51
|
Trinh MDL, Hashimoto A, Kono M, Takaichi S, Nakahira Y, Masuda S. Lack of plastid-encoded Ycf10, a homolog of the nuclear-encoded DLDG1 and the cyanobacterial PxcA, enhances the induction of non-photochemical quenching in tobacco. PLANT DIRECT 2021; 5:e368. [PMID: 34938941 PMCID: PMC8671777 DOI: 10.1002/pld3.368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
pH homeostasis in the chloroplast is crucial for the control of photosynthesis and other metabolic processes in plants. Recently, nuclear-encoded Day-Length-dependent Delayed Greening1 (DLDG1) and Fluctuating-Light Acclimation Protein1 (FLAP1) that are required for the light-inducible optimization of plastidial pH in Arabidopsis thaliana were identified. DLDG1 and FLAP1 homologs are specifically conserved in oxygenic phototrophs, and a DLDG1 homolog, Ycf10, is encoded in the chloroplast genome in plant cells. However, the function of Ycf10 and its physiological significance are unknown. To address this, we constructed ycf10 tobacco Nicotiana tabacum mutants and characterized their phenotypes. The ycf10 tobacco mutants grown under continuous-light conditions showed a pale-green phenotype only in developing leaves, and it was suppressed in short-day conditions. The ycf10 mutants also induced excessive non-photochemical quenching (NPQ) compared with those in the wild-type at the induction stage of photosynthesis. These phenotypes resemble those of Arabidopsis dldg1 mutants, suggesting that they have similar functions. However, there are distinct differences between the two mutant phenotypes: The highly induced NPQ in tobacco ycf10 and the Arabidopsis dldg1 mutants are diminished and enhanced, respectively, with increasing duration of the fluctuating actinic-light illumination. Ycf10 and DLDG1 were previously shown to localize in chloroplast envelope-membranes, suggesting that Ycf10 and DLDG1 differentially control H+ exchange across these membranes in a light-dependent manner to control photosynthesis.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Akira Hashimoto
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaru Kono
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Shinichi Takaichi
- Department of Molecular MicrobiologyTokyo University of AgricultureTokyoJapan
| | | | - Shinji Masuda
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
52
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
53
|
Kanazawa A, Chattopadhyay A, Kuhlgert S, Tuitupou H, Maiti T, Kramer DM. Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211102. [PMID: 34925868 PMCID: PMC8672073 DOI: 10.1098/rsos.211102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The responses of plant photosynthesis to rapid fluctuations in environmental conditions are critical for efficient conversion of light energy. These responses are not well-seen laboratory conditions and are difficult to probe in field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that 'light potentials' for linear electron flow and non-photochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient photosynthetically active radiation (PAR) or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly induced NPQ to photosynthetic control of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, probably inducing photodamage, revealing a potential target for improving the efficiency and robustness of photosynthesis. We discuss the implications of the approach for open science efforts to understand and improve crop productivity.
Collapse
Affiliation(s)
- Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abhijnan Chattopadhyay
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Sebastian Kuhlgert
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Hainite Tuitupou
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
54
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
55
|
Yang YJ, Sun H, Zhang SB, Huang W. Roles of alternative electron flows in response to excess light in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111030. [PMID: 34620434 DOI: 10.1016/j.plantsci.2021.111030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Ginkgo biloba L., the only surviving species of Ginkgoopsida, is a famous relict gymnosperm, it may provide new insight into the evolution of photosynthetic mechanisms. Flavodiiron proteins (FDPs) are conserved in nonflowering plants, but the role of FDPs in gymnosperms has not yet been clarified. In particular, how gymnosperms integrate FDPs and cyclic electron transport (CET) to better adapt to excess light is poorly understood. To elucidate these questions, we measured the P700 signal, chlorophyll fluorescence and electrochromic shift signal under fluctuating and constant light in G. biloba. Within the first seconds after light increased, G. biloba could not build up a sufficient proton gradient (ΔpH). Concomitantly, photo-reduction of O2 mediated by FDPs contributed to the rapid oxidation of P700 and protected PSI under fluctuating light. Therefore, in G. biloba, FDPs mainly protect PSI under fluctuating light at acceptor side. Under constant high light, the oxidation of PSI and the induction of non-photochemical quenching were attributed to the increase in ΔpH formation, which was mainly caused by the increase in CET rather than linear electron transport. Therefore, under constant light, CET finely regulates the PSI redox state and non-photochemical quenching through ΔpH formation, protecting PSI and PSII against excess light. We conclude that, in G. biloba, FDPs are particularly important under fluctuating light while CET is essential under constant high light. The coordination of FDPs and CET fine-tune photosynthetic apparatus under excess light.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
56
|
Mellon M, Storti M, Vera-Vives AM, Kramer DM, Alboresi A, Morosinotto T. Inactivation of mitochondrial complex I stimulates chloroplast ATPase in Physcomitrium patens. PLANT PHYSIOLOGY 2021; 187:931-946. [PMID: 34608952 PMCID: PMC8491079 DOI: 10.1093/plphys/kiab276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/18/2021] [Indexed: 06/11/2023]
Abstract
Light is the ultimate source of energy for photosynthetic organisms, but respiration is fundamental for supporting metabolism during the night or in heterotrophic tissues. In this work, we isolated Physcomitrella (Physcomitrium patens) plants with altered respiration by inactivating Complex I (CI) of the mitochondrial electron transport chain by independently targeting on two essential subunits. Inactivation of CI caused a strong growth impairment even in fully autotrophic conditions in tissues where all cells are photosynthetically active, demonstrating that respiration is essential for photosynthesis. CI mutants showed alterations in the stoichiometry of respiratory complexes while the composition of photosynthetic apparatus was substantially unaffected. CI mutants showed altered photosynthesis with high activity of both Photosystems I and II, likely the result of high chloroplast ATPase activity that led to smaller ΔpH formation across thylakoid membranes, decreasing photosynthetic control on cytochrome b6f in CI mutants. These results demonstrate that alteration of respiratory activity directly impacts photosynthesis in P. patens and that metabolic interaction between organelles is essential in their ability to use light energy for growth.
Collapse
Affiliation(s)
- Marco Mellon
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Mattia Storti
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | - David M. Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
57
|
Han J, Yin Y, Xu D, Wang H, Yu S, Han D, Niu Y, Xu R. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by aqueous extract of different submerged macrophytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53224-53238. [PMID: 34023990 DOI: 10.1007/s11356-021-14459-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
With the increasing eutrophication of the aquatic environments, cyanobacteria blooms caused certain damage to the animals and plants in the aquatic environments. In this experiment, two species were selected from six species of submerged macrophytes, the experimental conditions were changed to achieve the best inhibitory effect on Microcystis aeruginosa, and oxidative damage analysis was carried out. The experiment results demonstrated that the inhibition rate of Vallisneria natans and Ceratophyllum demersum was nearly 100% at the concentration of 3 g/L after 15 days of anaerobic soaking extract. In addition, the longer the soaking time of the two submerged macrophytes, the weaker the photosynthesis effect, and the lower the chlorophyll fluorescence parameters, the more obvious the inhibition effect on M. aeruginosa. Lipid peroxidation injury of M. aeruginosa could be reflected by malondialdehyde (MDA) concentration. The MDA concentration in the experimental group was significantly higher than the control group. Results showed that V. natans and C. demersum could induce oxidative damage in M. aeruginosa. It was also observed that the secondary metabolites produced by V. natans were mainly fatty acids (e.g., the oxidative acid was 6.92 w/%, and the successful acid was 9.85 w/%) which inhibited M. aeruginosa in gas chromatography-mass spectrometry (GC-MS). The main secondary metabolites in C. demersum were hydroxyl acids (e.g., the 4-hydroxy-3-methoxyphenylacetic acid was 24.33 w/%), which could inhibit the algae through allelopathy. This study provided reference for submerged macrophytes to inhibit M. aeruginosa under different conditions.
Collapse
Affiliation(s)
- Jinlong Han
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Yue Yin
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, People's Republic of China
| | - Duo Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China.
| | - Shuang Yu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Dongyun Han
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Yunxia Niu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| | - Runyu Xu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063000, People's Republic of China
| |
Collapse
|
58
|
Anderson CM, Mattoon EM, Zhang N, Becker E, McHargue W, Yang J, Patel D, Dautermann O, McAdam SAM, Tarin T, Pathak S, Avenson TJ, Berry J, Braud M, Niyogi KK, Wilson M, Nusinow DA, Vargas R, Czymmek KJ, Eveland AL, Zhang R. High light and temperature reduce photosynthetic efficiency through different mechanisms in the C 4 model Setaria viridis. Commun Biol 2021; 4:1092. [PMID: 34531541 PMCID: PMC8446033 DOI: 10.1038/s42003-021-02576-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022] Open
Abstract
C4 plants frequently experience high light and high temperature conditions in the field, which reduce growth and yield. However, the mechanisms underlying these stress responses in C4 plants have been under-explored, especially the coordination between mesophyll (M) and bundle sheath (BS) cells. We investigated how the C4 model plant Setaria viridis responded to a four-hour high light or high temperature treatment at photosynthetic, transcriptomic, and ultrastructural levels. Although we observed a comparable reduction of photosynthetic efficiency in high light or high temperature treated leaves, detailed analysis of multi-level responses revealed important differences in key pathways and M/BS specificity responding to high light and high temperature. We provide a systematic analysis of high light and high temperature responses in S. viridis, reveal different acclimation strategies to these two stresses in C4 plants, discover unique light/temperature responses in C4 plants in comparison to C3 plants, and identify potential targets to improve abiotic stress tolerance in C4 crops.
