51
|
Koh HG, Kang NK, Jeon S, Shin SE, Jeong BR, Chang YK. Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:122. [PMID: 31114631 PMCID: PMC6515666 DOI: 10.1186/s13068-019-1462-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/04/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Chlorophylls play important roles in photosynthesis, and thus are critical for growth and related metabolic pathways in photosynthetic organisms. They are particularly important in microalgae, emerging as the next generation feedstock for biomass and biofuels. Nannochloropsis are industrial microalgae for these purposes, but are peculiar in that they lack accessory chlorophylls. In addition, the localization of heterologous proteins to the chloroplast of Nannochloropsis has not been fully studied, due to the secondary plastid surrounded by four membranes. This study addressed questions of correct localization and functional benefits of heterologous expression of chlorophyllide a oxygenase from Chlamydomonas (CrCAO) in Nannochloropsis. RESULTS We cloned CrCAO from Chlamydomonas, which catalyzes oxidation of Chla producing Chlb, and overexpressed it in N. salina to reveal effects of the heterologous Chlb for photosynthesis, growth, and lipid production. For correct localization of CrCAO into the secondary plastid in N. salina, we added the signal-recognition sequence and the transit peptide (cloned from an endogenous chloroplast-localized protein) to the N terminus of CrCAO. We obtained two transformants that expressed CrCAO and produced Chlb. They showed improved growth under medium light (90 μmol/m2/s) conditions, and their photosynthetic efficiency was increased compared to WT. They also showed increased expression of certain photosynthetic proteins, accompanied by an increased maximum electron-transfer rate up to 15.8% and quantum yields up to 17%, likely supporting the faster growth. This improved growth resulted in increased biomass production, and more importantly lipid productivity particularly with medium light. CONCLUSIONS We demonstrated beneficial effects of heterologous expression of CrCAO in Chlb-less organism N. salina, where the newly produced Chlb enhanced photosynthesis and growth. Accordingly, transformants showed improved production of biomass and lipids, important traits of microalgae from the industrial perspectives. Our transformants are the first Nannochloropsis cells that produced Chlb in the whole evolutionary path. We also succeeded in delivering a heterologous protein into the secondary plastid for the first time in Nannochloropsis. Taken together, our data showed that manipulation of photosynthetic pigments, including Chlb, can be employed in genetic improvements of microalgae for production of biofuels and other biomaterials.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
52
|
Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M, Savidor A, Chen J. The Chloroplast Envelope Protease FTSH11 - Interaction With CPN60 and Identification of Potential Substrates. FRONTIERS IN PLANT SCIENCE 2019; 10:428. [PMID: 31024594 PMCID: PMC6459962 DOI: 10.3389/fpls.2019.00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
FTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Zach Adam,
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alona Keren-Paz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mor Rozenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, United States
| |
Collapse
|
53
|
Wang T, Li S, Chen D, Xi Y, Xu X, Ye N, Zhang J, Peng X, Zhu G. Impairment of FtsHi5 Function Affects Cellular Redox Balance and Photorespiratory Metabolism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:2526-2535. [PMID: 30137570 DOI: 10.1093/pcp/pcy174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/18/2018] [Indexed: 05/20/2023]
Abstract
Photorespiration is an essential process for plant photosynthesis, development and growth in aerobic conditions. Recent studies have shown that photorespiration is an open system integrated with the plant primary metabolism network and intracellular redox systems, though the mechanisms of regulating photorespiration are far from clear. Through a forward genetic method, we identified a photorespiratory mutant pr1 (photorespiratory related 1), which produced a chlorotic and smaller photorespiratory growth phenotype with decreased chlorophyll content and accumulation of glycine and serine in ambient air. Morphological and physiological defects in pr1 plants can be largely abolished under elevated CO2 conditions. Genetic mapping and complementation confirmed that PR1 encodes an FtsH (Filamentation temperature-sensitive H)-like protein, FtsHi5. Reduced FtsHi5 expression in DEX-induced RNAi transgenic plants produced a similar growth phenotype with pr1 (ftsHi5-1). Transcriptome analysis suggested a changed expression pattern of redox-related genes and an increased expression of senescence-related genes in DEX: RNAi-FtsHi5 seedlings. Together with the observation that decreased accumulation of D1 and D2 proteins of photosystem II (PSII) and over-accumulation of reactive oxygen species (ROS) in ftsHi5 mutants, we hypothesize that FtsHi5 functions in maintaining the cellular redox balance and thus regulates photorespiratory metabolism.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Sihui Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Dan Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Xi
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Jianhua Zhang
- Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xinxiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
54
|
Butenko Y, Lin A, Naveh L, Kupervaser M, Levin Y, Reich Z, Adam Z. Differential Roles of the Thylakoid Lumenal Deg Protease Homologs in Chloroplast Proteostasis. PLANT PHYSIOLOGY 2018; 178:1065-1080. [PMID: 30237207 PMCID: PMC6236614 DOI: 10.1104/pp.18.00912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 05/18/2023]
Abstract
Deg proteases are involved in protein quality control in prokaryotes. Of the three Arabidopsis (Arabidopsis thaliana) homologs, Deg1, Deg5, and Deg8, located in the thylakoid lumen, Deg1 forms a homohexamer, whereas Deg5 and Deg8 form a heterocomplex. Both Deg1 and Deg5-Deg8 were shown separately to degrade photosynthetic proteins during photoinhibition. To investigate whether Deg1 and Deg5-Deg8 are redundant, a full set of Arabidopsis Deg knockout mutants were generated and their phenotypes were compared. Under all conditions tested, deg1 mutants were affected more than the wild type and deg5 and deg8 mutants. Moreover, overexpression of Deg5-Deg8 could only partially compensate for the loss of Deg1. Comparative proteomics of deg1 mutants revealed moderate up-regulation of thylakoid proteins involved in photoprotection, assembly, repair, and housekeeping and down-regulation of those that form photosynthetic complexes. Quantification of protein levels in the wild type revealed that Deg1 was 2-fold more abundant than Deg5-Deg8. Moreover, recombinant Deg1 displayed higher in vitro proteolytic activity. Affinity enrichment assays revealed that Deg1 was precipitated with very few interacting proteins, whereas Deg5-Deg8 was associated with a number of thylakoid proteins, including D1, OECs, LHCBs, Cyt b 6 f, and NDH subunits, thus implying that Deg5-Deg8 is capable of binding substrates but is unable to degrade them efficiently. This work suggests that differences in protein abundance and proteolytic activity underlie the differential importance of Deg1 and Deg5-Deg8 protease complexes observed in vivo.
