51
|
We need to talk about nonprobability samples. Trends Ecol Evol 2023; 38:521-531. [PMID: 36775795 DOI: 10.1016/j.tree.2023.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
In most circumstances, probability sampling is the only way to ensure unbiased inference about population quantities where a complete census is not possible. As we enter the era of 'big data', however, nonprobability samples, whose sampling mechanisms are unknown, are undergoing a renaissance. We explain why the use of nonprobability samples can lead to spurious conclusions, and why seemingly large nonprobability samples can be (effectively) very small. We also review some recent controversies surrounding the use of nonprobability samples in biodiversity monitoring. These points notwithstanding, we argue that nonprobability samples can be useful, provided that their limitations are assessed, mitigated where possible and clearly communicated. Ecologists can learn much from other disciplines on each of these fronts.
Collapse
|
52
|
Davis CL, Guralnick RP, Zipkin EF. Challenges and opportunities for using natural history collections to estimate insect population trends. J Anim Ecol 2023; 92:237-249. [PMID: 35716080 DOI: 10.1111/1365-2656.13763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable. However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector-specific biases that can impose severe limitations to using NHC data for evaluating population trajectories. Here we review the challenges associated with using museum records to track long-term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities. Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long-term trends of insect populations and identify cases where that is not possible using existing data sources.
Collapse
Affiliation(s)
- Courtney L Davis
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| | - Elise F Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
53
|
A reconstruction of parasite burden reveals one century of climate-associated parasite decline. Proc Natl Acad Sci U S A 2023; 120:e2211903120. [PMID: 36623180 PMCID: PMC9934024 DOI: 10.1073/pnas.2211903120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data-a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species-a group that comprised 52% of the parasite taxa we detected-declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound-a massive loss of biodiversity, undetected until now.
Collapse
|
54
|
Trindade DPF, Carmona CP, Reitalu T, Pärtel M. Observed and dark diversity dynamics over millennial time scales: fast life-history traits linked to expansion lags of plants in northern Europe. Proc Biol Sci 2023; 290:20221904. [PMID: 36629107 PMCID: PMC9832556 DOI: 10.1098/rspb.2022.1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.
Collapse
Affiliation(s)
- Diego P. F. Trindade
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Carlos P. Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Triin Reitalu
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
- Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
55
|
Martin CA, Watson CJ, de Grandpré A, Desrochers L, Deschamps L, Giacomazzo M, Loiselle A, Paquette C, Pépino M, Rainville V, Rheault G, Proulx R. The dominance-diversity dilemma in animal conservation biology. PLoS One 2023; 18:e0283439. [PMID: 36972282 PMCID: PMC10042335 DOI: 10.1371/journal.pone.0283439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma. Across 4,375 animal communities from a range of taxonomic groups, we found that a reversed RAD model correctly predicts species richness, based solely on the relative dominance of the most abundant species in a community and the total number of individuals. Overall, predictions from this RAD model explained 69% of the variance in species richness, compared to 20% explained by simply regressing species richness on the relative dominance of the most abundant species. Using the reversed RAD model, we illustrate how species richness is co-limited by the total abundance of a community and the relative dominance of the most common species. Our results highlight an intrinsic trade-off between species richness and dominance that is present in the structure of RAD models and real-world animal community data. This dominance-diversity dilemma suggests that withdrawing individuals from abundant populations might contribute to the conservation of species richness. However, we posit that the positive effect of harvesting on biodiversity is often offset by exploitation practices with negative collateral consequences, such as habitat destruction or species bycatches.
Collapse
Affiliation(s)
- Charles A Martin
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | - Louis Desrochers
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Lucas Deschamps
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Matteo Giacomazzo
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Audréanne Loiselle
- Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
| | - Cindy Paquette
- Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marc Pépino
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la Faune Mauricie-Centre-du-Québec, Trois-Rivières, Québec, Canada
| | - Vincent Rainville
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la Faune Mauricie-Centre-du-Québec, Trois-Rivières, Québec, Canada
| | - Guillaume Rheault
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Parcs Canada, Shawinigan, Québec, Canada
| | - Raphaël Proulx
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
56
|
Cinto Mejía E, Wetzel WC. The ecological consequences of the timing of extreme climate events. Ecol Evol 2023; 13:e9661. [PMID: 36713483 PMCID: PMC9873515 DOI: 10.1002/ece3.9661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Climate change is increasing the intensity, duration, and frequency of extreme climate events (ECEs). These ECEs can have major ecological consequences, e.g., changing nutrient flows, causing extirpation, and altering organismal development. Many ECEs are discrete events that occur at distinctive times during the biological processes they impact. Because of this, ECEs are likely to have differing ecological impacts depending on when they happen, yet we lack on studies that explore how the ecological consequences of ECEs vary with when they occur. Drawing upon evidence from physiological, population, and community ecology, and previous work on ecological disturbances, we suggest that the consequences of ECEs will be sensitive to when they occur. We illustrate the importance of timing by showing how the effects of an ECE could vary depending on when it occurs through the course of (1) organismal ontogeny, (2) population dynamics, and (3) community assembly. An enhanced focus on the timing of extreme weather in climate change research will reveal how and when ECEs are altering ecosystems, possible mechanisms behind these impacts, and what ecosystems or species are most vulnerable to ECEs, helping us to make more informed predictions about the ecological consequences of climate change.
Collapse
Affiliation(s)
- Elizeth Cinto Mejía
- Department of Entomology and Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | - William C. Wetzel
- Department of Entomology and Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative Biology and AgBioResearchMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
57
|
Strack T, Jonkers L, C Rillo M, Hillebrand H, Kucera M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat Ecol Evol 2022; 6:1871-1880. [PMID: 36216906 PMCID: PMC9715429 DOI: 10.1038/s41559-022-01888-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition.
Collapse
Affiliation(s)
- Tonke Strack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Lukas Jonkers
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marina C Rillo
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Michal Kucera
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
58
|
Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U, Takahashi Y, Settele J, Díaz S, Molnár Z, Purvis A. The direct drivers of recent global anthropogenic biodiversity loss. SCIENCE ADVANCES 2022; 8:eabm9982. [PMID: 36351024 PMCID: PMC9645725 DOI: 10.1126/sciadv.abm9982] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/21/2022] [Indexed: 05/28/2023]
Abstract
Effective policies to halt biodiversity loss require knowing which anthropogenic drivers are the most important direct causes. Whereas previous knowledge has been limited in scope and rigor, here we statistically synthesize empirical comparisons of recent driver impacts found through a wide-ranging review. We show that land/sea use change has been the dominant direct driver of recent biodiversity loss worldwide. Direct exploitation of natural resources ranks second and pollution third; climate change and invasive alien species have been significantly less important than the top two drivers. The oceans, where direct exploitation and climate change dominate, have a different driver hierarchy from land and fresh water. It also varies among types of biodiversity indicators. For example, climate change is a more important driver of community composition change than of changes in species populations. Stopping global biodiversity loss requires policies and actions to tackle all the major drivers and their interactions, not some of them in isolation.
