51
|
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol 2022; 32:1728-1742.e6. [PMID: 35263616 DOI: 10.1016/j.cub.2022.02.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Soybean (Glycine max) grows in a wide range of latitudes, but it is extremely sensitive to photoperiod, which reduces its yield and ability to adapt to different environments. Therefore, understanding of the genetic basis of soybean adaptation is of great significance for breeding and improvement. Here, we characterized Tof18 (SOC1a) that conditions early flowering and growth habit under both short-day and long-day conditions. Molecular analysis confirmed that the two SOC1 homologs present in soybeans (SOC1a and SOC1b) underwent evolutionary functional divergence, with SOC1a having stronger effects on flowering time and stem node number than SOC1b due to transcriptional differences. soc1a soc1b double mutants showed stronger functional effects than either of the single mutants, perhaps due to the formation of SOC1a and SOC1b homodimers or heterodimers. Additionally, Tof18/SOC1a improves the latitudinal adaptation of cultivated soybeans, highlighting the functional importance of SOC1a. The Tof18G allele facilitates adaptation to high latitudes, whereas Tof18A facilitates adaptation to low latitudes. We demonstrated that SOC1s contribute to floral induction in both leaves and shoot apex through inter-regulation with FTs. The SOC1a-SOC1b-Dt2 complex plays essential roles in stem growth habit by directly binding to the regulatory sequence of Dt1, making the genes encoding these proteins potential targets for genome editing to improve soybean yield via molecular breeding. Since the natural Tof18A allele increases node number, introgressing this allele into modern cultivars could improve yields, which would help optimize land use for food production in the face of population growth and global warming.
Collapse
Affiliation(s)
- Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fan Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiping Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yongcai Lai
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhijun Che
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
52
|
Škrabišová M, Dietz N, Zeng S, Chan YO, Wang J, Liu Y, Biová J, Joshi T, Bilyeu KD. A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J Adv Res 2022; 42:117-133. [PMID: 36513408 PMCID: PMC9788956 DOI: 10.1016/j.jare.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genome-Wide Association Studies (GWAS) identify tagging variants in the genome that are statistically associated with the phenotype because of their linkage disequilibrium (LD) relationship with the causative mutation (CM). When both low-density genotyped accession panels with phenotypes and resequenced data accession panels are available, tagging variants can assist with post-GWAS challenges in CM discovery. OBJECTIVES Our objective was to identify additional GWAS evaluation criteria to assess correspondence between genomic variants and phenotypes, as well as enable deeper analysis of the localized landscape of association. METHODS We used genomic variant positions as Synthetic phenotypes in GWAS that we named "Synthetic phenotype association study" (SPAS). The extreme case of SPAS is what we call an "Inverse GWAS" where we used CM positions of cloned soybean genes. We developed and validated the Accuracy concept as a measure of the correspondence between variant positions and phenotypes. RESULTS The SPAS approach demonstrated that the genotype status of an associated variant used as a Synthetic phenotype enabled us to explore the relationships between tagging variants and CMs, and further, that utilizing CMs as Synthetic phenotypes in Inverse GWAS illuminated the landscape of association. We implemented the Accuracy calculation for a curated accession panel to an online Accuracy calculation tool (AccuTool) as a resource for gene identification in soybean. We demonstrated our concepts on three examples of soybean cloned genes. As a result of our findings, we devised an enhanced "GWAS to Genes" analysis (Synthetic phenotype to CM strategy, SP2CM). Using SP2CM, we identified a CM for a novel gene. CONCLUSION The SP2CM strategy utilizing Synthetic phenotypes and the Accuracy calculation of correspondence provides crucial information to assist researchers in CM discovery. The impact of this work is a more effective evaluation of landscapes of GWAS associations.
Collapse
Affiliation(s)
- Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc 78371, Czech Republic
| | - Nicholas Dietz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Yen On Chan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Yang Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc 78371, Czech Republic
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA,Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65212, USA,Corresponding authors at: Department of Health Management and Informatics, School of Medicine, 1201 E Rollins St, 271B Life Science Center, Columbia, MO 65201, USA (T. Joshi). Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, 110 Waters Hall, University of Missouri, Columbia, MO 65211, USA (K.D. Bilyeu).
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO 65211, USA,Corresponding authors at: Department of Health Management and Informatics, School of Medicine, 1201 E Rollins St, 271B Life Science Center, Columbia, MO 65201, USA (T. Joshi). Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, 110 Waters Hall, University of Missouri, Columbia, MO 65211, USA (K.D. Bilyeu).
| |
Collapse
|
53
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
54
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
55
|
Li YF, Li YH, Su SS, Reif JC, Qi ZM, Wang XB, Wang X, Tian Y, Li DL, Sun RJ, Liu ZX, Xu ZJ, Fu GH, Ji YL, Chen QS, Liu JQ, Qiu LJ. SoySNP618K array: A high-resolution single nucleotide polymorphism platform as a valuable genomic resource for soybean genetics and breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:632-648. [PMID: 34914170 DOI: 10.1111/jipb.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/05/2021] [Indexed: 05/13/2023]
Abstract
Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.
Collapse
Affiliation(s)
- Yan-Fei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shan-Shan Su
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Germany
| | - Zhao-Ming Qi
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Bo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang
- Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu, Xuzhou, 221131, China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - De-Lin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ru-Jian Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
- Hulun Buir Institution of Agricultural Sciences, Zhalantun, Inner Mongolia, 021000, China
| | - Zhang-Xiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Jun Xu
- Xuzhou Institute of Agricultural Sciences of Xu-huai Region of Jiangsu, Xuzhou, 221131, China
| | - Guang-Hui Fu
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Ya-Liang Ji
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Qing-Shan Chen
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Ji-Qiang Liu
- Beijing Compass Biotechnology Co. Ltd, Beijing, 102206, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
56
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
57
|
Dou Y, Xia W, Mason AS, Huang D, Sun X, Fan H, Xiao Y. Developing functional markers for vitamin E biosynthesis in oil palm. PLoS One 2021; 16:e0259684. [PMID: 34797841 PMCID: PMC8604351 DOI: 10.1371/journal.pone.0259684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
Vitamin E is essential for human health and plays positive roles in anti-oxidation. Previously, we detected large variation in vitamin E content among 161 oil palm accessions. In this study, twenty oil palm accessions with distinct variation in vitamin E contents (171.30 to 1 258.50 ppm) were selected for genetic variation analysis and developing functional markers associated with vitamin E contents. Thirty-seven homologous genes in oil palm belonging to vitamin E biosynthesis pathway were identified via BLASTP analysis, the lengths of which ranged from 426 to 25 717 bp (average 7 089 bp). Multiplex PCR sequencing for the 37 genes found 1 703 SNPs and 85 indels among the 20 oil palm accessions, with 226 SNPs locating in the coding regions. Clustering analysis for these polymorphic loci showed that the 20 oil palm accessions could be divided into five groups. Among these groups, group I included eight oil palm accessions whose vitamin E content (mean value: 893.50 ppm) was far higher than other groups (mean value 256.29 to 532.94 ppm). Correlation analysis between the markers and vitamin E traits showed that 134 SNP and 7 indel markers were significantly (p < 0.05) related with total vitamin E content. Among these functional markers, the indel EgTMT-1-24 was highly correlated with variation in vitamin E content, especially tocotrienol content. Our study identified a number of candidate function associated markers and provided clues for further research into molecular breeding for high vitamin E content oil palm.
Collapse
Affiliation(s)
- Yajing Dou
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Annaliese S. Mason
- Plant Breeding Department, The University of Bonn, Bonn, North Rhine-Westphalia, Germany
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou, Hainan, P.R. China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Haikuo Fan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural sciences, Wenchang, Hainan, P.R. China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, P.R. China
- * E-mail: ,
| |
Collapse
|
58
|
Vogel JT, Liu W, Olhoft P, Crafts-Brandner SJ, Pennycooke JC, Christiansen N. Soybean Yield Formation Physiology - A Foundation for Precision Breeding Based Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:719706. [PMID: 34868106 PMCID: PMC8634342 DOI: 10.3389/fpls.2021.719706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 05/25/2023]
Abstract
The continued improvement of crop yield is a fundamental driver in agriculture and is the goal of both plant breeders and researchers. Plant breeders have been remarkably successful in improving crop yield, as demonstrated by the continued release of varieties with improved yield potential. This has largely been accomplished through performance-based selection, without specific knowledge of the molecular mechanisms underpinning these improvements. Insight into molecular mechanisms has been provided by plant molecular, genetic, and biochemical research through elucidation of the function of genes and pathways that underlie many of the physiological processes that contribute to yield potential. Despite this knowledge, the impact of most genes and pathways on yield components have not been tested in key crops or in a field environment for yield assessment. This gap is difficult to bridge, but field-based physiological knowledge offers a starting point for leveraging molecular targets to successfully apply precision breeding technologies such as genome editing. A better understanding of both the molecular mechanisms underlying crop yield physiology and yield limiting processes under field conditions is essential for elucidating which combinations of favorable alleles are required for yield improvement. Consequently, one goal in plant biology should be to more fully integrate crop physiology, breeding, genetics, and molecular knowledge to identify impactful precision breeding targets for relevant yield traits. The foundation for this is an understanding of yield formation physiology. Here, using soybean as an example, we provide a top-down review of yield physiology, starting with the fact that yield is derived from a population of plants growing together in a community. We review yield and yield-related components to provide a basic overview of yield physiology, synthesizing these concepts to highlight how such knowledge can be leveraged for soybean improvement. Using genome editing as an example, we discuss why multiple disciplines must be brought together to fully realize the promise of precision breeding-based crop improvement.