Collapse
Affiliation(s)
- Yana Butenko
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Albina Lin
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Leah Naveh
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zach Adam
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
55
|
Kato Y, Hyodo K, Sakamoto W. The Photosystem II Repair Cycle Requires FtsH Turnover through the EngA GTPase. PLANT PHYSIOLOGY 2018; 178:596-611. [PMID: 30131421 PMCID: PMC6181060 DOI: 10.1104/pp.18.00652] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 05/03/2023]
Abstract
Specific degradation of photodamaged D1, the photosystem II (PSII) reaction center protein, is a crucial step in the PSII repair cycle to maintain photosynthesis activity. Processive proteolysis by the FtsH protease is fundamental to cooperative D1 degradation. Here, we attempted to purify the FtsH complex to elucidate its regulation mechanisms and substrate recognition in Arabidopsis (Arabidopsis thaliana). Unlike previously reported prokaryotic and mitochondrial FtsHs, the Arabidopsis chloroplastic FtsH does not appear to form a megacomplex with prohibition-like proteins but instead accumulates as smaller complexes. The copurified fraction was enriched with a partial PSII intermediate presumably undergoing repair, although its precise properties were not fully clarified. In addition, we copurified a bacteria-type GTPase localized in chloroplasts, EngA, and confirmed its interaction with FtsH by subsequent pull-down and bimolecular fluorescence complementation assays. While the engA mutation is embryo lethal, the transgenic lines overexpressing EngA (EngA-OX) showed leaf variegation reminiscent of the variegated mutant lacking FtsH2. EngA-OX was revealed to accumulate more cleaved D1 fragments and reactive oxygen species than the wild type, indicative of compromised PSII repair. Based on these results and the fact that FtsH becomes more stable in EngA-OX, we propose that EngA negatively regulates FtsH stability. We demonstrate that proper FtsH turnover is crucial for PSII repair in the chloroplasts of Arabidopsis. Consistent with the increased turnover of FtsH under high-light conditions in Chlamydomonas reinhardtii, our findings underline the rapid turnover of not only D1 but also FtsH proteases in the PSII repair cycle.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
56
|
Cen W, Liu J, Lu S, Jia P, Yu K, Han Y, Li R, Luo J. Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress. BMC PLANT BIOLOGY 2018; 18:163. [PMID: 30097068 PMCID: PMC6086036 DOI: 10.1186/s12870-018-1381-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. However, common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. To better understand the molecular mechanisms underlying chilling tolerance in wild rice, iTRAQ-based proteomic analysis was performed to examine CTS-12, a major chilling tolerance QTL derived from common wild rice, mediated chilling and recovery-induced differentially expressed proteins (DEPs) between the chilling-tolerant rice line DC90 and the chilling-sensitive 9311. RESULTS Comparative analysis identified 206 and 155 DEPs in 9311 and DC90, respectively, in response to the whole period of chilling and recovery. These DEPs were clustered into 6 functional groups in 9311 and 4 in DC90. The majority were enriched in the 'structural constituent of ribosome', 'protein-chromophore linkage', and 'photosynthesis and light harvesting' categories. Short Time-series Expression Miner (STEM) analysis revealed distinct dynamic responses of both chloroplast photosynthetic and ribosomal proteins between 9311 and DC90. CONCLUSION CTS-12 might mediate the dynamic response of chloroplast photosynthetic and ribosomal proteins in DC90 under chilling (cold acclimation) and recovery (de-acclimation) and thereby enhancing the chilling stress tolerance of this rice line. The identified DEPs and the involvement of CTS-12 in mediating the dynamic response of DC90 at the proteomic level illuminate and deepen the understanding of the mechanisms that underlie chilling stress tolerance in wild rice.
