51
|
Inada N, Ebine K, Ito E, Nakano A, Ueda T. Constitutive activation of plant-specific RAB5 GTPase confers increased resistance against adapted powdery mildew fungus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:89-95. [PMID: 31275013 PMCID: PMC6543761 DOI: 10.5511/plantbiotechnology.17.0501a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 05/23/2023]
Abstract
The obligate biotrophic fungal pathogens that cause powdery mildew disease establish infection in living host cells by modifying host cellular functions, including membrane trafficking. Previously, we reported that two Arabidopsis thaliana RAB5 GTPases, plant-specific ARA6/RABF1 and canonical ARA7/RABF2b, accumulate at the extrahaustorial membrane (EHM), which surrounds the specialized infection hypha called the haustorium. In this study, we examined the role of ARA6 and ARA7, which regulate distinctive endosomal trafficking pathways, in plant-powdery mildew fungus interactions. Although ARA6- and ARA7-related mutants did not exhibit altered susceptibility to the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii, overexpression of constitutively active ARA6, but not constitutively active ARA7, repressed proliferation of G. orontii. The repression of fungal proliferation was associated with accelerated formation of the callosic encasement around the haustorium. Furthermore, microscopic observation revealed an accumulation of the constitutively active form of ARA6, but not active ARA7, at the EHM. These results indicate that plant-specific ARA6 has a specific role in plant-powdery mildew fungus interaction, and manipulation of ARA6 activity could be a novel tool to overcome this plant disease.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Aichi 444-8585, Japan
| | - Emi Ito
- Department of Natural Sciences, International Christian University, Tokyo 181-8585, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Aichi 444-8585, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
52
|
Abstract
The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.
Collapse
Affiliation(s)
- Claudio Rivero
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Soledad Traubenik
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - María Eugenia Zanetti
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| | - Flavio Antonio Blanco
- a Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas , La Plata , Argentina
| |
Collapse
|
53
|
Pan H, Wang D. Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. NATURE PLANTS 2017; 3:17048. [PMID: 28470183 DOI: 10.1038/nplants.2017.48] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/14/2017] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing symbiosis between legumes and rhizobia is highly relevant to human society and global ecology. One recent breakthrough in understanding the molecular interplay between the plant and the prokaryotic partner is that, at least in certain legumes, the host deploys a number of antimicrobial peptides, called nodule cysteine-rich (NCR) peptides, to control the outcome of this symbiosis. Under this plant dominance, the bacteria are subject to the sub-lethal toxicity of these antimicrobial peptides, resulting in limited reproductive potential. However, recent genetic studies have added unexpected twists to this mechanism: certain NCR peptides are essential for the bacteria to adapt to the intracellular environment needed for a successful symbiosis, and the absence of these peptides can break down the mutualism. Meanwhile, some rhizobial strains have evolved a peptidase to specifically degrade these antimicrobial peptides, allowing the bacteria to escape host control. These findings challenge the preconceptions about 'antimicrobial' peptides, supporting the notion that their role in biotic interactions extends beyond toxicity to the microbial partners.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| |
Collapse
|
54
|
Li B, Liu L, Li Y, Dong X, Zhang H, Chen H, Zheng X, Zhang Z. The FgVps39-FgVam7-FgSso1 Complex Mediates Vesicle Trafficking and Is Important for the Development and Virulence of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:410-422. [PMID: 28437167 DOI: 10.1094/mpmi-11-16-0242-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Luping Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Ying Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xin Dong
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Huaigu Chen
- 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| |
Collapse
|
55
|
Dalla Via V, Traubenik S, Rivero C, Aguilar OM, Zanetti ME, Blanco FA. The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis. PLANT MOLECULAR BIOLOGY 2017; 93:549-562. [PMID: 28074430 DOI: 10.1007/s11103-016-0581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Progression of the infection canal that conducts rhizobia to the nodule primordium requires a functional Rab GTPase located in Golgi/trans-Golgi that also participate in root hair polar growth. Common bean (Phaseolus vulgaris) symbiotically associates with its partner Rhizobium etli, resulting in the formation of root nitrogen-fixing nodules. Compatible bacteria can reach cortical cells in a tightly regulated infection process, in which the specific recognition of signal molecules is a key step to select the symbiotic partner. In this work, we show that RabA2, a monomeric GTPase from common bean, is required for the progression of the infection canal, referred to as the infection thread (IT), toward the cortical cells. Expression of miss-regulated mutant variants of RabA2 resulted in an increased number of abortive infection events, including bursting of ITs and a reduction in the number of nodules. Nodules formed in these plants were small and contained infected cells with disrupted symbiosome membranes, indicating either early senescence of these cells or defects in the formation of the symbiosome membrane during bacterial release. RabA2 localized to mobile vesicles around the IT, but mutations that affect GTP hydrolysis or GTP/GDP exchange modified this localization. Colocalization of RabA2 with ArfA1 and a Golgi marker indicates that RabA2 localizes in Golgi stacks and the trans-Golgi network. Our results suggest that RabA2 is part of the vesicle transport events required to maintain the integrity of the membrane during IT progression.
Collapse
Affiliation(s)
- Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Soledad Traubenik
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Claudio Rivero
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, calle 115 y 49 s/n, CP 1900, La Plata, Argentina.