Collapse
Affiliation(s)
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Eric Becker
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Jiani Yang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Dhruv Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Oliver Dautermann
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Tonantzin Tarin
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sunita Pathak
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Tom J Avenson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Maxwell Braud
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
| |
Collapse
|
59
|
Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2021523118. [PMID: 33836593 PMCID: PMC7980454 DOI: 10.1073/pnas.2021523118] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria have been increasingly explored as a biotechnological platform, although their economic feasibility relies in part on the capacity to maximize their photosynthetic, solar-to-biomass energy conversion efficiency. Here we show that cyanobacterial photosynthetic capacity can be increased by diverting cellular resources toward heterologous, energy-storing metabolic pathways and by reducing electron flow to photoprotective, but energy-dissipating, oxygen reduction reactions. We further show that these heterologous sinks can partially contribute to photosystem I (PSI) oxidation, suggesting an engineering strategy to improve both energy storage capacity and robustness by selective diversion of excess photosynthetic capacity to productive processes. Cyanobacteria must prevent imbalances between absorbed light energy (source) and the metabolic capacity (sink) to utilize it to protect their photosynthetic apparatus against damage. A number of photoprotective mechanisms assist in dissipating excess absorbed energy, including respiratory terminal oxidases and flavodiiron proteins, but inherently reduce photosynthetic efficiency. Recently, it has been hypothesized that some engineered metabolic pathways may improve photosynthetic performance by correcting source/sink imbalances. In the context of this subject, we explored the interconnectivity between endogenous electron valves, and the activation of one or more heterologous metabolic sinks. We coexpressed two heterologous metabolic pathways that have been previously shown to positively impact photosynthetic activity in cyanobacteria, a sucrose production pathway (consuming ATP and reductant) and a reductant-only consuming cytochrome P450. Sucrose export was associated with improved quantum yield of phtotosystem II (PSII) and enhanced electron transport chain flux, especially at lower illumination levels, while cytochrome P450 activity led to photosynthetic enhancements primarily observed under high light. Moreover, coexpression of these two heterologous sinks showed additive impacts on photosynthesis, indicating that neither sink alone was capable of utilizing the full “overcapacity” of the electron transport chain. We find that heterologous sinks may partially compensate for the loss of photosystem I (PSI) oxidizing mechanisms even under rapid illumination changes, although this compensation is incomplete. Our results provide support for the theory that heterologous metabolism can act as a photosynthetic sink and exhibit some overlapping functionality with photoprotective mechanisms, while potentially conserving energy within useful metabolic products that might otherwise be “lost.”
Collapse
|
60
|
Yin X, Busch FA, Struik PC, Sharkey TD. Evolution of a biochemical model of steady-state photosynthesis. PLANT, CELL & ENVIRONMENT 2021; 44:2811-2837. [PMID: 33872407 PMCID: PMC8453732 DOI: 10.1111/pce.14070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 05/29/2023]
Abstract
On the occasion of the 40th anniversary of the publication of the landmark model by Farquhar, von Caemmerer & Berry on steady-state C3 photosynthesis (known as the "FvCB model"), we review three major further developments of the model. These include: (1) limitation by triose phosphate utilization, (2) alternative electron transport pathways, and (3) photorespiration-associated nitrogen and C1 metabolisms. We discussed the relation of the third extension with the two other extensions, and some equivalent extensions to model C4 photosynthesis. In addition, the FvCB model has been coupled with CO2 -diffusion models. We review how these extensions and integration have broadened the use of the FvCB model in understanding photosynthesis, especially with regard to bioenergetic stoichiometries associated with photosynthetic quantum yields. Based on the new insights, we present caveats in applying the FvCB model. Further research needs are highlighted.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Florian A. Busch
- School of Biosciences and Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paul C. Struik
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Thomas D. Sharkey
- MSU‐DOE Plant Research Laboratory, Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
61
|
Oguchi R, Terashima I, Chow WS. The effect of different spectral light quality on the photoinhibition of Photosystem I in intact leaves. PHOTOSYNTHESIS RESEARCH 2021; 149:83-92. [PMID: 33404974 DOI: 10.1007/s11120-020-00805-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/20/2020] [Indexed: 05/13/2023]
Abstract
Light energy causes damage to Photosystem I (PSI) and Photosystem II (PSII). The majority of the previous photoinhibition studies have been conducted with PSII, which shows much larger photoinhibition than PSI; therefore, relatively little is known about the mechanism of PSI photoinhibition so far. A previous report showed that the photoinhibition action spectrum measured with PSI activity of isolated thylakoid is similar to the absorption spectrum of chlorophyll. However, it is known that the extent of PSI photoinhibition is much smaller in vivo compared to in vitro. It is also possible that the different extent of PSII photoinhibition, caused by different spectral light qualities, can affect the photoinhibition of PSI in vivo because PSI receives electrons from PSII. In the present research, to study the effect of light quality and the effect of the extent of PSII photoinhibition on the PSI photoinhibition in vivo, intact leaves were photoinhibited under four different light qualities. The rate coefficient of PSI photoinhibition was significantly higher in blue and red light compared to white light. The rate of PSI photoinhibition at the same photon-exposure was the largest in blue and red light and followed by white and green light. These results support the notion that light absorption by chlorophyll is responsible for the PSI photoinhibition, even in intact leaves. The variation among light colors in the relationships between the extent of photoinhibition of PSII and that of PSI indicate that PSI and PSII are independently photoinhibited with different mechanisms in the early stage of in vivo photoinhibition.
Collapse
Affiliation(s)
- Riichi Oguchi
- Department of Biological Sciences, School of Science, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan.
| | - Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
62
|
Osei-Bonsu I, McClain AM, Walker BJ, Sharkey TD, Kramer DM. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. PLANT, CELL & ENVIRONMENT 2021; 44:2290-2307. [PMID: 33555066 PMCID: PMC11176259 DOI: 10.1111/pce.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.
Collapse
Affiliation(s)
- Isaac Osei-Bonsu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Horticulture Division, CSIR-Crops Research Institute, Kumasi, Ghana
| | - Alan M McClain
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
63
|
Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Sci Rep 2021; 11:13226. [PMID: 34168171 PMCID: PMC8225820 DOI: 10.1038/s41598-021-92401-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Lignosulfonate (LS) is a by-product obtained during sulfite pulping process and is commonly used as a growth enhancer in plant growth. However, the underlying growth promoting mechanism of LS on shoot growth remains largely unknown. Hence, this study was undertaken to determine the potential application of eco-friendly ion-chelated LS complex [sodium LS (NaLS) and calcium LS (CaLS)] to enhance recalcitrant indica rice MR 219 shoot growth and to elucidate its underlying growth promoting mechanisms. In this study, the shoot apex of MR 219 rice was grown on Murashige and Skoog medium supplemented with different ion chelated LS complex (NaLS and CaLS) at 100, 200, 300 and 400 mg/L The NaLS was shown to be a better shoot growth enhancer as compared to CaLS, with optimum concentration of 300 mg/L. Subsequent comparative proteomic analysis revealed an increase of photosynthesis-related proteins [photosystem II (PSII) CP43 reaction center protein, photosystem I (PSI) iron-sulfur center, PSII CP47 reaction center protein, PSII protein D1], ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbohydrate metabolism-related proteins (glyceraldehyde-3-phosphate dehydrogenase 3, fructose-bisphosphate aldolase) and stress regulator proteins (peptide methionine sulfoxide reductase A4, delta-1-pyrroline-5-carboxylate synthase 1) abundance in NaLS-treated rice as compared to the control (MSO). Consistent with proteins detected, a significant increase in biochemical analyses involved in photosynthetic activities, carbohydrate metabolism and protein biosynthesis such as total chlorophyll, rubisco activity, total sugar and total protein contents were observed in NaLS-treated rice. This implies that NaLS plays a role in empowering photosynthesis activities that led to plant growth enhancement. In addition, the increased in abundance of stress regulator proteins were consistent with low levels of peroxidase activity, malondialdehyde content and phenylalanine ammonia lyase activity observed in NaLS-treated rice. These results suggest that NaLS plays a role in modulating cellular homeostasis to provide a conducive cellular environment for plant growth. Taken together, NaLS improved shoot growth of recalcitrant MR 219 rice by upregulation of photosynthetic activities and reduction of ROS accumulation leading to better plant growth.
Collapse
|
64
|
Kosar F, Akram NA, Ashraf M, Ahmad A, Alyemeni MN, Ahmad P. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. PHYSIOLOGIA PLANTARUM 2021; 172:317-333. [PMID: 32562257 DOI: 10.1111/ppl.13155] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 05/03/2023]
Abstract
This study was carried out to assess the influence of trehalose, a non-reducing disaccharide involved in improving plant stress tolerance, on two cultivars (Hysun 33 and FH 598) of sunflower (Helianthus annuus L.) grown under control and drought stress conditions. At pre-flowering stage, varying concentrations (10, 20 and 30 mM) of trehalose were applied to the foliage. Drought stress significantly suppressed the plant growth, total soluble proteins, chlorophyll, achene yield per plant, oil percentage, organic contents, as well as oil palmitic and linoleic acids in both sunflower cultivars. External application of trehalose significantly reduced RMP (relative membrane permeability), and the accumulation of H2 O2 (hydrogen peroxide), while a considerable improvement was recorded in shoot fresh and shoot and root dry weights, total soluble proteins, glycinebetaine, AsA (ascorbic acid), total phenolics, achene yield per plant, oil contents, inorganic and organic contents, and the activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) enzymes under water-limited regimes. The cultivar Hysun 33 was superior to the other cultivar in plant growth, RMP, glycinebetaine, proline, achene yield per plant, oil contents, and palmitic and linoleic acids. Overall, foliar-applied trehalose improved plant growth, oxidative defense system, yield and oil composition of sunflower under drought stress conditions.