Collapse
|
59
|
Wang W, Chen L, Fengler K, Bolar J, Llaca V, Wang X, Clark CB, Fleury TJ, Myrvold J, Oneal D, van Dyk MM, Hudson A, Munkvold J, Baumgarten A, Thompson J, Cai G, Crasta O, Aggarwal R, Ma J. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat Commun 2021; 12:6263. [PMID: 34741017 PMCID: PMC8571336 DOI: 10.1038/s41467-021-26554-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kevin Fengler
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Joy Bolar
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tomara J Fleury
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Jon Myrvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - David Oneal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | | | - Ashley Hudson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jesse Munkvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Andy Baumgarten
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jeff Thompson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Guohong Cai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Oswald Crasta
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
- R&D, Equinom, Inc., Indianapolis, IN, 46268, USA
| | - Rajat Aggarwal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
60
|
Zimmer G, Miller MJ, Steketee CJ, Jackson SA, de Tunes LVM, Li Z. Genetic control and allele variation among soybean maturity groups 000 through IX. THE PLANT GENOME 2021; 14:e20146. [PMID: 34514734 DOI: 10.1002/tpg2.20146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Soybean [Glycinemax (L.) Merr.] maturity determines the growing region of a given soybean variety and is a primary factor in yield and other agronomic traits. The objectives of this research were to identify the quantitative trait loci (QTL) associated with maturity groups (MGs) and determine the genetic control of soybean maturity in each MG. Using data from 16,879 soybean accessions, genome-wide association (GWA) analyses were conducted for each paired MG and across MGs 000 through IX. Genome-wide association analyses were also performed using 184 genotypes (MGs V-IX) with days to flowering (DTF) and maturity (DTM) collected in the field. A total of 58 QTL were identified to be significantly associated with MGs in individual GWAs, which included 12 reported maturity loci and two stem termination genes. Genome-wide associations across MGs 000-IX detected a total of 103 QTL and confirmed 54 QTL identified in the individual GWAs. Of significant loci identified, qMG-5.2 had effects on the highest number (9) of MGs, followed by E2, E3, Dt2, qMG-15.5, E1, qMG-13.1, qMG-7.1, and qMG-16.1, which affected five to seven MGs. A high number of genetic loci (8-25) that affected MGs 0-V were observed. Stem termination genes Dt1 and Dt2 mainly had significant allele variation in MGs II-V. Genome-wide associations for DTF, DTM, and reproductive period (RP) in the diversity panel confirmed 15 QTL, of which seven were observed in MGs V-IX. The results generated can help soybean breeders manipulate the maturity loci for genetic improvement of soybean yield.
Collapse
Affiliation(s)
- Gustavo Zimmer
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Crop Production, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Mark J Miller
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Clinton J Steketee
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Scott A Jackson
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Zenglu Li
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
61
|
Wang X, Li MW, Wong FL, Luk CY, Chung CYL, Yung WS, Wang Z, Xie M, Song S, Chung G, Chan TF, Lam HM. Increased copy number of gibberellin 2-oxidase 8 genes reduced trailing growth and shoot length during soybean domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1739-1755. [PMID: 34245624 DOI: 10.1111/tpj.15414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 05/27/2023]
Abstract
Copy number variations (CNVs) play important roles in crop domestication. However, there is only very limited information on the involvement of CNVs in soybean domestication. Trailing growth and long shoots are soybean adaptations for natural habitats but cause lodging that hampers yield in cultivation. Previous studies have focused on Dt1/2 affecting the indeterminate/determinate growth habit, whereas the possible role of the gibberellin pathway remained unclear. In the present study, quantitative trait locus (QTL) mapping of a recombinant inbred population of 460 lines revealed a trailing-growth-and-shoot-length QTL. A CNV region within this QTL was identified, featuring the apical bud-expressed gibberellin 2-oxidase 8A/B, the copy numbers of which were positively correlated with expression levels and negatively with trailing growth and shoot length, and their effects were demonstrated by transgenic soybean and Arabidopsis thaliana. Based on the fixation index, this CNV region underwent intense selection during the initial domestication process.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Fuk-Ling Wong
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ching-Yee Luk
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Claire Yik-Lok Chung
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhili Wang
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Min Xie
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shikui Song
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Ting-Fung Chan
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Hon-Ming Lam
- School of Life Sciences and the Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
62
|
Kou K, Su T, Wang Y, Yang H, Du H, He M, Li T, Ma L, Liao C, Yang C, Shi W, Chen L, Li Y, Yang B, Kong L, Li S, Wang L, Zhao X, Lu S, Liu B, Kong F, Fang C. Natural variation of the Dt2 promoter controls plant height and node number in semi-determinant soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:40. [PMID: 37309444 PMCID: PMC10236065 DOI: 10.1007/s11032-021-01235-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/23/2021] [Indexed: 06/14/2023]
Abstract
Soybean (Glycine max (L.) Merrill) is an important legume crop worldwide. Plant height (PH) is a quantitative trait that is closely related to node number (NN) and internode length (IL) on the main stem, which together affect soybean yield. To identify candidate genes controlling these three traits in soybean, we examined a recombinant inbred line (RIL) population derived from a cross between two soybean varieties with semi-determinate stems (Dt1Dt1Dt2Dt2), JKK378 and HXW. A quantitative trait locus (QTL) named qPH18 was identified that simultaneously controls PH, NN, and IL; this region harbors the semi-determinant gene Dt2. Sequencing of the Dt2 promoter from JKK378 identified three polymorphisms relative to HXW, including two single nucleotide polymorphism (SNPs) and an 18-bp insertion/deletion polymorphism (Indel). Dt2 expression was lower in the qPH18JKK378 group than in the qPH18HXW group, whereas the expression level of the downstream gene Dt1 showed the opposite tendency. A transient transfection assay confirmed that Dt2 promoter activity is lower in JKK378 compared to HXW. We propose that the polymorphisms in the dominant Dt2 promoter underlie the differences in Dt2 expression and its downstream gene Dt1 in the two parents, thereby affecting PH, NN, IL, and grain weight per plant without altering stem growth habit. Compared to the PH18HXW allele, the qPH18JKK378 allele suppresses Dt2 expression, which releases the inhibition of Dt1 expression, thus enhancing NN and grain yield. Our findings shed light on the mechanism underlying NN and PH in soybean and provide a molecular marker to facilitate breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01235-y.
Collapse
Affiliation(s)
- Kun Kou
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hao Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Tai Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lixin Ma
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chunmei Liao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cen Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenqian Shi
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Linnan Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Bize Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shichen Li
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingshuang Wang
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
63
|
Zhao B, Zhang S, Yang W, Li B, Lan C, Zhang J, Yuan L, Wang Y, Xie Q, Han J, Mur LAJ, Hao X, Roberts JA, Miao Y, Yu K, Zhang X. Multi-omic dissection of the drought resistance traits of soybean landrace LX. PLANT, CELL & ENVIRONMENT 2021; 44:1379-1398. [PMID: 33554357 DOI: 10.1111/pce.14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
With diverse genetic backgrounds, soybean landraces are valuable resource for breeding programs. Herein, we apply multi-omic approaches to extensively characterize the molecular basis of drought tolerance in the soybean landrace LX. Initial screens established that LX performed better with PEG6000 treatment than control cultivars. LX germinated better than William 82 under drought conditions and accumulated more anthocyanin and flavonoids. Untargeted mass spectrometry in combination with transcriptomic analyses revealed the chemical diversity and genetic basis underlying the overall performance of LX landrace. Under control and drought conditions, significant differences in the expression of a suite of secondary metabolism genes, particularly those involved in the general phenylpropanoid pathway and flavonoid but not lignin biosynthesis, were seen in LX and William 82. The expression of these genes correlated with the corresponding metabolites in LX plants. Further correlation analysis between metabolites and transcripts identified pathway structural genes and transcription factors likely are responsible for the LX agronomic traits. The activities of some key biosynthetic genes or regulators were confirmed through heterologous expression in transgenic Arabidopsis and hairy root transformation in soybean. We propose a regulatory mechanism based on flavonoid secondary metabolism and adaptive traits of this landrace which could be of relevance to cultivated soybean.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Shulin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Bingyan Li
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiwan Han
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Xingyu Hao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
64
|
Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Liu X, Tran LP, Zhou X, Cao D. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:702-716. [PMID: 33098207 PMCID: PMC8051608 DOI: 10.1111/pbi.13496] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/18/2020] [Indexed: 05/06/2023]
Abstract
MYB transcription factors (TFs) have been reported to regulate the biosynthesis of secondary metabolites, as well as to mediate plant adaption to abiotic stresses, including drought. However, the roles of MYB TFs in regulating plant architecture and yield potential remain poorly understood. Here, we studied the roles of the dehydration-inducible GmMYB14 gene in regulating plant architecture, high-density yield and drought tolerance through the brassinosteroid (BR) pathway in soybean. GmMYB14 was shown to localize to nucleus and has a transactivation activity. Stable GmMYB14-overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact plant architecture associated with decreased cell size, resulting in a decrease in plant height, internode length, leaf area, leaf petiole length and leaf petiole angle, and improved yield in high density under field conditions. Results of the transcriptome sequencing suggested the involvement of BRs in regulating GmMYB14-OX plant architecture. Indeed, GmMYB14-OX plants showed reduced endogenous BR contents, while exogenous application of brassinolide could partly rescue the phenotype of GmMYB14-OX plants. Furthermore, GmMYB14 was shown to directly bind to the promoter of GmBEN1 and up-regulate its expression, leading to reduced BR content in GmMYB14-OX plants. GmMYB14-OX plants also displayed improved drought tolerance under field conditions. GmBEN1 expression was also up-regulated in the leaves of GmMYB14-OX plants under polyethylene glycol treatment, indicating that the GmBEN1-mediated reduction in BR level under stress also contributed to drought/osmotic stress tolerance of the transgenic plants. Our findings provided a strategy for stably increasing high-density yield and drought tolerance in soybean using a single TF-encoding gene.