| |
Collapse
|
56
|
Gavrin A, Kulikova O, Bisseling T, Fedorova EE. Interface Symbiotic Membrane Formation in Root Nodules of Medicago truncatula: the Role of Synaptotagmins MtSyt1, MtSyt2 and MtSyt3. FRONTIERS IN PLANT SCIENCE 2017; 8:201. [PMID: 28265280 PMCID: PMC5316549 DOI: 10.3389/fpls.2017.00201] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 05/23/2023]
Abstract
UNLABELLED Symbiotic bacteria (rhizobia) are maintained and conditioned to fix atmospheric nitrogen in infected cells of legume root nodules. Rhizobia are confined to the asymmetrical protrusions of plasma membrane (PM): infection threads (IT), cell wall-free unwalled droplets and symbiosomes. These compartments rapidly increase in surface and volume due to the microsymbiont expansion, and remarkably, the membrane resources of the host cells are targeted to interface membrane quite precisely. We hypothesized that the change in the membrane tension around the expanding microsymbionts creates a vector for membrane traffic toward the symbiotic interface. To test this hypothesis, we selected calcium sensors from the group of synaptotagmins: MtSyt1, Medicago truncatula homolog of AtSYT1 from Arabidopsis thaliana known to be involved in membrane repair, and two other homologs expressed in root nodules: MtSyt2 and MtSyt3. Here we show that MtSyt1, MtSyt2, and MtSyt3 are expressed in the expanding cells of the meristem, zone of infection and proximal cell layers of zone of nitrogen fixation (MtSyt1, MtSyt3). All three GFP-tagged proteins delineate the interface membrane of IT and unwalled droplets and create a subcompartments of PM surrounding these structures. The localization of MtSyt1 by EM immunogold labeling has shown the signal on symbiosome membrane and endoplasmic reticulum (ER). To specify the role of synaptotagmins in interface membrane formation, we compared the localization of MtSyt1, MtSyt3 and exocyst subunit EXO70i, involved in the tethering of post-Golgi secretory vesicles and operational in tip growth. The localization of EXO70i in root nodules and arbusculated roots was strictly associated with the tips of IT and the tips of arbuscular fine branches, but the distribution of synaptotagmins on membrane subcompartments was broader and includes lateral parts of IT, the membrane of unwalled droplets as well as the symbiosomes. The double silencing of synaptotagmins caused a delay in rhizobia release and blocks symbiosome maturation confirming the functional role of synaptotagmins. IN CONCLUSION synaptotagmin-dependent membrane fusion along with tip-targeted exocytosis is operational in the formation of symbiotic interface.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
- Sainsbury Laboratory, University of CambridgeCambridge, UK
| | - Olga Kulikova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| | - Elena E. Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
57
|
Bracuto V, Appiano M, Zheng Z, Wolters AMA, Yan Z, Ricciardi L, Visser RGF, Pavan S, Bai Y. Functional Characterization of a Syntaxin Involved in Tomato ( Solanum lycopersicum) Resistance against Powdery Mildew. FRONTIERS IN PLANT SCIENCE 2017; 8:1573. [PMID: 28979270 PMCID: PMC5611543 DOI: 10.3389/fpls.2017.01573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 05/14/2023]
Abstract
Specific syntaxins, such as Arabidopsis AtPEN1 and its barley ortholog ROR2, play a major role in plant defense against powdery mildews. Indeed, the impairment of these genes results in increased fungal penetration in both host and non-host interactions. In this study, a genome-wide survey allowed the identification of 21 tomato syntaxins. Two of them, named SlPEN1a and SlPEN1b, are closely related to AtPEN1. RNAi-based silencing of SlPEN1a in a tomato line carrying a loss-of-function mutation of the susceptibility gene SlMLO1 led to compromised resistance toward the tomato powdery mildew fungus Oidium neolycopersici. Moreover, it resulted in a significant increase in the penetration rate of the non-adapted powdery mildew fungus Blumeria graminis f. sp. hordei. Codon-based evolutionary analysis and multiple alignments allowed the detection of amino acid residues that are under purifying selection and are specifically conserved in syntaxins involved in plant-powdery mildew interactions. Our findings provide both insights on the evolution of syntaxins and information about their function which is of interest for future studies on plant-pathogen interactions and tomato breeding.
Collapse
Affiliation(s)
- Valentina Bracuto
- Section of Genetics and Plant Breeding, Department of Plant, Soil and Food Science, University of Bari Aldo MoroBari, Italy
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| | - Michela Appiano
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| | - Zheng Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | | | - Zhe Yan
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
| | - Luigi Ricciardi
- Section of Genetics and Plant Breeding, Department of Plant, Soil and Food Science, University of Bari Aldo MoroBari, Italy
| | | | - Stefano Pavan
- Section of Genetics and Plant Breeding, Department of Plant, Soil and Food Science, University of Bari Aldo MoroBari, Italy
| | - Yuling Bai
- Plant Breeding, Wageningen University & ResearchWageningen, Netherlands
- *Correspondence: Yuling Bai,
| |
Collapse
|
58
|
Tripathy MK, Tiwari BS, Reddy MK, Deswal R, Sopory SK. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. PROTOPLASMA 2017; 254:109-124. [PMID: 26666551 DOI: 10.1007/s00709-015-0914-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 05/23/2023]
Abstract
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89-96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33-53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.
Collapse
Affiliation(s)
- Manas Kumar Tripathy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Budhi Sagar Tiwari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malireddy K Reddy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Deswal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sudhir K Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
59
|
Inada N, Betsuyaku S, Shimada TL, Ebine K, Ito E, Kutsuna N, Hasezawa S, Takano Y, Fukuda H, Nakano A, Ueda T. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens. PLANT & CELL PHYSIOLOGY 2016; 57:1854-64. [PMID: 27318282 DOI: 10.1093/pcp/pcw107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/24/2016] [Indexed: 05/08/2023]
Abstract
RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192 Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Betsuyaku
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| | - Takashi L Shimada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Department of Life Science, International Christian University, Mitaka, Tokyo, 181-8585 Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Live Cell Super-resolution Live Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| |
Collapse
|
60
|
Huisman R, Hontelez J, Mysore KS, Wen J, Bisseling T, Limpens E. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. THE NEW PHYTOLOGIST 2016; 211:1338-51. [PMID: 27110912 DOI: 10.1111/nph.13973] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobium bacteria are accommodated in specialized membrane compartments that form a host-microbe interface. To better understand how these interfaces are made, we studied the regulation of exocytosis during interface formation. We used a phylogenetic approach to identify target soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (t-SNAREs) that are dedicated to symbiosis and used cell-specific expression analysis together with protein localization to identify t-SNAREs that are present on the host-microbe interface in Medicago truncatula. We investigated the role of these t-SNAREs during the formation of a host-microbe interface. We showed that multiple syntaxins are present on the peri-arbuscular membrane. From these, we identified SYNTAXIN OF PLANTS 13II (SYP13II) as a t-SNARE that is essential for the formation of a stable symbiotic interface in both AM and rhizobium symbiosis. In most dicot plants, the SYP13II transcript is alternatively spliced, resulting in two isoforms, SYP13IIα and SYP13IIβ. These splice-forms differentially mark functional and degrading arbuscule branches. Our results show that vesicle traffic to the symbiotic interface is specialized and required for its maintenance. Alternative splicing of SYP13II allows plants to replace a t-SNARE involved in traffic to the plasma membrane with a t-SNARE that is more stringent in its localization to functional arbuscules.