Collapse
Affiliation(s)
- Firdos Kosar
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | | - Abrar Ahmad
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
65
|
Johnson JE, Berry JA. The role of Cytochrome b 6f in the control of steady-state photosynthesis: a conceptual and quantitative model. PHOTOSYNTHESIS RESEARCH 2021; 148:101-136. [PMID: 33999328 PMCID: PMC8292351 DOI: 10.1007/s11120-021-00840-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
Here, we present a conceptual and quantitative model to describe the role of the Cytochrome [Formula: see text] complex in controlling steady-state electron transport in [Formula: see text] leaves. The model is based on new experimental methods to diagnose the maximum activity of Cyt [Formula: see text] in vivo, and to identify conditions under which photosynthetic control of Cyt [Formula: see text] is active or relaxed. With these approaches, we demonstrate that Cyt [Formula: see text] controls the trade-off between the speed and efficiency of electron transport under limiting light, and functions as a metabolic switch that transfers control to carbon metabolism under saturating light. We also present evidence that the onset of photosynthetic control of Cyt [Formula: see text] occurs within milliseconds of exposure to saturating light, much more quickly than the induction of non-photochemical quenching. We propose that photosynthetic control is the primary means of photoprotection and functions to manage excitation pressure, whereas non-photochemical quenching functions to manage excitation balance. We use these findings to extend the Farquhar et al. (Planta 149:78-90, 1980) model of [Formula: see text] photosynthesis to include a mechanistic description of the electron transport system. This framework relates the light captured by PS I and PS II to the energy and mass fluxes linking the photoacts with Cyt [Formula: see text], the ATP synthase, and Rubisco. It enables quantitative interpretation of pulse-amplitude modulated fluorometry and gas-exchange measurements, providing a new basis for analyzing how the electron transport system coordinates the supply of Fd, NADPH, and ATP with the dynamic demands of carbon metabolism, how efficient use of light is achieved under limiting light, and how photoprotection is achieved under saturating light. The model is designed to support forward as well as inverse applications. It can either be used in a stand-alone mode at the leaf-level or coupled to other models that resolve finer-scale or coarser-scale phenomena.
Collapse
Affiliation(s)
- J E Johnson
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA.
| | - J A Berry
- Dept. Global Ecology, Carnegie Institution, Stanford, CA, 94305, USA
| |
Collapse
|
66
|
Alber NA, Vanlerberghe GC. The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1625-1646. [PMID: 33811402 DOI: 10.1111/tpj.15259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
67
|
Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. PLANT PHYSIOLOGY 2021; 186:142-167. [PMID: 33779763 PMCID: PMC8154072 DOI: 10.1093/plphys/kiaa117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis.
Collapse
Affiliation(s)
- Ricarda Höhner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Sandra E Zimmermann
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Laura S Lopez
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Moritz Krämer
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam 14476, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf D-40225, Germany
| | - Stephan Krueger
- Biocenter University of Cologne, Institute for Plant Science, Cologne 50674, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
68
|
Lourkisti R, Oustric J, Quilichini Y, Froelicher Y, Herbette S, Morillon R, Berti L, Santini J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:762-775. [PMID: 33812345 DOI: 10.1016/j.plaphy.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Polyploidy plays a major role in citrus plant breeding to improve the adaptation of polyploid rootstocks as well as scions to adverse conditions and to enhance agronomic characteristics. In Citrus breeding programs, triploidy could be a useful tool to react to environmental issues and consumer demands because the produced fruits are seedless. In this study, we compared the physiological, biochemical, morphological, and ultrastructural responses to water deficit of triploid and diploid citrus varieties obtained from 'Fortune' mandarin and 'Ellendale' tangor hybridization. One diploid clementine tree was included and used as a reference. All studied scions were grafted on C-35 citrange rootstock. Triploidy decreased stomatal density and increased stomata size. The number of chloroplasts increased in 3x varieties. These cytological properties may explain the greater photosynthetic capacity (Pnet, gs, Fv/Fm) and enhanced water-holding capacity (RWC, proline). In addition, reduced degradation of ultrastructural organelles (chloroplasts and mitochondria) and thylakoids accompanied by less photosynthetic activity and low oxidative damages were found in 3x varieties. Triploid varieties, especially T40-3x, had a better ability to limit water loss and dissipate excess energy (NPQ) to protect photosystems. Higher starch reserves in 3x varieties suggest a better carbon and energy supply and increases in plastoglobuli size suggest less oxidative damage (H2O2, MDA), especially in T40-3x, and preservation of photosynthetic apparatus. Taken together, our results suggest that desirable cytological and ultrastructural traits induced by triploidy improve water stress response and could be a useful stress marker during environmental constraints.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Julie Oustric
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Yann Quilichini
- CNRS, Equipe « Parasites et Ecosystèmes méditerranéens, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe « Amélioration des Plantes à Multiplication Végétative », UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Liliane Berti
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe « Biochimie et Biologie moléculaire du végétal », UMR 6134 SPE, Université de Corse, Corsica, France.
| |
Collapse
|
69
|
Zunzunegui M, Morales Sánchez JÁ, Díaz Barradas MC, Gallego-Fernández JB. Different tolerance to salinity of two populations of Oenothera drummondii with contrasted biogeographical origin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:336-348. [PMID: 33725569 DOI: 10.1016/j.plaphy.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Oenothera drummondii is a native species from the coastal dunes of the Gulf of Mexico that has nowadays extended to coastal areas in temperate zones all over the world, its invasion becoming a significant problem locally. The species grows on back beach and incipient dunes, where it can suffer flooding by seawater, and sea spray. We were interested in knowing how salinity affects this species and if invasive populations present morphological or functional traits that would provide greater tolerance to salinity than native ones. To this end, we conducted a greenhouse experiment where plants from one native and from one invading population were irrigated with five salinity treatments. We measured functional traits on photosynthetic, photochemical efficiency, water content, flowering, Na+ content, pigment content, and biomass. Although O. drummondii showed high resistance to salinity, the highest levels recorded high mortality, especially in the invasive population. Plants exhibited differences not only in response to time under salinity conditions, but also according to their biogeographic origin, the native population being more resistant to long exposure and high salt concentration than the invasive one. Native and invasive populations showed different response to salt stress in photosynthesis and transpiration rates, stomatal conductance, water use efficiency, carboxylation efficiency, electron transport rate, electron transport efficiency, energy used in photochemistry, among others. The increasing salinity levels resulted in a progressive reduction of photosynthesis rate due to both stomatal and biochemical limitations, and also in a reduction of biomass and number and size of flowers, compromising the reproductive capacity.
Collapse
Affiliation(s)
- María Zunzunegui
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain.
| | - José Ángel Morales Sánchez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Mari Cruz Díaz Barradas
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | - Juan B Gallego-Fernández
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| |
Collapse
|
70
|
Lourkisti R, Froelicher Y, Herbette S, Morillon R, Giannettini J, Berti L, Santini J. Triploidy in Citrus Genotypes Improves Leaf Gas Exchange and Antioxidant Recovery From Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 11:615335. [PMID: 33679818 PMCID: PMC7933528 DOI: 10.3389/fpls.2020.615335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
The triploidy has proved to be a powerful approach breeding programs, especially in Citrus since seedlessness is one of the main consumer expectations. Citrus plants face numerous abiotic stresses including water deficit, which negatively impact growth and crop yield. In this study, we evaluated the physiological and biochemical responses to water deficit and recovery capacity of new triploid hybrids, in comparison with diploid hybrids, their parents ("Fortune" mandarin and "Ellendale" tangor) and one clementine tree used as reference. The water deficit significantly decreased the relative water content (RWC) and leaf gas exchange (P net and g s ) and it increased the levels of oxidative markers (H2O2 and MDA) and antioxidants. Compared to diploid varieties, triploid hybrids limited water loss by osmotic adjustment as reflected by higher RWC, intrinsic water use efficiency (iWUE Pnet/gs ) iWUE and leaf proline levels. These had been associated with an effective thermal dissipation of excess energy (NPQ) and lower oxidative damage. Our results showed that triploidy in citrus enhances the recovery capacity after a water deficit in comparison with diploids due to better carboxylation efficiency, restored water-related parameters and efficient antioxidant system.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe SEAPAG, CIRAD, UMR AGAP, F-97170 Petit-Bourg, Guadeloupe, France – AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean Giannettini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
71
|
Satyanarayan MB, Zhao J, Zhang J, Yu F, Lu Y. Functional relationships of three NFU proteins in the biogenesis of chloroplastic iron-sulfur clusters. PLANT DIRECT 2021; 5:e00303. [PMID: 33553997 PMCID: PMC7851846 DOI: 10.1002/pld3.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/14/2023]
Abstract
Iron-sulfur clusters are required in a variety of biological processes. Biogenesis of iron-sulfur clusters includes assembly of iron-sulfur clusters on scaffold complexes and transfer of iron-sulfur clusters to recipient apoproteins by iron-sulfur carriers, such as nitrogen-fixation-subunit-U (NFU)-type proteins. Arabidopsis thaliana has three plastid-targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered that nfu2 -/- nfu3 -/- mutants are embryo lethal. The lack of viable nfu2 -/- nfu3 -/- mutants posed a serious challenge. To overcome this problem, we characterized nfu2-1 -/- nfu3-2+/- and nfu2-1+/- nfu3-2 -/- sesquimutants. Simultaneous loss-of-function mutations in NFU2 and NFU3 have an additive effect on the declines of 4Fe-4S-containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, than nfu2-1 and nfu3-2 single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe-4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe-4S and 3Fe-4S clusters. In line with this hypothesis, loss-of-function mutations in NFU1 resulted in significant declines in 4Fe-4S- and 3Fe-4S-containing chloroplastic proteins. The declines of PSI activity and 4Fe-4S-containing PSI core subunits in nfu1 mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe-4S-containing PSI core proteins and PSI activity in nfu3-2, nfu2-1, and nfu1 single mutants suggest that all three plastid-targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe-4S clusters. Although different insertion sites of T-DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe-4S-containing PSI core subunits.