Collapse
Affiliation(s)
- Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Yisheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wenjun Dai
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xiaorong Liu
- The Industrial Crop InstituteShanxi Academy of Agricultural SciencesTaiyuanChina
| | - Lam‐Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress ToleranceDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTXUSA
- Stress Adaptation Research UnitRIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
65
|
Gao J, Yang S, Tang K, Li G, Gao X, Liu B, Wang S, Feng X. GmCCD4 controls carotenoid content in soybeans. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:801-813. [PMID: 33131209 PMCID: PMC8051601 DOI: 10.1111/pbi.13506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/23/2023]
Abstract
To better understand the mechanisms regulating plant carotenoid metabolism in staple crop, we report the map-based cloning and functional characterization of the Glycine max carotenoid cleavage dioxygenase 4 (GmCCD4) gene, which encodes a carotenoid cleavage dioxygenase enzyme involved in metabolizing carotenoids into volatile β-ionone. Loss of GmCCD4 protein function in four Glycine max increased carotenoid content (gmicc) mutants resulted in yellow flowers due to excessive accumulation of carotenoids in flower petals. The carotenoid contents also increase three times in gmicc1 seeds. A genome-wide association study indicated that the GmCCD4 locus was one major locus associated with carotenoid content in natural population. Further analysis indicated that the haplotype-1 of GmCCD4 gene was positively associated with higher carotenoid levels in soybean cultivars and accumulated more β-carotene in engineered E. coli with ectopic expression of different GmCCD4 haplotypes. These observations uncovered that GmCCD4 was a negative regulator of carotenoid content in soybean, and its various haplotypes provide useful resources for future soybean breeding practice.
Collapse
Affiliation(s)
- Jinshan Gao
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Guang Li
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Education MinistryNortheast Agricultural UniversityHarbinChina
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| |
Collapse
|
66
|
Fahim AM, Liu F, He J, Wang W, Xing G, Gai J. Evolutionary QTL-allele changes in main stem node number among geographic and seasonal subpopulations of Chinese cultivated soybeans. Mol Genet Genomics 2021; 296:313-330. [PMID: 33398500 DOI: 10.1007/s00438-020-01748-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022]
Abstract
The main stem node number (MSN) is a trait related to geographic adaptation, plant architecture and yield potential of soybean. The QTL-allele constitution of the Chinese Cultivated Soybean Population (CCSP) was identified using the RTM-GWAS (restricted two-stage multi-locus genome-wide association study) procedure, from which a QTL-allele matrix was established and then separated into submatrices to explore the genetic structure, evolutionary differentiation, breeding potential and candidate genes of MSN in CCSP. The MSN of 821 accessions varied from 8.8 to 31.1, with an average of 16.3 in Nanjing, China (32.07° N, 118.62° E), where the MSNs of all the materials could be evaluated in a standardized manner. Among the six geo-seasonal subpopulations, the MSN varied from 21.7 in a southern summer-autumn-sowing subpopulation (SA-IV) down to 13.5 in a northeastern spring-sowing subpopulation (SP-I). The materials were genotyped with restriction site-associated DNA-sequencing. Totally 142 main-effect QTLs (73.24% new) with 560 alleles contributing 72.98% to the phenotypic variance were identified. The evolutionary QTL-allele changes in MSN from SA-IV through SP-I showed that inheritance (78.93% of alleles) was the primary factor influencing the evolution of this trait, followed by allele emergence (19.64% alleles), allele exclusion (1.43% alleles), and recombination among retained alleles. In the evolutionary changes, 70 QTLs, including 12 newly emerged QTLs, with 118 alleles were involved. An increase potential of 2-8 nodes was predicted and 112 candidate genes were annotated and preliminarily verified with χ2-tests in the CCSP. The RTM-GWAS showed powerful in detecting QTL-allele system, assessing evolution factors, predicting optimal crosses and identifying candidate genes in a germplasm population.
Collapse
Affiliation(s)
- Abbas Muhammad Fahim
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fangdong Liu
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wubing Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guangnan Xing
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- MARA National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
67
|
Yang Q, Lin G, Lv H, Wang C, Yang Y, Liao H. Environmental and genetic regulation of plant height in soybean. BMC PLANT BIOLOGY 2021; 21:63. [PMID: 33494700 PMCID: PMC7836565 DOI: 10.1186/s12870-021-02836-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/11/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Shoot architecture is fundamentally crucial to crop growth and productivity. As a key component of shoot architecture, plant height is known to be controlled by both genetic and environmental factors, though specific details remain scarce. RESULTS In this study, 308 representative soybean lines from a core collection and 168 F9 soybean progeny were planted at distinct field sites. The results demonstrated the presence of significant genotype × environment interaction (G × E) effects on traits associated with plant height in a natural soybean population. In total, 19 loci containing 51 QTLs (quantitative trait locus) for plant height were identified across four environments, with 23, 13 and 15 being QTLs for SH (shoot height), SNN (stem node number) and AIL (average internode length), respectively. Significant LOD ranging from 2.50 to 16.46 explained 2.80-26.10% of phenotypic variation. Intriguingly, only two loci, Loc11 and Loc19-1, containing 20 QTLs, were simultaneously detected across all environments. Results from Pearson correlation analysis and PCA (principal component analysis) revealed that each of the five agro-meteorological factors and four soil properties significantly affected soybean plant height traits, and that the corresponding QTLs had additive effects. Among significant environmental factors, AD (average day-length), AMaT (average maximum temperature), pH, and AN (available nitrogen) had the largest impacts on soybean plant height. Therefore, in spite of uncontrollable agro-meteorological factors, soybean shoot architecture might be remolded through combined efforts to produce superior soybean genetic materials while also optimizing soil properties. CONCLUSIONS Overall, the comprehensive set of relationships outlined herein among environment factors, soybean genotypes and QTLs in effects on plant height opens new avenues to explore in work aiming to increase soybean yield through improvements in shoot architecture.
Collapse
Affiliation(s)
- Qing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gaoming Lin
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyong Lv
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
68
|
Shi R, Xu W, Liu T, Cai C, Li S. VrLELP controls flowering time under short-day conditions in Arabidopsis. JOURNAL OF PLANT RESEARCH 2021; 134:141-149. [PMID: 33084994 DOI: 10.1007/s10265-020-01235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/15/2020] [Indexed: 05/22/2023]
Abstract
Flowering time has a critically important effect on the reproduction of plants, and many components involved in flowering-time regulation have been identified in multiple plant species. However, studies of the flowering-time genes in mungbean (Vigna radiata) have been limited. Here, we characterized a novel mungbean gene, VrLELP, involved in flowering-time regulation in transgenic Arabidopsis. Subcellular localization analysis revealed that VrLELP was localized in the membrane, cytoplasm and nucleus and the nucleus and membrane contained higher signal than cytoplasm, similar to the empty vector control. The expression of VrLELP was higher in leaves and pods and lower in nodule roots relative to other tissues. The expression of VrLELP varied during flower development. The expression of VrLELP also varied during the day, reaching a peak after 12 h of illumination under long-day conditions. In contrast, under short-day conditions, the abundance of VrLELP transcripts changed little throughout the day. In addition, VrLELP delayed flowering time in transgenic Arabidopsis plants by suppressing the expression of the flowering-time genes CO and FT under short-day conditions. However, VrLELP did not affect flowering time under long-day conditions in Arabidopsis. Our study provides essential information for future studies of the molecular mechanisms of the flowering-time regulation system in mungbean.
Collapse
Affiliation(s)
- Renxing Shi
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenying Xu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Tong Liu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
69
|
Liu C, Zhang Q, Zhu H, Cai C, Li S. Characterization of Mungbean CONSTANS-LIKE Genes and Functional Analysis of CONSTANS-LIKE 2 in the Regulation of Flowering Time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:608603. [PMID: 33613600 PMCID: PMC7890258 DOI: 10.3389/fpls.2021.608603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few studies have examined COL genes in mungbean (Vigna radiata). In this study, we identified and characterized 31 mungbean genes whose proteins contained B-Box domains. Fourteen were designated as VrCOL genes and were distributed on 7 of the 11 mungbean chromosomes. Based on their phylogenetic relationships, VrCOLs were clustered into three groups (I, II, and III), which contained 4, 6, and 4 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues and throughout the day under long-day and short-day conditions. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana CO and displayed daily oscillations in expression under short-day conditions but not long-day conditions. In addition, overexpression of VrCOL2 accelerated flowering in Arabidopsis under short-day conditions by affecting the expression of the flowering time genes AtFT and AtTSF. Our study lays the foundation for further investigation of VrCOL gene functions.