Collapse
Affiliation(s)
- Rik Huisman
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Jan Hontelez
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Kirankumar S Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Erik Limpens
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
61
|
Gavrin A, Chiasson D, Ovchinnikova E, Kaiser BN, Bisseling T, Fedorova EE. VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules. THE NEW PHYTOLOGIST 2016; 210:1011-21. [PMID: 26790563 DOI: 10.1111/nph.13837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
In root nodules rhizobia enter host cells via infection threads. The release of bacteria to a host cell is possible from cell wall-free regions of the infection thread. We hypothesized that the VAMP721d and VAMP721e exocytotic pathway, identified before in Medicago truncatula, has a role in the local modification of cell wall during the release of rhizobia. To clarify the role of VAMP721d and VAMP721e we used Glycine max, a plant with a determinate type of nodule. The localization of the main polysaccharide compounds of primary cell walls was analysed in control vs nodules with partially silenced GmVAMP721d. The silencing of GmVAMP721d blocked the release of rhizobia. Instead of rhizobia-containing membrane compartments - symbiosomes - the infected cells contained big clusters of bacteria embedded in a matrix of methyl-esterified and de-methyl-esterified pectin. These clusters were surrounded by a membrane. We found that GmVAMP721d-positive vesicles were not transporting methyl-esterified pectin. We hypothesized that they may deliver the enzymes involved in pectin turnover. Subsequently, we found that GmVAMP721d is partly co-localized with pectate lyase. Therefore, the biological role of VAMP721d may be explained by its action in delivering pectin-modifying enzymes to the site of release.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - David Chiasson
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Evgenia Ovchinnikova
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Brent N Kaiser
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, 5050, Australia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Elena E Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
62
|
Pan H, Oztas O, Zhang X, Wu X, Stonoha C, Wang E, Wang B, Wang D. A symbiotic SNARE protein generated by alternative termination of transcription. NATURE PLANTS 2016; 2:15197. [PMID: 27249189 DOI: 10.1038/nplants.2015.197] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/13/2015] [Indexed: 05/08/2023]
Abstract
Many microbes interact with their hosts across a membrane interface, which is often distinct from existing membranes. Understanding how this interface acquires its identity has significant implications. In the symbiosis between legumes and rhizobia, the symbiosome encases the intracellular bacteria and receives host secretory proteins important for bacterial development. We show that the Medicago truncatula SYNTAXIN 132 (SYP132) gene undergoes alternative cleavage and polyadenylation during transcription, giving rise to two target-membrane soluble NSF attachment protein receptor (t-SNARE) isoforms. One of these isoforms, SYP132A, is induced during the symbiosis, is able to localize to the peribacteroid membrane, and is required for the maturation of symbiosomes into functional forms. The second isoform, SYP132C, has important functions unrelated to symbiosis. The SYP132A sequence is broadly found in flowering plants that form arbuscular mycorrhizal symbiosis, an ancestral mutualism between soil fungi and most land plants. SYP132A silencing severely inhibited arbuscule colonization, indicating that SYP132A is an ancient factor specifying plant-microbe interfaces.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Onur Oztas
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Christina Stonoha
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| |
Collapse
|
63
|
Li Y, Li B, Liu L, Chen H, Zhang H, Zheng X, Zhang Z. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep 2015; 5:18101. [PMID: 26657788 PMCID: PMC4674805 DOI: 10.1038/srep18101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Luping Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
64
|
Wang J, Si Z, Li F, Xiong X, Lei L, Xie F, Chen D, Li Y, Li Y. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus. PLANT MOLECULAR BIOLOGY 2015; 88:515-529. [PMID: 26105827 DOI: 10.1007/s11103-015-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation.
Collapse
Affiliation(s)
- Jianyun Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gavrin A, Jansen V, Ivanov S, Bisseling T, Fedorova E. ARP2/3-Mediated Actin Nucleation Associated With Symbiosome Membrane Is Essential for the Development of Symbiosomes in Infected Cells of Medicago truncatula Root Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:605-14. [PMID: 25608180 DOI: 10.1094/mpmi-12-14-0402-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The nitrogen-fixing rhizobia in the symbiotic infected cells of root nodules are kept in membrane compartments derived from the host cell plasma membrane, forming what are known as symbiosomes. These are maintained as individual units, with mature symbiosomes having a specific radial position in the host cell cytoplasm. The mechanisms that adapt the host cell architecture to accommodate intracellular bacteria are not clear. The intracellular organization of any cell depends heavily on the actin cytoskeleton. Dynamic rearrangement of the actin cytoskeleton is crucial for cytoplasm organization and intracellular trafficking of vesicles and organelles. A key component of the actin cytoskeleton rearrangement is the ARP2/3 complex, which nucleates new actin filaments and forms branched actin networks. To clarify the role of the ARP2/3 complex in the development of infected cells and symbiosomes, we analyzed the pattern of actin microfilaments and the functional role of ARP3 in Medicago truncatula root nodules. In infected cells, ARP3 protein and actin were spatially associated with maturing symbiosomes. Partial ARP3 silencing causes defects in symbiosome development; in particular, ARP3 silencing disrupts the final differentiation steps in functional maturation into nitrogen-fixing units.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Veerle Jansen
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Sergey Ivanov
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Elena Fedorova
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
66
|
Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 2015; 14:1301-22. [PMID: 25724908 PMCID: PMC4424401 DOI: 10.1074/mcp.m114.043166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Victoria C Clarke
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Patrick C Loughlin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Aleksandr Gavrin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Chi Chen
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Ella M Brear
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - David A Day
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia; §Flinders University, School of Biological Sciences, Adelaide Australia
| | - Penelope M C Smith
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia;
| |
Collapse
|
67
|
Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. PLANT PHYSIOLOGY 2015; 167:1233-42. [PMID: 25659382 PMCID: PMC4378154 DOI: 10.1104/pp.114.253302] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.
