short for Os05g0526700; and 5C300, short for Os05g0584300) which were induced by ABA also interacted with ZFP36 separately; interestingly, the nuclear-located 5C700 could also act as a co-activator of ZFP36 to modulate OsAPX1, while 5C300 which was down-regulated by ABA induction acted as an ABA-induced inhibitor of ZFP36 to regulate OsAPX1. Hence, our conclusion is that OsLEA5 participates in the ABA-mediated antioxidant defense to function in drought and salt stress response in rice, and the 5C subgroup of LEAs contribute by acting as co-regulators of the transcription factor ZFP36.
Collapse
Affiliation(s)
- Liping Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - MengYao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xixi Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxiu Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
78
|
Wang X, Sakata K, Komatsu S. An Integrated Approach of Proteomics and Computational Genetic Modification Effectiveness Analysis to Uncover the Mechanisms of Flood Tolerance in Soybeans. Int J Mol Sci 2018; 19:E1301. [PMID: 29701710 PMCID: PMC5983631 DOI: 10.3390/ijms19051301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Flooding negatively affects the growth of soybeans. Recently, omic approaches have been used to study abiotic stress responses in plants. To explore flood-tolerant genes in soybeans, an integrated approach of proteomics and computational genetic modification effectiveness analysis was applied to the soybean (Glycine max L. (Merrill)). Flood-tolerant mutant and abscisic acid (ABA)-treated soybean plants were used as the flood-tolerant materials. Among the primary metabolism, glycolysis, fermentation, and tricarboxylic acid cycle were markedly affected under flooding. Fifteen proteins, which were related to the affected processes, displayed similar protein profiles in the mutant and ABA-treated soybean plants. Protein levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aconitase 1, and 2-oxoglutarate dehydrogenase were higher in flood-tolerant materials than in wild-type soybean plants under flood conditions. These three proteins were positioned in each of the three enzyme groups revealed by our computational genetic modification effectiveness analysis, and the three proteins configured a candidate set of genes to promote flood tolerance. Additionally, transcript levels of GAPDH were similar in flood-tolerant materials and in unstressed plants. These results suggest that proteins related to energy metabolism might play an essential role to confer flood tolerance in soybeans.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0816, Japan.
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
79
|
Huang KC, Lin WC, Cheng WH. Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:40. [PMID: 29490615 PMCID: PMC5831739 DOI: 10.1186/s12870-018-1255-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/21/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the nucleolus involves two major functions: pre-rRNA processing and ribosome biogenesis/assembly, increasing evidence indicates that it also plays important roles in response to abiotic stress. However, the possible regulatory mechanisms underlying the nucleolar proteins responsive to abiotic stress are largely unknown. High salinity is one of the major abiotic stresses, which hinders plant growth and productivity. Here, genetic screening approach was used to identify a salt hypersensitive mutant 9 (sahy9) mutant, also known as apum23, in Arabidopsis thaliana. Functional characterization of SAHY9/APUM23 through analyses of gene/protein expression profiles and metabolites was performed to decipher the possible regulatory mechanisms of the nucleolar protein SAHY9/APUM23 in response to salt stress. RESULTS Seedlings of the sahy9/apum23 mutant displayed postgermination developmental arrest and then became bleached after prolonged culture under various salt stresses. Transcriptomic and proteomic analyses of salt-treated sahy9/apum23 and wild-type seedlings revealed differential expression of genes/proteins that have similar functional categories of biological processes, primarily those involved in cellular and metabolic processes as well as abiotic and biotic stress responses. However, the consistency of differential gene expression at both the transcript and protein levels was low (~ 12%), which suggests the involvement of posttranscriptional processing during the salt response. Furthermore, the altered expression of genes and proteins mediated by SAHY9/APUM23 regarding salt sensitivity involves abscisic acid (ABA) biosynthesis and signaling, abiotic stress responses, and ribosome biogenesis-related genes. Importantly, NCED3, ABI2, PP2CA, and major ABA-responsive marker genes, such as RD20 and RD29B, were down-regulated at both the transcript and protein levels in conjunction with lower contents of ABA and changes in the expression of a subset of LEA proteins in sahy9/apum23 mutants under salt stress. Moreover, the salt hypersensitivity of the sahy9/apum23 mutant was largely rescued by the exogenous application of ABA during salt stress. CONCLUSION Our results revealed that SAHY9/APUM23 regulated the expression of ribosome biogenesis-related genes and proteins, which further affected the ribosome composition and abundance, and potential posttranscriptional regulation. The salt hypersensitivity of sahy9/apum23 is associated with the ABA-mediated signaling pathway and the downstream stress-responsive network of this pathway.