Collapse
Affiliation(s)
- Chenyang Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Zhang
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Shuai Li,
| |
Collapse
|
70
|
Dhakal K, Zhu Q, Zhang B, Li M, Li S. Analysis of Shoot Architecture Traits in Edamame Reveals Potential Strategies to Improve Harvest Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 12:614926. [PMID: 33746998 PMCID: PMC7965963 DOI: 10.3389/fpls.2021.614926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 05/17/2023]
Abstract
Edamame is a type of green, vegetable soybean and improving shoot architecture traits for edamame is important for breeding of high-yield varieties by decreasing potential loss due to harvesting. In this study, we use digital imaging technology and computer vision algorithms to characterize major traits of shoot architecture for edamame. Using a population of edamame PIs, we seek to identify underlying genetic control of different shoot architecture traits. We found significant variations in the shoot architecture of the edamame lines including long-skinny and candle stick-like structures. To quantify the similarity and differences of branching patterns between these edamame varieties, we applied a topological measurement called persistent homology. Persistent homology uses algebraic geometry algorithms to measure the structural similarities between complex shapes. We found intriguing relationships between the topological features of branching networks and pod numbers in our plant population, suggesting combination of multiple topological features contribute to the overall pod numbers on a plant. We also identified potential candidate genes including a lateral organ boundary gene family protein and a MADS-box gene that are associated with the pod numbers. This research provides insight into the genetic regulation of shoot architecture traits and can be used to further develop edamame varieties that are better adapted to mechanical harvesting.
Collapse
Affiliation(s)
- Kshitiz Dhakal
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Qian Zhu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- *Correspondence: Mao Li,
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Song Li,
| |
Collapse
|
71
|
Chen L, Nan H, Kong L, Yue L, Yang H, Zhao Q, Fang C, Li H, Cheng Q, Lu S, Kong F, Liu B, Dong L. Soybean AP1 homologs control flowering time and plant height. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1868-1879. [PMID: 32619080 DOI: 10.1111/jipb.12988] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss-of-function mutations in all four GmAP1 genes. Under short-day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.
Collapse
Affiliation(s)
- Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qingsong Zhao
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210000, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 150000, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 150000, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
72
|
|
73
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
74
|
Ha J, Shim S, Lee T, Lee E, Yang X, Jeong H, Kim MY, Lee SH. Transcriptomic and biochemical analyses of the accumulation of sucrose in mungbean (Vigna radiata (L.) Wilczek) leaves after pod removal. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2355-2362. [PMID: 32447408 DOI: 10.1007/s00122-020-03603-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Synchronous pod maturity is critical for increasing grain yield. The candidate genes involved in synchronous pod maturity were identified through RNA-seq and HPLC. Mungbean (Vigna radiata [L.] Wilczek), an important source of carbohydrate and protein in Asia, is characterized by nonsynchronous pod maturity; consequently, harvesting is labor intensive. Because pod maturity is associated with synthesis and remobilization of sucrose, we examined changes in sucrose levels and transcriptome in leaf (source) tissues after pod (sink) removal using two genotypes, VC1973A and V2984; VC1973A had higher synchronicity in pod maturity than V2984. After pod removal, much higher number of pods were produced in V2984 than VC1973A. The sucrose content of leaf tissues significantly decreased in V2984 because it continued to utilize assimilates from leaves for producing new pods, but significantly increased in VC1973A because of the loss of sink. Transcriptome analysis revealed that the number of differentially expressed genes was approximately fourfold higher in VC1973A than in those of V2984 after pod removal. The expression of two paralogous genes (Vradi01g05010 and Vradi10g08240), encoding beta-glucosidase enzymes, significantly decreased in VC1973A after pod removal and was significantly lower in depodded VC1973A than depodded V2984, indicating these two genes may participate in sucrose utilization for seed development by regulating the level of glucose. The results of this study will help elucidate the genetic basis of synchronous pod maturity in mungbean and facilitate the development of new cultivars with synchronous pod maturity.
Collapse
Affiliation(s)
- Jungmin Ha
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Sangrea Shim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | - Eunsoo Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xuefei Yang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haneul Jeong
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moon Young Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suk-Ha Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
75
|
Identification of Regulatory SNPs Associated with Vicine and Convicine Content of Vicia faba Based on Genotyping by Sequencing Data Using Deep Learning. Genes (Basel) 2020; 11:genes11060614. [PMID: 32516876 PMCID: PMC7349281 DOI: 10.3390/genes11060614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Faba bean (Vicia faba) is a grain legume, which is globally grown for both human consumption as well as feed for livestock. Despite its agro-ecological importance the usage of Vicia faba is severely hampered by its anti-nutritive seed-compounds vicine and convicine (V+C). The genes responsible for a low V+C content have not yet been identified. In this study, we aim to computationally identify regulatory SNPs (rSNPs), i.e., SNPs in promoter regions of genes that are deemed to govern the V+C content of Vicia faba. For this purpose we first trained a deep learning model with the gene annotations of seven related species of the Leguminosae family. Applying our model, we predicted putative promoters in a partial genome of Vicia faba that we assembled from genotyping-by-sequencing (GBS) data. Exploiting the synteny between Medicago truncatula and Vicia faba, we identified two rSNPs which are statistically significantly associated with V+C content. In particular, the allele substitutions regarding these rSNPs result in dramatic changes of the binding sites of the transcription factors (TFs) MYB4, MYB61, and SQUA. The knowledge about TFs and their rSNPs may enhance our understanding of the regulatory programs controlling V+C content of Vicia faba and could provide new hypotheses for future breeding programs.
Collapse
|
76
|
Fu M, Wang Y, Ren H, Du W, Wang D, Bao R, Yang X, Tian Z, Fu L, Cheng Y, Su J, Sun B, Zhao J, Gai J. Genetic dynamics of earlier maturity group emergence in south-to-north extension of Northeast China soybeans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1839-1857. [PMID: 32030467 DOI: 10.1007/s00122-020-03558-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE This population genetic study is characterized with direct comparisons of days to flowering QTL-allele matrices between newly evolved and originally old maturity groups of soybeans to explore its evolutionary dynamics using the RTM-GWAS procedure. The Northeast China (NEC) soybeans are the major germplasm source of modern soybean production in Americas (> 80% of the world total). NEC is a relatively new soybean area in China, expanded after its nomadic status in the seventeenth century. At nine sites of four ecoregions in NEC, 361 varieties were tested for their days to flowering (DTF), a geography-sensitive trait as an indicator for maturity groups (MGs). The DTF reduced obviously along with soybeans extended to higher latitudes, ranging in 41-83 days and MG 000-III. Using the RTM-GWAS (restricted two-stage multi-locus model genome-wide association study) procedure, 81 QTLs with 342 alleles were identified, accounting for 77.85% genetic contribution (R2 = 0.01-7.74%/locus), and other 20.75% (98.60-77.85%, h2 = 98.60%) genetic variation was due to a collective of unmapped QTLs. With soybeans northward, breeding effort made the original MG I-III evolved to MG 0-00-000. In direct comparisons of QTL-allele matrices among MGs, the genetic dynamics are identified with local exotic introduction/migration (58.48%) as the first and selection against/exclusion of positive alleles causing new recombination (40.64%) as the second, while only a few allele emergence/mutation happened (0.88%, limited in MG 0, not in MG 00-000). In new MG emergence, 24 QTLs with 19 candidate genes are the major sources. A genetic potential of further DTF shortening (13-21 days) is predicted for NEC population. The QTL detection in individual ecoregions showed various ecoregion-specific QTLs-alleles/genes after co-localization treatment (removing the random environment shifting ones).
Collapse
Affiliation(s)
- Mengmeng Fu
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean; National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanping Wang
- Mudanjiang Research and Development Center for Soybean; Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, Heilongjiang, China
| | - Haixiang Ren
- Mudanjiang Research and Development Center for Soybean; Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, Heilongjiang, China
| | - Weiguang Du
- Mudanjiang Research and Development Center for Soybean; Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, Heilongjiang, China
| | - Deliang Wang
- Heilongjiang Academy of Land-reclamation Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Rongjun Bao
- Bei'an Branch of Heilongjiang Academy of Agricultural Sciences, Bei'an, 164009, Heilongjiang, China
| | - Xingyong Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan, 161606, Heilongjiang, China
| | - Zhongyan Tian
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, Heilongjiang, China
| | - Lianshun Fu
- Tieling Academy of Agricultural Sciences, Tieling, 112616, Liaoning, China
| | - Yanxi Cheng
- Changchun Academy of Agricultural Sciences, Changchun, 130111, Jilin, China
| | - Jiangshun Su
- Baicheng Academy of Agricultural Sciences, Baicheng, 137000, Jinlin, China
| | - Bincheng Sun
- Hulunbeier Academy of Agricultural Sciences, Hulunbeier, 162650, Inner Mongolia, China
| | - Jinming Zhao
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean; National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Mudanjiang Research and Development Center for Soybean; Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, Heilongjiang, China
| | - Junyi Gai
- Soybean Research Institute; MARA National Center for Soybean Improvement; MARA Key Laboratory of Biology and Genetic Improvement of Soybean; National Key Laboratory for Crop Genetics and Germplasm Enhancement; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Mudanjiang Research and Development Center for Soybean; Mudanjiang Experiment Station of the National Center for Soybean Improvement, Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157041, Heilongjiang, China.
| |
Collapse
|
77
|
Closing the Phenotyping Gap: High Resolution UAV Time Series for Soybean Growth Analysis Provides Objective Data from Field Trials. REMOTE SENSING 2020. [DOI: 10.3390/rs12101644] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Close remote sensing approaches can be used for high throughput on-field phenotyping in the context of plant breeding and biological research. Data on canopy cover (CC) and canopy height (CH) and their temporal changes throughout the growing season can yield information about crop growth and performance. In the present study, sigmoid models were fitted to multi-temporal CC and CH data obtained using RGB imagery captured with a drone for a broad set of soybean genotypes. The Gompertz and Beta functions were used to fit CC and CH data, respectively. Overall, 90.4% fits for CC and 99.4% fits for CH reached an adjusted R2 > 0.70, demonstrating good performance of the models chosen. Using these growth curves, parameters including maximum absolute growth rate, early vigor, maximum height, and senescence were calculated for a collection of soybean genotypes. This information was also used to estimate seed yield and maturity (R8 stage) (adjusted R2 = 0.51 and 0.82). Combinations of parameter values were tested to identify genotypes with interesting traits. An integrative approach of fitting a curve to a multi-temporal dataset resulted in biologically interpretable parameters that were informative for relevant traits.