Collapse
Affiliation(s)
- Weijian Cen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Jianbin Liu
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Siyuan Lu
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Peilong Jia
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Kai Yu
- Shanghai MHelix BioTech Co., Ltd, Shanghai, 201900 People’s Republic of China
| | - Yue Han
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004 China
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| |
Collapse
|
57
|
Dogra V, Rochaix JD, Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. PLANT, CELL & ENVIRONMENT 2018; 41:1727-1738. [PMID: 29749057 DOI: 10.1111/pce.13332] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a prime cause of photo-damage of the photosynthetic apparatus. The chlorophyll molecules in the photosystem II reaction center and in the light-harvesting antenna complex are major sources of 1 O2 generation. It has been thought that the generation of 1 O2 mainly takes place in the appressed regions of the thylakoid membranes, namely, the grana core, where most of the active photosystem II complexes are localized. Apart from being a toxic molecule, new evidence suggests that 1 O2 significantly contributes to chloroplast-to-nucleus retrograde signalling that primes acclimation and cell death responses. Interestingly, recent studies reveal that chloroplasts operate two distinct 1 O2 -triggered retrograde signalling pathways in which β-carotene and a nuclear-encoded chloroplast protein EXECUTER1 play essential roles as signalling mediators. The coexistence of these mediators raises several questions: their crosstalk, source(s) of 1 O2 , downstream signalling components, and the perception and reaction mechanism of these mediators towards 1 O2 . In this review, we mainly discuss the molecular genetic basis of the mode of action of these two putative 1 O2 sensors and their corresponding retrograde signalling pathways. In addition, we also propose the possible existence of an alternative source of 1 O2 , which is spatially and functionally separated from the grana core.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
58
|
Nakamura S, Hidema J, Sakamoto W, Ishida H, Izumi M. Selective Elimination of Membrane-Damaged Chloroplasts via Microautophagy. PLANT PHYSIOLOGY 2018; 177:1007-1026. [PMID: 29748433 PMCID: PMC6052986 DOI: 10.1104/pp.18.00444] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/28/2018] [Indexed: 05/20/2023]
Abstract
Plant chloroplasts constantly accumulate damage caused by visible wavelengths of light during photosynthesis. Our previous study revealed that entire photodamaged chloroplasts are subjected to vacuolar digestion through an autophagy process termed chlorophagy; however, how this process is induced and executed remained poorly understood. In this study, we monitored intracellular induction of chlorophagy in Arabidopsis (Arabidopsis thaliana) leaves and found that mesophyll cells damaged by high visible light displayed abnormal chloroplasts with a swollen shape and 2.5 times the volume of normal chloroplasts. In wild-type plants, the activation of chlorophagy decreased the number of swollen chloroplasts. In the autophagy-deficient autophagy mutants, the swollen chloroplasts persisted, and dysfunctional chloroplasts that had lost chlorophyll fluorescence accumulated in the cytoplasm. Chloroplast swelling and subsequent induction of chlorophagy were suppressed by the application of exogenous mannitol to increase the osmotic pressure outside chloroplasts or by overexpression of VESICLE INDUCING PROTEIN IN PLASTID1, which maintains chloroplast envelope integrity. Microscopic observations of autophagy-related membranes showed that swollen chloroplasts were partly surrounded by autophagosomal structures and were engulfed directly by the tonoplast, as in microautophagy. Our results indicate that an elevation in osmotic potential inside the chloroplast due to high visible light-derived envelope damage results in chloroplast swelling and serves as an induction factor for chlorophagy, and this process mobilizes entire chloroplasts via tonoplast-mediated sequestering to avoid the cytosolic accumulation of dysfunctional chloroplasts.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
| | - Jun Hidema
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 710-0046 Kurashiki, Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, 980-8572 Sendai, Japan
| | - Masanori Izumi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8577 Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 980-8578 Sendai, Japan
- PRESTO, Japan Science and Technology Agency, 322-0012 Kawaguchi, Japan
| |
Collapse
|
59
|
Nakamura S, Izumi M. Regulation of Chlorophagy during Photoinhibition and Senescence: Lessons from Mitophagy. PLANT & CELL PHYSIOLOGY 2018; 59:1135-1143. [PMID: 29767769 DOI: 10.1093/pcp/pcy096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Light energy is essential for photosynthetic energy production and plant growth. Chloroplasts in green tissues convert energy from sunlight into chemical energy via the electron transport chain. When the level of light energy exceeds the capacity of the photosynthetic apparatus, chloroplasts undergo a process known as photoinhibition. Since photoinhibition leads to the overaccumulation of reactive oxygen species (ROS) and the spreading of cell death, plants have developed multiple systems to protect chloroplasts from strong light. Recent studies have shown that autophagy, a system that functions in eukaryotes for the intracellular degradation of cytoplasmic components, participates in the removal of damaged chloroplasts. Previous findings also demonstrated an important role for autophagy in chloroplast turnover during leaf senescence. In this review, we describe the turnover of whole chloroplasts, which occurs via a type of autophagy termed chlorophagy. We discuss a possible regulatory mechanism for the induction of chlorophagy based on current knowledge of photoinhibition, leaf senescence and mitophagy-the autophagic turnover of mitochondria in yeast and mammals.
Collapse
Affiliation(s)
- Sakuya Nakamura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Katahira, Sendai, 980-8577 Japan
| | - Masanori Izumi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Katahira, Sendai, 980-8577 Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki Aza Aoba, Sendai, 980-8578 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, 322-0012 Japan
| |
Collapse
|
60
|
Li J, Wang Y, Yu B, Song Q, Liu Y, Chen THH, Li G, Yang X. Ectopic expression of StCBF1and ScCBF1 have different functions in response to freezing and drought stresses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:221-233. [PMID: 29576075 DOI: 10.1016/j.plantsci.2018.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 05/03/2023]
Abstract
Solanum tuberosum potato species constitute the bulk of economically and agronomically important potato production. However, S. tuberosum is a drought- and frost-sensitive species that is incapable of acclimating to the cold. Solanum commersonii is a tuber-bearing wild potato species that exhibits greater frost and drought resistance than S. tuberosum. CBF/DREB (C-REPET BINDING FACTOR/DROUGHT RESPONSE ELEMENT BINGING FACTOR) transcription factors play important roles in response to a variety of abiotic stresses, such as cold, drought and salt stresses. To explore different functions between S. tuberosum CBF1 (StCBF1) and S. commersonii CBF1 (ScCBF1), Arabidopsis was transformed with the ScCBF1 and StCBF1 genes driven by a constitutive CaMV35S promoter. Our results reveal that the ScCBF1 transgenic lines are much more tolerant to freezing and drought than the StCBF1 transgenic lines. The development of transgenic plants was altered, resulting in dwarf phenotype with delayed flowering and thicker and additional rosette leaves. The expression levels of several COR (COLD-RESPONSIVE) genes and development-related genes, including genes that inhibited plant growth (GA2ox7, RGL3) and delayed flowering (FLC) were higher in transgenic plants. These results suggest that these two potato CBF1 play important roles in the plant response to abiotic stress and can influence plant growth and development, and ScCBF1 plays a more pronounced function than StCBF1.