Collapse
Affiliation(s)
- Pedro Jaureguiberry
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Nicolas Titeux
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Observatory for Climate, Environment and Biodiversity, Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Martin Wiemers
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- Senckenberg Deutsches Entomologisches Institut, Eberswalder Str. 90, 15374 Müncheberg, Germany
| | - Diana E. Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Str. 159, 07743 Jena, Germany
- UFZ – Helmholtz Centre for Environmental Research, Department Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luca Coscieme
- Hot or Cool Institute, Quartiersweg 4, 10829 Berlin, Germany
| | - Abigail S. Golden
- Graduate Program in Ecology and Evolution, and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Ute Jacob
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Yasuo Takahashi
- Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan
| | - Josef Settele
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biological Sciences, University of the Philippines, Los Baños, College, 4031 Laguna, Philippines
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Zsolt Molnár
- Centre for Ecological Research, Institute of Ecology and Botany, 2163 Vácrátót, Hungary
| | - Andy Purvis
- Natural History Museum, Department of Life Sciences, London SW7 5BD, UK
- Imperial College London, Department of Life Sciences, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
59
|
Soto I, Cuthbert RN, Ahmed DA, Kouba A, Domisch S, Marquez JRG, Beidas A, Amatulli G, Kiesel J, Shen LQ, Florencio M, Lima H, Briski E, Altermatt F, Archambaud‐Suard G, Borza P, Csabai Z, Datry T, Floury M, Forcellini M, Fruget J, Leitner P, Lizée M, Maire A, Ricciardi A, Schäfer RB, Stubbington R, Van der Lee GH, Várbíró G, Verdonschot RCM, Haase P, Haubrock PJ. Tracking a killer shrimp:
Dikerogammarus villosus
invasion dynamics across Europe. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses University of South Bohemia in České Budějovice Vodňany Czech Republic
| | - Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Danish A. Ahmed
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences Gulf University for Science and Technology Hawally Kuwait
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses University of South Bohemia in České Budějovice Vodňany Czech Republic
| | - Sami Domisch
- Department of Community and Ecosystem Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Jaime R. G. Marquez
- Department of Community and Ecosystem Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Ayah Beidas
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences Gulf University for Science and Technology Hawally Kuwait
| | | | - Jens Kiesel
- Department of Hydrology and Water Resources Management Institute for Natural Resource Conservation, Christian‐Albrechts‐University Kiel Kiel Germany
- Faculty of Biology University of Duisburg–Essen Essen Germany
| | - Longzhu Q. Shen
- Department of Community and Ecosystem Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Institute for Green Science Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Margarita Florencio
- Inland‐Water Ecosystems Team (I‐WET), Departamento de Ecología, Edificio de Biología, Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| | - Herlander Lima
- GloCEE – Global Change Ecology & Evolution Group, Department of Life Sciences University of Alcalá Alcalá de Henares Spain
| | | | - Florian Altermatt
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Gaït Archambaud‐Suard
- INRAE, UMR RECOVER, Aix Marseille Univ., Centre d'Aix‐en‐Provence Aix‐en‐Provence Cedex 5 France
| | - Peter Borza
- Centre for Ecological Research Institute of Aquatic Ecology Budapest Hungary
| | - Zoltan Csabai
- Department of Hydrobiology University of Pécs Pécs Hungary
- Department of Botany and Zoology, Faculty of Science Masaryk University Brno Czech Republic
| | - Thibault Datry
- RiverLY Research Unit, National Research Institute for Agriculture Food and Environment (INRAE) Villeurbanne France
| | - Mathieu Floury
- UMR 5023 LEHNA Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE Villeurbanne France
| | - Maxence Forcellini
- RiverLY Research Unit, National Research Institute for Agriculture Food and Environment (INRAE) Villeurbanne France
| | | | - Patrick Leitner
- Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences Vienna Austria
| | - Marie‐Hélène Lizée
- INRAE, UMR RECOVER, Aix Marseille Univ., Centre d'Aix‐en‐Provence Aix‐en‐Provence Cedex 5 France
| | - Anthony Maire
- EDF R&D, Laboratoire National d'Hydraulique et Environnement (LNHE) Chatou Cedex France
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment McGill University Montreal Quebec Canada
| | - Ralf B. Schäfer
- Institute for Environmental Sciences University of Koblenz Landau Landau Germany
| | - Rachel Stubbington
- School of Science & Technology Nottingham Trent University Nottingham UK
| | - Gea H. Van der Lee
- Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands
| | - Gábor Várbíró
- Department of Tisza River Research, Centre for Ecological Research Institute of Aquatic Ecology Debrecen Hungary
| | - Ralf C. M. Verdonschot
- Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands
| | - Peter Haase
- Faculty of Biology University of Duisburg–Essen Essen Germany
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| | - Phillip J. Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses University of South Bohemia in České Budějovice Vodňany Czech Republic
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
| |
Collapse
|
60
|
Spake R, O’Dea RE, Nakagawa S, Doncaster CP, Ryo M, Callaghan CT, Bullock JM. Improving quantitative synthesis to achieve generality in ecology. Nat Ecol Evol 2022; 6:1818-1828. [DOI: 10.1038/s41559-022-01891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
|
61
|
Boulanger-Lapointe N, Ágústsdóttir K, Barrio IC, Defourneaux M, Finnsdóttir R, Jónsdóttir IS, Marteinsdóttir B, Mitchell C, Möller M, Nielsen ÓK, Sigfússon AÞ, Þórisson SG, Huettmann F. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157140. [PMID: 35803416 DOI: 10.1016/j.scitotenv.2022.157140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Rangeland ecosystems are changing worldwide with the abandonment of extensive pastoralism practices and greater interest for species coexistence. However, the lack of compiled data on current changes in the abundance and distribution of herbivores challenges rangeland management decisions. Here we gathered and made available for the first time the most extensive set of occurrence data for rangeland herbivores in Iceland in an Open Access framework for transparent and repeatable science-based decisions. We mapped fine scale species distribution overlap to identify areas at risk for wildlife-livestock conflict and overgrazing. Nationwide and long term (1861-2021) occurrence data from 8 independent datasets were used alongside 11 predictor raster layers ("Big Data") to data mine and map the distribution of the domestic sheep (Ovis aries), feral reindeer (Rangifer tarandus tarandus), pink-footed geese (Anser brachyrhynchus), and rock ptarmigan (Lagopus muta islandorum) over the country during the summer. Using algorithms of Maxent in R, RandomForest, TreeNet (stochastic gradient boosting) and MARS (Splines) in Minitab-SPM 8.3, we computed 1 km pixel predictions from machine learning-based ensemble models. Our high-resolution models were tested with alternative datasets, and Area Under the Curve (AUC) values that indicated good (reindeer: 0.8817 and rock ptarmigan: 0.8844) to high model accuracy (sheep: 0.9708 and pink-footed goose: 0.9143). Whenever possible, source data and models are made available online and described with ISO-compliant metadata. Our results illustrate that sheep and pink-footed geese have the greatest overlap in distribution with potential implication for wildlife-livestock conflicts and continued ecosystem degradation even under diminishing livestock abundance at higher elevation. These nationwide models and data are a global asset and a first step in making available the best data for science-based sustainable decision-making about national herbivores affecting species coexistence and environmental management.
Collapse
Affiliation(s)
- Noémie Boulanger-Lapointe
- Faculty of Life and Environmental Sciences, University of Iceland, 7 Sturlugötu, 101 Reykjavik, Iceland.
| | | | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, 22 Árleyni, 112 Reykjavík, Iceland
| | - Mathilde Defourneaux
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, 22 Árleyni, 112 Reykjavík, Iceland
| | - Rán Finnsdóttir
- Soil Conservation Service of Iceland, Gunnarsholti, 851 Hella, Iceland
| | | | | | - Carl Mitchell
- The Wildfowl & Wetlands Trust, Slimbridge, Gloucester GL2 7BT, United Kingdom
| | - Marteinn Möller
- Faculty of Life and Environmental Sciences, University of Iceland, 7 Sturlugötu, 101 Reykjavik, Iceland
| | - Ólafur Karl Nielsen
- Icelandic Institute of Natural History, 6-8 Urriðaholtsstræti, 210 Garðabær, Iceland
| | | | | | - Falk Huettmann
- EWHALE lab- Institute of Arctic Biology, Biology & Wildlife Department, University of Alaska Fairbanks (UAF), 2140 Koyukuk Dr, Fairbanks, AK 99775, United States
| |
Collapse
|
62
|
Jandt U, Bruelheide H, Jansen F, Bonn A, Grescho V, Klenke RA, Sabatini FM, Bernhardt-Römermann M, Blüml V, Dengler J, Diekmann M, Doerfler I, Döring U, Dullinger S, Haider S, Heinken T, Horchler P, Kuhn G, Lindner M, Metze K, Müller N, Naaf T, Peppler-Lisbach C, Poschlod P, Roscher C, Rosenthal G, Rumpf SB, Schmidt W, Schrautzer J, Schwabe A, Schwartze P, Sperle T, Stanik N, Storm C, Voigt W, Wegener U, Wesche K, Wittig B, Wulf M. More losses than gains during one century of plant biodiversity change in Germany. Nature 2022; 611:512-518. [PMID: 36261519 DOI: 10.1038/s41586-022-05320-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/04/2022] [Indexed: 11/09/2022]
Abstract
Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.
Collapse
Affiliation(s)
- Ute Jandt
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany. .,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Florian Jansen
- Faculty of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecosystem Services, Helmhotz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Volker Grescho
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecosystem Services, Helmhotz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Reinhard A Klenke
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Francesco Maria Sabatini
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Markus Bernhardt-Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jürgen Dengler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, University of Bremen, Bremen, Germany
| | - Inken Doerfler
- Vegetation Science and Nature Conservation Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ute Döring
- Independent researcher, Göttingen, Germany
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Sylvia Haider
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thilo Heinken
- General Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter Horchler
- Department of Vegetation Studies and Landscape Management, Federal Institute of Hydrology, Koblenz, Germany
| | - Gisbert Kuhn
- Institut für Agrarökologie und Biologischen Landbau, AG Vegetationsökologie und -monitoring, Bayerische Landesanstalt für Landwirtschaft, Freising, Germany
| | - Martin Lindner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katrin Metze
- Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Magdeburg, Germany
| | - Norbert Müller
- Department of Landscape Management & Restoration Ecology, Fachhochschule Erfurt, Erfurt, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cord Peppler-Lisbach
- Landscape Ecology Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Gert Rosenthal
- Department of Landscape and Vegetation Ecology, University of Kassel, Kassel, Germany
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Angelika Schwabe
- Faculty of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Peter Schwartze
- Biologische Station Kreis Steinfurt e.V., Tecklenburg, Germany
| | | | - Nils Stanik
- Department of Landscape and Vegetation Ecology, University of Kassel, Kassel, Germany
| | - Christian Storm
- Fachgebiet Chemische Pflanzenökologie, Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - Uwe Wegener
- Independent researcher, Halberstadt, Germany
| | - Karsten Wesche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Botany Department, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.,International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Burghard Wittig
- Vegetation Ecology and Conservation Biology, Institute of Ecology, University of Bremen, Bremen, Germany.,Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency, Betriebsstelle Lüneburg, Standort Verden, Verden, Germany
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
63
|
Jandt U, Bruelheide H, Berg C, Bernhardt-Römermann M, Blüml V, Bode F, Dengler J, Diekmann M, Dierschke H, Doerfler I, Döring U, Dullinger S, Härdtle W, Haider S, Heinken T, Horchler P, Jansen F, Kudernatsch T, Kuhn G, Lindner M, Matesanz S, Metze K, Meyer S, Müller F, Müller N, Naaf T, Peppler-Lisbach C, Poschlod P, Roscher C, Rosenthal G, Rumpf SB, Schmidt W, Schrautzer J, Schwabe A, Schwartze P, Sperle T, Stanik N, Stroh HG, Storm C, Voigt W, von Heßberg A, von Oheimb G, Wagner ER, Wegener U, Wesche K, Wittig B, Wulf M. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany. Sci Data 2022; 9:631. [PMID: 36261458 PMCID: PMC9581966 DOI: 10.1038/s41597-022-01688-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.