Collapse
|
78
|
Liu S, Zhang M, Feng F, Tian Z. Toward a "Green Revolution" for Soybean. MOLECULAR PLANT 2020; 13:688-697. [PMID: 32171732 DOI: 10.1016/j.molp.2020.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Soybean (Glycine max), as an economically important food and oilseedcrop, is a major source of plant proteins and oils. Although considerable progress has been made in increasing the yields of rice, wheat, and maize through the "Green Revolution", little improvements have been made for soybean. With the increasing demand of soybean production and the rapid development of crop breeding technologies, time has come for this important crop to undergo a Green Revolution. Here, we briefly summarize the history of crop breeding and Green Revolution in other crops. We then discuss the possible directions and potential approaches toward achieving a Green Revolution for soybean. We provide our views and perspectives on how to breed new soybean varieties with improved yield.
Collapse
Affiliation(s)
- Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Feng
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
79
|
Zhang X, Li L, Yang C, Cheng Y, Han Z, Cai Z, Nian H, Ma Q. GsMAS1 Encoding a MADS-box Transcription Factor Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. Int J Mol Sci 2020; 21:E2004. [PMID: 32183485 PMCID: PMC7139582 DOI: 10.3390/ijms21062004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 01/29/2023] Open
Abstract
The MADS-box transcription factors (TFs) are essential in regulating plant growth and development, and conferring abiotic and metal stress resistance. This study aims to investigate GsMAS1 function in conferring tolerance to aluminum stress in Arabidopsis. The GsMAS1 from the wild soybean BW69 line encodes a MADS-box transcription factor in Glycine soja by bioinformatics analysis. The putative GsMAS1 protein was localized in the nucleus. The GsMAS1 gene was rich in soybean roots presenting a constitutive expression pattern and induced by aluminum stress with a concentration-time specific pattern. The analysis of phenotypic observation demonstrated that overexpression of GsMAS1 enhanced the tolerance of Arabidopsis plants to aluminum (Al) stress with larger values of relative root length and higher proline accumulation compared to those of wild type at the AlCl3 treatments. The genes and/or pathways regulated by GsMAS1 were further investigated under Al stress by qRT-PCR. The results indicated that six genes resistant to Al stress were upregulated, whereas AtALMT1 and STOP2 were significantly activated by Al stress and GsMAS1 overexpression. After treatment of 50 μM AlCl3, the RNA abundance of AtALMT1 and STOP2 went up to 17-fold and 37-fold than those in wild type, respectively. Whereas the RNA transcripts of AtALMT1 and STOP2 were much higher than those in wild type with over 82% and 67% of relative expression in GsMAS1 transgenic plants, respectively. In short, the results suggest that GsMAS1 may increase resistance to Al toxicity through certain pathways related to Al stress in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ce Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhen Han
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.); (C.Y.); (Y.C.); (Z.H.); (Z.C.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
80
|
Xavier A, Rainey KM. Quantitative Genomic Dissection of Soybean Yield Components. G3 (BETHESDA, MD.) 2020; 10:665-675. [PMID: 31818873 PMCID: PMC7003100 DOI: 10.1534/g3.119.400896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/06/2019] [Indexed: 11/25/2022]
Abstract
Soybean is a crop of major economic importance with low rates of genetic gains for grain yield compared to other field crops. A deeper understanding of the genetic architecture of yield components may enable better ways to tackle the breeding challenges. Key yield components include the total number of pods, nodes and the ratio pods per node. We evaluated the SoyNAM population, containing approximately 5600 lines from 40 biparental families that share a common parent, in 6 environments distributed across 3 years. The study indicates that the yield components under evaluation have low heritability, a reasonable amount of epistatic control, and partially oligogenic architecture: 18 quantitative trait loci were identified across the three yield components using multi-approach signal detection. Genetic correlation between yield and yield components was highly variable from family-to-family, ranging from -0.2 to 0.5. The genotype-by-environment correlation of yield components ranged from -0.1 to 0.4 within families. The number of pods can be utilized for indirect selection of yield. The selection of soybean for enhanced yield components can be successfully performed via genomic prediction, but the challenging data collections necessary to recalibrate models over time makes the introgression of QTL a potentially more feasible breeding strategy. The genomic prediction of yield components was relatively accurate across families, but less accurate predictions were obtained from within family predictions and predicting families not observed included in the calibration set.
Collapse
Affiliation(s)
- Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette IN 47907 and
- Department of Biostatistics, Corteva Agrisciences, Johnston IA 50131
| | - Katy M Rainey
- Department of Agronomy, Purdue University, West Lafayette IN 47907 and
| |
Collapse
|
81
|
Zhang D, Wang X, Li S, Wang C, Gosney MJ, Mickelbart MV, Ma J. A Post-domestication Mutation, Dt2, Triggers Systemic Modification of Divergent and Convergent Pathways Modulating Multiple Agronomic Traits in Soybean. MOLECULAR PLANT 2019; 12:1366-1382. [PMID: 31152912 DOI: 10.1016/j.molp.2019.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 05/28/2023]
Abstract
The semi-determinate stem growth habit in leguminous crops, similar to the "green revolution" semi-dwarf trait in cereals, is a key plant architecture trait that affects several other traits determining grain yield. In soybean semi-determinacy is modulated by a post-domestication gain-of-function mutation in the gene, Dt2, which encodes an MADS-box transcription factor. However, its role in systemic modification of stem growth and other traits is unknown. In this study, we show that Dt2 functions not only as a direct repressor of Dt1, which prevents terminal flowering, but also as a direct activator of putative floral integrator/identity genes including GmSOC1, GmAP1, and GmFUL, which likely promote flowering. We also demonstrate that Dt2 functions as a direct repressor of the putative drought-responsive transcription factor gene GmDREB1D, and as a direct activator of GmSPCH and GmGRP7, which are potentially associated with asymmetric division of young epidermal cells and stomatal opening, respectively, and may affect the plant's water-use efficiency (WUE). Intriguingly, Dt2 was found to be a direct activator or repressor of the precursors of eight microRNAs targeting genes potentially associated with meristem maintenance, flowering time, stomatal density, WUE, and/or stress responses. This study thus reveals the molecular basis of pleiotropy associated with plant productivity, adaptability, and environmental resilience.
Collapse
Affiliation(s)
- Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Shuo Li
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Chaofan Wang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Michael J Gosney
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Michael V Mickelbart
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
82
|
Cao Y, Li S, Chen G, Wang Y, Bhat JA, Karikari B, Kong J, Gai J, Zhao T. Deciphering the Genetic Architecture of Plant Height in Soybean Using Two RIL Populations Sharing a Common M8206 Parent. PLANTS 2019; 8:plants8100373. [PMID: 31561497 PMCID: PMC6843848 DOI: 10.3390/plants8100373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Plant height (PH) is an important agronomic trait that is closely related to soybean yield and quality. However, it is a complex quantitative trait governed by multiple genes and is influenced by environment. Unraveling the genetic mechanism involved in PH, and developing soybean cultivars with desirable PH is an imperative goal for soybean breeding. In this regard, the present study used high-density linkage maps of two related recombinant inbred line (RIL) populations viz., MT and ZM evaluated in three different environments to detect additive and epistatic effect quantitative trait loci (QTLs) as well as their interaction with environments for PH in Chinese summer planting soybean. A total of eight and 12 QTLs were detected by combining the composite interval mapping (CIM) and mixed-model based composite interval mapping (MCIM) methods in MT and ZM populations, respectively. Among these QTLs, nine QTLs viz., QPH-2, qPH-6-2MT, QPH-6, qPH-9-1ZM, qPH-10-1ZM, qPH-13-1ZM, qPH-16-1MT, QPH-17 and QPH-19 were consistently identified in multiple environments or populations, hence were regarded as stable QTLs. Furthermore, Out of these QTLs, three QTLs viz., qPH-4-2ZM, qPH-15-1MT and QPH-17 were novel. In particular, QPH-17 could detect in both populations, which was also considered as a stable and major QTL in Chinese summer planting soybean. Moreover, eleven QTLs revealed significant additive effects in both populations, and out of them only six showed additive by environment interaction effects, and the environment-independent QTLs showed higher additive effects. Finally, six digenic epistatic QTLs pairs were identified and only four additive effect QTLs viz., qPH-6-2MT, qPH-19-1MT/QPH-19, qPH-5-1ZM and qPH-17-1ZM showed epistatic effects. These results indicate that environment and epistatic interaction effects have significant influence in determining genetic basis of PH in soybean. These results would not only increase our understanding of the genetic control of plant height in summer planting soybean but also provide support for implementing marker assisted selection (MAS) in developing cultivars with ideal plant height as well as gene cloning to elucidate the mechanisms of plant height.