Collapse
Affiliation(s)
- Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
80
|
Yadav R, Lone SA, Gaikwad K, Singh NK, Padaria JC. Transcriptome sequence analysis and mining of SSRs in Jhar Ber (Ziziphus nummularia (Burm.f.) Wight & Arn) under drought stress. Sci Rep 2018; 8:2406. [PMID: 29402924 PMCID: PMC5799245 DOI: 10.1038/s41598-018-20548-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 11/09/2022] Open
Abstract
Ziziphus nummularia (Burm.f.) Wight & Arn., a perennial shrub that thrives in the arid regions, is naturally tolerant to drought. However, there are limited studies on the genomics of drought tolerance in Ziziphus sp. In this study, RNA-sequencing of one month old seedlings treated with PEG 6000 was performed using Roche GS-FLX454 Titanium pyrosequencing. A total of 367,176 raw sequence reads were generated, and upon adapter trimming and quality filtration 351,872 reads were assembled de novo into 32,739 unigenes. Further characterization of the unigenes indicated that 73.25% had significant hits in the protein database. Kyoto encyclopedia of genes and genomes database (KEGG) identified 113 metabolic pathways from the obtained unigenes. A large number of drought-responsive genes were obtained and among them differential gene expression of 16 highly induced genes was validated by qRT-PCR analysis. To develop genic-markers, 3,425 simple sequence repeats (SSRs) were identified in 2,813 unigene sequences. The data generated shall serve as an important reservoir for the identification and characterization of drought stress responsive genes for development of drought tolerant crops.
Collapse
Affiliation(s)
- Radha Yadav
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Showkat Ahmad Lone
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Kishor Gaikwad
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Nagendra Kumar Singh
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India
| | - Jasdeep Chatrath Padaria
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (ICAR-NRCPB), New Delhi, 110012, India.
| |
Collapse
|
81
|
Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D, Zhang G. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:319-330. [PMID: 29289898 DOI: 10.1016/j.plaphy.2017.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
In our previous study, Tibetan wild barley (Hordeum spontaneum L.) has been found to be rich in the elite accessions with strong abiotic stress tolerance, including salt stress tolerance. However, the molecular mechanism of salt tolerance underlying the wild barley remains to be elucidated. In this study, two Tibetan wild barley accessions, XZ26 (salt-tolerant) and XZ169 (salt-sensitive), were used to investigate ionomic, metabolomic and proteomic responses in roots when exposed to 0, 200 (moderate) and 400 mM (high) salinity. XZ26 showed stronger root growth and maintained higher K concentrations when compared with XZ169 under moderate salinity, while no significant difference was found between the two accessions under high salinity. A total of 574 salt-regulated proteins and 153 salt-regulated metabolites were identified in the roots of both accessions based on quantitative proteomic (iTRAQ methods) and metabolomic (GC-TOF/MS) analysis. XZ26 developed its root adaptive strategies mainly by accumulating more compatible solutes such as proline and inositol, acquiring greater antioxidant ability to cope with ROS, and consuming less energy under salt stress for producing biomass. These findings provide a better understanding of molecular responses of root adaptive strategies to salt stress in the wild barley.
Collapse
Affiliation(s)
- Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiahua Yu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liyuan Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
82
|
Matsuo N, Goda N, Shimizu K, Fukuchi S, Ota M, Hiroaki H. Discovery of Cryoprotective Activity in Human Genome-Derived Intrinsically Disordered Proteins. Int J Mol Sci 2018; 19:ijms19020401. [PMID: 29385704 PMCID: PMC5855623 DOI: 10.3390/ijms19020401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are an emerging phenomenon. They may have a high degree of flexibility in their polypeptide chains, which lack a stable 3D structure. Although several biological functions of IDPs have been proposed, their general function is not known. The only finding related to their function is the genetically conserved YSK2 motif present in plant dehydrins. These proteins were shown to be IDPs with the YSK2 motif serving as a core region for the dehydrins’ cryoprotective activity. Here we examined the cryoprotective activity of randomly selected IDPs toward the model enzyme lactate dehydrogenase (LDH). All five IDPs that were examined were in the range of 35–45 amino acid residues in length and were equally potent at a concentration of 50 μg/mL, whereas folded proteins, the PSD-95/Dlg/ZO-1 (PDZ) domain, and lysozymes had no potency. We further examined their cryoprotective activity toward glutathione S-transferase as an example of the other enzyme, and toward enhanced green fluorescent protein as a non-enzyme protein example. We further examined the lyophilization protective activity of the peptides toward LDH, which revealed that some IDPs showed a higher activity than that of bovine serum albumin (BSA). Based on these observations, we propose that cryoprotection is a general feature of IDPs. Our findings may become a clue to various industrial applications of IDPs in the future.