Collapse
Affiliation(s)
- Ute Jandt
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
| | - Christian Berg
- Karl-Franzens-Universität Graz, Institute for Biology, Holteigasse 6, 8010, Graz, Austria
| | - Markus Bernhardt-Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Volker Blüml
- BMS - Umweltplanung, Freiheitsweg 38A, 49086, Osnabrück, Germany
| | - Frank Bode
- Abteilung Forschungsförderung, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Jürgen Dengler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüentalstr. 14, 8820, Wädenswil, Switzerland
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstr. 30, Bayreuth, 95447, Germany
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - Hartmut Dierschke
- Vegetation Analysis and Phytodiversity, Albrecht-von- Haller-Institute of Plant Sciences, Georg- August- University of Göttingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Inken Doerfler
- Vegetation Science and Nature Conservation Group, Institute for Biology and Environmental Sciences, University of Oldenburg, 2611, Oldenburg, Germany
| | - Ute Döring
- Auf der Wessel 47, 37085, Göttingen, Germany
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Werner Härdtle
- Leuphana University of Lüneburg, Institute of Ecology, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Thilo Heinken
- General Botany, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| | - Peter Horchler
- Federal Institute of Hydrology, Department Vegetation Studies, Landscape Management, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Florian Jansen
- Faculty of Agricultural and Environmental Sciences, Rostock University, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Thomas Kudernatsch
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
| | - Gisbert Kuhn
- Institut für Agrarökologie und Biologischen Landbau, AG Vegetationsökologie und -monitoring, Bayerische Landesanstalt für Landwirtschaft, Lange Point 12, 85354, Freising, Germany
| | - Martin Lindner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology/Biology Education, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Silvia Matesanz
- Universidad Rey Juan Carlos, Area de Biodiversidad y Conservación, Móstoles, Madrid, 28933, Spain
| | - Katrin Metze
- Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Leipziger Straße 58, 39112, Magdeburg, Germany
| | - Stefan Meyer
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Frank Müller
- Institute of Botany, TU Dresden, Mommsenstr. 13, 01062, Dresden, Germany
| | - Norbert Müller
- Dep. Landscape Management & Restoration Ecology, Fachhochschule Erfurt, Leipzigerstr. 77, 99085, Erfurt, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Cord Peppler-Lisbach
- Landscape Ecology Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Puschstr. 4, 04103, Leipzig, Germany
| | - Gert Rosenthal
- Department of Landscape and Vegetation Ecology, University of Kassel, Gottschalkstrasse 26a, 34127, Kassel, Germany
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- University of Basel, Department of Environmental Sciences, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-University Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Joachim Schrautzer
- Institute for Ecosystem Research, Kiel University, Olshausenstraße 75, 24118, Kiel, Germany
| | - Angelika Schwabe
- Faculty of Biology, Technical University Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany
| | - Peter Schwartze
- Biologische Station Kreis Steinfurt e.V., Bahnhofstraße 71, 49545, Tecklenburg, Germany
| | | | - Nils Stanik
- Department of Landscape and Vegetation Ecology, University of Kassel, Gottschalkstrasse 26a, 34127, Kassel, Germany
| | - Hans-Georg Stroh
- büro áchero Vegetation and Environmental Consulting, Friedländer Straße 17a, 37133, Friedland, Germany
| | - Christian Storm
- Fachgebiet Chemische Pflanzenökologie, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287, Darmstadt, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | | | - Goddert von Oheimb
- Technische Universität Dresden, Institute of General Ecology and Environmental Protection, Pienner Straße 7, 01737, Tharandt, Germany
| | | | | | - Karsten Wesche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Botany Department, Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763, Zittau, Germany
| | - Burghard Wittig
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
- Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency, Betriebsstelle Lüneburg, Standort Verden, Bürgermeister Münchmeyer Str. 6, 27283, Verden, Germany
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| |
Collapse
|
64
|
Mahaut L, Pironon S, Barnagaud JY, Bretagnolle F, Khoury CK, Mehrabi Z, Milla R, Phillips C, Rieseberg LH, Violle C, Renard D. Matches and mismatches between the global distribution of major food crops and climate suitability. Proc Biol Sci 2022; 289:20221542. [PMID: 36168758 PMCID: PMC9515644 DOI: 10.1098/rspb.2022.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 09/30/2023] Open
Abstract
Over the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level. Here, we show that the relationships between the distributions of 12 major food crops and climate suitability for their yields display strong variation globally. After investigating the role of biophysical, socio-economic and historical factors, we report that high-income world regions display a better match between crop distribution and climate suitability. In addition, although crops are farmed predominantly in the same climatic range as their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects the legacy of domestication history on current crop distribution. Our results reveal how far the global distribution of major crops diverges from their climatic optima and call for greater consideration of the multiple dimensions of the crop socio-ecological niche in climate change adaptive strategies.
Collapse
Affiliation(s)
- Lucie Mahaut
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, UK
- UN Environment Programme World Conservation Monitoring Center (UNEP-WCMC), Cambridge, UK
| | | | | | - Colin K. Khoury
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira, Apartado Aéreo 6713, Cali 763537, Colombia
- San Diego Botanic Garden, 230 Quail Gardens Drive, Encinitas, CA 92024, USA
| | - Zia Mehrabi
- Institute for Resources Environment and Sustainability, School of Public Policy and Global Affairs, University of British Columbia, Vancouver, BC, Canada, V6R 2A5
| | - Ruben Milla
- Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnología, Mostoles, Spain
| | | | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada, V6R 2A5
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Delphine Renard
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
65
|
Wang J, Bu Y. Internet of Things‐based smart insect monitoring system using a deep neural network. IET NETWORKS 2022. [DOI: 10.1049/ntw2.12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- JiangTao Wang
- School of Network Communication Zhejiang Yuexiu University Shaoxing China
| | - Yufei Bu
- College of Forestry University Beijing Forestry University Hangzhou China
| |
Collapse
|
66
|
Wenger SJ, Stowe ES, Gido KB, Freeman MC, Kanno Y, Franssen NR, Olden JD, Poff NL, Walters AW, Bumpers PM, Mims MC, Hooten MB, Lu X. Simple statistical models can be sufficient for testing hypotheses with population time-series data. Ecol Evol 2022; 12:e9339. [PMID: 36188518 PMCID: PMC9514214 DOI: 10.1002/ece3.9339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.
Collapse
Affiliation(s)
- Seth J. Wenger
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Keith B. Gido
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Mary C. Freeman
- U.S. Geological Survey Eastern Ecological Science CenterAthensGeorgiaUSA
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | | | - Julian D. Olden
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - N. LeRoy Poff
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Annika W. Walters
- U.S. Geological Survey Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology and Program in EcologyUniversity of WyomingLaramieWyomingUSA
| | | | - Meryl C. Mims
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Mevin B. Hooten
- Department of Statistics and Data SciencesThe University of Texas at AustinAustinTexasUSA
| | - Xinyi Lu
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
67
|
Dajka J, di Carvalho JA, Ryabov A, Scheiffarth G, Rönn L, Dekker R, Peters K, Leberecht B, Hillebrand H. Modeling drivers of biodiversity change emphasizes the need for multivariate assessments and rescaled targeting for management. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jan‐Claas Dajka
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB) Oldenburg Germany
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
| | - Josie Antonucci di Carvalho
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB) Oldenburg Germany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research (AWI) Bremerhaven Germany
| | - Alexey Ryabov
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
| | - Gregor Scheiffarth
- Lower Saxon Wadden Sea National Park Authority (NLPVW) Wilhelmshaven Germany
| | - Lena Rönn
- Lower Saxony Water Management, Coastal Defence and Nature Conservation Agency (NLWKN) Oldenburg Germany
| | - Rob Dekker
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research Texel The Netherlands
| | - Kimberley Peters
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB) Oldenburg Germany
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research (AWI) Bremerhaven Germany
| | - Bo Leberecht
- Institute of Biology and Environmental Sciences (IBU), Carl‐von‐Ossietzky‐University Oldenburg Oldenburg Germany
| | - Helmut Hillebrand
- Helmholtz‐Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB) Oldenburg Germany
- Institute for Chemistry and Biology of Marine Environments (ICBM), Carl‐von‐Ossietzky University Oldenburg Oldenburg Germany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research (AWI) Bremerhaven Germany
| |
Collapse
|
68
|
Haubrock PJ, Ahmed DA, Cuthbert RN, Stubbington R, Domisch S, Marquez JRG, Beidas A, Amatulli G, Kiesel J, Shen LQ, Soto I, Angeler DG, Bonada N, Cañedo-Argüelles M, Csabai Z, Datry T, de Eyto E, Dohet A, Drohan E, England J, Feio MJ, Forio MAE, Goethals P, Graf W, Heino J, Hudgins EJ, Jähnig SC, Johnson RK, Larrañaga A, Leitner P, L'Hoste L, Lizee MH, Maire A, Rasmussen JJ, Schäfer RB, Schmidt-Kloiber A, Vannevel R, Várbíró G, Wiberg-Larsen P, Haase P. Invasion impacts and dynamics of a European-wide introduced species. GLOBAL CHANGE BIOLOGY 2022; 28:4620-4632. [PMID: 35570183 DOI: 10.1111/gcb.16207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Globalization has led to the introduction of thousands of alien species worldwide. With growing impacts by invasive species, understanding the invasion process remains critical for predicting adverse effects and informing efficient management. Theoretically, invasion dynamics have been assumed to follow an "invasion curve" (S-shaped curve of available area invaded over time), but this dynamic has lacked empirical testing using large-scale data and neglects to consider invader abundances. We propose an "impact curve" describing the impacts generated by invasive species over time based on cumulative abundances. To test this curve's large-scale applicability, we used the data-rich New Zealand mud snail Potamopyrgus antipodarum, one of the most damaging freshwater invaders that has invaded almost all of Europe. Using long-term (1979-2020) abundance and environmental data collected across 306 European sites, we observed that P. antipodarum abundance generally increased through time, with slower population growth at higher latitudes and with lower runoff depth. Fifty-nine percent of these populations followed the impact curve, characterized by first occurrence, exponential growth, then long-term saturation. This behaviour is consistent with boom-bust dynamics, as saturation occurs due to a rapid decline in abundance over time. Across sites, we estimated that impact peaked approximately two decades after first detection, but the rate of progression along the invasion process was influenced by local abiotic conditions. The S-shaped impact curve may be common among many invasive species that undergo complex invasion dynamics. This provides a potentially unifying approach to advance understanding of large-scale invasion dynamics and could inform timely management actions to mitigate impacts on ecosystems and economies.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Rachel Stubbington