Collapse
Affiliation(s)
- Joëlle Fournier
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Alice Teillet
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Sergey Ivanov
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Andrea Genre
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Erik Limpens
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - Fernanda de Carvalho-Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| | - David G Barker
- Laboratoire des Interactions Plantes Micro-organismes, Institut National de la Recherche Agronomique (Unité Mixte de Recherche 441), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 2594), F-31320 Castanet-Tolosan, France (J.F., A.T., M.C., F.d.C.-N., D.G.B.);Plant Science, Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands (S.I., E.L.); andDipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, 10125 Torino, Italy (A.G.)
| |
Collapse
|
68
|
Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu CH, Cano LM, Kamoun S. Rerouting of plant late endocytic trafficking toward a pathogen interface. Traffic 2015; 16:204-26. [PMID: 25430691 DOI: 10.1111/tra.12245] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
A number of plant pathogenic and symbiotic microbes produce specialized cellular structures that invade host cells where they remain enveloped by host-derived membranes. The mechanisms underlying the biogenesis and functions of host-microbe interfaces are poorly understood. Here, we show that plant late endocytic trafficking is diverted toward the extrahaustorial membrane (EHM); a host-pathogen interface that develops in plant cells invaded by Irish potato famine pathogen Phytophthora infestans. A late endosome and tonoplast marker protein Rab7 GTPase RabG3c, but not a tonoplast-localized sucrose transporter, is recruited to the EHM, suggesting specific rerouting of vacuole-targeted late endosomes to a host-pathogen interface. We revealed the dynamic nature of this process by showing that, upon activation, a cell surface immune receptor traffics toward the haustorial interface. Our work provides insight into the biogenesis of the EHM and reveals dynamic processes that recruit membrane compartments and immune receptors to this host-pathogen interface.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK; Current address: Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
69
|
Franssen HJ, Xiao TT, Kulikova O, Wan X, Bisseling T, Scheres B, Heidstra R. Root developmental programs shape the Medicago truncatula nodule meristem. Development 2015; 142:2941-50. [DOI: 10.1242/dev.120774] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/24/2015] [Indexed: 02/03/2023]
Abstract
Nodules on the roots of legume plants host nitrogen-fixing rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionary related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems through analyses of root meristem expressed PLETHORA genes. In nodules, MtPLETHORA1 and 2 genes are preferentially expressed in cells positioned at the periphery of the meristem abutting nodule vascular bundles. Their expression overlaps with an auxin response maximum and MtWOX5 that is a marker for the root quiescent centre. Strikingly, the cells in the central part of the nodule meristem have a high level of cytokinin and display MtPLETHORA 3 and 4 gene expression. Nodule-specific knock-down of MtPLETHORA genes results in reduced number of nodules and/or in nodules in which meristem activity has ceased. Our nodule gene expression map indicates that the nodule meristem is composed of two distinct domains in which different MtPLETHORA gene subsets are expressed. Our mutant studies show that MtPLETHORA genes redundantly function in nodule meristem maintenance. This indicates that Rhizobium has recruited root developmental programs for nodule formation
Collapse
Affiliation(s)
- Henk J. Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ting Ting Xiao
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xi Wan
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present address: NOVOGENE Bioinformatics technology, 38 Xueqing Road, Haidian district, Beijing, China
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Ben Scheres
- Department of Plant Sciences, Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands, telephone: +31-317483264
| | - Renze Heidstra
- Department of Plant Sciences, Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands, telephone: +31-317483264
| |
Collapse
|
70
|
Clarke VC, Loughlin PC, Day DA, Smith PMC. Transport processes of the legume symbiosome membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:699. [PMID: 25566274 PMCID: PMC4266029 DOI: 10.3389/fpls.2014.00699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 05/19/2023]
Abstract
The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.
Collapse
Affiliation(s)
- Victoria C. Clarke
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - David A. Day
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
71
|
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. THE NEW PHYTOLOGIST 2014; 204:815-22. [PMID: 25168837 DOI: 10.1111/nph.12978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/16/2014] [Indexed: 05/07/2023]
Abstract
Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi.
Collapse
Affiliation(s)
- Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Ivanov S, Harrison MJ. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1151-63. [PMID: 25329881 DOI: 10.1111/tpj.12706] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/15/2014] [Indexed: 05/24/2023]
Abstract
Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans-Golgi network, plasma membrane, apoplast, late endosome/multivesicular bodies (MVB), transitory late endosome/ tonoplast, tonoplast, plastids, mitochondria, peroxisomes, autophagosomes, plasmodesmata, actin, microtubules, periarbuscular membrane (PAM) and periarbuscular apoplastic space (PAS) and expressed them from the constitutive AtUBQ10 promoter and the AM symbiosis-specific MtBCP1 promoter. All marker constructs showed the expected expression patterns and sub-cellular locations in M. truncatula root cells. As a demonstration of their utility, we used several markers to investigate AM symbiosis where root cells undergo major cellular alterations to accommodate their fungal endosymbiont. We demonstrate that changes in the position and size of the nuclei occur prior to hyphal entry into the cortical cells and do not require DELLA signaling. Changes in the cytoskeleton, tonoplast and plastids also occur in the colonized cells and in contrast to previous studies, we show that stromulated plastids are abundant in cells with developing and mature arbuscules, while lens-shaped plastids occur in cells with degenerating arbuscules. Arbuscule development and secretion of the PAM creates a periarbuscular apoplastic compartment which has been assumed to be continuous with apoplast of the cell. However, fluorescent markers secreted to the periarbuscular apoplast challenge this assumption. This marker resource will facilitate cell biology studies of AM symbiosis, as well as other aspects of legume biology.