Collapse
Affiliation(s)
- Manasa B. Satyanarayan
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
Charles River LaboratoriesMattawanMIUSA
| | - Jun Zhao
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
- Present address:
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jessica Zhang
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
72
|
Shimakawa G, Hanawa H, Wada S, Hanke GT, Matsuda Y, Miyake C. Physiological Roles of Flavodiiron Proteins and Photorespiration in the Liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2021; 12:668805. [PMID: 34489990 PMCID: PMC8418088 DOI: 10.3389/fpls.2021.668805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/30/2021] [Indexed: 05/19/2023]
Abstract
Against the potential risk in oxygenic photosynthesis, that is, the generation of reactive oxygen species, photosynthetic electron transport needs to be regulated in response to environmental fluctuations. One of the most important regulations is keeping the reaction center chlorophyll (P700) of photosystem I in its oxidized form in excess light conditions. The oxidation of P700 is supported by dissipating excess electrons safely to O2, and we previously found that the molecular mechanism of the alternative electron sink is changed from flavodiiron proteins (FLV) to photorespiration in the evolutionary history from cyanobacteria to plants. However, the overall picture of the regulation of photosynthetic electron transport is still not clear in bryophytes, the evolutionary intermediates. Here, we investigated the physiological roles of FLV and photorespiration for P700 oxidation in the liverwort Marchantia polymorpha by using the mutants deficient in FLV (flv1) at different O2 partial pressures. The effective quantum yield of photosystem II significantly decreased at 2kPa O2 in flv1, indicating that photorespiration functions as the electron sink. Nevertheless, it was clear from the phenotype of flv1 that FLV was dominant for P700 oxidation in M. polymorpha. These data suggested that photorespiration has yet not replaced FLV in functioning for P700 oxidation in the basal land plant probably because of the lower contribution to lumen acidification, compared with FLV, as reflected in the results of electrochromic shift analysis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Research Center for Solar Energy Chemistry, Osaka University, Suita, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Nishinomiya, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda, Japan
| | - Hitomi Hanawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinya Wada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda, Japan
| | - Guy T. Hanke
- School of Biochemistry and Chemistry, Queen Mary University of London, London, United Kingdom
| | - Yusuke Matsuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Nishinomiya, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Chiyoda, Japan
- *Correspondence: Chikahiro Miyake,
| |
Collapse
|
73
|
Furutani R, Makino A, Suzuki Y, Wada S, Shimakawa G, Miyake C. Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1761. [PMID: 33322777 PMCID: PMC7763966 DOI: 10.3390/plants9121761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Upon exposure to environmental stress, the primary electron donor in photosystem I (PSI), P700, is oxidized to suppress the production of reactive oxygen species that could oxidatively inactivate the function of PSI. The illumination of rice leaves with actinic light induces intrinsic fluctuations in the opening and closing of stomata, causing the net CO2 assimilation rate to fluctuate. We examined the effects of these intrinsic fluctuations on electron transport reactions. Under atmospheric O2 conditions (21 kPa), the effective quantum yield of photosystem II (PSII) (Y(II)) remained relatively high while the net CO2 assimilation rate fluctuated, which indicates the function of alternative electron flow. By contrast, under low O2 conditions (2 kPa), Y(II) fluctuated. These results suggest that photorespiration primarily drove the alternative electron flow. Photorespiration maintained the oxidation level of ferredoxin (Fd) throughout the fluctuation of the net CO2 assimilation rate. Moreover, the relative activity of photorespiration was correlated with both the oxidation level of P700 and the magnitude of the proton gradient across the thylakoid membrane in 21 kPa O2 conditions. These results show that photorespiration oxidized P700 by stimulating the proton gradient formation when CO2 assimilation was suppressed by stomatal closure.
Collapse
Affiliation(s)
- Riu Furutani
- Graduate School for Agricultural Sciences, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (R.F.); (S.W.)
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Tokyo 102-0076, Japan; (A.M.); (Y.S.); (G.S.)
| | - Amane Makino
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Tokyo 102-0076, Japan; (A.M.); (Y.S.); (G.S.)
- Graduate School of Agriculture Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba, Sendai 980-8572, Japan
| | - Yuij Suzuki
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Tokyo 102-0076, Japan; (A.M.); (Y.S.); (G.S.)
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Shinya Wada
- Graduate School for Agricultural Sciences, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (R.F.); (S.W.)
| | - Ginga Shimakawa
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Tokyo 102-0076, Japan; (A.M.); (Y.S.); (G.S.)
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8631, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Sciences, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (R.F.); (S.W.)
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Tokyo 102-0076, Japan; (A.M.); (Y.S.); (G.S.)
| |
Collapse
|
74
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation. PHOTOSYNTHESIS RESEARCH 2020; 146:259-278. [PMID: 32734447 DOI: 10.1007/s11120-020-00774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 μmol photons m-2s-1) and moderate (1000 μmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
75
|
Moreno JC, Mi J, Agrawal S, Kössler S, Turečková V, Tarkowská D, Thiele W, Al-Babili S, Bock R, Schöttler MA. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1967-1984. [PMID: 32623777 DOI: 10.1111/tpj.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 05/11/2023]
Abstract
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene β-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianing Mi
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shreya Agrawal
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Stella Kössler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Veronika Turečková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Wolfram Thiele
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ralph Bock
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
76
|
Nepal N, Yactayo-Chang JP, Gable R, Wilkie A, Martin J, Aniemena CL, Gaxiola R, Lorence A. Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11384. [PMID: 32995104 PMCID: PMC7507355 DOI: 10.1002/aps3.11384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/29/2020] [Indexed: 05/09/2023]
Abstract
PREMISE AVP1 (H+-pyrophosphatase) and MIOX4 (myo-inositol oxygenase) are genes that, when overexpressed individually, enhance the growth and abiotic stress tolerance of Arabidopsis thaliana plants. We propose that pyramiding AVP1 and MIOX4 genes will further improve stress tolerance under water-limited and salt-stress conditions. METHODS MIOX4 and AVP1 reciprocal crosses were developed and phenomic approaches used to investigate the possible synergy between these genes. RESULTS Under normal and stress conditions, the crosses had higher foliar ascorbate content than the wild-type and parental lines. Under water-limited conditions, the crosses also displayed an enhanced growth rate and biomass compared with the control. The observed increases in photosystem II efficiency, linear electron flow, and relative chlorophyll content may have contributed to this observed phenotype. Additionally, the crosses retained more water than the controls when subjected to salt stress. Higher seed yields were also observed in the crosses compared with the controls when grown under salt and water-limitation stresses. DISCUSSION Overall, these results suggest the combinatorial effect of overexpressing MIOX4 and AVP1 may be more advantageous than the individual traits for enhancing stress tolerance and seed yields during crop improvement.
Collapse
Affiliation(s)
- Nirman Nepal
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Jessica P Yactayo-Chang
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Ricky Gable
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Austin Wilkie
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Jazmin Martin
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Chineche L Aniemena
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
| | - Roberto Gaxiola
- School of Life Sciences Arizona State University-Tempe P.O. Box 4501 Tempe Arizona 85821 USA
| | - Argelia Lorence
- Arkansas Biosciences Institute Arkansas State University P.O. Box 639, State University Arkansas 72467 USA
- Department of Chemistry and Physics Arkansas State University P.O. Box 419, State University Arkansas 72467 USA
| |
Collapse
|
77
|
Guadagno C, Millar D, Lai R, Mackay D, Pleban J, McClung C, Weinig C, Wang D, Ewers B. Use of transcriptomic data to inform biophysical models via Bayesian networks. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
78
|
Patil PP, Vass I, Kodru S, Szabó M. A multi-parametric screening platform for photosynthetic trait characterization of microalgae and cyanobacteria under inorganic carbon limitation. PLoS One 2020; 15:e0236188. [PMID: 32701995 PMCID: PMC7377499 DOI: 10.1371/journal.pone.0236188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022] Open
Abstract
Microalgae and cyanobacteria are considered as important model organisms to investigate the biology of photosynthesis; moreover, they are valuable sources of biomolecules for several biotechnological applications. Understanding the species-specific traits of photosynthetic electron transport is extremely important, because it contributes to the regulation of ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic pathways and thus overall growth and biomass production. In the present work, a cuvette-based setup is developed, in which a combination of measurements of dissolved oxygen, pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the physiological status of the sample. The suitability of the system is demonstrated using a model cyanobacterium Synechocystis sp. PCC6803, as well as biofuel-candidate microalgae species, such as Chlorella sorokiniana, Dunaliella salina and Nannochloropsis limnetica undergoing inorganic carbon (Ci) limitation. Inorganic carbon limitation, induced by photosynthetic Ci uptake under continuous illumination, caused a decrease in the effective quantum yield of PSII (Y(II)) and loss of oxygen-evolving capacity in all species investigated here; these effects were largely recovered by the addition of NaHCO3. Detailed analysis of the dark-light and light-dark transitions of NADPH production/uptake and changes in chlorophyll fluorescence kinetics revealed species- and condition-specific responses. These responses indicate that the impact of decreased Calvin-Benson cycle activity on photosynthetic electron transport pathways involving several sections of the electron transport chain (such as electron transfer via the QA-QB-plastoquinone pool, the redox state of the plastoquinone pool) can be analyzed with high sensitivity in a comparative manner. Therefore, the integrated system presented here can be applied for screening for specific traits in several significant species at different stages of inorganic carbon limitation, a condition that strongly impacts primary productivity.
