51
|
Meng X, Zhao B, Li M, Liu R, Ren Q, Li G, Guo X. Characteristics and Regulating Roles of Wheat TaHsfA2-13 in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:922561. [PMID: 35832224 PMCID: PMC9271894 DOI: 10.3389/fpls.2022.922561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Heat shock transcription factor (Hsf) exists widely in eukaryotes and responds to various abiotic stresses by regulating the expression of downstream transcription factors, functional enzymes, and molecular chaperones. In this study, TaHsfA2-13, a heat shock transcription factor belonging to A2 subclass, was cloned from wheat (Triticum aestivum) and its function was analyzed. TaHsfA2-13 encodes a protein containing 368 amino acids and has the basic characteristics of Hsfs. Multiple sequence alignment analysis showed that TaHsfA2-13 protein had the highest similarity with TdHsfA2c-like protein from Triticum dicoccoides, which reached 100%. The analysis of tissue expression characteristics revealed that TaHsfA2-13 was highly expressed in root, shoot, and leaf during the seedling stage of wheat. The expression of TaHsfA2-13 could be upregulated by heat stress, low temperature, H2O2, mannitol, salinity and multiple phytohormones. The TaHsfA2-13 protein was located in the nucleus under the normal growth conditions and showed a transcriptional activation activity in yeast. Further studies found that overexpression of TaHsfA2-13 in Arabidopsis thaliana Col-0 or athsfa2 mutant results in improved tolerance to heat stress, H2O2, SA and mannitol by regulating the expression of multiple heat shock protein (Hsp) genes. In summary, our study identified TaHsfA2-13 from wheat, revealed its regulatory function in varieties of abiotic stresses, and will provide a new target gene to improve stress tolerance for wheat breeding.
Collapse
Affiliation(s)
- Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qianqian Ren
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
52
|
Veremeichik GN, Shkryl YN, Rusapetova TV, Silantieva SA, Grigorchuk VP, Velansky PV, Brodovskaya EV, Konnova YA, Khopta AA, Bulgakov DV, Bulgakov VP. Overexpression of the A4-rolB gene from the pRiA4 of Rhizobium rhizogenes modulates hormones homeostasis and leads to an increase of flavonoid accumulation and drought tolerance in Arabidopsis thaliana transgenic plants. PLANTA 2022; 256:8. [PMID: 35690636 DOI: 10.1007/s00425-022-03927-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Increased flavonol accumulation and enhanced drought tolerance in A4-rolB-overexpressing plants can be explained by the cooperative action of the SA and ROS signalling pathways. Clarification of function of the A4-rolB plast gene from pRiA4 of Rhizobium rhizogenes will allow a better understanding of the biological principles of the natural transformation process and its use as a tool for plant bioengineering. In the present study, we investigated whether the overexpression of A4-rolB gene could regulate two important processes, flavonoid biosynthesis and drought tolerance. In addition, we investigated some aspects of the possible machinery of the A4-rolB-induced changes in plant physiology, such as crosstalk of the major signalling systems. Based on the data obtained in this work, it can be presumed that constitutive overexpression of A4-rolB leads to the activation of the salicylic acid signalling system. An increase in flavonol accumulation and enhanced drought tolerance can be explained by the cooperative action of SA and ROS pathways.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
| | - Yuri N Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Tatiana V Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Slavena A Silantieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Petr V Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Evgenia V Brodovskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Yuliya A Konnova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Anastasia A Khopta
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Dmitry V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| | - Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia
| |
Collapse
|
53
|
Li T, Wu Z, Xiang J, Zhang D, Teng N. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111246. [PMID: 35487655 DOI: 10.1016/j.plantsci.2022.111246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
AP2/ERF (APETALA2/ethylene-responsive factor) family transcription factors are involved in various plant-specific processes, especially in plant development and response to abiotic stress. However, their roles in thermotolerance are still largely unknown. In the current study, we identified a heat-inducible ERF member LlERF110 from Lilium longiflorum that was rapidly induced by high temperature. Its protein was localized in the nucleus, and transcriptional activation activity was observed in yeast and plant cells. In addition, LlERF110 was able to bind to GCC- and CGG-elements, but not to DRE-elements. Overexpression of LlERF110 conferred delayed bolting and bushy phenotype, with decreased thermotolerance accompanied by a disrupted ROS (reactive oxygen species) homeostasis in transgenic plants. The accumulation of LlERF110 may activate certain repressors related to heat stress response (HSR) and indirectly damage the normal expression of heat stress (HS)-protective genes such as AtHSFA2, which consequently leads to reduced thermotolerance. Our results implied that LlERF110 might function as a heat-inducible gene but may hinder the establishment of thermotolerance.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China; College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xiang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing 210043, China.