Collapse
Affiliation(s)
- Jian Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Yaqing Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Bo Yu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
61
|
The role of chloroplasts in plant pathology. Essays Biochem 2018; 62:21-39. [PMID: 29273582 DOI: 10.1042/ebc20170020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.
Collapse
|
62
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
63
|
Kojima S, Iwamoto M, Oiki S, Tochigi S, Takahashi H. Thylakoid membranes contain a non-selective channel permeable to small organic molecules. J Biol Chem 2018; 293:7777-7785. [PMID: 29602906 DOI: 10.1074/jbc.ra118.002367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
The thylakoid lumen is a membrane-enclosed aqueous compartment. Growing evidence indicates that the thylakoid lumen is not only a sink for protons and inorganic ions translocated during photosynthetic reactions but also a place for metabolic activities, e.g. proteolysis of photodamaged proteins, to sustain efficient photosynthesis. However, the mechanism whereby organic molecules move across the thylakoid membranes to sustain these lumenal activities is not well understood. In a recent study of Cyanophora paradoxa chloroplasts (muroplasts), we fortuitously detected a conspicuous diffusion channel activity in the thylakoid membranes. Here, using proteoliposomes reconstituted with the thylakoid membranes from muroplasts and from two other phylogenetically distinct organisms, cyanobacterium Synechocystis sp. PCC 6803 and spinach, we demonstrated the existence of nonselective channels large enough for enabling permeation of small organic compounds (e.g. carbohydrates and amino acids with Mr < 1500) in the thylakoid membranes. Moreover, we purified, identified, and characterized a muroplast channel named here CpTPOR. Osmotic swelling experiments revealed that CpTPOR forms a nonselective pore with an estimated radius of ∼1.3 nm. A lipid bilayer experiment showed variable-conductance channel activity with a typical single-channel conductance of 1.8 nS in 1 m KCl with infrequent closing transitions. The CpTPOR amino acid sequence was moderately similar to that of a voltage-dependent anion-selective channel of the mitochondrial outer membrane, although CpTPOR exhibited no obvious selectivity for anions and no voltage-dependent gating. We propose that transmembrane diffusion pathways are ubiquitous in the thylakoid membranes, presumably enabling rapid transfer of various metabolites between the lumen and stroma.
Collapse
Affiliation(s)
- Seiji Kojima
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan, .,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Masayuki Iwamoto
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Saeko Tochigi
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan.,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Hideyuki Takahashi
- the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| |
Collapse
|
64
|
Knopf RR, Adam Z. Lumenal exposed regions of the D1 protein of PSII are long enough to be degraded by the chloroplast Deg1 protease. Sci Rep 2018; 8:5230. [PMID: 29588501 PMCID: PMC5869739 DOI: 10.1038/s41598-018-23578-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Degradation of the D1 protein of photosystem II (PSII) reaction center is a pre-requisite for the repair cycle from photoinhibition. Two types of thylakoid proteases, FtsH and Deg, have been demonstrated to participate in this process. However, the location of the proteolytic sites of the lumenal Deg1 protease within its internal sphere raised the question whether the lumenal-exposed regions of D1 are indeed long enough to reach these sites. Implanting these regions into the stable GFP rendered it sensitive to the presence of Deg1 in vitro, demonstrating that the flexible regions of D1 that protrude into the lumen can penetrate through the three side-openings of Deg1 and reach its internal proteolytic sites. This mode of action, facilitating cooperation between proteases on both sides of the thylakoid membranes, should be applicable to the degradation of other integral thylakoid membrane proteins as well.
Collapse
Affiliation(s)
- Ronit Rimon Knopf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.,Evogene Ltd., Rehovot, 76120, Israel
| | - Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
65
|
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.