Collapse
Affiliation(s)
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Sandeesha Kodru
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Biology PhD School, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
- * E-mail:
| |
Collapse
|
79
|
Rodrigues DA, Sales JDF, Vasconcelos Filho SC, Rodrigues AA, Guimarães Teles EM, Costa AC, Reis EL, Andrade de Carvalho Silva T, Müller C. Bioindicator potential of Ricinus communis to simulated rainfall containing potassium fluoride. PeerJ 2020; 8:e9445. [PMID: 32676226 PMCID: PMC7334979 DOI: 10.7717/peerj.9445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/08/2020] [Indexed: 01/29/2023] Open
Abstract
Background Fluoride pollution is a global problem because of its high phytotoxicity. Fluoride is released in air, water and soil through industrial processes, where it damages various plant species. Ricinus communis is widely distributed in Brazil, India and China and has been extensively used as a phytoremediation species in heavy metal-contaminated soils. However, few studies regarding the effect of air pollutants on R. communis have been published, and no information about the exposure of this species to fluoride is available. Therefore, the aim of the present study was to investigate the effects of fluoride on R. communis morphoanatomical and physiological responses using simulated rainfall containing potassium fluoride (KF). Methods Young plants at approximately 10 days after emergence were treated daily with KF using simulated rainfall at 0, 1.5, 3.0 and 4.5 mg L−1, for 37 consecutive days. Chlorophyll a fluorescence, gas exchange, anatomical characteristics and fluoride accumulation in the roots and leaves were evaluated after this period. Results No visual or anatomical symptoms were observed for the first three treatments. Necrosis and chlorosis were visually evident after the 37th day of KF application at 4.5 mg L−1, followed by changes in parenchyma tissues, cell collapse and phenolic compound accumulation at the end of the experiment. No damage was observed in terms of photosynthetic photochemical and biochemical stages. Maintenance of physiological characteristics in the presence of fluoride accumulation in roots and leaves were shown to be important fluoride biomarkers. These characteristics suggest that R. communis is tolerant to 1.5 and 3.0 mg L−1 KF, and is anatomically sensitive at 4.5 mg L−1 KF.
Collapse
Affiliation(s)
- Douglas Almeida Rodrigues
- Laboratory of Seeds, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil.,Laboratory of Plant Anatomy, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil
| | - Juliana de Fátima Sales
- Laboratory of Seeds, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil
| | | | - Arthur Almeida Rodrigues
- Laboratory of Seeds, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil.,Laboratory of Plant Anatomy, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil
| | | | - Alan Carlos Costa
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil
| | - Efraim Lázaro Reis
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Caroline Müller
- Laboratory of Ecophysiology and Plant Productivity, Goiano Federal Institute of Education, Science and Technology, Rio Verde, Goiás, Brazil
| |
Collapse
|
80
|
Ozaki H, Tokida T, Nakamura H, Sakai H, Hasegawa T, Noguchi K. Atmospheric CO 2 Concentration and N Availability Affect the Balance of the Two Photosystems in Mature Leaves of Rice Plants Grown at a Free-Air CO 2 Enrichment Site. FRONTIERS IN PLANT SCIENCE 2020; 11:786. [PMID: 32582271 PMCID: PMC7296123 DOI: 10.3389/fpls.2020.00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric CO2 concentration ([CO2]) has been substantially increasing. Responses of leaf photosynthesis to elevated [CO2] have been intensively investigated because leaf photosynthesis is one of the most important determinants of crop yield. The responses of photosynthesis to elevated [CO2] can depend on nitrogen (N) availability. Here, we aimed to investigate the significance of the appropriate balance between two photosystems [photosystem I (PSI) and photosystem II (PSII)] under various [CO2] and N levels, and thus to clarify if responses of photosynthetic electron transport rates (ETRs) of the two photosystems to elevated [CO2] are altered by N availability. Thus, we examined parameters of the two photosystems in mature leaves of rice plants grown under two [CO2] levels (ambient and 200 μmol mol-1 above ambient) and three N fertilization levels at the Tsukuba free-air CO2 enrichment experimental facility in Japan. Responses of ETR of PSII (ETRII) and ETR of PSI (ETRI) to [CO2] levels differed among N levels. When moderate levels of N were applied (MN), ETRI was higher under elevated [CO2], whereas at high levels of N were applied (HN), both ETRII and ETRI were lower under elevated [CO2] compared with ambient [CO2]. Under HN, the decreases in ETRII and ETRI under elevated [CO2] were due to increases in the non-photochemical quenching of PSII [Y(NPQ)] and the donor side limitation of PSI [Y(ND)], respectively. The relationship between the effective quantum yields of PSI [Y(I)] and PSII [Y(II)] changed under elevated [CO2] and low levels of N (LN). Under both conditions, the ratio of Y(I) to Y(II) was higher than under other conditions. The elevated [CO2] and low N changed the balance of the two photosystems. This change may be important because it can induce the cyclic electron flow around PSI, leading to induction of non-photochemical quenching to avoid photoinhibition.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takeshi Tokida
- Division of Biogeochemical Cycles, Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | | | - Hidemitsu Sakai
- Division of Climate Change, Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | - Toshihiro Hasegawa
- Division of Agro-Environmental Research, Tohoku Agricultural Research Center, Morioka, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
81
|
Gollan PJ, Aro EM. Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190406. [PMID: 32362249 DOI: 10.1098/rstb.2019.0406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The photosynthetic apparatus is one of the major primary sensors of the plant's external environment. Changes in environmental conditions affect the balance between harvested light energy and the capacity to deal with excited electrons in the stroma, which alters the redox homeostasis of the photosynthetic electron transport chain. Disturbances to redox balance activate photosynthetic regulation mechanisms and trigger signalling cascades that can modify the transcription of nuclear genes. H2O2 and oxylipins have been identified as especially prominent regulators of gene expression in response to excess light stress. This paper explores the hypothesis that photosynthetic imbalance triggers specific signals that target discrete gene profiles and biological processes. Analysis of the major retrograde signalling pathways engaged during high light stress and recovery demonstrates both specificity and overlap in gene targets. This work reveals distinct, time-resolved profiles of gene expression that suggest a regulatory interaction between rapidly activated abiotic stress response and induction of secondary metabolism and detoxification processes during recovery. The findings of this study show that photosynthetic electron transport provides a finely tuned sensor for detecting and responding to the environment through chloroplast retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
82
|
Lourkisti R, Froelicher Y, Herbette S, Morillon R, Tomi F, Gibernau M, Giannettini J, Berti L, Santini J. Triploid Citrus Genotypes Have a Better Tolerance to Natural Chilling Conditions of Photosynthetic Capacities and Specific Leaf Volatile Organic Compounds. FRONTIERS IN PLANT SCIENCE 2020; 11:330. [PMID: 32391024 PMCID: PMC7189121 DOI: 10.3389/fpls.2020.00330] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
Low temperatures during winter are one of the main constraints for citrus crop. Polyploid rootstocks can be used for improving tolerance to abiotic stresses, such as cold stress. Because the produced fruit are seedless, using triploid scions is one of the most promising approaches to satisfy consumer expectations. In this study, we evaluated how the triploidy of new citrus varieties influences their sensitivity to natural chilling temperatures. We compared their behavior to that of diploid citrus, their parents (Fortune mandarin and Ellendale tangor), and one diploid clementine tree, as reference, focusing on photosynthesis parameters, oxidative metabolism, and volatile organic compounds (VOC) in leaves. Triploid varieties appeared to be more tolerant than diploid ones to natural low temperatures, as evidenced by better photosynthetic properties (Pnet, gs, Fv/Fm , ETR/P net ratio), without relying on a better antioxidant system. The VOC levels were not influenced by chilling temperatures; however, they were affected by the ploidy level and atypical chemotypes were found in triploid varieties, with the highest proportions of E-β-ocimene and linalool. Such compounds may contribute to better stress adaptation.