Collapse
Affiliation(s)
- Naoki Matsuo
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Kana Shimizu
- Department of Computer Science and Communications Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Satoshi Fukuchi
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi 371-0816, Japan.
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
- The Structural Biology Research Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
83
|
Sun Z, Li H, Zhang Y, Li Z, Ke H, Wu L, Zhang G, Wang X, Ma Z. Identification of SNPs and Candidate Genes Associated With Salt Tolerance at the Seedling Stage in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1011. [PMID: 30050555 PMCID: PMC6050395 DOI: 10.3389/fpls.2018.01011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/21/2018] [Indexed: 05/02/2023]
Abstract
Salt tolerance in cotton is highly imperative for improvement in the response to decreasing farmland and soil salinization. However, little is known about the genetic basis underlying salt tolerance in cotton, especially the seedling stage. In this study, we evaluated two salt-tolerance-related traits of a natural population comprising 713 upland cotton (Gossypium hirsutum L.) accessions worldwide at the seedling stage and performed a genome-wide association study (GWAS) to identify marker-trait associations under salt stress using the Illumina Infinium CottonSNP63K array. A total of 23 single nucleotide polymorphisms (SNPs) that represented seven genomic regions on chromosomes A01, A10, D02, D08, D09, D10, and D11 were significantly associated with the two salt-tolerance-related traits, relative survival rate (RSR) and salt tolerance level (STL). Of these, the two SNPs i46598Gh and i47388Gh on D09 were simultaneously associated with the two traits. Based on all loci, we screened 280 possible candidate genes showing different expression levels under salt stress. Most of these genes were involved in transcription factors, transporters and enzymes and were previously reported as being involved in plant salt tolerance, such as NAC, MYB, NXH, WD40, CDPK, LEA, and CIPK. We further validated six putative candidate genes by qRT-PCR and found a differential expression level between salt-tolerant and salt-sensitive varieties. Our findings provide valuable information for enhancing the understanding of complicated mechanisms of salt tolerance in G. hirsutum seedlings and cotton salt tolerance breeding by molecular marker-assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiying Ma
- *Correspondence: Xingfen Wang, Zhiying Ma,
| |
Collapse
|
84
|
Kalapos B, Novák A, Dobrev P, Vítámvás P, Marincs F, Galiba G, Vanková R. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background. FRONTIERS IN PLANT SCIENCE 2017; 8:2033. [PMID: 29238355 PMCID: PMC5712565 DOI: 10.3389/fpls.2017.02033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Ferenc Marincs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Radomira Vanková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
85
|
Pathak N, Ikeno S. In vivo expression of a short peptide designed from late embryogenesis abundant protein for enhancing abiotic stress tolerance in Escherichia coli. Biochem Biophys Res Commun 2017; 492:386-390. [DOI: 10.1016/j.bbrc.2017.08.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
86
|
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC. Structural disorder in plant proteins: where plasticity meets sessility. Cell Mol Life Sci 2017; 74:3119-3147. [PMID: 28643166 PMCID: PMC11107788 DOI: 10.1007/s00018-017-2557-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.
Collapse
Affiliation(s)
- Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico.