Collapse
Affiliation(s)
- Qing-Long Wang
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
66
|
Yamatani H, Kohzuma K, Nakano M, Takami T, Kato Y, Hayashi Y, Monden Y, Okumoto Y, Abe T, Kumamaru T, Tanaka A, Sakamoto W, Kusaba M. Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1027-1035. [PMID: 29304198 PMCID: PMC6019047 DOI: 10.1093/jxb/erx468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
Chlorophyll is an essential molecule for acquiring light energy during photosynthesis. Mutations that result in chlorophyll retention during leaf senescence are called 'stay-green' mutants. One of the several types of stay-green mutants, Type E, accumulates high levels of chlorophyll in the pre-senescent leaves, resulting in delayed yellowing. We isolated delayed yellowing1-1 (dye1-1), a rice mutant whose yellowing is delayed in the field. dye1-1 accumulated more chlorophyll than the wild-type in the pre-senescent and senescent leaves, but did not retain leaf functionality in the 'senescent green leaves', suggesting that dye1-1 is a Type E stay-green mutant. Positional cloning revealed that DYE1 encodes Lhca4, a subunit of the light-harvesting complex I (LHCI). In dye1-1, amino acid substitution occurs at the location of a highly conserved amino acid residue involved in pigment binding; indeed, a severely impaired structure of the PSI-LHCI super-complex in dye1-1 was observed in a blue native PAGE analysis. Nevertheless, the biomass and carbon assimilation rate of dye1-1 were comparable to those in the wild-type. Interestingly, Lhcb1, a trimeric LHCII protein, was highly accumulated in dye1-1, in the chlorophyll-protein complexes. The high accumulation of LHCII in the LHCI mutant dye1 suggests a novel functional interaction between LHCI and LHCII.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaori Kohzuma
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Michiharu Nakano
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan
| | - Yuki Monden
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan
| | | | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
67
|
Moreno JC, Martínez-Jaime S, Schwartzmann J, Karcher D, Tillich M, Graf A, Bock R. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates. PLANT PHYSIOLOGY 2018; 176:1485-1508. [PMID: 29229697 PMCID: PMC5813558 DOI: 10.1104/pp.17.01635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 05/20/2023]
Abstract
The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Silvia Martínez-Jaime
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Alexander Graf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
68
|
Chen J, Burke JJ, Xin Z. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC PLANT BIOLOGY 2018; 18:11. [PMID: 29320985 PMCID: PMC5763919 DOI: 10.1186/s12870-018-1228-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/04/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosynthetic systems are known to be sensitive to high temperature stress. To maintain a relatively "normal" level of photosynthetic activities, plants employ a variety of adaptive mechanisms in response to environmental temperature fluctuations. Previously, we reported that the chloroplast-targeted AtFtsH11 protease played an essential role for Arabidopsis plants to survive at high temperatures and to maintain normal photosynthetic efficiency at moderately elevated temperature. To investigate the factors contributing to the photosynthetic changes in FtsH11 mutant, we performed detailed chlorophyll fluorescence analyses of dark-adapted mutant plants and compared them to Col-0 WT plants under normal, two moderate high temperatures, and a high light conditions. RESULTS We found that mutation of FtsH11 gene caused significant decreases in photosynthetic efficiency of photosystems when environmental temperature raised above optimal. Under moderately high temperatures, the FtsH11 mutant showed significant 1) decreases in electron transfer rates of photosystem II (PSII) and photosystem I (PSI), 2) decreases in photosynthetic capabilities of PSII and PSI, 3) increases in non-photochemical quenching, and a host of other chlorophyll fluorescence parameter changes. We also found that the degrees of these negative changes for utilizing the absorbed light energy for photosynthesis in FtsH11 mutant were correlated with the level and duration of the heat treatments. For plants grown under normal temperature and subjected to the high light treatment, no significant difference in chlorophyll fluorescence parameters was found between the FtsH11 mutant and Col-0 WT plants. CONCLUSIONS The results of this study show that AtFtsH11 is essential for normal photosynthetic function under moderately elevated temperatures. The results also suggest that the network mediated by AtFtsH11 protease plays critical roles for maintaining the thermostability and possibly structural integrity of both photosystems under elevated temperatures. Elucidating the underlying mechanisms of FtsH11 protease in photosystems may lead to improvement of photosynthetic efficiency under heat stress conditions, hence, plant productivity.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX 79415 USA
| | - John J. Burke
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX 79415 USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX 79415 USA
| |
Collapse
|
69
|
Lopes KL, Rodrigues RAO, Silva MC, Braga WGS, Silva-Filho MC. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:504. [PMID: 29720990 PMCID: PMC5915565 DOI: 10.3389/fpls.2018.00504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein), which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP) showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.
Collapse
|
70
|
Kato Y, Sakamoto W. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:855. [PMID: 29973948 PMCID: PMC6019477 DOI: 10.3389/fpls.2018.00855] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis in the thylakoid membranes is dependent on protein quality control mechanisms, which are necessary to remove photodamaged and misfolded proteins. An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a hetero-hexameric complex consisting of four FtsH subunits, which are divided into two types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes and quality control in the photosystem II repair cycle. Furthermore, the involvement of FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling mechanism has been suggested recently. FtsH is also involved in the degradation and assembly of several protein complexes in the photosynthetic electron-transport pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid biogenesis and describe our current understanding of the D1 degradation processes in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH protease activity, which suggest the flexible oligomerization capability of FtsH in the chloroplasts of seed plants.
Collapse
|
71
|
Su YQ, Zhao YJ, Wu N, Chen YE, Zhang WJ, Qiao DR, Cao Y. Chromium removal from solution by five photosynthetic bacteria isolates. Appl Microbiol Biotechnol 2017; 102:1983-1995. [PMID: 29279958 DOI: 10.1007/s00253-017-8690-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 01/26/2023]
Abstract
Biological method has been recognized as a low-cost and ecofriendly approach for removing heavy metals from aqueous wastes. In this study, the ability of five photosynthetic bacteria isolates (strains labeled SC01, HN02, SC05, JS01, and YN01) was examined for their ability to remove Cr from Cr-containing solutions. Furthermore, the possible removal mechanisms were elucidated by comparing chromium removal rates, antioxidant reaction, and accumulation of reactive oxygen species (ROS). Among the five bacteria, strains SC01 and SC05 presented the highest removal rates of chromium ions and the activity of cysteine desulfhydrase under Cr stress. They also showed lower levels of ROS and cell death than the other three bacteria strains under Cr stress. In addition, total bacteriochlorophyll content and activities of six antioxidant enzymes in SC01 were highest among these selected strains. On the contrary, strain HN02 presented the lowest level of Cr removal and the lowest activities of antioxidant enzymes. It also exhibited the highest level of ROS under Cr(VI) stress. Overall, these results show that the strains SC01 and SC05 have good Cr removal ability and could be used for removal of Cr in industrial effluents.