Collapse
Affiliation(s)
- Radia Lourkisti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | | | | | - Raphael Morillon
- Equipe “Amélioration des Plantes à Multiplication Végétative”, UMR AGAP, Département BIOS, CIRAD, Petit-Bourg, Guadeloupe
| | - Félix Tomi
- CNRS, Equipe Chimie et Biomasse, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Marc Gibernau
- CNRS, Equipe Chimie et Biomasse, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jean Giannettini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Liliane Berti
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| | - Jérémie Santini
- CNRS, Equipe de Biochimie et Biologie Moléculaire du Végétal, UMR 6134 SPE, Université de Corse, Corsica, France
| |
Collapse
|
83
|
Searing AM, Satyanarayan MB, O′Donnell JP, Lu Y. Two organelle RNA recognition motif proteins affect distinct sets of RNA editing sites in the Arabidopsis thaliana plastid. PLANT DIRECT 2020; 4:e00213. [PMID: 32259001 PMCID: PMC7132558 DOI: 10.1002/pld3.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 06/01/2023]
Abstract
Plastid and mitochondrial RNAs in vascular plants are subjected to cytidine-to-uridine editing. The model plant species Arabidopsis thaliana (Arabidopsis) has two nuclear-encoded plastid-targeted organelle RNA recognition motif (ORRM) proteins: ORRM1 and ORRM6. In the orrm1 mutant, 21 plastid RNA editing sites were affected but none are essential to photosynthesis. In the orrm6 mutants, two plastid RNA editing sites were affected: psbF-C77 and accD-C794. Because psbF encodes the β subunit of cytochrome b 559 in photosystem II, which is essential to photosynthesis, the orrm6 mutants were much smaller than the wild type. In addition, the orrm6 mutants had pale green leaves and reduced photosynthetic efficiency. To investigate the functional relationship between ORRM1 and ORRM6, we generated orrm1 orrm6 double homozygous mutants. Morphological and physiological analyses showed that the orrm1 orrm6 double mutants had a smaller plant size, reduced chlorophyll contents, and decreased photosynthetic efficiency, similar to the orrm6 single mutants. Although the orrm1 orrm6 double mutants adopted the phenotype of the orrm6 single mutants, the total number of plastid RNA editing sites affected in the orrm1 orrm6 double mutants was the sum of the sites affected in the orrm1 and orrm6 single mutants. These data suggest that ORRM1 and ORRM6 are in charge of distinct sets of plastid RNA editing sites and that simultaneous mutations in ORRM1 and ORRM6 genes do not cause additional reduction in editing extent at other plastid RNA editing sites.
Collapse
Affiliation(s)
- Audrey M. Searing
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | | | - James P. O′Donnell
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Yan Lu
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
84
|
Molecular Mechanism of Oxidation of P700 and Suppression of ROS Production in Photosystem I in Response to Electron-Sink Limitations in C3 Plants. Antioxidants (Basel) 2020; 9:antiox9030230. [PMID: 32168828 PMCID: PMC7139980 DOI: 10.3390/antiox9030230] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Photosynthesis fixes CO2 and converts it to sugar, using chemical-energy compounds of both NADPH and ATP, which are produced in the photosynthetic electron transport system. The photosynthetic electron transport system absorbs photon energy to drive electron flow from Photosystem II (PSII) to Photosystem I (PSI). That is, both PSII and PSI are full of electrons. O2 is easily reduced to a superoxide radical (O2-) at the reducing side, i.e., the acceptor side, of PSI, which is the main production site of reactive oxygen species (ROS) in photosynthetic organisms. ROS-dependent inactivation of PSI in vivo has been reported, where the electrons are accumulated at the acceptor side of PSI by artificial treatments: exposure to low temperature and repetitive short-pulse (rSP) illumination treatment, and the accumulated electrons flow to O2, producing ROS. Recently, my group found that the redox state of the reaction center of chlorophyll P700 in PSI regulates the production of ROS: P700 oxidation suppresses the production of O2- and prevents PSI inactivation. This is why P700 in PSI is oxidized upon the exposure of photosynthesis organisms to higher light intensity and/or low CO2 conditions, where photosynthesis efficiency decreases. In this study, I introduce a new molecular mechanism for the oxidation of P700 in PSI and suppression of ROS production from the robust relationship between the light and dark reactions of photosynthesis. The accumulated protons in the lumenal space of the thylakoid membrane and the accumulated electrons in the plastoquinone (PQ) pool drive the rate-determining step of the P700 photo-oxidation reduction cycle in PSI from the photo-excited P700 oxidation to the reduction of the oxidized P700, thereby enhancing P700 oxidation.
Collapse
|
85
|
Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions. PLANTS 2020; 9:plants9030319. [PMID: 32138306 PMCID: PMC7154841 DOI: 10.3390/plants9030319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/21/2022]
Abstract
The oxidation of P700 in photosystem I (PSI) is a robust mechanism that suppresses the production of reactive oxygen species. We researched the contribution of photorespiration to the oxidation of P700 in wheat leaves. We analyzed the effects of changes in partial pressures of CO2 and O2 on photosynthetic parameters. The electron flux in photosynthetic linear electron flow (LEF) exhibited a positive linear relationship with an origin of zero against the dissipation rate (vH+) of electrochromic shift (ECS; ΔpH across thylakoid membrane), indicating that cyclic electron flow around PSI did not contribute to H+ usage in photosynthesis/photorespiration. The vH+ showed a positive linear relationship with an origin of zero against the H+ consumption rates in photosynthesis/photorespiration (JgH+). These two linear relationships show that the electron flow in LEF is very efficiently coupled with H+ usage in photosynthesis/photorespiration. Lowering the intercellular partial pressure of CO2 enhanced the oxidation of P700 with the suppression of LEF. Under photorespiratory conditions, the oxidation of P700 and the reduction of the plastoquinone pool were stimulated with a decrease in JgH+, compared to non-photorespiratory conditions. These results indicate that the reduction-induced suppression of electron flow (RISE) suppresses the reduction of oxidized P700 in PSI under photorespiratory conditions. Furthermore, under photorespiratory conditions, ECS was larger and H+ conductance was lower against JgH+ than those under non-photorespiratory conditions. These results indicate that photorespiration enhances RISE and ΔpH formation by lowering H+ conductance, both of which contribute to keeping P700 in a highly oxidized state.
Collapse
|
86
|
Pitino M, Sturgeon K, Dorado C, Cano LM, Manthey JA, Shatters RG, Rossi L. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:70-79. [PMID: 31945669 DOI: 10.1016/j.plaphy.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Citrus greening, also called Huanglongbing (HLB), is one of the most destructive citrus diseases worldwide. It is caused by the fastidious gram-negative α-proteobacteria bacterium Candidatus Liberibacter asiaticus (CLas) and vectored by the Asian citrus psyllid (ACP), Diaphorina citri. Currently, there is no cure for HLB, no compounds have been successful in controlling HLB, and no sustainable management practices have been established for the disease. Thus, searching for alternative citrus greening disease mitigation strategies is considered an urgent priority for a sustainable citrus industry. The aim of this study was to use compounds extracted from oak, Quercus hemisphaerica, and to assess the antibacterial effects of these against CLas-infected citrus plants. The application of aqueous oak leaf extracts showed substantial inhibitory effects against CLas in citrus plants and the activity of genes related to starch. Significant differences were also observed in plant phenotypic and physiological traits after treatments. Citrus plants treated with oak extracts displayed an increase in stomatal conductance, chlorophyll content and nutrient uptake concurrently with a reduction of CLas titer, when compared to citrus plants treated with just water. The information provided from this study suggests a new management treatment program to effectively deal with the HLB disease.
Collapse
Affiliation(s)
- Marco Pitino
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Kasie Sturgeon
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Christina Dorado
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Liliana M Cano
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - John A Manthey
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Robert G Shatters
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Lorenzo Rossi
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA.
| |
Collapse
|
87
|
Yamada S, Ozaki H, Noguchi K. The Mitochondrial Respiratory Chain Maintains the Photosynthetic Electron Flow in Arabidopsis thaliana Leaves under High-Light Stress. PLANT & CELL PHYSIOLOGY 2020; 61:283-295. [PMID: 31603217 DOI: 10.1093/pcp/pcz193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/07/2019] [Indexed: 05/02/2023]
Abstract
The plant respiratory chain includes the ATP-coupling cytochrome pathway (CP) and ATP-uncoupling alternative oxidase (AOX). Under high-light (HL) conditions, plants experience photoinhibition, leading to a damaged photosystem II (PSII). The respiratory chain is considered to affect PSII maintenance and photosynthetic electron transport under HL conditions. However, the underlying details remain unclear. In this study, we investigated the respiratory chain functions related to PSII maintenance and photosynthetic electron transport in plants exposed to HL stress. We measured the HL-induced decrease in the maximum quantum yield of PSII in the leaves of wild-type and AOX1a-knockout (aox1a) Arabidopsis thaliana plants in which CP was partially inhibited by a complex-III inhibitor. We also calculated PSII photodamage and repair rate constants. Both rate constants changed when CP was partially inhibited in aox1a plants, suggesting that the respiratory chain is related to both processes. Before HL stress, photosynthetic linear electron flow (LEF) decreased when CP was partially inhibited. After HL stress, aox1a in the presence of the CP inhibitor showed significantly decreased rates of LEF. The electron flow downstream from PSII and on the donor side of photosystem I may have been suppressed. The function of respiratory chain is required to maintain the optimal LEF as well as PSII maintenance especially under the HL stress.