Collapse
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA
| | | |
Collapse
|
73
|
Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E, Gadella TWJ, Bisseling T. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. THE PLANT CELL 2014; 26:4188-99. [PMID: 25351493 PMCID: PMC4247574 DOI: 10.1105/tpc.114.129502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/08/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It was found that inside Medicago truncatula nodules, NFP and LYK3 localize at the cell periphery in a narrow zone of about two cell layers at the nodule apex. This restricted accumulation is narrower than the region of promoter activity/mRNA accumulation and might serve to prevent the induction of defense-like responses and/or to restrict the rhizobium release to precise cell layers. The distal cell layer where the receptors accumulate at the cell periphery is part of the meristem, and the proximal layer is part of the infection zone. In these layers, the receptors can most likely perceive the bacterial Nod factors to regulate the formation of symbiotic interface. Furthermore, our Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicates that NFP and LYK3 form heteromeric complexes at the cell periphery in M. truncatula nodules.
Collapse
MESH Headings
- Fluorescence Resonance Energy Transfer
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Host-Pathogen Interactions
- Lipopolysaccharides/metabolism
- Medicago truncatula/genetics
- Medicago truncatula/metabolism
- Medicago truncatula/microbiology
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mutation
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Multimerization
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Sinorhizobium meliloti/physiology
- Symbiosis
Collapse
Affiliation(s)
- Sjef Moling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Anna Pietraszewska-Bogiel
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Elena Fedorova
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Erik Limpens
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Ton Bisseling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
74
|
Gavrin A, Kaiser BN, Geiger D, Tyerman SD, Wen Z, Bisseling T, Fedorova EE. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. THE PLANT CELL 2014; 26:3809-22. [PMID: 25217511 PMCID: PMC4213156 DOI: 10.1105/tpc.114.128736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 05/19/2023]
Abstract
In legume-rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Brent N Kaiser
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Stephen D Tyerman
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Zhengyu Wen
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elena E Fedorova
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| |
Collapse
|
75
|
Maróti G, Kondorosi E. Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 2014; 5:326. [PMID: 25071739 PMCID: PMC4074912 DOI: 10.3389/fmicb.2014.00326] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
The symbiosis between rhizobia soil bacteria and legumes is facultative and initiated by nitrogen starvation of the host plant. Exchange of signal molecules between the partners leads to the formation of root nodules where bacteria are converted to nitrogen-fixing bacteroids. In this mutualistic symbiosis, the bacteria provide nitrogen sources for plant growth in return for photosynthates from the host. Depending on the host plant the symbiotic fate of bacteria can either be reversible or irreversible. In Medicago plants the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. About 500 of them are cysteine-rich NCR peptides produced in the infected plant cells. NCRs are targeted to the endosymbionts and the concerted action of different sets of peptides governs different stages of endosymbiont maturation. This review focuses on symbiotic plant cell development and terminal bacteroid differentiation and demonstrates the crucial roles of symbiotic peptides by showing an example of multi-target mechanism exerted by one of these symbiotic peptides.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences Szeged, Hungary
| | - Eva Kondorosi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences Szeged, Hungary
| |
Collapse
|
76
|
Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T. Plant Vacuolar Trafficking Occurs through Distinctly Regulated Pathways. Curr Biol 2014; 24:1375-1382. [DOI: 10.1016/j.cub.2014.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 02/04/2023]
|
77
|
Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R, Hérouart D, Boncompagni E. Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. THE NEW PHYTOLOGIST 2014; 202:849-863. [PMID: 24527680 DOI: 10.1111/nph.12717] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
The symbiotic interaction between legumes and Rhizobiaceae leads to the formation of new root organs called nodules. Within the nodule, Rhizobiaceae differentiate into nitrogen-fixing bacteroids. However, this symbiotic interaction is time-limited as a result of the initiation of a senescence process, leading to a complete degradation of bacteroids and host plant cells. The increase in proteolytic activity is one of the key features of this process. In this study, we analysed the involvement of two different classes of cysteine proteinases, MtCP6 and MtVPE, in the senescence process of Medicago truncatula nodules. Spatiotemporal expression of MtCP6 and MtVPE was investigated using promoter- β-glucuronidase fusions. Corresponding gene inductions were observed during both developmental and stress-induced nodule senescence. Both MtCP6 and MtVPE proteolytic activities were increased during stress-induced senescence. Down-regulation of both proteinases mediated by RNAi in the senescence zone delayed nodule senescence and increased nitrogen fixation, while their early expression promoted nodule senescence. Using green fluorescent protein fusions, in vivo confocal imaging showed that both proteinases accumulated in the vacuole of uninfected cells or the symbiosomes of infected cells. These data enlighten the crucial role of MtCP6 and MtVPE in the onset of nodule senescence.
Collapse
Affiliation(s)
- Olivier Pierre
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Julie Hopkins
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Maud Combier
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Fabien Baldacci
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Gilbert Engler
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Renaud Brouquisse
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Didier Hérouart
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Eric Boncompagni
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| |
Collapse
|
78
|
Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, Nakano A, Jiang L. Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in Arabidopsis. THE PLANT CELL 2014; 26:2080-2097. [PMID: 24824487 PMCID: PMC4079370 DOI: 10.1105/tpc.114.123141] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
79
|
Abstract
Symbiosomes are a unique structural entity that performs the role of biological nitrogen fixation, an energy-demanding process that is the primary entryway of fixed nitrogen into the biosphere. Symbiosomes result from the infection of specific rhizobial strains into the roots of an appropriate leguminous host plant forming an organ referred to as a nodule. Within the infected plant cells of the nodule, the rhizobia are encased within membrane-bounded structures that develop into symbiosomes. Mature symbiosomes create an environment that allows the rhizobia to differentiate into a nitrogen-fixing form called bacteroids. The bacteroids are surrounded by the symbiosome space, which is populated by proteins from both eukaryotic and prokaryotic symbionts, suggesting this space is the quintessential component of symbiosis: an inter-kingdom environment with the single purpose of symbiotic nitrogen fixation. Proteins associated with the symbiosome membrane are largely plant-derived proteins and are non-metabolic in nature. The proteins of the symbiosome space are mostly derived from the bacteroid with annotated functions of carbon metabolism, whereas relatively few are involved in nitrogen metabolism. An appreciable portion of both the eukaryotic and prokaryotic proteins in the symbiosome are also ‘moonlighting’ proteins, which are defined as proteins that perform roles unrelated to their annotated activities when found in an unexpected physiological environment. The essential functions of symbiotic nitrogen fixation of the symbiosome are performed by co-operative interactions of proteins from both symbionts some of which may be performing unexpected roles.