Collapse
Affiliation(s)
- Yan-Qiu Su
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.,Tongwei Group Co. Ltd, Chengdu, Chengdu, China
| | - Yang-Juan Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Nan Wu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wei-Jia Zhang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dai-Rong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
72
|
Kohzuma K, Sato Y, Ito H, Okuzaki A, Watanabe M, Kobayashi H, Nakano M, Yamatani H, Masuda Y, Nagashima Y, Fukuoka H, Yamada T, Kanazawa A, Kitamura K, Tabei Y, Ikeuchi M, Sakamoto W, Tanaka A, Kusaba M. The Non-Mendelian Green Cotyledon Gene in Soybean Encodes a Small Subunit of Photosystem II. PLANT PHYSIOLOGY 2017; 173:2138-2147. [PMID: 28235890 PMCID: PMC5373049 DOI: 10.1104/pp.16.01589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/21/2017] [Indexed: 05/21/2023]
Abstract
Chlorophyll degradation plays important roles in leaf senescence including regulation of degradation of chlorophyll-binding proteins. Although most genes encoding enzymes of the chlorophyll degradation pathway have been identified, the regulation of their activity has not been fully understood. Green cotyledon mutants in legume are stay-green mutants, in which chlorophyll degradation is impaired during leaf senescence and seed maturation. Among them, the soybean (Glycine max) green cotyledon gene cytG is unique because it is maternally inherited. To isolate cytG, we extensively sequenced the soybean chloroplast genome, and detected a 5-bp insertion causing a frame-shift in psbM, which encodes one of the small subunits of photosystem II. Mutant tobacco plants (Nicotiana tabacum) with a disrupted psbM generated using a chloroplast transformation technique had green senescent leaves, confirming that cytG encodes PsbM. The phenotype of cytG was very similar to that of mutant of chlorophyll b reductase catalyzing the first step of chlorophyll b degradation. In fact, chlorophyll b-degrading activity in dark-grown cytG and psbM-knockout seedlings was significantly lower than that of wild-type plants. Our results suggest that PsbM is a unique protein linking photosynthesis in presenescent leaves with chlorophyll degradation during leaf senescence and seed maturation. Additionally, we discuss the origin of cytG, which may have been selected during domestication of soybean.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yutaka Sato
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hisashi Ito
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Ayako Okuzaki
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Mai Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hideki Kobayashi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Michiharu Nakano
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yu Masuda
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yumi Nagashima
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Hiroyuki Fukuoka
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Tetsuya Yamada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Akira Kanazawa
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Keisuke Kitamura
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Yutaka Tabei
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Masahiko Ikeuchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Wataru Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Ayumi Tanaka
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.)
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.)
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.)
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.)
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.)
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.)
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan (K.K., M.N., H.Y., Y.M., Y.N., M.K.);
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8518, Japan (Y.S.);
- Institute of Agrobiological Sciences, NARO Tsukuba, Ibaraki 305-8602, Japan (A.O., Y.T.);
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan (H.I., A.T.);
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (M.W., M.I.);
- NARO Institute of Vegetable and Tea Science, Tsu, Mie 514-2392, Japan (H.F.);
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan (H.K., T.Y., A.K., K.K.); and
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (W.S.)
| |
Collapse
|
73
|
Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. THE PLANT CELL 2017; 29:207-228. [PMID: 28138016 PMCID: PMC5354193 DOI: 10.1105/tpc.16.00768] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
74
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
75
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
76
|
Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Cruz JA, Kramer DM. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase. FRONTIERS IN PLANT SCIENCE 2017; 8:1248. [PMID: 28791032 PMCID: PMC5522872 DOI: 10.3389/fpls.2017.01248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/03/2017] [Indexed: 05/18/2023]
Abstract
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
| | - John E. Froehlich
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- *Correspondence: John E. Froehlich,
| | - Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Cell and Molecular Biology, Michigan State University, East LansingMI, United States
| | - Joshua A. Temple
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
| | - Deepika Minhas
- Department of Horticulture and Landscape Architecture, Washington State University, WashingtonDC, United States
| | - Amit Dhingra
- Department of Horticulture and Landscape Architecture, Washington State University, WashingtonDC, United States
| | - Jeffrey A. Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
| |
Collapse
|
77
|
Dogra V, Duan J, Lee KP, Lv S, Liu R, Kim C. FtsH2-Dependent Proteolysis of EXECUTER1 Is Essential in Mediating Singlet Oxygen-Triggered Retrograde Signaling in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1145. [PMID: 28706530 PMCID: PMC5489589 DOI: 10.3389/fpls.2017.01145] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
Photosystem II reaction center (PSII RC) and light-harvesting complex inevitably generate highly reactive singlet oxygen (1O2) that can impose photo-oxidative damage, especially when the rate of generation exceeds the rate of detoxification. Besides being toxic, 1O2 has also been ascribed to trigger retrograde signaling, which leads to nuclear gene expression changes. Two distinctive molecular components appear to regulate 1O2 signaling: a volatile signaling molecule β-cyclocitral (β-CC) generated upon oxidation of β-carotene by 1O2 in PSII RC assembled in grana core, and a thylakoid membrane-bound FtsH2 metalloprotease that promotes 1O2-triggered signaling through the proteolysis of EXECUTER1 (EX1) proteins associated with PSII in grana margin. The role of FtsH2 protease in 1O2 signaling was established recently in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that generates 1O2 upon dark-to-light shift. The flu mutant lacking functional FtsH2 significantly impairs 1O2-triggered and EX1-mediated cell death. In the present study, the role of FtsH2 in the induction of 1O2 signaling was further clarified by analyzing the FtsH2-dependent nuclear gene expression changes in the flu mutant. Genome-wide transcriptome analysis showed that the inactivation of FtsH2 repressed the majority (85%) of the EX1-dependent 1O2-responsive genes (SORGs), providing direct connection between FtsH2-mediated EX1 degradation and 1O2-triggered gene expression changes. Furthermore, the overlap between β-CC-induced genes and EX1-FtsH2-dependent genes was very limited, further supporting the coexistence of two distinctive 1O2 signaling pathways.