Collapse
Affiliation(s)
- Shoya Yamada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | - Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| |
Collapse
|
88
|
Kono M, Kawaguchi H, Mizusawa N, Yamori W, Suzuki Y, Terashima I. Far-Red Light Accelerates Photosynthesis in the Low-Light Phases of Fluctuating Light. PLANT & CELL PHYSIOLOGY 2020; 61:192-202. [PMID: 31617558 DOI: 10.1093/pcp/pcz191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/26/2019] [Indexed: 05/09/2023]
Abstract
It is well known that far-red light (FR; >700 nm) drives PSI photochemistry, but its effect on photosynthetic performance has received little attention. In this study, the effects of the addition of FR to red fluctuating light (FL) have on photosynthesis were examined in the leaves of Arabidopsis thaliana. Light-activated leaves were illuminated with FL [alternating high light/low light (HL/LL) at 800/30 μmol m-2 s-1] for 10-15 min without or with FR at intensities that reflected natural conditions. The CO2 assimilation rates upon the transition from HL to LL were significantly greater with FR than without FR. The enhancement of photosynthesis by FR was small under the steady-state conditions and in the HL phases of FL. Proton conductivity through the thylakoid membrane (gH+) in the LL phases of FL, estimated from the dark relaxation kinetics of the electrochromic absorbance shift, was greater with FR than without FR. The relaxation of non-photochemical quenching (NPQ) in the PSII antenna system and the increase in PSII photochemistry in the LL phases accelerated in the presence of FR. Similar FR-effects in FL were confirmed in typical sun and shade plants. On the basis of these results, we concluded that FR exerted beneficial effects on photosynthesis in FL by exciting PSI and accelerating NPQ relaxation and PSII-yield increase. This was probably because of the increased gH+, which would reflect faster ΔpH dissipation and ATP synthesis.
Collapse
Affiliation(s)
- Masaru Kono
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hikaru Kawaguchi
- Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293 Japan
| | - Naoki Mizusawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584 Japan
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
| | - Wataru Yamori
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshihiro Suzuki
- Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293 Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
89
|
Kaiser E, Morales A, Harbinson J, Heuvelink E, Marcelis LFM. High Stomatal Conductance in the Tomato Flacca Mutant Allows for Faster Photosynthetic Induction. FRONTIERS IN PLANT SCIENCE 2020; 11:1317. [PMID: 32983206 PMCID: PMC7477092 DOI: 10.3389/fpls.2020.01317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Due to their slow movement and closure upon shade, partially closed stomata can be a substantial limitation to photosynthesis in variable light intensities. The abscisic acid deficient flacca mutant in tomato (Solanum lycopersicum) displays very high stomatal conductance (gs ). We aimed to determine to what extent this substantially increased gs affects the rate of photosynthetic induction. Steady-state and dynamic photosynthesis characteristics were measured in flacca and wildtype leaves, by the use of simultaneous gas exchange and chlorophyll fluorometry. The steady-state response of photosynthesis to CO2, maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ), as well as mesophyll conductance to CO2 diffusion were not significantly different between genotypes, suggesting similar photosynthetic biochemistry, photoprotective capacity, and internal CO2 permeability. When leaves adapted to shade (50 µmol m-2 s-1) at 400 µbar CO2 partial pressure and high humidity (7 mbar leaf-to-air vapour pressure deficit, VPD) were exposed to high irradiance (1500 µmol m-2 s-1), photosynthetic induction was faster in flacca compared to wildtype leaves, and this was attributable to high initial gs in flacca (~0.6 mol m-2 s-1): in flacca, the times to reach 50 (t50 ) and 90% (t90 ) of full photosynthetic induction were 91 and 46% of wildtype values, respectively. Low humidity (15 mbar VPD) reduced gs and slowed down photosynthetic induction in the wildtype, while no change was observed in flacca; under low humidity, t50 was 63% and t90 was 36% of wildtype levels in flacca. Photosynthetic induction in low CO2 partial pressure (200 µbar) increased gs in the wildtype (but not in flacca), and revealed no differences in the rate of photosynthetic induction between genotypes. Effects of higher gs in flacca were also visible in transients of photosystem II operating efficiency and non-photochemical quenching. Our results show that at ambient CO2 partial pressure, wildtype gs is a substantial limitation to the rate of photosynthetic induction, which flacca overcomes by keeping its stomata open at all times, and it does so at the cost of reduced water use efficiency.
Collapse
Affiliation(s)
- Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- *Correspondence: Elias Kaiser,
| | - Alejandro Morales
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Jeremy Harbinson
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
90
|
A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Wessendorf RL, Lu Y. Photosynthetic characterization of transgenic Synechocystis expressing a plant thiol/disulfide-modulating protein. PLANT SIGNALING & BEHAVIOR 2019; 15:1709708. [PMID: 31889463 PMCID: PMC7053882 DOI: 10.1080/15592324.2019.1709708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
A previous study showed that introducing an Arabidopsis thaliana thiol/disulfide-modulating protein, Low Quantum Yield of Photosystem II 1 (LQY1), into the cyanobacterium Synechocystis sp. PCC6803 increased the efficiency of Photosystem II (PSII) photochemistry. In the present study, the authors provided additional evidence for the role of AtLQY1 in improving PSII photochemical efficiency and cell growth. Light response curve analysis showed that AtLQY1-expressing Synechocystis grown at a moderate growth light intensity (50 µmol photons m-2 s-1) had higher minimal, maximal, and variable fluorescence than the empty-vector control, under a wide range of actinic light intensities. Light induction and dark recovery curves demonstrated that AtLQY1-expressing Synechocystis grown at the moderate growth light intensity had higher effective PSII quantum yield, higher photochemical quenching, lower regulated heat dissipation (non-photochemical quenching), low amounts of reduced plastoquinone, and higher amounts of oxidized plastoquinone than the empty-vector control. Furthermore, growth curve analysis indicated that AtLQY1-expressing Synechocystis grew faster than the empty-vector control at the moderate growth light intensity. These results suggest that transgenic expression of AtLQY1 in Synechocystis significantly improves PSII photochemical efficiency and overall cell growth.
Collapse
Affiliation(s)
- Ryan L. Wessendorf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
92
|
More P, Agarwal P, Joshi PS, Agarwal PK. The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity. Sci Rep 2019; 9:19617. [PMID: 31871315 PMCID: PMC6928016 DOI: 10.1038/s41598-019-56087-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 12/06/2019] [Indexed: 12/02/2022] Open
Abstract
Salinity is one of the major factors negatively affecting crop productivity. WRKY transcription factors (TFs) are involved in salicylic acid (SA) mediated cellular reactive oxygen species homeostasis in response to different stresses, including salinity. Therefore, the effect of NaCl, NaCl + SA and SA treatments on different photosynthesis-related parameters and wax metabolites were studied in the Jatropha curcas WRKY (JcWRKY) overexpressing tobacco lines. JcWRKY transgenics showed improved photosynthesis rate, stomatal conductance, intercellular CO2 concentration/ambient CO2 concentration ratio (Ci/Ca ratio), electron transport rate (ETR), photosynthesis efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of PSII electron transport (ΦPSII) in response to salinity stress, while exogenous SA application had subtle effect on these parameters. Alkane, the major constituent of wax showed maximum accumulation in transgenics exposed to NaCl. Other wax components like fatty alcohol, carboxylic acid and fatty acid were also higher in transgenics with NaCl + SA and SA treatments. Interestingly, the transgenics showed a higher number of open stomata in treated plants as compared to wild type (WT), indicating less perception of stress by the transgenics. Improved salinity tolerance in JcWRKY overexpressing tobacco transgenics is associated with photosynthetic efficiency and wax accumulation, mediated by efficient SA signalling. The transgenics showed differential regulation of genes related to photosynthesis (NtCab40, NtLhcb5 and NtRca1), wax accumulation (NtWIN1) and stomatal regulation (NtMUTE, NtMYB-like, NtNCED3-2 and NtPIF3). The present study indicates that JcWRKY is a potential TF facilitating improved photosynthesis with the wax metabolic co-ordination in transgenics during stress.
Collapse
Affiliation(s)
- Prashant More
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Priyanka S Joshi
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
93
|
Sun H, Zhang SB, Liu T, Huang W. Decreased photosystem II activity facilitates acclimation to fluctuating light in the understory plant Paris polyphylla. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148135. [PMID: 31821793 DOI: 10.1016/j.bbabio.2019.148135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/11/2023]
Abstract
In forests, understory plants are usually exposed to sunflecks on timescales of seconds or minutes. However, it is unclear how understory plants acclimate to fluctuating light. In this study, we compared chlorophyll fluorescence, PSI redox state and the electrochromic shift signal under fluctuating light between an understory plant Paris polyphylla (Liliaceae) and a light-demanding plant Bletilla striata (Orchidaceae). Within the first seconds after transition from low to high light, PSI was highly oxidized in P. polyphylla but was highly reduced in B. striata, although both species could not generate a sufficient trans-thylakoid proton gradient (ΔpH). Furthermore, the outflow of electrons from PSI to O2 was not significant in P. polyphylla, as indicated by the P700 redox kinetics upon dark-to-light transition. Therefore, the different responses of PSI to fluctuating light between P. polyphylla and B. striata could not be explained by ΔpH formation or alternative electron transport. In contrast, upon a sudden transition from low to high light, electron flow from PSII was much lower in P. polyphylla than in B. striata, suggesting that the rapid oxidation of PSI in P. polyphylla was largely attributed to the lower PSII activity. We propose, for the first time, that down-regulation of PSII activity is an important strategy used by some understory angiosperms to cope with sunflecks.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201 Kunming, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China.
| |
Collapse
|
94
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1093/pcp/pcz203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/21/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
95
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1101/731653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/24/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
96
|
Ben-Zvi O, Dafni E, Feldman Y, Yacoby I. Re-routing photosynthetic energy for continuous hydrogen production in vivo. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:266. [PMID: 31737095 PMCID: PMC6844042 DOI: 10.1186/s13068-019-1608-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Hydrogen is considered a promising energy vector that can be produced from sustainable resources such as sunlight and water. In green algae, such as Chlamydomonas reinhardtii, photoproduction of hydrogen is catalyzed by the enzyme [FeFe]-hydrogenase (HydA). Although highly efficient, this process is transitory and thought to serve as a release valve for excess reducing power. Up to date, prolonged production of hydrogen was achieved by the deprivation of either nutrients or light, thus, hindering the full potential of photosynthetic hydrogen production. Previously we showed that the enzyme superoxide dismutase (SOD) can enhance HydA activity in vitro, specifically when tied together to a fusion protein. RESULTS In this work, we explored the in vivo hydrogen production phenotype of HydA-SOD fusion. We found a sustained hydrogen production, which is dependent on linear electron flow, although other pathways feed it as well. In addition, other characteristics such as slower growth and oxygen production were also observed in Hyd-SOD-expressing algae. CONCLUSIONS The Hyd-SOD fusion manages to outcompete the Calvin-Benson cycle, allowing sustained hydrogen production for up to 14 days in non-limiting conditions.