Collapse
Affiliation(s)
- Yongce Cao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Shuguang Li
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guoliang Chen
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Javaid Akhter Bhat
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Benjamin Karikari
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiejie Kong
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junyi Gai
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tuanjie Zhao
- MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
83
|
Ren B, Wang X, Duan J, Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 2019; 365:919-922. [PMID: 31346137 DOI: 10.1126/science.aav8907] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/22/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Rhizobial infection and root nodule formation in legumes require recognition of signal molecules produced by the bacteria and their hosts. Here, we show that rhizobial transfer RNA (tRNA)-derived small RNA fragments (tRFs) are signal molecules that modulate host nodulation. Three families of rhizobial tRFs were confirmed to regulate host genes associated with nodule initiation and development through hijacking the host RNA-interference machinery that involves ARGONAUTE 1. Silencing individual tRFs with the use of short tandem target mimics or by overexpressing their targets represses root hair curling and nodule formation, whereas repressing these targets with artificial microRNAs identical to the respective tRFs or mutating these targets with CRISPR-Cas9 promotes nodulation. Our findings thus uncover a bacterial small RNA-mediated mechanism for prokaryote-eukaryote interaction and may pave the way for enhancing nodulation efficiency in legumes.
Collapse
MESH Headings
- Argonaute Proteins/genetics
- Bradyrhizobium/genetics
- Bradyrhizobium/physiology
- CRISPR-Cas Systems
- Gene Expression Regulation, Plant
- Host Microbial Interactions/genetics
- Nitrogen Fixation
- Nucleic Acid Conformation
- Plant Proteins/genetics
- Plant Root Nodulation/genetics
- Plant Roots/metabolism
- Plant Roots/microbiology
- RNA Interference
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/physiology
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/physiology
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/physiology
- Glycine max/genetics
- Glycine max/metabolism
- Glycine max/microbiology
Collapse
Affiliation(s)
- Bo Ren
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
84
|
Takeshima R, Nan H, Harigai K, Dong L, Zhu J, Lu S, Xu M, Yamagishi N, Yoshikawa N, Liu B, Yamada T, Kong F, Abe J. Functional divergence between soybean FLOWERING LOCUS T orthologues FT2a and FT5a in post-flowering stem growth. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3941-3953. [PMID: 31035293 PMCID: PMC6685666 DOI: 10.1093/jxb/erz199] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 05/19/2023]
Abstract
Genes in the FLOWERING LOCUS T (FT) family integrate external and internal signals to control various aspects of plant development. In soybean (Glycine max), FT2a and FT5a play a major role in floral induction, but their roles in post-flowering reproductive development remain undetermined. Ectopic overexpression analyses revealed that FT2a and FT5a similarly induced flowering, but FT5a was markedly more effective than FT2a for the post-flowering termination of stem growth. The down-regulation of Dt1, a soybean orthologue of Arabidopsis TERMINAL FLOWER1, in shoot apices in early growing stages of FT5a-overexpressing plants was concomitant with highly up-regulated expression of APETALA1 orthologues. The Dt2 gene, a repressor of Dt1, was up-regulated similarly by the overexpression of FT2a and FT5a, suggesting that it was not involved in the control of stem termination by FT5a. In addition to the previously reported interaction with FDL19, a homologue of the Arabidopsis bZIP protein FD, both FT2a and FT5a interacted with FDL12, but only FT5a interacted with FDL06. Our results suggest that FT2a and FT5a have different functions in the control of post-flowering stem growth. A specific interaction of FT5a with FDL06 may play a key role in determining post-flowering stem growth in soybean.
Collapse
Affiliation(s)
- Ryoma Takeshima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Haiyang Nan
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Kohei Harigai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lidong Dong
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Jianghui Zhu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sijia Lu
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Meilan Xu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | | | | | - Baohui Liu
- School of Life Science, Guangzhou University, Guangzhou, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fanjiang Kong
- School of Life Science, Guangzhou University, Guangzhou, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
85
|
Wang R, Liu L, Kong J, Xu Z, Akhter Bhat J, Zhao T. QTL architecture of vine growth habit and gibberellin oxidase gene diversity in wild soybean (Glycine soja). Sci Rep 2019; 9:7393. [PMID: 31089185 PMCID: PMC6517428 DOI: 10.1038/s41598-019-43887-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/02/2019] [Indexed: 11/09/2022] Open
Abstract
Vine growth habit (VGH) is a beneficial phenotype in many wild plants, and is considered an important domesticated-related trait in soybean. However, its genetic basis remains largely unclear. Hence, in the present study we used an integrated strategy combining linkage mapping and population genome diversity analyses to reveal the genetics of VGH in soybean. In this regard, two recombinant inbred line (RIL) populations derived by crossing a common wild soybean genotype (PI342618B) with two cultivated lines viz., NN 86-4 and NN 493-1 were used to map quantitative trait loci (QTL) for VGH. Here, we identified seven and five QTLs at flowering stage (R1) and maturity stage (R8), respectively, and among them qVGH-18-1, qVGH-18-2, qVGH-19-3, qVGH-19-4 were identified as major loci (R2 > 10% and detection time ≥2). However, qVGH-18-2 was considered as a main QTL for VGH being consistently identified in both RIL populations as well as all growth stages and cropping years. Out of all the annotated genes within qVGH-18-2, Glyma18g06870 was identified as the candidate gene and named as VGH1, which was a gibberellin oxidase (GAox) belongs to 2-oxoglutarate-dependent dioxygenase (2- ODD). Interestingly, there was one member of 2-ODD/GAox in qVGH-18-1 and qVGH-19-4 named as VGH2 and VGH3, respectively. Moreover, from sequencing data analysis VGH1 and three other GAox genes were found significantly divergent between vine and erect soybean with FST value larger than 0.25. Hence, GAox was assumed to play a major role in governing inheritance of VGH in soybean. Therefore, elucidating the genetic mechanism of GAox is very useful for exploring VGH and other stem traits, as well as genetic improvement of plant type in soybean.
Collapse
Affiliation(s)
- Ruikai Wang
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Liu
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Kong
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Xu
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetics and Breeding for Soybean/State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
86
|
Périlleux C, Bouché F, Randoux M, Orman-Ligeza B. Turning Meristems into Fortresses. TRENDS IN PLANT SCIENCE 2019; 24:431-442. [PMID: 30853243 DOI: 10.1016/j.tplants.2019.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 05/18/2023]
Abstract
TERMINAL FLOWER1 (TFL1) was named from knockout Arabidopsis thaliana mutants in which the inflorescence abnormally terminates into a flower. In wild type plants, the expression of TFL1 in the center of the inflorescence meristem represses the flower meristem identity genes LEAFY (LFY) and APETALA1 (AP1) to maintain indeterminacy. LFY and AP1 are activated by flowering signals that antagonize TFL1. Its characterization in numerous species revealed that the TFL1-mediated regulation of meristem fate has broader impacts on plant development than originally depicted in A. thaliana. By blocking floral transition, TFL1 genes participate in the control of juvenility, shoot growth pattern, inflorescence architecture, and the establishment of life history strategies. Here, we contextualize the role of the TFL1-mediated protection of meristem indeterminacy throughout plant development.
Collapse
Affiliation(s)
| | | | - Marie Randoux
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium
| | - Beata Orman-Ligeza
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium; Current address: National Institute of Agricultural Botany, Cambridge, UK
| |
Collapse
|
87
|
Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran LSP, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC PLANT BIOLOGY 2019; 19:131. [PMID: 30961525 PMCID: PMC6454688 DOI: 10.1186/s12870-019-1746-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The plant architecture has significant effects on grain yield of various crops, including soybean (Glycine max), but the knowledge on optimization of plant architecture in order to increase yield potential is still limited. Recently, CRISPR/Cas9 system has revolutionized genome editing, and has been widely utilized to edit the genomes of a diverse range of crop plants. RESULTS In the present study, we employed the CRISPR/Cas9 system to mutate four genes encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors of the SPL9 family in soybean. These four GmSPL9 genes are negatively regulated by GmmiR156b, a target for the improvement of soybean plant architecture and yields. The soybean Williams 82 was transformed with the binary CRISPR/Cas9 plasmid, assembled with four sgRNA expression cassettes driven by the Arabidopsis thaliana U3 or U6 promoter, targeting different sites of these four SPL9 genes via Agrobacterium tumefaciens-mediated transformation. A 1-bp deletion was detected in one target site of the GmSPL9a and one target site of the GmSPL9b, respectively, by DNA sequencing analysis of two T0-generation plants. T2-generation spl9a and spl9b homozygous single mutants exhibited no obvious phenotype changes; but the T2 double homozygous mutant spl9a/spl9b possessed shorter plastochron length. In T4 generation, higher-order mutant plants carrying various combinations of mutations showed increased node number on the main stem and branch number, consequently increased total node number per plants at different levels. In addition, the expression levels of the examined GmSPL9 genes were higher in the spl9b-1 single mutant than wild-type plants, which might suggest a feedback regulation on the expression of the investigated GmSPL9 genes in soybean. CONCLUSIONS Our results showed that CRISPR/Cas9-mediated targeted mutagenesis of four GmSPL9 genes in different combinations altered plant architecture in soybean. The findings demonstrated that GmSPL9a, GmSPL9b, GmSPL9c and GmSPL9 function as redundant transcription factors in regulating plant architecture in soybean.