Collapse
|
80
|
Inada N, Ueda T. Membrane trafficking pathways and their roles in plant-microbe interactions. PLANT & CELL PHYSIOLOGY 2014; 55:672-86. [PMID: 24616268 DOI: 10.1093/pcp/pcu046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192 Japan
| | | |
Collapse
|
81
|
Rodríguez-Haas B, Finney L, Vogt S, González-Melendi P, Imperial J, González-Guerrero M. Iron distribution through the developmental stages of Medicago truncatula nodules. Metallomics 2014; 5:1247-53. [PMID: 23765084 DOI: 10.1039/c3mt00060e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramount to symbiotic nitrogen fixation (SNF) is the synthesis of a number of metalloenzymes that use iron as a critical component of their catalytical core. Since this process is carried out by endosymbiotic rhizobia living in legume root nodules, the mechanisms involved in iron delivery to the rhizobia-containing cells are critical for SNF. In order to gain insight into iron transport to the nodule, we have used synchrotron-based X-ray fluorescence to determine the spatio-temporal distribution of this metal in nodules of the legume Medicago truncatula with hitherto unattained sensitivity and resolution. The data support a model in which iron is released from the vasculature into the apoplast of the infection/differentiation zone of the nodule (zone II). The infected cell subsequently takes up this apoplastic iron and delivers it to the symbiosome and the secretory system to synthesize ferroproteins. Upon senescence, iron is relocated to the vasculature to be reused by the shoot. These observations highlight the important role of yet to be discovered metal transporters in iron compartmentalization in the nodule and in the recovery of an essential and scarce nutrient for flowering and seed production.
Collapse
Affiliation(s)
- Benjamín Rodríguez-Haas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M40 km 37, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Overexpression of a Vesicle Trafficking Gene, OsRab7, enhances salt tolerance in rice. ScientificWorldJournal 2014; 2014:483526. [PMID: 24688390 PMCID: PMC3943248 DOI: 10.1155/2014/483526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/24/2013] [Indexed: 01/19/2023] Open
Abstract
High soils salinity is a main factor affecting agricultural production. Studying the function of salt-tolerance-related genes is essential to enhance crop tolerance to stress. Rab7 is a small GTP-binding protein that is distributed widely among eukaryotes. Endocytic trafficking mediated by Rab7 plays an important role in animal and yeast cells, but the current understanding of Rab7 in plants is still very limited. Herein, we isolated a vesicle trafficking gene, OsRab7, from rice. Transgenic rice over-expressing OsRab7 exhibited enhanced seedling growth and increased proline content under salt-treated conditions. Moreover, an increased number of vesicles was observed in the root tip of OsRab7 transgenic rice. The OsRab7 over-expression plants showed enhanced tolerance to salt stress, suggesting that vacuolar trafficking is important for salt tolerance in plants.
Collapse
|
83
|
Lei L, Chen L, Shi X, Li Y, Wang J, Chen D, Xie F, Li Y. A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. PLANT PHYSIOLOGY 2014; 164:1045-58. [PMID: 24367021 PMCID: PMC3912078 DOI: 10.1104/pp.113.232637] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis.
Collapse
|
84
|
Pierre O, Engler G, Hopkins J, Brau F, Boncompagni E, Hérouart D. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2013; 36:2059-2070. [PMID: 23586685 DOI: 10.1111/pce.12116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen-fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2 -fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH-sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.
Collapse
Affiliation(s)
- Olivier Pierre
- UMR INRA 1355-CNRS 7254-Université de Nice Sophia-Antipolis, Institut Sophia Agrobiotech, 400 route des Chappes, F-06903, Sophia Antipolis, France
| | | | | | | | | | | |
Collapse
|
85
|
Brear EM, Day DA, Smith PMC. Iron: an essential micronutrient for the legume-rhizobium symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:359. [PMID: 24062758 PMCID: PMC3772312 DOI: 10.3389/fpls.2013.00359] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
Legumes, which develop a symbiosis with nitrogen-fixing bacteria, have an increased demand for iron. Iron is required for the synthesis of iron-containing proteins in the host, including the highly abundant leghemoglobin, and in bacteroids for nitrogenase and cytochromes of the electron transport chain. Deficiencies in iron can affect initiation and development of the nodule. Within root cells, iron is chelated with organic acids such as citrate and nicotianamine and distributed to other parts of the plant. Transport to the nitrogen-fixing bacteroids in infected cells of nodules is more complicated. Formation of the symbiosis results in bacteroids internalized within root cortical cells of the legume where they are surrounded by a plant-derived membrane termed the symbiosome membrane (SM). This membrane forms an interface that regulates nutrient supply to the bacteroid. Consequently, iron must cross this membrane before being supplied to the bacteroid. Iron is transported across the SM as both ferric and ferrous iron. However, uptake of Fe(II) by both the symbiosome and bacteroid is faster than Fe(III) uptake. Members of more than one protein family may be responsible for Fe(II) transport across the SM. The only Fe(II) transporter in nodules characterized to date is GmDMT1 (Glycine max divalent metal transporter 1), which is located on the SM in soybean. Like the root plasma membrane, the SM has ferric iron reductase activity. The protein responsible has not been identified but is predicted to reduce ferric iron accumulated in the symbiosome space prior to uptake by the bacteroid. With the recent publication of a number of legume genomes including Medicago truncatula and G. max, a large number of additional candidate transport proteins have been identified. Members of the NRAMP (natural resistance-associated macrophage protein), YSL (yellow stripe-like), VIT (vacuolar iron transporter), and ZIP (Zrt-, Irt-like protein) transport families show enhanced expression in nodules and are expected to play a role in the transport of iron and other metals across symbiotic membranes.