Collapse
Affiliation(s)
- Oren Ben-Zvi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Eyal Dafni
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Yael Feldman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| |
Collapse
|
97
|
Martínez-Ferri E, Moreno-Ortega G, van den Berg N, Pliego C. Mild water stress-induced priming enhance tolerance to Rosellinia necatrix in susceptible avocado rootstocks. BMC PLANT BIOLOGY 2019; 19:458. [PMID: 31664901 PMCID: PMC6821026 DOI: 10.1186/s12870-019-2016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND White root rot (WRR) disease caused by Rosellinia necatrix is one of the most important threats affecting avocado orchards in temperate regions. The eradication of WRR is a difficult task and environmentally friendly control methods are needed to lessen its impact. Priming plants with a stressor (biotic or abiotic) can be a strategy to enhance plant defense/tolerance against future stress episodes but, despite the known underlying common mechanisms, few studies use abiotic-priming for improving tolerance to forthcoming biotic-stress and vice versa ('cross-factor priming'). To assess whether cross-factor priming can be a potential method for enhancing avocado tolerance to WRR disease, 'Dusa' avocado rootstocks, susceptible to R. necatrix, were subjected to two levels of water stress (mild-WS and severe-WS) and, after drought-recovery, inoculated with R. necatrix. Physiological response and expression of plant defense related genes after drought-priming as well as the disease progression were evaluated. RESULTS Water-stressed avocado plants showed lower water potential and stomatal limitations of photosynthesis compared to control plants. In addition, NPQ and qN values increased, indicating the activation of energy dissipating mechanisms closely related to the relief of oxidative stress. This response was proportional to the severity of the water stress and was accompanied by the deregulation of pathogen defense-related genes in the roots. After re-watering, leaf photosynthesis and plant water status recovered rapidly in both treatments, but roots of mild-WS primed plants showed a higher number of overexpressed genes related with plant defense than severe-WS primed plants. Disease progression after inoculating primed plants with R. necatrix was significantly delayed in mild-WS primed plants. CONCLUSIONS These findings demonstrate that mild-WS can induce a primed state in the WRR susceptible avocado rootstock 'Dusa' and reveal that 'cross-factor priming' with water stress (abiotic stressor) is effective for increasing avocado tolerance against R. necatrix (biotic stressor), underpinning that plant responses against biotic and abiotic stress rely on common mechanisms. Potential applications of these results may involve an enhancement of WRR tolerance of current avocado groves and optimization of water use via low frequency deficit irrigation strategies.
Collapse
Affiliation(s)
- E. Martínez-Ferri
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| | - G. Moreno-Ortega
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| | - N. van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Pliego
- IFAPA. Centro de Málaga. Cortijo de la Cruz s/n, 29140 Churriana, Málaga, Spain
| |
Collapse
|
98
|
Wessendorf RL, Lu Y. Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:1284. [PMID: 31681379 PMCID: PMC6805722 DOI: 10.3389/fpls.2019.01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Photosynthetic species are subjected to a variety of environmental stresses, including suboptimal irradiance. In oxygenic photosynthetic organisms, a major effect of high light exposure is damage to the Photosystem II (PSII) reaction-center protein D1. This process even happens under low or moderate light. To cope with photodamage to D1, photosynthetic organisms evolved an intricate PSII repair and reassembly cycle, which requires the participation of different auxiliary proteins, including thiol/disulfide-modulating proteins. Most of these auxiliary proteins exist ubiquitously in oxygenic photosynthetic organisms. Due to differences in mobility and environmental conditions, land plants are subject to more extensive high light stress than algae and cyanobacteria. Therefore, land plants evolved additional thiol/disulfide-modulating proteins, such as Low Quantum Yield of PSII 1 (LQY1), to aid in the repair and reassembly cycle of PSII. In this study, we introduced an Arabidopsis thaliana homolog of LQY1 (AtLQY1) into the cyanobacterium Synechocystis sp. PCC6803 and performed a series of biochemical and physiological assays on AtLQY1-expressing Synechocystis. At a moderate growth light intensity (50 µmol photons m-2 s-1), AtLQY1-expressing Synechocystis was found to have significantly higher F v /F m , and lower nonphotochemical quenching and reactive oxygen species levels than the empty-vector control, which is opposite from the loss-of-function Atlqy1 mutant phenotype. Light response curve analysis of PSII operating efficiency and electron transport rate showed that AtLQY1-expressing Synechocystis also outperform the empty-vector control under higher light intensities. The increases in F v /F m , PSII operating efficiency, and PSII electron transport rate in AtLQY1-expressing Synechocystis under such growth conditions most likely come from an increased amount of PSII, because the level of D1 protein was found to be higher in AtLQY1-expressing Synechocystis. These results suggest that introducing AtLQY1 is beneficial to Synechocystis.
Collapse
Affiliation(s)
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
99
|
Alber NA, Vanlerberghe GC. Signaling interactions between mitochondria and chloroplasts in Nicotiana tabacum leaf. PHYSIOLOGIA PLANTARUM 2019; 167:188-204. [PMID: 30467859 DOI: 10.1111/ppl.12879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Research has begun to elucidate the signal transduction pathway(s) that control cellular responses to changes in mitochondrial status. Important tools in such studies are chemical inhibitors used to initiate mitochondrial dysfunction. This study compares the effect of different inhibitors and treatment conditions on the transcript amount of nuclear genes specifically responsive to mitochondrial dysfunction in leaf of Nicotiana tabacum L. cv. Petit Havana. The Complex III inhibitors antimycin A (AA) and myxothiazol (MYXO), and the Complex V inhibitor oligomycin (OLIGO), each increased the transcript amount of the mitochondrial dysfunction genes. Transcript responses to OLIGO were greater during treatment in the dark than in the light, and the dark treatment resulted in cell death. In the dark, transcript responses to AA and MYXO were similar to one another, despite MYXO leading to cell death. In the light, transcript responses to AA and MYXO diverged, despite cell viability remaining high with either inhibitor. This divergent response may be due to differential signaling from the chloroplast because only AA also inhibited cyclic electron transport, resulting in a strong acceptor-side limitation in photosystem I. In the light, chemical inhibition of chloroplast electron transport reduced transcript responses to AA, while having no effect on the response to MYXO, and increasing the response to OLIGO. Hence, when studying mitochondrial dysfunction signaling, different inhibitor and treatment combinations differentially affect linked processes (e.g. chloroplast function and cell fate) that then contribute to measured responses. Therefore, inhibitor and treatment conditions should be chosen to align with specific study goals.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
100
|
Dinh QD, Dechesne A, Furrer H, Taylor G, Visser RGF, Harbinson J, Trindade LM. High-Altitude Wild Species Solanum arcanum LA385-A Potential Source for Improvement of Plant Growth and Photosynthetic Performance at Suboptimal Temperatures. FRONTIERS IN PLANT SCIENCE 2019; 10:1163. [PMID: 31608096 PMCID: PMC6769098 DOI: 10.3389/fpls.2019.01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/26/2019] [Indexed: 05/26/2023]
Abstract
Plant growth, development, and yield of current tomato cultivars are directly affected by low temperatures. Although wild tomato species have been suggested as a potential source for low temperature tolerance, very little is known about their behavior during the reproductive phase. Here, we investigated the impact of suboptimal temperatures (SOT, 16/14°C), as compared to control temperatures (CT, 22/20°C), on plant growth, photosynthetic capacity, and carbohydrate metabolism. Under these conditions, two genotypes were analyzed: a Solanum lycopersicum cultivar Moneymaker and a high-altitude wild species Solanum arcanum LA385, from flowering onset until a later stage of fruit development. Total dry matter production in cv. Moneymaker was reduced up to 30% at SOT, whereas it was hardly affected in wild accession LA385. Specific leaf area, total leaf area, and number of fruits were also decreased at SOT in cv. Moneymaker. In contrast, wild accession LA385 showed an acclimation to SOT, in which ΦPSII and net CO2 assimilation rates were less affected; a similar specific leaf area; higher total leaf area; and higher number of fruits compared to those at CT. In addition, LA385 appeared to have a more distinct sucrose metabolism than cv. Moneymaker at both temperatures, in which it had higher contents of sucrose-6-phosphate, sucrose, and ratio of sucrose: starch in leaves and higher ratio of sucrose: hexose in fruits. Overall, our findings indicate that wild accession LA385 is able to acclimate well to SOT during the reproductive phase, whereas growth and development of cv. Moneymaker is reduced at SOT.
Collapse
Affiliation(s)
- Quy-Dung Dinh
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Annemarie Dechesne
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Heleen Furrer
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Graham Taylor
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|