Collapse
Affiliation(s)
- Aili Bao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Baohui Liu
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Fanjiang Kong
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China
| |
Collapse
|
88
|
Kato S, Sayama T, Taguchi-Shiobara F, Kikuchi A, Ishimoto M, Cober E. Effect of change from a determinate to a semi-determinate growth habit on the yield and lodging resistance of soybeans in the northeast region of Japan. BREEDING SCIENCE 2019; 69:151-159. [PMID: 31086493 PMCID: PMC6507727 DOI: 10.1270/jsbbs.18112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
Although an indeterminate growth habit is attractive to develop high-yield soybean varieties with higher number of pods (Glycine max (L). Merr.), lodging in indeterminate varieties remains a problem in Japan. As the semi-determinate varieties have shorter main stem length than the indeterminate varieties, this trait can be useful to improve varieties with high yield and low lodging risk. We introduced the genes Dt1 and Dt2, which regulate stem growth habit, into three determinate varieties by backcrossing and evaluated the resulting effects on yield and lodging tendency under four different growing environments. The yield and lodging degree of the semi-determinate and indeterminate lines were higher and more severe than those of the determinate lines. Despite the lower overall lodging score, the semi-determinate lines had marginally lower overall yield than that of the indeterminate lines. However, the effect of introduction of semi-determinate traits on yield and lodging degree was different in the three backgrounds, with the yield of semi-determinate lines being the highest and the difference in lodging degree between the semi-determinate and determinate lines being under 1.0 in one background. Therefore, semi-determinate growth habit has potential to develop high yielding varieties with low lodging risk.
Collapse
Affiliation(s)
- Shin Kato
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (NARO),
297 Uenodai, Kariwano, Daisen, Akita 019-2112,
Japan
- Corresponding author (e-mail: )
| | - Takashi Sayama
- Western Region Agricultural Research Center, NARO,
1-3-1 Senyuu, Zentsuji, Kagawa 765-8508,
Japan
| | | | - Akio Kikuchi
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (NARO),
297 Uenodai, Kariwano, Daisen, Akita 019-2112,
Japan
| | - Masao Ishimoto
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Elroy Cober
- Ottawa Research Development Centre, Agriculture and Agri-Food Canada,
960 Carling Ave., Ottawa, Ontario K1A0C6,
Canada
| |
Collapse
|
89
|
Feng X, Yang S, Tang K, Zhang Y, Leng J, Ma J, Wang Q, Feng X. GmPGL1, a Thiamine Thiazole Synthase, Is Required for the Biosynthesis of Thiamine in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1546. [PMID: 31824549 PMCID: PMC6883718 DOI: 10.3389/fpls.2019.01546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Thiamine is an essential cofactor in several enzymatic reactions for all living organisms. Animals cannot synthesize thiamine and depend on their diet. Enhancing the content of thiamine is one of the most important goals of plant breeding to solve the thiamine deficiency associated with the low-thiamin staple crops. In this study, a Glycine max pale green leaf 1 (Gmpgl1) mutant was isolated from the EMS mutagenized population of soybean cultivar, Williams 82. Map-based cloning of the GmPGL1 locus revealed a single nucleotide deletion at the 292th nucleotide residue of the first exon of Glyma.10g251500 gene in Gmpgl1 mutant plant, encoding a thiamine thiazole synthase. Total thiamine contents decreased in both seedlings and seeds of the Gmpgl1 mutant. Exogenous application of thiazole restored the pale green leaf phenotype of the mutant. The deficiency of thiamine in Gmpgl1 mutant led to reduced activities of the pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC), and decreased contents of six amino acids as compared to that in the wild type plants. These results revealed that GmPGL1 played an essential role in thiamine thiazole biosynthesis.
Collapse
Affiliation(s)
- Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Suxin Yang,
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
90
|
Li S, Ding Y, Zhang D, Wang X, Tang X, Dai D, Jin H, Lee SH, Cai C, Ma J. Parallel domestication with a broad mutational spectrum of determinate stem growth habit in leguminous crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:761-771. [PMID: 30112860 DOI: 10.1111/tpj.14066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 05/10/2023]
Abstract
Stem growth habit is a key plant architecture trait determining yield potential in grain legumes, and the phenotypic change from the indeterminate stem growth habit of wild mungbeans (Vigna radiata) to the determinate stem growth habit of cultivated mungbeans is a critical domestication transition. Here we show that indeterminate stem growth in wild mungbean is modulated by a single gene, VrDet1, which encodes a signaling protein of shoot apical meristems. The transition from an indeterminate to a determinate stem growth habit was achieved by selection of two linked point mutations in two putative cis-regulatory elements, resulting in a significant reduction in gene expression. Both the wild-type nucleotides corresponding to the two point mutations were essential for VrDet1 function. In addition, two highly diverse haplotypes of Vrdet1 were found in cultivated mungbeans, suggesting dual domestication of Vrdet1. VrDet1 was orthologous to Dt1 in wild soybean and PvTFL1y in wild common bean, where multiple loss-of-function mutations altering the coding sequences of individual genes were selected to produce determinate stems in cultivated accessions. Interspecific comparison of these orthologs in the wild and cultivated accessions reveals the most conservative interspecific and intraspecific parallel domestication events with the broadest mutational spectrum of a domestication trait in leguminous crops. We also found that interspecifically and functionally conserved promoters possess cis-regulatory elements that are highly conserved in kind but greatly variable in number and order, demonstrating the evolutionary dynamics of regulatory sequences. This work provides insights into the origins of cultivated mungbean and exemplifies the conservativeness and plasticity of the domestication processes of related crops.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yanhua Ding
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuemin Tang
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Deyan Dai
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hanqi Jin
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Suk-Ha Lee
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
91
|
Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, He C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5089-5104. [PMID: 30113693 PMCID: PMC6184420 DOI: 10.1093/jxb/ery291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yingdong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
92
|
McClean PE, Bett KE, Stonehouse R, Lee R, Pflieger S, Moghaddam SM, Geffroy V, Miklas P, Mamidi S. White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. THE NEW PHYTOLOGIST 2018; 219:1112-1123. [PMID: 29897103 DOI: 10.1111/nph.15259] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/20/2018] [Indexed: 05/10/2023]
Abstract
The presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight. P was identified by homology searches, a genome-wide association study (GWAS) and gene remodeling, and confirmed by gene silencing. Allelic variation was assessed by a combination of resequencing and marker development, and the relationship between P and seed weight was assessed by a GWAS study. P is a member of clade B of subclass IIIf of plant basic helix-loop-helix (bHLH) proteins. Ten race-specific P alleles conditioned the white seed phenotype, and each causative mutation affected at least one bHLH domain required for color expression. GWAS analysis confirmed the classic association of P with seed weight. In common bean, white seeds are the result of convergent evolution and, among plant species, orthologous convergence on a single transcription factor gene was observed.
Collapse
Affiliation(s)
- Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Robert Stonehouse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Stephanie Pflieger
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | | | - Valerie Geffroy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Phil Miklas
- USDA-ARS, Grain Legumes Genetics and Physiology Research Unit, Prosser, WA, 99350, USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
93
|
Magne K, George J, Berbel Tornero A, Broquet B, Madueño F, Andersen SU, Ratet P. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:880-894. [PMID: 29570881 DOI: 10.1111/tpj.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 05/26/2023]
Abstract
The NOOT-BOP-COCH-LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE-ON-PETIOLE1/2. The NBCLs are developmental regulators essential for plant shaping, mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen-fixing nodules with persistent meristems in legumes. In legumes forming determinate nodules, without persistent meristem, the roles of NBCL genes are not known. We thus investigated the role of Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNA interference-mediated silencing approaches. In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild-type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules, rather than nectaries, at the base of their leaves. In Ljnbcl1, nectary development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and reorganization of the nodule vascular bundle vessels were observed on Ljnbcl1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to its role in floral patterning described in other plants, LjNBCL1 appears essential for the development of both secondary inflorescence meristem and floral meristem.
Collapse
Affiliation(s)
- Kévin Magne
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Ana Berbel Tornero
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Universidad Politécnica de Valencia, CPI Edificio 8E, Avenida de los Naranjos s/n, Valencia, 46022, Spain
| | - Blandine Broquet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Universidad Politécnica de Valencia, CPI Edificio 8E, Avenida de los Naranjos s/n, Valencia, 46022, Spain
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signaling, Aarhus University, Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| |
Collapse
|
94
|
Guo Y, Su B, Tang J, Zhou F, Qiu LJ. Gene-based SNP identification and validation in soybean using next-generation transcriptome sequencing. Mol Genet Genomics 2018; 293:623-633. [PMID: 29280001 DOI: 10.1007/s00438-017-1410-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Gene-based molecular markers are increasingly used in crop breeding programs for marker-assisted selection. However, identification of genetic variants associated with important agronomic traits has remained a difficult task in soybean. RNA-Seq provides an efficient way, other than assessing global expression variations of coding genes, to discover gene-based SNPs at the whole genome level. In this study, RNA isolated from four soybean accessions each with three replications was subjected to high-throughput sequencing and a range of 44.2-65.9 million paired-end reads were generated for each library. A total of 75,209 SNPs were identified among different genotypes after combination of replications, 89.1% of which were located in expressed regions and 27.0% resulted in amino acid changes. GO enrichment analysis revealed that most significant enriched genes with nonsynonymous SNPs were involved in ribonucleotide binding or catalytic activity. Of 22 SNPs subjected to PCR amplification and Sanger sequencing, all of them were validated. To test the utility of identified SNPs, these validated SNPs were also assessed by genotyping a relative large population with 393 wild and cultivated soybean accessions. These SNPs identified by RNA-Seq provide a useful resource for genetic and genomic studies of soybean. Moreover, the collection of nonsynonymous SNPs annotated with their predicted functional effects also provides a valuable asset for further discovery of genes, identification of gene variants, and development of functional markers.