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Sami Domisch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Community and Ecosystem Ecology, Berlin, Germany
| | - Jaime R G Marquez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Community and Ecosystem Ecology, Berlin, Germany
| | - Ayah Beidas
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Giuseppe Amatulli
- Yale University, School of the Environment, New Haven, Connecticut, USA
| | - Jens Kiesel
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Community and Ecosystem Ecology, Berlin, Germany
- Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Kiel, Germany
| | - Longzhu Q Shen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Community and Ecosystem Ecology, Berlin, Germany
- Carnegie Mellon University, Institute for Green Science, Pittsburgh, Pennsylvania, USA
| | - Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Núria Bonada
- Freshwater Ecology, Hydrology and Management, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Zoltán Csabai
- Department of Hydrobiology, University of Pécs, Pécs, Hungary
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thibault Datry
- INRAE, UR RiverLy, centre de Lyon-Villeurbanne, Villeurbanne, France
| | | | - Alain Dohet
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Emma Drohan
- Institute of Technology, Centre for Freshwater and Environmental Studies, Dundalk, Ireland
| | | | - Maria J Feio
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Marie A E Forio
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wolfram Graf
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria
| | - Jani Heino
- Finnish Environment Institute, Freshwater Centre, Oulu, Finland
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department Community and Ecosystem Ecology, Berlin, Germany
- Geography Department, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Patrick Leitner
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria
| | - Lionel L'Hoste
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Marie-Helene Lizee
- RECOVER Research Unit, National Research Institute for Agriculture, Food and Environment (INRAE), Aix-en-Provence, France
| | - Anthony Maire
- EDF R&D, Laboratoire National d'Hydraulique et Environnement (LNHE), Chatou, France
| | - Jes J Rasmussen
- Section for Nature Based Solutions, Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Ralf B Schäfer
- University of Koblenz Landau, Institute for Environmental Sciences, Landau, Germany
| | - Astrid Schmidt-Kloiber
- University of Natural Resources and Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna, Austria
| | | | - Gábor Várbíró
- Department of Tisza Research, Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
| | | | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
- University of Duisburg-Essen, Faculty of Biology, Essen, Germany
| |
Collapse
|
69
|
Blowes SA, Daskalova GN, Dornelas M, Engel T, Gotelli NJ, Magurran AE, Martins IS, McGill B, McGlinn DJ, Sagouis A, Shimadzu H, Supp SR, Chase JM. Local biodiversity change reflects interactions among changing abundance, evenness, and richness. Ecology 2022; 103:e3820. [DOI: 10.1002/ecy.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg Halle (Salle) Germany
| | - Gergana N. Daskalova
- School of GeoSciences University of Edinburgh Scotland, UK
- International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
| | - Maria Dornelas
- Centre for Biological Diversity University of St Andrews KY16 9TH
| | - Thore Engel
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg Halle (Salle) Germany
| | | | - Anne E. Magurran
- Centre for Biological Diversity University of St Andrews KY16 9TH
| | - Inês S. Martins
- Centre for Biological Diversity University of St Andrews KY16 9TH
- Leverhulme Centre for Anthropocene Biodiversity and Department of Biology University of York York UK
| | - Brian McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions University of Maine Orono, ME United States
| | | | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg Halle (Salle) Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences Loughborough University UK
- Graduate School of Public Health Teikyo University Tokyo Japan
| | - Sarah R. Supp
- Data Analytics Program Denison University Granville Ohio USA
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg Halle (Salle) Germany
| |
Collapse
|
70
|
Boyd RJ, Powney GD, Burns F, Danet A, Duchenne F, Grainger MJ, Jarvis SG, Martin G, Nilsen EB, Porcher E, Stewart GB, Wilson OJ, Pescott OL. ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol Evol 2022; 13:1497-1507. [PMID: 36250156 PMCID: PMC9541136 DOI: 10.1111/2041-210x.13857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 02/05/2023]
Abstract
Aggregated species occurrence and abundance data from disparate sources are increasingly accessible to ecologists for the analysis of temporal trends in biodiversity. However, sampling biases relevant to any given research question are often poorly explored and infrequently reported; this can undermine statistical inference. In other disciplines, it is common for researchers to complete 'risk-of-bias' assessments to expose and document the potential for biases to undermine conclusions. The huge growth in available data, and recent controversies surrounding their use to infer temporal trends, indicate that similar assessments are urgently needed in ecology.We introduce ROBITT, a structured tool for assessing the 'Risk-Of-Bias In studies of Temporal Trends in ecology'. ROBITT has a similar format to its counterparts in other disciplines: it comprises signalling questions designed to elicit information on the potential for bias in key study domains. In answering these, users will define study inferential goal(s) and relevant statistical target populations. This information is used to assess potential sampling biases across domains relevant to the research question (e.g. geography, taxonomy, environment), and how these vary through time. If assessments indicate biases, then users must clearly describe them and/or explain what mitigating action will be taken.Everything that users need to complete a ROBITT assessment is provided: the tool, a guidance document and a worked example. Following other disciplines, the tool and guidance document were developed through a consensus-forming process across experts working in relevant areas of ecology and evidence synthesis.We propose that researchers should be strongly encouraged to include a ROBITT assessment when publishing studies of biodiversity trends, especially when using aggregated data. This will help researchers to structure their thinking, clearly acknowledge potential sampling issues, highlight where expert consultation is required and provide an opportunity to describe data checks that might go unreported. ROBITT will also enable reviewers, editors and readers to establish how well research conclusions are supported given a dataset combined with some analytical approach. In turn, it should strengthen evidence-based policy and practice, reduce differing interpretations of data and provide a clearer picture of the uncertainties associated with our understanding of reality.
Collapse
Affiliation(s)
| | | | - Fiona Burns
- RSPB Centre for Conservation ScienceCambridgeUK
| | - Alain Danet
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, CNRSSorbonne UniversitéParisFrance
| | - François Duchenne
- Swiss Federal Institute for ForestSnow and Landscape Research (WSL)BirmensdorfSwitzerland
| | | | - Susan G. Jarvis
- UK Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK
| | - Gabrielle Martin
- Laboratoire EDB Évolution & Diversité Biologique UMR 5174Université de Toulouse, Université Toulouse 3 Paul Sabatier, UPS, CNRS, IRDToulouseFrance
| | - Erlend B. Nilsen
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Faculty of Biosciences and AquacultureNord UniversitySteinkjerNorway
| | - Emmanuelle Porcher
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, CNRSSorbonne UniversitéParisFrance
| | - Gavin B. Stewart
- Evidence Synthesis Lab, School of Natural and Environmental ScienceUniversity of NewcastleNewcastle‐upon‐TyneUK
| | | | | |
Collapse
|
71
|
Urbanisation and land-cover change affect functional, but not compositional turnover of bird communities. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractLand-use and land-cover change strongly affect biodiversity patterns and are assumed to be growing threats in the future. Particularly increasing urbanisation may affect species turnover and functional composition of biological communities. This study aimed to assess the characteristics of land-cover change in a medium-sized urban municipality from 2011 to 2018, and the effects of urbanisation on avian species- and functional diversity. The study was performed in Trondheim (Norway), using local land-cover maps and GBIF bird species occurrence records. GLMMs were used to model species turnover as a function of urbanisation, and the probability of species appearance and disappearance based on urbanisation and species traits. The extent of bird species turnover within a municipality-wide 500 × 500m2 grid was not predicted by a changes in developed area, but the probability of disappearance and appearance of bird species varied with urbanisation and bird functional traits. Species associated with urban- or open areas showed a decreasing probability of disappearing and an increasing probability of appearing with increasing amount of developed area within grid cells. Similarly, granivorous species showed a decreasing probability of disappearing. Species feeding above ground-level showed positive responses to changes in land-cover. The probability of both appearance and disappearance, thus species turnover, increased with increasing longevity. Most functional groups respond negatively to increasing urbanisation, indicating a potential impoverishment of local avifauna with future land-cover modifications. Considering planned future land-cover changes within the municipality, the local avian communities are in danger of homogenisation. The recommendations for local management are to minimise conversion of vulnerable habitats, such as wetlands and woodlands, in particular if these are converted to developed area.
Collapse
|
72
|
Solbu EB, van der Veen B, Herfindal I, Hovstad KA. Analyzing dynamic species abundance distributions using generalized linear mixed models. Ecology 2022; 103:e3742. [PMID: 35560064 PMCID: PMC9541646 DOI: 10.1002/ecy.3742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long‐term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept‐only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species‐specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.