| | - Cesar L Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Paulette S Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Caspar C C Chater
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| |
Collapse
|
87
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Song J, Mo X, Yang H, Yue L, Song J, Mo B. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses. PLoS One 2017; 12:e0182402. [PMID: 28771553 PMCID: PMC5542650 DOI: 10.1371/journal.pone.0182402] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Collapse
Affiliation(s)
- Jianbo Song
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiang Xi Agricultural University, Nanchang, China
| | - Xiaowei Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiqi Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Luming Yue
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
89
|
Razzaque S, Haque T, Elias SM, Rahman MS, Biswas S, Schwartz S, Ismail AM, Walia H, Juenger TE, Seraj ZI. Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci Rep 2017; 7:46138. [PMID: 28397857 PMCID: PMC5387399 DOI: 10.1038/srep46138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Abstract
Global increase in salinity levels has made it imperative to identify novel sources of genetic variation for tolerance traits, especially in rice. The rice landrace Horkuch, endemic to the saline coastal area of Bangladesh, was used in this study as the source of tolerance in reciprocal crosses with the sensitive but high-yielding IR29 variety for discovering transcriptional variation associated with salt tolerance in the resulting populations. The cytoplasmic effect of the Horkuch background in leaves under stress showed functional enrichment for signal transduction, DNA-dependent regulation and transport activities. In roots the enrichment was for cell wall organization and macromolecule biosynthesis. In contrast, the cytoplasmic effect of IR29 showed upregulation of apoptosis and downregulation of phosphorylation across tissues relative to Horkuch. Differential gene expression in leaves of the sensitive population showed downregulation of GO processes like photosynthesis, ATP biosynthesis and ion transport. Roots of the tolerant plants conversely showed upregulation of GO terms like G-protein coupled receptor pathway, membrane potential and cation transport. Furthermore, genes involved in regulating membrane potentials were constitutively expressed only in the roots of tolerant individuals. Overall our work has developed genetic resources and elucidated the likely mechanisms associated with the tolerance response of the Horkuch genotype.
Collapse
Affiliation(s)
- Samsad Razzaque
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | - Taslima Haque
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | - Sabrina M. Elias
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA
| | - Md. Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Sudip Biswas
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Scott Schwartz
- Department of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583, USA
| | - Thomas E. Juenger
- Department of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | - Zeba I. Seraj
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
90
|
Jiang Q, Li X, Niu F, Sun X, Hu Z, Zhang H. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress. Proteomics 2017; 17. [PMID: 28191739 DOI: 10.1002/pmic.201600265] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/28/2016] [Accepted: 02/07/2017] [Indexed: 11/05/2022]
Abstract
Salinity is a major abiotic stress that affects plant growth and development. Plant roots are the sites of salt uptake. Here, an isobaric tag for a relative and absolute quantitation based proteomic technique was employed to identify the differentially expressed proteins (DEPs) from seedling roots of the salt-tolerant genotype Han 12 and the salt-sensitive genotype Jimai 19 in response to salt treatment. A total of 121 NaCl-responsive DEPs were observed in Han 12 and Jimai 19. The main DEPs were ubiquitination-related proteins, transcription factors, pathogen-related proteins, membrane intrinsic protein transporters and antioxidant enzymes, which may work together to obtain cellular homeostasis in roots and to determine the overall salt tolerance of different wheat varieties in response to salt stress. Functional analysis of three salt-responsive proteins was performed in transgenic plants as a case study to confirm the salt-related functions of the detected proteins. Taken together, the results of this study may be helpful in further elucidating salt tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Qiyan Jiang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Xiaojuan Li
- College of Life Sciences, Agriculture University of Hebei, Baoding, P. R., China
| | - Fengjuan Niu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Xianjun Sun
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Zheng Hu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| | - Hui Zhang
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, P. R., China
| |
Collapse
|
91
|
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, 1066 Bogue Street, Room A328, East Lansing, Michigan 48824, USA
| |
Collapse
|
92
|
Glenn WS, Stone SE, Ho SH, Sweredoski MJ, Moradian A, Hess S, Bailey-Serres J, Tirrell DA. Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue. PLANT PHYSIOLOGY 2017; 173:1543-1553. [PMID: 28104718 PMCID: PMC5338676 DOI: 10.1104/pp.16.01762] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/14/2017] [Indexed: 05/11/2023]
Abstract
Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.
Collapse
Affiliation(s)
- Weslee S Glenn
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Shannon E Stone
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Samuel H Ho
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Michael J Sweredoski
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Annie Moradian
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Sonja Hess
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Julia Bailey-Serres
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| |
Collapse
|
93
|
Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS One 2017; 12:e0171340. [PMID: 28207772 PMCID: PMC5313140 DOI: 10.1371/journal.pone.0171340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a "molecular shield" in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Zhenqing Bai
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Hao Liu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Dapeng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| |
Collapse
|
94
|
Wan D, Wan Y, Yang Q, Zou B, Ren W, Ding Y, Wang Z, Wang R, Wang K, Hou X. Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses. PLoS One 2017; 12:e0169465. [PMID: 28056110 PMCID: PMC5215803 DOI: 10.1371/journal.pone.0169465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022] Open
Abstract
Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2) were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.