Collapse
Affiliation(s)
- Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Bohong Su
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Junyong Tang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Fulai Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
95
|
Zhang X, Wang W, Guo N, Zhang Y, Bu Y, Zhao J, Xing H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 2018; 19:226. [PMID: 29587637 PMCID: PMC5870336 DOI: 10.1186/s12864-018-4582-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping. RESULTS In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138-2 (G. max)) and NN1138-2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identified a QTL for PH in a 1.73 Mb region on soybean chromosome 13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3 kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13 g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents. CONCLUSIONS Data presented here provide support for Glyma.13 g249400 as a possible candidate genes for higher PH in wild soybean line N24852.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wubin Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Guo
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Youyi Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuanpeng Bu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinming Zhao
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| | - Han Xing
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University, Nanjing 210095, China, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
96
|
Zeng X, Liu H, Du H, Wang S, Yang W, Chi Y, Wang J, Huang F, Yu D. Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway. BMC Genomics 2018; 19:51. [PMID: 29338682 PMCID: PMC5769455 DOI: 10.1186/s12864-017-4402-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The MADS-box transcription factors are an ancient family of genes that regulate numerous physiological and biochemical processes in plants and facilitate the development of floral organs. However, the functions of most of these transcription factors in soybean remain unknown. RESULTS In this work, a MADS-box gene, GmAGL1, was overexpressed in soybean. Phenotypic analysis showed that GmAGL1 overexpression not only resulted in early maturation but also promoted flowering and affected petal development. Furthermore, the GmAGL1 was much more effective at promoting flowering under long-day conditions than under short-day conditions. Transcriptome sequencing analysis showed that before flowering, the photoperiod pathway photoreceptor CRY2 and several circadian rhythm genes, such as SPA1, were significantly down-regulated, while some other flowering-promoting circadian genes, such as GI and LHY, and downstream genes related to flower development, such as FT, LEAFY, SEP1, SEP3, FUL, and AP1, were up-regulated compared with the control. Other genes related to the flowering pathway were not noticeably affected. CONCLUSIONS The findings reported herein indicate that GmAGL1 may promote flowering mainly through the photoperiod pathway. Interestingly, while overexpression of GmAGL1 promoted plant maturity, no reduction in seed production or oil and protein contents was observed.
Collapse
Affiliation(s)
- Xuanrui Zeng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Hailun Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Hongyang Du
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Sujing Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Wenming Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yingjun Chi
- College of Agro-grass-land Science, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Jiao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| |
Collapse
|
97
|
Zhang D, Sun L, Li S, Wang W, Ding Y, Swarm SA, Li L, Wang X, Tang X, Zhang Z, Tian Z, Brown PJ, Cai C, Nelson RL, Ma J. Elevation of soybean seed oil content through selection for seed coat shininess. NATURE PLANTS 2018; 4:30-35. [PMID: 29292374 DOI: 10.1038/s41477-017-0084-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 05/06/2023]
Abstract
Many leguminous species have adapted their seed coat with a layer of powdery bloom that contains hazardous allergens and makes the seeds less visible, offering duel protection against potential predators 1 . Nevertheless, a shiny seed surface without bloom is desirable for human consumption and health, and is targeted for selection under domestication. Here we show that seed coat bloom in wild soybeans is mainly controlled by Bloom1 (B1), which encodes a transmembrane transporter-like protein for biosynthesis of the bloom in pod endocarp. The transition from the 'bloom' to 'no-bloom' phenotypes is associated with artificial selection of a nucleotide mutation that naturally occurred in the coding region of B1 during soybean domestication. Interestingly, this mutation not only 'shined' the seed surface, but also elevated seed oil content in domesticated soybeans. Such an elevation of oil content in seeds appears to be achieved through b1-modulated upregulation of oil biosynthesis in pods. This study shows pleiotropy as a mechanism underlying the domestication syndrome 2 , and may pave new strategies for development of soybean varieties with increased seed oil content and reduced seed dust.
Collapse
Affiliation(s)
- Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Yanhua Ding
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Linghong Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Xuemin Tang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhifang Zhang
- Institute of Genetics and Developmental Biology, Beijing, China
| | - Zhixi Tian
- Institute of Genetics and Developmental Biology, Beijing, China
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Chunmei Cai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
98
|
Ma YQ, Li DZ, Zhang L, Li Q, Yao JW, Ma Z, Huang X, Xu ZQ. Ectopic expression of IiFUL isolated from Isatis indigotica could change the reproductive growth of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:140-152. [PMID: 29102902 DOI: 10.1016/j.plaphy.2017.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The coding sequence of IiFUL in Isatis indigotica was isolated and was used in transformation of Arabidopsis. IiFUL overexpressing Arabidopsis plants exhibited early flowering phenotype, accompanied with the reduction of flower number and the production of terminal flower on the top of the main stems. In development process, the flowers located on the top of the main stems generated a lot of variations in phenotype, including abnormal swelling of pistil, withering and numerical change of stamens and petals, appearance of stigmatoid tissues and naked ovules at the margin or inside of sepals. Besides, secondary flower could be formed within the flowers on the top of the main stems. These observations illustrated that IiFUL mainly affected the development of inflorescence meristems and pistils, but its ectopic expression could also disturb the normal growth of other floral organs. Moreover, the fertile siliques produced by the lateral inflorescences of IiFUL overexpressing Arabidopsis plants showed indehiscent phenotype, and the shape of the cauline leaves was changed significantly. The results of quantitative real-time PCR revealed that higher transcriptional levels of IiFUL could be detected in flowers and silicles of I. indigotica. In comprehensive consideration of the previous reports about the dehiscence phenotype of Arabidopsis siliques and the fact that the siliques of IiFUL overexpressing Arabidopsis plants were indehiscent in the present work, it can be speculated that high expression of IiFUL in pericarp is likely the reason why the silicles of I. indigotica possess an indehiscent phenotype.
Collapse
Affiliation(s)
- Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Dian-Zhen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Li Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Qi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jing-Wen Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Zheng Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China.
| |
Collapse
|
99
|
Zhang SR, Wang H, Wang Z, Ren Y, Niu L, Liu J, Liu B. Photoperiodism dynamics during the domestication and improvement of soybean. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1416-1427. [PMID: 28942538 DOI: 10.1007/s11427-016-9154-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/25/2017] [Indexed: 10/18/2022]
Abstract
Soybean (Glycine max) is a facultative short-day plant with a sensitive photoperiod perception and reaction system, which allows it to adjust its physiological state and gene regulatory networks to seasonal and diurnal changes in environmental conditions. In the past few decades, soybean cultivation has spread from East Asia to areas throughout the world. Biologists and breeders must now confront the challenge of understanding the molecular mechanism of soybean photoperiodism and improving agronomic traits to enable this important crop to adapt to geographical and environmental changes. In this review, we summarize the genetic regulatory network underlying photoperiodic responses in soybean. Genomic and genetic studies have revealed that the circadian clock, in conjunction with the light perception pathways, regulates photoperiodic flowering. Here, we provide an annotated list of 844 candidate flowering genes in soybean, with their putative biological functions. Many photoperiod-related genes have been intensively selected during domestication and crop improvement. Finally, we describe recent progress in engineering photoperiod-responsive genes for improving agronomic traits to enhance geographic adaptation in soybean, as well as future prospects for research on soybean photoperiodic responses.
Collapse
Affiliation(s)
- Sheng-Rui Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyu Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yao Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
100
|
Bandillo NB, Lorenz AJ, Graef GL, Jarquin D, Hyten DL, Nelson RL, Specht JE. Genome-wide Association Mapping of Qualitatively Inherited Traits in a Germplasm Collection. THE PLANT GENOME 2017; 10. [PMID: 28724068 DOI: 10.3835/plantgenome2016.06.0054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Genome-wide association (GWA) has been used as a tool for dissecting the genetic architecture of quantitatively inherited traits. We demonstrate here that GWA can also be highly useful for detecting many major genes governing categorically defined phenotype variants that exist for qualitatively inherited traits in a germplasm collection. Genome-wide association mapping was applied to categorical phenotypic data available for 10 descriptive traits in a collection of ∼13,000 soybean [ (L.) Merr.] accessions that had been genotyped with a 50,000 single nucleotide polymorphism (SNP) chip. A GWA on a panel of accessions of this magnitude can offer substantial statistical power and mapping resolution, and we found that GWA mapping resulted in the identification of strong SNP signals for 24 classical genes as well as several heretofore unknown genes controlling the phenotypic variants in those traits. Because some of these genes had been cloned, we were able to show that the narrow GWA mapping SNP signal regions that we detected for the phenotypic variants had chromosomal bp spans that, with just one exception, overlapped the bp region of the cloned genes, despite local variation in SNP number and nonuniform SNP distribution in the chip set.
Collapse
|