Collapse
Affiliation(s)
- Erik Blystad Solbu
- Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Trondheim, Norway
| | - Bert van der Veen
- Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Trondheim, Norway.,Department of Mathematics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivar Herfindal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Knut Anders Hovstad
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Norwegian Biodiversity Information Centre, Trondheim, Norway
| |
Collapse
|
73
|
Wicquart J, Gudka M, Obura D, Logan M, Staub F, Souter D, Planes S. A workflow to integrate ecological monitoring data from different sources. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
74
|
Hancock SC, Essl F, Kraak M, Dawson W, Kreft H, Pyšek P, Pergl J, van Kleunen M, Weigelt P, Winter M, Gartner G, Lenzner B. Introducing the combined atlas framework for large-scale web-based data visualization: The GloNAF atlas of plant invasion. Methods Ecol Evol 2022; 13:1073-1081. [PMID: 35909503 PMCID: PMC9305529 DOI: 10.1111/2041-210x.13820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
Large-scale biodiversity data, for example, on species distribution and richness information, are being mobilized and becoming available at an increasing rate. Interactive web applications like atlases have been developed to visualize available datasets and make them accessible to a wider audience. Web mapping tools are changing rapidly, and different underlying concepts have been developed to visualize datasets at a high cartographic standard.Here, we introduce the Combined Atlas Framework for the development of interactive web atlases for ecological data visualization. We combine two existing approaches: the five stages of the user-centred design approach for web mapping applications and the three U approach for interface success.Subsequently, we illustrate the use of this framework by developing the Atlas of Plant Invasions based on the Global Naturalized Alien Flora (GloNAF) database. This case study illustrates how the newly developed Combined Atlas Framework with a user-centred design philosophy can generate measurable success through communication with the target user group, iterative prototyping and competitive analysis of other existing web mapping approaches.The framework is useful in creating an atlas that employs user feedback to determine usability and utility features within an interactive atlas system. Finally, this framework will enable a better-informed development process of future visualization and dissemination of biodiversity data through web mapping applications and interactive atlases.
Collapse
Affiliation(s)
- Sebastian C. Hancock
- Research Division Cartography, Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology‐Group, Department of Botany and Biodiversity ResearchUniversity ViennaViennaAustria
| | - Menno‐Jan Kraak
- Faculty of Geoinformation Science and Earth ObservationUniversity of TwenteEnschedethe Netherlands
| | - Wayne Dawson
- Department of BiosciencesDurham UniversityDurhamUK
| | - Holger Kreft
- Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
| | - Petr Pyšek
- Czech Academy of SciencesInstitute of Botany, Department of Invasion EcologyPrůhoniceCzech Republic
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jan Pergl
- Czech Academy of SciencesInstitute of Botany, Department of Invasion EcologyPrůhoniceCzech Republic
| | - Mark van Kleunen
- Ecology, Department of BiologyUniversity of KonstanzConstanceGermany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Patrick Weigelt
- Biodiversity, Macroecology & BiogeographyUniversity of GöttingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land UseUniversity of GöttingenGöttingenGermany
- Campus‐Institut Data ScienceGöttingenGermany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Georg Gartner
- Research Division Cartography, Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
| | - Bernd Lenzner
- Bioinvasions, Global Change, Macroecology‐Group, Department of Botany and Biodiversity ResearchUniversity ViennaViennaAustria
| |
Collapse
|
75
|
Guzman LM, Thompson PL, Viana DS, Vanschoenwinkel B, Horváth Z, Ptacnik R, Jeliazkov A, Gascón S, Lemmens P, Anton‐Pardo M, Langenheder S, De Meester L, Chase JM. Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes. Ecology 2022; 103:e3683. [DOI: 10.1002/ecy.3683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Laura Melissa Guzman
- Marine and Environmental Biology Section at the Department of Biological Sciences University of Southern California United States of America
- Department of Zoology & Biodiversity Research Centre University of British Columbia Canada
- Department of Biological Sciences Simon Fraser University Canada
| | - Patrick L. Thompson
- Department of Zoology & Biodiversity Research Centre University of British Columbia Canada
| | - Duarte S. Viana
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig
- Leipzig University, Ritterstraße 26 Leipzig Germany
| | - Bram Vanschoenwinkel
- Department of Biology Vrije Universiteit Brussel Belgium
- Centre for Environmental Management University of the Free State South Africa
| | - Zsófia Horváth
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- WasserCluster Lunz ‐ Biologische Station, Lunz am See Austria
- Institute of Aquatic Ecology, Centre for Ecological Research Budapest Hungary
| | - Robert Ptacnik
- WasserCluster Lunz ‐ Biologische Station, Lunz am See Austria
| | - Alienor Jeliazkov
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig
- Department of Computer Sciences Martin Luther University Halle‐Wittenberg
- University of Paris‐Saclay, INRAE, HYCAR Antony France
| | - Stéphanie Gascón
- University of Girona, GRECO, Institute of Aquatic Ecology, Girona, Spain
| | - Pieter Lemmens
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
| | - Maria Anton‐Pardo
- University of Girona, GRECO, Institute of Aquatic Ecology, Girona, Spain
| | - Silke Langenheder
- Department of Ecology and Genetics/Limnology Uppsala University Uppsala Sweden
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven Leuven Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin Germany
- Institute of Biology, Freie Universität Berlin Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig
- Department of Computer Sciences Martin Luther University Halle‐Wittenberg
| |
Collapse
|
76
|
Preisser WC, Welicky RL, Leslie KL, Mastick NC, Fiorenza EA, Maslenikov KP, Tornabene L, Kinsella JM, Wood CL. Parasite communities in English Sole ( Parophrys vetulus) have changed in composition but not richness in the Salish Sea, Washington, USA since 1930. Parasitology 2022; 149:1-51. [PMID: 35238289 PMCID: PMC10090603 DOI: 10.1017/s0031182022000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/06/2022]
Abstract
Earth is rapidly losing free-living species. Is the same true for parasitic species? To reveal temporal trends in biodiversity, historical data are needed, but often such data do not exist for parasites. Here, parasite communities of the past were reconstructed by identifying parasites in fluid-preserved specimens held in natural history collections. Approximately 2500 macroparasites were counted from 109 English Sole (Parophrys vetulus ) collected between 1930 and 2019 in the Salish Sea, Washington, USA. Alpha and beta diversity were measured to determine if and how diversity changed over time. Species richness of parasite infracommunities and community dispersion did not vary over time, but community composition of decadal component communities varied significantly over the study period. Community dissimilarity also varied: prior to the mid-20th century, parasites shifted in abundance in a seemingly stochastic manner and, after this time period, a canalization of community change was observed, where species' abundances began to shift in consistent directions. Further work is needed to elucidate potential drivers of these changes and to determine if these patterns are present in the parasite communities of other fishes of the Salish Sea.
Collapse
Affiliation(s)
- Whitney C. Preisser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L. Welicky
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Unit for Environmental Sciences and Management, North–West University, Potchefstroom, South Africa
| | - Katie L. Leslie
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Natalie C. Mastick
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Evan A. Fiorenza
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Katherine P. Maslenikov
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | | | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
77
|
Greco M, Werner K, Zamelczyk K, Rasmussen TL, Kucera M. Decadal trend of plankton community change and habitat shoaling in the Arctic gateway recorded by planktonic foraminifera. GLOBAL CHANGE BIOLOGY 2022; 28:1798-1808. [PMID: 34913240 DOI: 10.1111/gcb.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The Fram Strait plays a crucial role in regulating the heat and sea-ice dynamics in the Arctic. In response to the ongoing global warming, the marine biota of this Arctic gateway is experiencing significant changes with increasing advection of Atlantic species. The footprint of this 'Atlantification' has been identified in isolated observations across the plankton community, but a systematic, multi-decadal perspective on how regional climate change facilitates the invasion of Atlantic species and affects the ecology of the resident species is lacking. Here we evaluate a series of 51 depth-resolved plankton profiles collected in the Fram Strait during seven surveys between 1985 and 2015, using planktonic foraminifera as a proxy for changes in both the pelagic community composition and species vertical habitat depth. The time series reveals a progressive shift towards more Atlantic species, occurring independently of changes in local environmental conditions. We conclude that this trend is reflecting higher production of the Atlantic species in the Nordic Seas, from where they are advected into the Fram Strait. At the same time, we observe the ongoing extensive sea-ice export from the Arctic and associated cooling-induced decline in density and habitat shoaling of the subpolar Turborotalita quinqueloba, whereas the resident Neogloboquadrina pachyderma persists. As a result, the planktonic foraminiferal community and vertical structure in the Fram Strait shift to a new state, driven by both remote forcing of the Atlantic invaders and local climatic changes acting on the resident species. The strong summer export of Arctic sea ice has so far buffered larger plankton transformation. We predict that if the sea-ice export will decrease, the Arctic gateway will experience rapid restructuring of the pelagic community, even in the absence of further warming. Such a large change in the gateway region will likely propagate into the Arctic proper.
Collapse
Affiliation(s)
- Mattia Greco
- MARUM - Centre for Marine Environmental Sciences, Bremen, Germany
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | | | - Katarzyna Zamelczyk
- CAGE-Centre for Arctic Gas Hydrate, Environment, and Climate, UiT, Tromsø, Norway
| | - Tine L Rasmussen
- CAGE-Centre for Arctic Gas Hydrate, Environment, and Climate, UiT, Tromsø, Norway
| | - Michal Kucera
- MARUM - Centre for Marine Environmental Sciences, Bremen, Germany
| |
Collapse
|
78
|
Opinion: Nationally reported metrics can't adequately guide transformative change in biodiversity policy. Proc Natl Acad Sci U S A 2022; 119:2117299119. [PMID: 35217615 PMCID: PMC8892539 DOI: 10.1073/pnas.2117299119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
79
|
Vilar CC, Andrades R, Szablak FT, Guabiroba HC, Pichler HA, Bastos KV, de Lima LRS, Bastos PGP, Martins RF, Rodrigues VLA, Hostim-Silva M, Joyeux JC. Variability in nearshore fish biodiversity indicators after a mining disaster in eastern Brazil. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105565. [PMID: 35114588 DOI: 10.1016/j.marenvres.2022.105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The rupture of the Fundão mining dam (Doce river basin, Brazil) caused a wide range of negative impacts. Yet, assemblage-level implications to estuarine and coastal fishes remain unclear, partly due to the lack of pre-disaster information. Based on monthly otter trawl surveys, we analyzed spatial and seasonal variability in univariate (total biomass, biomass of species vulnerable to exploitation, rarefied richness and evenness) and multivariate (species composition and trophic composition) indicators of fish biodiversity in the Doce river delta, eastern Brazil. We determined the independent and interactive effects of environmental, seasonal and spatial variables on species composition to test whether environmental alterations provoked by mine tailings could affect assemblage's organization. Most indicators present idiosyncratic spatiotemporal patterns, suggesting they have complementary roles in revealing changes in fish biodiversity. Environmental variables, including those affected by the Fundão dam collapse such as turbidity, dissolved oxygen and pH, were much more important than seasonal and spatial predictors in explaining the variation in fish species composition. These findings highlight the potential from mine tailings to disrupt local ichthyofauna and indicate a preponderant role of environmental conditions in assemblage structuring. Given the lack of data prior to rupture, our results may be used as a baseline against which to assess temporal trends in fish biodiversity relative to changes detected in less disturbed estuarine and coastal assemblages.