Collapse
Affiliation(s)
- Dongli Wan
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongqing Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Zou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Weibo Ren
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yong Ding
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhen Wang
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Kai Wang
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Xiangyang Hou
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- * E-mail:
| |
Collapse
|
95
|
Saucedo AL, Hernández-Domínguez EE, de Luna-Valdez LA, Guevara-García AA, Escobedo-Moratilla A, Bojorquéz-Velázquez E, del Río-Portilla F, Fernández-Velasco DA, Barba de la Rosa AP. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:497. [PMID: 28439280 PMCID: PMC5384071 DOI: 10.3389/fpls.2017.00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 05/06/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated pI of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.
Collapse
Affiliation(s)
- Alma L. Saucedo
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Eric E. Hernández-Domínguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | | | - Abraham Escobedo-Moratilla
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | - Esaú Bojorquéz-Velázquez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
| | | | - Daniel A. Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoCiudad de México, México
| | - Ana P. Barba de la Rosa
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis Potosí, México
- *Correspondence: Ana P. Barba de la Rosa,
| |
Collapse
|
96
|
Li Q, Zhang X, Lv Q, Zhu D, Qiu T, Xu Y, Bao F, He Y, Hu Y. Physcomitrella Patens Dehydrins (PpDHNA and PpDHNC) Confer Salinity and Drought Tolerance to Transgenic Arabidopsis Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1316. [PMID: 28798765 PMCID: PMC5526925 DOI: 10.3389/fpls.2017.01316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/12/2017] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs) as a member of late-embryogenesis-abundant (LEA) proteins are involved in plant abiotic stress tolerance. Two dehydrins PpDHNA and PpDHNC were previously characterized from the moss Physcomitrella patens, which has been suggested to be an ideal model plant to study stress tolerance due to its adaptability to extreme environment. In this study, functions of these two genes were analyzed by heterologous expressions in Arabidopsis. Phenotype analysis revealed that overexpressing PpDHN dehydrin lines had stronger stress resistance than wild type and empty-vector control lines. These stress tolerance mainly due to the up-regulation of stress-related genes expression and mitigation to oxidative damage. The transgenic plants showed strong scavenging ability of reactive oxygen species(ROS), which was attributed to the enhancing of the content of antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT). Further analysis showed that the contents of chlorophyll and proline tended to be the appropriate level (close to non-stress environment) and the malondialdehyde (MDA) were repressed in these transgenic plants after exposure to stress. All these results suggest the PpDHNA and PpDHNC played a crucial role in response to drought and salt stress.
Collapse
|
97
|
John R, Anjum NA, Sopory SK, Akram NA, Ashraf M. Some key physiological and molecular processes of cold acclimation. BIOLOGIA PLANTARUM 2016; 60:603-618. [PMID: 0 DOI: 10.1007/s10535-016-0648-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
98
|
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1787. [PMID: 27965692 PMCID: PMC5126725 DOI: 10.3389/fpls.2016.01787] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/14/2016] [Indexed: 05/18/2023]
Abstract
Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Chantal Ebel
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Mariama Ngom
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
| | - Laurent Laplaze
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche, Diversité, Adaptation, Développement des Plantes (DIADE), MontpellierFrance
| | - Khaled Masmoudi
- Department of Aridland, College of Food and Agriculture, United Arab Emirates UniversityAl Ain, UAE
| |
Collapse
|
99
|
Huang Z, Zhong XJ, He J, Jin SH, Guo HD, Yu XF, Zhou YJ, Li X, Ma MD, Chen QB, Long H. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). PLoS One 2016; 11:e0165953. [PMID: 27829056 PMCID: PMC5102402 DOI: 10.1371/journal.pone.0165953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/20/2016] [Indexed: 01/10/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks)substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulis–B. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA- and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
- * E-mail: (ZH); (HL)
| | - Xiao-Juan Zhong
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Jiao He
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Si-Han Jin
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Han-Du Guo
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yu-Jue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ming-Dong Ma
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Qi-Bing Chen
- College of Landscape Architecture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu 611130, Sichuan, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- * E-mail: (ZH); (HL)
| |
Collapse
|
100
|
Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040054] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|