Collapse
Affiliation(s)
- Ella M. Brear
- School of Biological Sciences, The University of SydneySydney, NSW, Australia
| | - David A. Day
- School of Biological Sciences, Flinders UniversityBedford Park, Adelaide, SA, Australia
| | | |
Collapse
|
86
|
Xi J, Chen Y, Nakashima J, Wang SM, Chen R. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:893-902. [PMID: 23634841 DOI: 10.1094/mpmi-02-13-0043-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti results in the formation on the host roots of new organs, nodules, in which biological nitrogen fixation takes place. In infected cells, rhizobia enclosed in a plant-derived membrane, the symbiosome membrane, differentiate to nitrogen-fixing bacteroids. The symbiosome membrane serves as an interface for metabolite and signal exchanges between the host cells and endosymbionts. At some point during symbiosis, symbiosomes and symbiotic cells are disintegrated, resulting in nodule senescence. The regulatory mechanisms that underlie nodule senescence are not fully understood. Using a forward genetics approach, we have uncovered the early senescent nodule 1 (esn1) mutant from an M. truncatula fast neutron-induced mutant collection. Nodules on esn1 roots are spherically shaped, ineffective in nitrogen fixation, and senesce early. Atypical among fixation defective mutants isolated thus far, bacteroid differentiation and expression of nifH, Leghemoglobin, and DNF1 genes are not affected in esn1 nodules, supporting the idea that a process downstream of bacteroid differentiation and nitrogenase gene expression is affected in the esn1 mutant. Expression analysis shows that marker genes involved in senescence, macronutrient degradation, and remobilization are greatly upregulated during nodule development in the esn1 mutant, consistent with a role of ESN1 in nodule senescence and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Jiejun Xi
- Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
87
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
88
|
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 DOI: 10.1371/jour-nal.pone.0064377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 05/23/2023] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
89
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium–legume symbiosis. FEMS Microbiol Rev 2013; 37:364-83. [DOI: 10.1111/1574-6976.12003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023] Open
|
90
|
Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall'Angelo S, Zanda M, Mergaert P, Ferguson GP. Molecular insights into bacteroid development duringRhizobium-legume symbiosis. FEMS Microbiol Rev 2012. [DOI: 10.1111/1574-6976.2012.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andreas F. Haag
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Markus F. F. Arnold
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Kamila K. Myka
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Bernhard Kerscher
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | - Sergio Dall'Angelo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| | | | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique; Gif-sur-Yvette Cedex; France
| | - Gail P. Ferguson
- School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen; Aberdeen; UK
| |
Collapse
|
91
|
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. FRONTIERS IN PLANT SCIENCE 2012; 3:223. [PMID: 23060892 PMCID: PMC3464683 DOI: 10.3389/fpls.2012.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/14/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.
Collapse
Affiliation(s)
| | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
92
|
Hakoyama T, Oi R, Hazuma K, Suga E, Adachi Y, Kobayashi M, Akai R, Sato S, Fukai E, Tabata S, Shibata S, Wu GJ, Hase Y, Tanaka A, Kawaguchi M, Kouchi H, Umehara Y, Suganuma N. The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. PLANT PHYSIOLOGY 2012; 160:897-905. [PMID: 22858633 PMCID: PMC3461563 DOI: 10.1104/pp.112.200782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/31/2012] [Indexed: 05/22/2023]
Abstract
Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor (SNARE) proteins are crucial for signal transduction and development in plants. Here, we investigate a Lotus japonicus symbiotic mutant defective in one of the SNARE proteins. When in symbiosis with rhizobia, the growth of the mutant was retarded compared with that of the wild-type plant. Although the mutant formed nodules, these exhibited lower nitrogen fixation activity than the wild type. The rhizobia were able to invade nodule cells, but enlarged symbiosomes were observed in the infected cells. The causal gene, designated LjSYP71 (for L. japonicus syntaxin of plants71), was identified by map-based cloning and shown to encode a Qc-SNARE protein homologous to Arabidopsis (Arabidopsis thaliana) SYP71. LjSYP71 was expressed ubiquitously in shoot, roots, and nodules, and transcripts were detected in the vascular tissues. In the mutant, no other visible defects in plant morphology were observed. Furthermore, in the presence of combined nitrogen, the mutant plant grew almost as well as the wild type. These results suggest that the vascular tissues expressing LjSYP71 play a pivotal role in symbiotic nitrogen fixation in L. japonicus nodules.
Collapse
MESH Headings
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genetic Complementation Test
- Lotus/genetics
- Lotus/metabolism
- Lotus/microbiology
- Mesorhizobium/growth & development
- Microscopy, Electron, Transmission
- Mutagenesis
- Nitrogen Fixation
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Shoots/genetics
- Plant Shoots/metabolism
- Plant Vascular Bundle/genetics
- Plant Vascular Bundle/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Qc-SNARE Proteins/genetics
- Qc-SNARE Proteins/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Symbiosis
Collapse
|
93
|
Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R. Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:954-63. [PMID: 22668002 DOI: 10.1094/mpmi-11-11-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The non-legume genus Parasponia has evolved the rhizobium symbiosis independent from legumes and has done so only recently. We aim to study the promiscuity of such newly evolved symbiotic engagement and determine the symbiotic effectiveness of infecting rhizobium species. It was found that Parasponia andersonii can be nodulated by a broad range of rhizobia belonging to four different genera, and therefore, we conclude that this non-legume is highly promiscuous for rhizobial engagement. A possible drawback of this high promiscuity is that low-efficient strains can infect nodules as well. The strains identified displayed a range in nitrogen-fixation effectiveness, including a very inefficient rhizobium species, Rhizobium tropici WUR1. Because this species is able to make effective nodules on two different legume species, it suggests that the ineffectiveness of P. andersonii nodules is the result of the incompatibility between both partners. In P. andersonii nodules, rhizobia of this strain become embedded in a dense matrix but remain vital. This suggests that sanctions or genetic control against underperforming microsymbionts may not be effective in Parasponia spp. Therefore, we argue that the Parasponia-rhizobium symbiosis is a delicate balance between mutual benefits and parasitic colonization.