Collapse
Affiliation(s)
- Ciro Colodetti Vilar
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil.
| | - Ryan Andrades
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Flávio Toscano Szablak
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Helder Coelho Guabiroba
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Helen Audrey Pichler
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil
| | - Kathiani Victor Bastos
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Layza Roxanne Santana de Lima
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Pedro Garcia Pereira Bastos
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Rebeka Ferreira Martins
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Vitor Leonardo Amaral Rodrigues
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| | - Mauricio Hostim-Silva
- Laboratório de Ecologia de Peixes Marinhos, Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, BR 101, km 60, Litorâneo, São Mateus, ES, 29932-540, Brazil; Instituto Meros do Brasil, Rua Benjamin Cosntant, 67, Conj. 1104, 10° andar, Curitiba, PR, Brazil
| | - Jean-Christophe Joyeux
- Laboratório de Ictiologia, Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, Vitória, ES, 29055-460, Brazil
| |
Collapse
|
80
|
Trindade-Santos I, Moyes F, Magurran AE. Global patterns in functional rarity of marine fish. Nat Commun 2022; 13:877. [PMID: 35169123 PMCID: PMC8847455 DOI: 10.1038/s41467-022-28488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth. These species make substantial contributions to ecosystem functioning, and are targets of conservation policy. Here we adopt an integrated approach, combining information on the rarity of species trait combinations, and their spatial restrictedness, to quantify the biogeography of rare fish (a taxon with almost 13,000 species) in the world's oceans. We find concentrations of rarity, in excess of what is predicted by a null expectation, near the coasts and at higher latitudes. We also observe mismatches between these rarity hotspots and marine protected areas. This pattern is repeated for both major groupings of fish, the Actinopterygii (bony fish) and Elasmobranchii (sharks, skates and rays). These results uncover global patterns of rarity that were not apparent from earlier work, and highlight the importance of using metrics that incorporate information on functional traits in the conservation and management of global marine fishes.
Collapse
Affiliation(s)
- Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK.
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
81
|
Saldaña‐Núñez V, Córdova‐Lepe F, Moreno‐Gómez FN. epcc: An R package to assess and simulate the vulnerability of ectothermic populations when facing climate change. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. Saldaña‐Núñez
- Doctorado en Modelamiento Matemático Aplicado Universidad Católica del Maule Talca Chile
| | - F. Córdova‐Lepe
- Departamento de Matemática Física y Estadística Facultad de Ciencias Básicas Universidad Católica del Maule Talca Chile
| | - F. N. Moreno‐Gómez
- Departamento de Biología y Química Facultad de Ciencias Básicas Universidad Católica del Maule Talca Chile
| |
Collapse
|
82
|
Terry JCD, O'Sullivan JD, Rossberg AG. No pervasive relationship between species size and local abundance trends. Nat Ecol Evol 2022; 6:140-144. [PMID: 34969990 PMCID: PMC8825279 DOI: 10.1038/s41559-021-01624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Although there is some evidence that larger species could be more prone to population declines, the potential role of size traits in determining changes in community composition has been underexplored in global-scale analyses. Here, we combine a large cross-taxon assemblage time series database (BioTIME) with multiple trait databases to show that there is no clear correlation within communities between size traits and changes in abundance over time, suggesting that there is no consistent tendency for larger species to be doing proportionally better or worse than smaller species at local scales.
Collapse
Affiliation(s)
- J Christopher D Terry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Jacob D O'Sullivan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
83
|
Williams JJ, Freeman R, Spooner F, Newbold T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:797-815. [PMID: 34837311 DOI: 10.1111/gcb.15978] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Rapid human-driven environmental changes are impacting animal populations around the world. Currently, land-use and climate change are two of the biggest pressures facing biodiversity. However, studies investigating the impacts of these pressures on population trends often do not consider potential interactions between climate and land-use change. Further, a population's climatic position (how close the ambient temperature and precipitation conditions are to the species' climatic tolerance limits) is known to influence responses to climate change but has yet to be investigated with regard to its influence on land-use change responses over time. Consequently, important variations across species' ranges in responses to environmental changes may be being overlooked. Here, we combine data from the Living Planet and BioTIME databases to carry out a global analysis exploring the impacts of land use, habitat loss, climatic position, climate change and the interactions between these variables, on vertebrate population trends. By bringing these datasets together, we analyse over 7,000 populations across 42 countries. We find that land-use change is interacting with climate change and a population's climatic position to influence rates of population change. Moreover, features of a population's local landscape (such as surrounding land cover) play important roles in these interactions. For example, populations in agricultural land uses where maximum temperatures were closer to their hot thermal limit, declined at faster rates when there had also been rapid losses in surrounding semi-natural habitat. The complex interactions between these variables on populations highlight the importance of taking intraspecific variation and interactions between local and global pressures into account. Understanding how drivers of change are interacting and impacting populations, and how this varies spatially, is critical if we are to identify populations at risk, predict species' responses to future environmental changes and produce suitable conservation strategies.
Collapse
Affiliation(s)
- Jessica J Williams
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Robin Freeman
- Institute of Zoology, Zoological Society of London, London, UK
| | - Fiona Spooner
- Our World in Data at the Global Change Data Lab, Oxford, UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
84
|
Haider S, Lembrechts JJ, McDougall K, Pauchard A, Alexander JM, Barros A, Cavieres LA, Rashid I, Rew LJ, Aleksanyan A, Arévalo JR, Aschero V, Chisholm C, Clark VR, Clavel J, Daehler C, Dar PA, Dietz H, Dimarco RD, Edwards P, Essl F, Fuentes‐Lillo E, Guisan A, Gwate O, Hargreaves AL, Jakobs G, Jiménez A, Kardol P, Kueffer C, Larson C, Lenoir J, Lenzner B, Padrón Mederos MA, Mihoc M, Milbau A, Morgan JW, Müllerová J, Naylor BJ, Nijs I, Nuñez MA, Otto R, Preuk N, Ratier Backes A, Reshi ZA, Rumpf SB, Sandoya V, Schroder M, Speziale KL, Urbach D, Valencia G, Vandvik V, Vitková M, Vorstenbosch T, Walker TWN, Walsh N, Wright G, Zong S, Seipel T. Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol Evol 2022; 12:e8590. [PMID: 35222963 PMCID: PMC8844121 DOI: 10.1002/ece3.8590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.