Collapse
Affiliation(s)
- Vivek Dogra
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Keun Pyo Lee
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
| | - Chanhong Kim
- Laboratory of Photosynthesis and Stress Signaling, Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of SciencesShanghai, China
- *Correspondence: Chanhong Kim,
| |
Collapse
|
78
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|
79
|
Zheng K, Zhao J, Lin D, Chen J, Xu J, Zhou H, Teng S, Dong Y. The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures. RICE (NEW YORK, N.Y.) 2016; 9:13. [PMID: 27000876 PMCID: PMC4801845 DOI: 10.1186/s12284-016-0086-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND High temperature affects a broad spectrum of cellular components and metabolism in plants. The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms. Deg proteases are required for the survival of Escherichia coli at high temperatures. However, it is still unclear whether rice Deg proteases are required for chloroplast development under high temperatures. RESULTS In this study, we reported the first rice deg mutant tcm5 (thermo-sensitive chlorophyll-deficient mutant 5) that has an albino phenotype, defective chloroplasts and could not survive after the 4-5 leaf seedling stage when grown at high temperature (32 °C). However, when grown at low temperatures (20 °C), tcm5 has a normal phenotype. Map-based cloning showed that TCM5 encoding a chloroplast-targeted Deg protease protein. The TCM5 transcripts were highly expressed in all green tissues and undetectable in other tissues, showing the tissue-specific expression. In tcm5 mutants grown at high temperatures, the transcript levels of certain genes associated with chloroplast development especially PSII-associated genes were severely affected, but recovered to normal levels at low temperatures. These results showed important role of TCM5 for chloroplast development under high temperatures. CONCLUSIONS The TCM5 encodes chloroplast-targeted Deg protease protein which is important for chloroplast development and the maintenance of PSII function and its disruption would lead to a defective chloroplast and affected expression levels of genes associated with chloroplast development and photosynthesis at early rice seedling stage under high temperatures.
Collapse
Affiliation(s)
- Kailun Zheng
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jian Zhao
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Dongzhi Lin
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jiaying Chen
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jianlong Xu
- />Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081 China
| | - Hua Zhou
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Present address: Agricultural Faculty, Hokkaido University, Sappro, 060-0817 Japan
| | - Sheng Teng
- />Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanjun Dong
- />Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
80
|
Fesenko I, Seredina A, Arapidi G, Ptushenko V, Urban A, Butenko I, Kovalchuk S, Babalyan K, Knyazev A, Khazigaleeva R, Pushkova E, Anikanov N, Ivanov V, Govorun VM. The Physcomitrella patens Chloroplast Proteome Changes in Response to Protoplastation. FRONTIERS IN PLANT SCIENCE 2016; 7:1661. [PMID: 27867392 PMCID: PMC5095126 DOI: 10.3389/fpls.2016.01661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/21/2016] [Indexed: 05/29/2023]
Abstract
Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS), we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC) components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Anna Seredina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Georgij Arapidi
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vasily Ptushenko
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
- Department of Biocatalysis, Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, Russia
| | - Anatoly Urban
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Ivan Butenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| | - Sergey Kovalchuk
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Konstantin Babalyan
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Andrey Knyazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Elena Pushkova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nikolai Anikanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Vadim M. Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical MedicineMoscow, Russia
| |
Collapse
|
81
|
Nishimura K, Kato Y, Sakamoto W. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments. PLANT PHYSIOLOGY 2016; 171:2280-93. [PMID: 27288365 PMCID: PMC4972267 DOI: 10.1104/pp.16.00330] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
82
|
Michoux F, Ahmad N, Wei ZY, Belgio E, Ruban AV, Nixon PJ. Testing the Role of the N-Terminal Tail of D1 in the Maintenance of Photosystem II in Tobacco Chloroplasts. FRONTIERS IN PLANT SCIENCE 2016; 7:844. [PMID: 27446098 PMCID: PMC4914591 DOI: 10.3389/fpls.2016.00844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/30/2016] [Indexed: 05/29/2023]
Abstract
A key step in the repair of photoinactivated oxygen-evolving photosystem II (PSII) complexes is the selective recognition and degradation of the damaged PSII subunit, usually the D1 reaction center subunit. FtsH proteases play a major role in D1 degradation in both cyanobacteria and chloroplasts. In the case of the cyanobacterium Synechocystis sp. PCC 6803, analysis of an N-terminal truncation mutant of D1 lacking 20 amino-acid residues has provided evidence that FtsH complexes can remove damaged D1 in a processive reaction initiated at the exposed N-terminal tail. To test the importance of the N-terminal D1 tail in higher plants, we have constructed the equivalent truncation mutant in tobacco using chloroplast transformation techniques. The resulting mutant grew poorly and only accumulated about 25% of wild-type levels of PSII in young leaves which declined as the leaves grew so that there was little PSII activity in mature leaves. Truncating D1 led to the loss of PSII supercomplexes and dimeric complexes in the membrane. Extensive and rapid non-photochemical quenching (NPQ) was still induced in the mutant, supporting the conclusion that PSII complexes are not required for NPQ. Analysis of leaves exposed to high light indicated that PSII repair in the truncation mutant was impaired at the level of synthesis and/or assembly of PSII but that D1 could still be degraded. These data support the idea that tobacco plants possess a number of back-up and compensatory pathways for removal of damaged D1 upon severe light stress.