Collapse
MESH Headings
- Base Sequence
- Cannabaceae/microbiology
- Cannabaceae/ultrastructure
- Cell Death
- Fabaceae/microbiology
- Fabaceae/ultrastructure
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Host Specificity/physiology
- Molecular Sequence Data
- Nitrogen Fixation
- Phylogeny
- Plant Root Nodulation/physiology
- Proteobacteria/genetics
- Proteobacteria/isolation & purification
- Proteobacteria/physiology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Rhizobium tropici/genetics
- Rhizobium tropici/isolation & purification
- Rhizobium tropici/physiology
- Root Nodules, Plant/ultrastructure
- Sequence Analysis, DNA
- Sinorhizobium/genetics
- Sinorhizobium/isolation & purification
- Sinorhizobium/physiology
- Symbiosis/physiology
Collapse
Affiliation(s)
- Rik H M Op den Camp
- Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci U S A 2012. [PMID: 22566631 DOI: 10.1073/pnas.1200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sergey Ivanov
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
95
|
Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci U S A 2012; 109:8316-21. [PMID: 22566631 PMCID: PMC3361388 DOI: 10.1073/pnas.1200407109] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endosymbiotic interactions are characterized by the formation of specialized membrane compartments, by the host in which the microbes are hosted, in an intracellular manner. Two well-studied examples, which are of major agricultural and ecological importance, are the widespread arbuscular mycorrhizal symbiosis and the Rhizobium-legume symbiosis. In both symbioses, the specialized host membrane that surrounds the microbes forms a symbiotic interface, which facilitates the exchange of, for example, nutrients in a controlled manner and, therefore, forms the heart of endosymbiosis. Despite their key importance, the molecular and cellular mechanisms underlying the formation of these membrane interfaces are largely unknown. Recent studies strongly suggest that the Rhizobium-legume symbiosis coopted a signaling pathway, including receptor, from the more ancient arbuscular mycorrhizal symbiosis to form a symbiotic interface. Here, we show that two highly homologous exocytotic vesicle-associated membrane proteins (VAMPs) are required for formation of the symbiotic membrane interface in both interactions. Silencing of these Medicago VAMP72 genes has a minor effect on nonsymbiotic plant development and nodule formation. However, it blocks symbiosome as well as arbuscule formation, whereas root colonization by the microbes is not affected. Identification of these VAMP72s as common symbiotic regulators in exocytotic vesicle trafficking suggests that the ancient exocytotic pathway forming the periarbuscular membrane compartment has also been coopted in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sergey Ivanov
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Elena E. Fedorova
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Stephane De Mita
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Andrea Genre
- Dipartimento di Biologia Vegetale, Universita’ di Torino, 10125 Turin, Italy; and
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Universita’ di Torino, 10125 Turin, Italy; and
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Sciences, Graduate School Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
96
|
Meckfessel MH, Blancaflor EB, Plunkett M, Dong Q, Dickstein R. Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. PLANT PHYSIOLOGY 2012; 159:299-310. [PMID: 22415512 PMCID: PMC3366718 DOI: 10.1104/pp.111.191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/chemistry
- Medicago truncatula/chemistry
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Proteins/chemistry
- Plant Root Nodulation
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/analysis
- RNA, Plant/chemistry
- Recombinant Fusion Proteins/chemistry
- Root Nodules, Plant/chemistry
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Sinorhizobium meliloti/physiology
- Symbiosis
- Vacuoles/chemistry
Collapse
|
97
|
Bottanelli F, Gershlick DC, Denecke J. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 2012; 13:338-54. [PMID: 22004564 DOI: 10.1111/j.1600-0854.2011.01303.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 11/28/2022]
Abstract
GTPases of the Rab5 and Rab7 families were shown to control vacuolar sorting but their specific subcellular localization is controversial in plants. Here, we show that both the canonical as well as the plant-specific Rab5 reside at the newly discovered 'late prevacuolar compartment' (LPVC) while Rab7 partitions to the vacuolar membrane when expressed at low levels. Higher expression levels of wild-type Rab5 GTPases but not Rab7 lead to dose-dependent inhibition of biosynthetic vacuolar transport. In the case of Ara6, this included aberrant co-localization with markers for earlier post-Golgi compartments including the trans-Golgi network. However, nucleotide-free mutants of all three GTPases (Rha1, Ara6 and Rab7) cause stronger dose-dependent inhibition of vacuolar sorting. In addition, nucleotide-free Rha1 led to a later maturation defect and co-localization of markers for the prevacuolar compartment (PVC) and the LPVC. The corresponding Rab7 mutant strongly inhibited vacuolar delivery without merging of PVC and LPVC markers. Evidence for functional differentiation of the Rab5 family members is underlined by the fact that mutant Rha1 expression can be suppressed by increasing wild-type Rha1 levels while mutant Ara6 specifically titrates the nucleotide exchange factor Vps9. A model describing the sequential action of Rab5 and Rab7 GTPases is presented in the light of the current observations.
Collapse
Affiliation(s)
- Francesca Bottanelli
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
98
|
Markmann K, Radutoiu S, Stougaard J. Infection of Lotus japonicus Roots by Mesorhizobium loti. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
99
|
Abstract
To allow rhizobial infection of legume roots, plant cell walls must be locally degraded for plant-made infection threads (ITs) to be formed. Here we identify a Lotus japonicus nodulation pectate lyase gene (LjNPL), which is induced in roots and root hairs by rhizobial nodulation (Nod) factors via activation of the nodulation signaling pathway and the NIN transcription factor. Two Ljnpl mutants produced uninfected nodules and most infections arrested as infection foci in root hairs or roots. The few partially infected nodules that did form contained large abnormal infections. The purified LjNPL protein had pectate lyase activity, demonstrating that this activity is required for rhizobia to penetrate the cell wall and initiate formation of plant-made infection threads. Therefore, we conclude that legume-determined degradation of plant cell walls is required for root infection during initiation of the symbiotic interaction between rhizobia and legumes.
Collapse
|
100
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|