Collapse
Affiliation(s)
- Sylvia Haider
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Jonas J. Lembrechts
- Research group Plants and Ecosystems (PLECO)University of AntwerpWilrijkBelgium
| | - Keith McDougall
- Department of Planning, Industry and EnvironmentQueanbeyanNew South WalesAustralia
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biologicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
| | | | - Agustina Barros
- Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales (IANIGLA)Centro Científico Tecnológico (CCT)CONICET MendozaMendozaArgentina
| | - Lohengrin A. Cavieres
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
- Departamento de BotánicaFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Irfan Rashid
- Department of BotanyUniversity of KashmirSrinagarIndia
| | - Lisa J. Rew
- Department of Land Resource and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| | - Alla Aleksanyan
- Department of Geobotany and Plant EcophysiologyInstitute of Botany aft. A.L. Takhtajyan NAS RAYerevanArmenia
- Chair of Biology and BiotechnologiesArmenian National Agrarian UniversityYerevanArmenia
| | - José R. Arévalo
- Department of Botany, Ecology and Plant PhysiologyUniversity of La LagunaLa LagunaSpain
| | - Valeria Aschero
- Instituto Argentino de Nivología y Glaciología y Ciencias Ambientales (IANIGLA)Centro Científico Tecnológico (CCT)CONICET MendozaMendozaArgentina
| | | | - V. Ralph Clark
- Afromontane Research Unit & Department of GeographyUniversity of the Free State: Qwaqwa CampusPhuthaditjhabaSouth Africa
| | - Jan Clavel
- Research group Plants and Ecosystems (PLECO)University of AntwerpWilrijkBelgium
| | - Curtis Daehler
- School of Life SciencesUniversity of Hawai'i at ManoaHonoluluHawaiiUSA
| | | | - Hansjörg Dietz
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Romina D. Dimarco
- Grupo de Ecología de Poblaciones de InsectosIFAB (INTA‐CONICET)BarilocheArgentina
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Peter Edwards
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology GroupDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Eduardo Fuentes‐Lillo
- Research group Plants and Ecosystems (PLECO)University of AntwerpWilrijkBelgium
- Laboratorio de Invasiones Biologicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
- School of Education and Social SciencesAdventist University of ChileChillánChile
| | - Antoine Guisan
- Institute of Earth Surface Dynamics & Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Onalenna Gwate
- Afromontane Research Unit & Department of GeographyUniversity of the Free State: Qwaqwa CampusPhuthaditjhabaSouth Africa
| | | | - Gabi Jakobs
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Alejandra Jiménez
- Laboratorio de Invasiones Biologicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
| | - Paul Kardol
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Christoph Kueffer
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Botany and ZoologyCentre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| | - Christian Larson
- Department of Land Resource and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| | - Jonathan Lenoir
- UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSANUMR 7058 CNRS)Université de Picardie Jules VerneAmiensFrance
| | - Bernd Lenzner
- Bioinvasions, Global Change, Macroecology GroupDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Maritza Mihoc
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
- Departamento de BotánicaFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Ann Milbau
- Research Institute for Nature and Forest – INBOBrusselsBelgium
| | - John W. Morgan
- Department of EcologyEnvironment and EvolutionLa Trobe UniversityBundooraVictoriaAustralia
| | - Jana Müllerová
- Department of GIS and Remote SensingInstitute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | | | - Ivan Nijs
- Research group Plants and Ecosystems (PLECO)University of AntwerpWilrijkBelgium
| | - Martin A. Nuñez
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- Grupo Ecología de InvasionesInstituto de Investigaciones en Biodiversidad y Medio AmbienteCONICET ‐ Universidad Nacional del ComahueBarilocheArgentina
| | - Rüdiger Otto
- Department of Botany, Ecology and Plant PhysiologyUniversity of La LagunaLa LagunaSpain
| | - Niels Preuk
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
| | - Amanda Ratier Backes
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Sabine B. Rumpf
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Verónica Sandoya
- School of Life Sciences and BiotechnologyYachay Tech UniversityUrcuquíEcuador
- CREAFCerdanyola del VallèsSpain
- Unitat d'EcologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Mellesa Schroder
- Department of Planning, Industry and EnvironmentJindabyneNew South WalesAustralia
| | | | - Davnah Urbach
- Global Mountain Biodiversity AssessmentInstitute of Plant SciencesUniversity of BernBernSwitzerland
| | - Graciela Valencia
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
- Departamento de BotánicaFacultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Vigdis Vandvik
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Michaela Vitková
- Department of Invasion EcologyInstitute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Tom Vorstenbosch
- Bioinvasions, Global Change, Macroecology GroupDepartment of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
| | - Tom W. N. Walker
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Neville Walsh
- Royal Botanic Gardens VictoriaMelbourneVictoriaAustralia
| | - Genevieve Wright
- Department of Planning, Industry and EnvironmentNSW Government, Biodiversity and ConservationQueanbeyanNew South WalesAustralia
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai MountainsMinistry of EducationSchool of Geographical SciencesNortheast Normal UniversityChangchunChina
| | - Tim Seipel
- Department of Land Resource and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| |
Collapse
|
85
|
van Klink R, Bowler DE, Gongalsky KB, Chase JM. Long-term abundance trends of insect taxa are only weakly correlated. Biol Lett 2022; 18:20210554. [PMID: 35193369 PMCID: PMC8864342 DOI: 10.1098/rsbl.2021.0554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
Changes in the abundances of animals, such as with the ongoing concern about insect declines, are often assumed to be general across taxa. However, this assumption is largely untested. Here, we used a database of assemblage-wide long-term insect and arachnid monitoring to compare abundance trends among co-occurring pairs of taxa. We show that 60% of co-occurring taxa qualitatively showed long-term trends in the same direction-either both increasing or both decreasing. However, in terms of magnitude, temporal trends were only weakly correlated (mean freshwater r = 0.05 (±0.03), mean terrestrial r = 0.12 (±0.09)). The strongest correlation was between trends of beetles and those of moths/butterflies (r = 0.26). Overall, even though there is some support for directional similarity in temporal trends, we find that changes in the abundance of one taxon provide little information on the changes of other taxa. No clear candidate for umbrella or indicator taxa emerged from our analysis. We conclude that obtaining a better picture of changes in insect abundances will require monitoring of multiple taxa, which remains uncommon, especially in the terrestrial realm.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany
| | - Diana E. Bowler
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Helmholtz - Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow 119071, Russia
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
86
|
Grenié M, Berti E, Carvajal‐Quintero J, Dädlow GML, Sagouis A, Winter M. Harmonizing taxon names in biodiversity data: a review of tools, databases, and best practices. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Grenié
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Leipzig University Ritterstraße 26 04109 Leipzig Germany
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Friedrich‐Schiller University Jena Jena Germany
| | - Juan Carvajal‐Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Leipzig University Ritterstraße 26 04109 Leipzig Germany
| | - Gala Mona Louise Dädlow
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Leipzig University Ritterstraße 26 04109 Leipzig Germany
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg, Halle Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Puschstraße 4 04103 Leipzig Germany
- Leipzig University Ritterstraße 26 04109 Leipzig Germany
| |
Collapse
|
87
|
Gotelli NJ, Moyes F, Antão LH, Blowes SA, Dornelas M, McGill BJ, Penny A, Schipper AM, Shimadzu H, Supp SR, Waldock CA, Magurran AE. Long-term changes in temperate marine fish assemblages are driven by a small subset of species. GLOBAL CHANGE BIOLOGY 2022; 28:46-53. [PMID: 34669982 PMCID: PMC9298248 DOI: 10.1111/gcb.15947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 10/03/2021] [Indexed: 05/28/2023]
Abstract
The species composition of plant and animal assemblages across the globe has changed substantially over the past century. How do the dynamics of individual species cause this change? We classified species into seven unique categories of temporal dynamics based on the ordered sequence of presences and absences that each species contributes to an assemblage time series. We applied this framework to 14,434 species trajectories comprising 280 assemblages of temperate marine fishes surveyed annually for 20 or more years. Although 90% of the assemblages diverged in species composition from the baseline year, this compositional change was largely driven by only 8% of the species' trajectories. Quantifying the reorganization of assemblages based on species shared temporal dynamics should facilitate the task of monitoring and restoring biodiversity. We suggest ways in which our framework could provide informative measures of compositional change, as well as leverage future research on pattern and process in ecological systems.
Collapse
Affiliation(s)
| | - Faye Moyes
- Centre for Biological Diversity and Scottish Oceans InstituteSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Laura H. Antão
- Research Centre for Ecological Change, Organismal & Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity ResearchLeipzigGermany
- Department of Computer ScienceMartin Luther UniversityLeipzigGermany
| | - Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans InstituteSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Brian J. McGill
- School of Biology and EcologySustainability Solutions InitiativeUniversity of MaineOronoMaineUSA
| | - Amelia Penny
- Centre for Biological Diversity and Scottish Oceans InstituteSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Aafke M. Schipper
- Department of Environmental ScienceRadboud UniversityNijmegenThe Netherlands
| | - Hideyasu Shimadzu
- Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
- Graduate School of Public HealthTeikyo UniversityTokyoJapan
| | - Sarah R. Supp
- Data Analytics ProgramDenison UniversityGranvilleOhioUSA
| | - Conor A. Waldock
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Anne E. Magurran
- Centre for Biological Diversity and Scottish Oceans InstituteSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
88
|
Leung B. Smaller species are not better off. Nat Ecol Evol 2021; 6:134-135. [PMID: 34969989 DOI: 10.1038/s41559-021-01636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brian Leung
- Department of Biology, McGill University, Montreal, Quebec, Canada. .,Bieler School of Environment, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
89
|
Marjakangas E, Muñoz G, Turney S, Albrecht J, Neuschulz EL, Schleuning M, Lessard J. Trait‐based inference of ecological network assembly: a conceptual framework and methodological toolbox. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emma‐Liina Marjakangas
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Gabriel Muñoz
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| | - Shaun Turney
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F), Senckenberganlage 25 Frankfurt am Main Germany
| | - Jean‐Philippe Lessard
- Department of Biology, Faculty of Arts and Sciences Concordia University, 7141 Sherbrooke Street West, Montreal Quebec Canada
| |
Collapse
|
90
|
Brito JC, Del Barrio G, Stellmes M, Pleguezuelos JM, Saarinen J. Drivers of change and conservation needs for vertebrates in drylands: an assessment from global scale to Sahara-Sahel wetlands. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1991496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- J. C. Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da, Universidade do Porto, Portugal
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto, Portugal
| | - G. Del Barrio
- Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento sn, La Cañada, Spain
| | - M. Stellmes
- Institute of Geographical Sciences, Remote Sensing and Geoinformatics, Freie Universität Berlin, Germany
| | - J. M. Pleguezuelos
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Spain
| | - J. Saarinen
- Geography Research Unit, University of Oulu, Finland
- School of Tourism and Hospitality, University of Johannesburg, South Africa
| |
Collapse
|
91
|
Solovyeva D, Bysykatova-Harmey I, Vartanyan SL, Kondratyev A, Huettmann F. Modeling Eastern Russian High Arctic Geese (Anser fabalis, A. albifrons) during moult and brood rearing in the 'New Digital Arctic'. Sci Rep 2021; 11:22051. [PMID: 34764401 PMCID: PMC8586028 DOI: 10.1038/s41598-021-01595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Many polar species and habitats are now affected by man-made global climate change and underlying infrastructure. These anthropogenic forces have resulted in clear implications and many significant changes in the arctic, leading to the emergence of new climate, habitats and other issues including digital online infrastructure representing a ‘New Artic’. Arctic grazers, like Eastern Russian migratory populations of Tundra Bean Goose Anser fabalis and Greater White-fronted Goose A. albifrons, are representative examples and they are affected along the entire flyway in East Asia, namely China, Japan and Korea. Here we present the best publicly-available long-term (24 years) digitized geographic information system (GIS) data for the breeding study area (East Yakutia and Chukotka) and its habitats with ISO-compliant metadata. Further, we used seven publicly available compiled Open Access GIS predictor layers to predict the distribution for these two species within the tundra habitats. Using BIG DATA we are able to improve on the ecological niche prediction inference for both species by focusing for the first time specifically on biological relevant population cohorts: post-breeding moulting non-breeders, as well as post-breeding parent birds with broods. To assure inference with certainty, we assessed it with 4 lines of evidence including alternative best-available open access field data from GBIF.org as well as occurrence data compiled from the literature. Despite incomplete data, we found a good model accuracy in support of our evidence for a robust inference of the species distributions. Our predictions indicate a strong publicly best-available relative index of occurrence (RIO). These results are based on the quantified ecological niche showing more realistic gradual occurrence patterns but which are not fully in agreement with the current strictly applied parsimonious flyway and species delineations. While our predictions are to be improved further, e.g. when synergetic data are made freely available, here we offer within data caveats the first open access model platform for fine-tuning and future predictions for this otherwise poorly represented region in times of a rapid changing industrialized ‘New Arctic’ with global repercussions.