Collapse
Affiliation(s)
- Franck Michoux
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Niaz Ahmad
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Zheng-Yi Wei
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| | - Erica Belgio
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, UK
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College LondonLondon, UK
| |
Collapse
|
83
|
Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci U S A 2016; 113:E3792-800. [PMID: 27303039 DOI: 10.1073/pnas.1603562113] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.
Collapse
|
84
|
Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, Leister D, Aro EM. Thylakoid-Bound FtsH Proteins Facilitate Proper Biosynthesis of Photosystem I. PLANT PHYSIOLOGY 2016; 171:1333-43. [PMID: 27208291 PMCID: PMC4902603 DOI: 10.1104/pp.16.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Luca Tadini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Sanna Rantala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Dario Leister
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (S.J., M.S., A.I., S.R., Y.A., E.-M.A.); andPlant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany (L.T., D.L.)
| |
Collapse
|
85
|
Yoshioka-Nishimura M. Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:1115-22. [PMID: 27017619 DOI: 10.1093/pcp/pcw050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
86
|
Cheregi O, Wagner R, Funk C. Insights into the Cyanobacterial Deg/HtrA Proteases. FRONTIERS IN PLANT SCIENCE 2016; 7:694. [PMID: 27252714 PMCID: PMC4877387 DOI: 10.3389/fpls.2016.00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.
Collapse
|
87
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|
88
|
Yamamoto Y. Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids. FRONTIERS IN PLANT SCIENCE 2016; 7:1136. [PMID: 27532009 PMCID: PMC4969305 DOI: 10.3389/fpls.2016.01136] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/18/2016] [Indexed: 05/22/2023]
Abstract
When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e., the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition). When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition). Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.
Collapse
|
89
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
90
|
Kato Y, Ozawa SI, Takahashi Y, Sakamoto W. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. PHOTOSYNTHESIS RESEARCH 2015; 126:409-16. [PMID: 25893898 DOI: 10.1007/s11120-015-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 05/26/2023]
Abstract
Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
91
|
Ma Z, Wu W, Huang W, Huang J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. PHOTOSYNTHESIS RESEARCH 2015; 126:301-310. [PMID: 25733183 DOI: 10.1007/s11120-015-0101-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Chloroplast development is regulated by many biological processes. However, these processes are not fully understood. Leaf variegation mutants have been used as powerful models to elucidate the genetic network of chloroplast development since the degree of leaf variegation is regulated by developmental and environmental cues. The thylakoid formation 1 (thf1) mutant is unique for its variegation in both leaves and cotyledons. Here, we reported a new suppressor gene of thf1 leaf variegation, designated sot8. Map-based cloning and DNA sequencing results showed that a single nucleotide mutation from G to A was detected in the second exon of the gene encoding the ribosomal protein small subunit 9 (PRPS9) in sot8-1, resulting in an amino acid change and a partial loss of PRPS9 function. However, sot8-1 was unable to rescue the thf1 phenotype in low photosystem II activity (Fv/Fm). In addition, we identified two T-DNA insertion mutants defective in plastid-specific ribosomal proteins (PSRPs), psrp2-1, and psrp5-1. Genetic analysis showed that knockdown of PSRP5 expression but not PSRP2 expression suppressed leaf variegation. Northern blotting results showed that precursors of plastid rRNAs over-accumulated in prps9-1 and psrp5-1, indicating that mutations in PRPS9 and PSRP5 cause a defect in rRNA processing. Consistently, inhibition of plastid protein synthesis by spectinomycin led to increased levels of plastid rRNA precursors in wild-type plants, suggesting that rRNA processing and plastid ribosomal assembly are coupled. Taken together, our data indicate that downregulating the expression of specific plastid ribosomal proteins suppresses thf1 leaf variegation, and provide new insights into a role of THF1 in plastid gene expression.
Collapse
Affiliation(s)
- Zhaoxue Ma
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihua Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
92
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
93
|
Gururani MA, Mohanta TK, Bae H. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress. Int J Mol Sci 2015; 16:19055-85. [PMID: 26287167 PMCID: PMC4581286 DOI: 10.3390/ijms160819055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.
Collapse
Affiliation(s)
| | - Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| |
Collapse
|
94
|
Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0317-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
95
|
Derks A, Schaven K, Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:468-485. [DOI: 10.1016/j.bbabio.2015.02.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/26/2022]
|
96
|
Najafpour MM, Fekete M, Sedigh DJ, Aro EM, Carpentier R, Eaton-Rye JJ, Nishihara H, Shen JR, Allakhverdiev SI, Spiccia L. Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catal 2015. [DOI: 10.1021/cs5015157] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Monika Fekete
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Leone Spiccia
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| |
Collapse
|
97
|
Photosystem II repair in plant chloroplasts--Regulation, assisting proteins and shared components with photosystem II biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:900-9. [PMID: 25615587 DOI: 10.1016/j.bbabio.2015.01.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
98
|
Svozil J, Gruissem W, Baerenfaller K. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:376. [PMID: 26074939 PMCID: PMC4446536 DOI: 10.3389/fpls.2015.00376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions.
Collapse
Affiliation(s)
| | | | - Katja Baerenfaller
- *Correspondence: Katja Baerenfaller, Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
99
|
Bhuiyan NH, Friso G, Poliakov A, Ponnala L, van Wijk KJ. MET1 is a thylakoid-associated TPR protein involved in photosystem II supercomplex formation and repair in Arabidopsis. THE PLANT CELL 2015; 27:262-85. [PMID: 25587003 PMCID: PMC4330576 DOI: 10.1105/tpc.114.132787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/09/2014] [Accepted: 12/20/2014] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.
Collapse
Affiliation(s)
- Nazmul H Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
100
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|