Collapse
Affiliation(s)
- Diana Solovyeva
- Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Inga Bysykatova-Harmey
- Institute of Biological Problems of the Cryolithozone, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia
| | - Sergey L Vartanyan
- North-East Interdisciplinary Scientific Research Institute N. A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Alexander Kondratyev
- Institute of Biological Problems of the North, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Falk Huettmann
- EWHALE lab - Institute of Arctic Biology, Biology & Wildlife Department, University of Alaska Fairbanks (UAF), Fairbanks, Alaska, USA.
| |
Collapse
|
92
|
Stauffer S, Jucker M, Keggin T, Marques V, Andrello M, Bessudo S, Cheutin M, Borrero‐Pérez GH, Richards E, Dejean T, Hocdé R, Juhel J, Ladino F, Letessier TB, Loiseau N, Maire E, Mouillot D, Mutis Martinezguerra M, Manel S, Polanco Fernández A, Valentini A, Velez L, Albouy C, Pellissier L, Waldock C. How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs? Ecol Evol 2021; 11:14630-14643. [PMID: 34765130 PMCID: PMC8571620 DOI: 10.1002/ece3.8150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.
Collapse
Affiliation(s)
- Salomé Stauffer
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Meret Jucker
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Thomas Keggin
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Virginie Marques
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Marco Andrello
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine EnvironmentNational Research CouncilRomeItaly
| | - Sandra Bessudo
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | | | - Giomar Helena Borrero‐Pérez
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Eilísh Richards
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | | | - Régis Hocdé
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | | | - Felipe Ladino
- Fundación Malpelo y otros ecosistemas marinosBogotáColombia
| | - Tom B. Letessier
- Institute of ZoologyZoological Society of LondonLondonUK
- Marine Futures LabUniversity of Western AustraliaCrawleyWAAustralia
| | | | - Eva Maire
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Maria Mutis Martinezguerra
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | - Stéphanie Manel
- CEFEUniv. MontpellierCNRSEPHE‐PSL UniversityIRDUniv. Paul Valéry Montpellier 3MontpellierFrance
| | - Andrea Polanco Fernández
- Instituto de Investigaciones Marinas y Costeras‐INVEMAR Museo de Historia Natural Marina de Colombia (MHNMC)Santa MartaColombia
| | | | - Laure Velez
- MARBECUniv. MontpellierCNRSIFREMERIRDMontpellierFrance
| | - Camille Albouy
- IFREMERunité Écologie et Modèles pour l’HalieutiqueNantesFrance
| | - Loïc Pellissier
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Conor Waldock
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
93
|
Dallas TA, Kramer AM. Temporal variability in population and community dynamics. Ecology 2021; 103:e03577. [PMID: 34714929 DOI: 10.1002/ecy.3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022]
Abstract
Populations and communities fluctuate in their overall numbers through time, and the magnitude of fluctuations in individual species may scale to communities. However, the composite variability at the community scale is expected to be tempered by opposing fluctuations in individual populations, a phenomenon often called the portfolio effect. Understanding population variability, how it scales to community variability, and the spatial scaling in this variability are pressing needs given shifting environmental conditions and community composition. We explore evidence for portfolio effects using null community simulations and a large collection of empirical community time series from the BioTIME database. Additionally, we explore the relative roles of habitat type and geographic location on population and community temporal variability. We find strong portfolio effects in our theoretical community model, but weak effects in empirical data, suggesting a role for shared environmental responses, interspecific competition, or a litany of other factors. Furthermore, we observe a clear latitudinal signal - and differences among habitat types - in population and community variability. Together, this highlights the need to develop realistic models of community dynamics, and hints at spatial, and underlying environmental, gradients in variability in both population and community dynamics.
Collapse
Affiliation(s)
- Tad A Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, Florida, 33620, USA
| |
Collapse
|
94
|
Abstract
Systematic, long-term monitoring provides crucial evidence regarding the vulnerability of biodiversity to environmental change. New research shows that trends in taxonomic diversity do not necessarily match trends in functional diversity. Interpreting the implications of different kinds of diversity change for ecosystem functioning remains a key priority.
Collapse
|
95
|
Bogoni JA, Peres CA, Ferraz KM. Medium‐ to large‐bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mamm Rev 2021. [DOI: 10.1111/mam.12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliano A. Bogoni
- Universidade de São Paulo (USP) Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ) Departamento de Ciências Florestais Laboratório de Ecologia Manejo e Conservação de Fauna Silvestre (LEMaC) Piracicaba SP13418‐900Brazil
- School of Environmental Sciences University of East Anglia NorwichNR4 7TJUK
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia NorwichNR4 7TJUK
| | - Katia M.P.M.B. Ferraz
- Universidade de São Paulo (USP) Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ) Departamento de Ciências Florestais Laboratório de Ecologia Manejo e Conservação de Fauna Silvestre (LEMaC) Piracicaba SP13418‐900Brazil
| |
Collapse
|
96
|
De Palma A, Hoskins A, Gonzalez RE, Börger L, Newbold T, Sanchez-Ortiz K, Ferrier S, Purvis A. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001-2012. Sci Rep 2021; 11:20249. [PMID: 34642362 PMCID: PMC8511124 DOI: 10.1038/s41598-021-98811-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region.
Collapse
Affiliation(s)
- Adriana De Palma
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.
| | - Andrew Hoskins
- CSIRO Land and Water, Canberra, ACT, Australia.,CSIRO Health and Biosecurity, Townsville, Qld, Australia
| | - Ricardo E Gonzalez
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Luca Börger
- Department of Biosciences, University of Swansea, Swansea, SA2 8PP, UK
| | - Tim Newbold
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Katia Sanchez-Ortiz
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | | | - Andy Purvis
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| |
Collapse
|
97
|
Tinoco BA, Latta SC, Astudillo PX, Nieto A, Graham CH. Temporal stability in species richness but reordering in species abundances within avian assemblages of a tropical Andes conservation hot spot. Biotropica 2021; 53:1673-1684. [PMID: 35874905 PMCID: PMC9293307 DOI: 10.1111/btp.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Affiliation(s)
| | - Steven C. Latta
- National Aviary Allegheny Commons West Pittsburgh Pennsylvania USA
| | | | - Andrea Nieto
- Escuela de Biología Universidad del Azuay Cuenca Ecuador
| | | |
Collapse
|
98
|
Gotelli NJ, Booher DB, Urban MC, Ulrich W, Suarez AV, Skelly DK, Russell DJ, Rowe RJ, Rothendler M, Rios N, Rehan SM, Ni G, Moreau CS, Magurran AE, Jones FAM, Graves GR, Fiera C, Burkhardt U, Primack RB. Estimating species relative abundances from museum records. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Douglas B. Booher
- Yale Center for Biodiversity and Global Change Yale University New Haven Connecticut USA
- Georgia Museum of Natural History Athens Georgia USA
| | - Mark C. Urban
- Department of Ecology and Evolutionary Biology Center of Biological Risk University of Connecticut Storrs Connecticut USA
| | - Werner Ulrich
- Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University Torun Poland
| | - Andrew V. Suarez
- Department of Evolution, Ecology and Behavior Department of Entomology University of Illinois Urbana Illinois USA
| | - David K. Skelly
- Yale Peabody Museum of Natural History School of Forestry & Environmental Studies Yale University New Haven Connecticut USA
| | | | - Rebecca J. Rowe
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | | | - Nelson Rios
- Yale Peabody Museum of Natural History School of Forestry & Environmental Studies Yale University New Haven Connecticut USA
| | - Sandra M. Rehan
- Department of Biology York University Toronto Ontario Canada
| | - George Ni
- Department of Biology University of Vermont Burlington Vermont USA
| | - Corrie S. Moreau
- Department of Entomology Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA
| | - Anne E. Magurran
- Centre for Biological Diversity and Scottish Oceans Institute School of Biology University of St Andrews St Andrews UK
| | - Faith A. M. Jones
- Centre for Biological Diversity and Scottish Oceans Institute School of Biology University of St Andrews St Andrews UK
- Department of Forest and Conservation Faculty of Forestry University of British Columbia Vancouver British Columbia Canada
| | - Gary R. Graves
- Department of Vertebrate Zoology National Museum of Natural HistorySmithsonian Institution Washington District of Columbia USA
- Center for Macroecology, Evolution and Climate Globe Institute University of Copenhagen Copenhagen Ø Denmark
| | - Cristina Fiera
- Institute of Biology Bucharest Romanian Academy Bucharest Romania
| | | | | |
Collapse
|
99
|
Shennan‐Farpón Y, Visconti P, Norris K. Detecting ecological thresholds for biodiversity in tropical forests: Knowledge gaps and future directions. Biotropica 2021. [DOI: 10.1111/btp.12999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yara Shennan‐Farpón
- ZSL Institute of Zoology Regent’s Park Outer Circle London UK
- Department of Anthropology University College London London UK
| | - Piero Visconti
- International Institute for Applied Systems Analysis Laxenburg Austria
| | | |
Collapse
|
100
|
Potential distribution of piscivores across the Atlantic Forest: From bats and marsupials to large-bodied mammals under a trophic-guild viewpoint. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|