| |
Collapse
|
54
|
Srivastava R, Kobayashi Y, Koyama H, Sahoo L. Overexpression of cowpea NAC transcription factors promoted growth and stress tolerance by boosting photosynthetic activity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111251. [PMID: 35487661 DOI: 10.1016/j.plantsci.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
ATAF-like NAC transcription factors are bonafide regulators of stress-signaling. However, their overexpression often exerts growth-retardation by activating ABA-hypersensitivity, chloroplast-degradation, or carbon-starvation. To improve tolerance to multiple stress complying with growth sustainability, we examined two ATAF orthologs, VuNAC1 and VuNAC2, isolated from a drought-hardy cowpea genotype, for a harmonized regulation of stress and growth signaling. The genes were induced by dehydration, NaCl, polyethylene glycol, heat, cold, ABA, and light. Analysis of the promoter-elements and regulatory network corroborated the integration of circadian, hormonal, stress, developmental, and nutrition signals, being VuNAC1/2 the central transcriptional-switch interfacing growth and stress responses. The constitutive gene overexpression in Arabidopsis resulted in an improved embryonic, rosette, and inflorescence growth, under optimum as well as limiting nutrition, in association with increased photosynthetic activity and stomatal-density. The transgenic seedlings manifested tolerance to dehydration, salinity, aluminum, cadmium, and H2O2 toxicity, in addition to ABA-mediated seed dormancy and hypersensitivity. The soil-grown plants survived severe drought and hypersalinity by maintaining the water-status and membrane integrity through the accumulation of stress protectants, such as proline, glutathione, and ascorbate. Unlike their orthologs from other species, VuNAC1/2 conferred tolerance to multiple abiotic stresses in line with improved growth attributes via regulation of photosynthetic controls and nutritional balance, suggesting growth being a crucial component of stress-tolerance and recovery. Such unique stress-responsive transcription factors, which also confer photosynthetic gain, could be sustainable biotechnological tools for developing stress-tolerant crops and translating the improved growth into yield without unintended trade-offs.
Collapse
Affiliation(s)
- Richa Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Lingaraj Sahoo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
55
|
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. NATURE PLANTS 2022; 8:434-450. [PMID: 35437002 DOI: 10.1038/s41477-022-01135-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
When confronted with heat stress, plants depend on the timely activation of cellular defences to survive by perceiving the rising temperature. However, how plants sense heat at the whole-plant level has remained unanswered. Here we demonstrate that shoot apical nitric oxide (NO) bursting under heat stress as a signal triggers cellular heat responses at the whole-plant level on the basis of our studies mainly using live-imaging of transgenic plants harbouring pHsfA2::LUC, micrografting, NO accumulation mutants and liquid chromatography-tandem mass spectrometry analysis in Arabidopsis. Furthermore, we validate that S-nitrosylation of the trihelix transcription factor GT-1 by S-nitrosoglutathione promotes its binding to NO-responsive elements in the HsfA2 promoter and that loss of function of GT-1 disrupts the activation of HsfA2 and heat tolerance, revealing that GT-1 is the long-sought mediator linking signal perception to the activation of cellular heat responses. These findings uncover a heat-responsive mechanism that determines the timing and execution of cellular heat responses at the whole-plant level.
Collapse
Affiliation(s)
- Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shui-Ning Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
56
|
Li Z, Zhang J. Effects of Raised Ambient Temperature on the Local and Systemic Adaptions of Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:755. [PMID: 35336636 PMCID: PMC8949135 DOI: 10.3390/plants11060755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Maize is a staple food, feed, and industrial crop. One of the major stresses on maize production is heat stress, which is usually accompanied by other stresses, such as drought or salinity. In this review, we compared the effects of high temperatures on maize production in China. Heat stress disturbs cellular homeostasis and impedes growth and development in plants. Plants have evolved a variety of responses to minimize the damage related to high temperatures. This review summarized the responses in different cell organelles at elevated temperatures, including transcriptional regulation control in the nuclei, unfolded protein response and endoplasmic reticulum-associated protein quality control in the endoplasmic reticulum (ER), photosynthesis in the chloroplast, and other cell activities. Cells coordinate their activities to mediate the collective stresses of unfavorable environments. Accordingly, we evaluated heat stress at the local and systemic levels in in maize. We discussed the physiological and morphological changes in sensing tissues in response to heat stress in maize and the existing knowledge on systemically acquired acclimation in plants. Finally, we discussed the challenges and prospects of promoting corn thermotolerance by breeding and genetic manipulation.
Collapse
|
57
|
Bi H, Miao J, He J, Chen Q, Qian J, Li H, Xu Y, Ma D, Zhao Y, Tian X, Liu W. Characterization of the Wheat Heat Shock Factor TaHsfA2e-5D Conferring Heat and Drought Tolerance in Arabidopsis. Int J Mol Sci 2022; 23:ijms23052784. [PMID: 35269925 PMCID: PMC8911409 DOI: 10.3390/ijms23052784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023] Open
Abstract
Environmental stresses, especially heat and drought, severely limit plant growth and negatively affect wheat yield and quality worldwide. Heat shock factors (Hsfs) play a central role in regulating plant responses to various stresses. In this study, the wheat heat shock factor gene TaHsfA2e-5D on chromosome 5D was isolated and functionally characterized, with the goal of investigating its role in responses to heat and drought stresses. Gene expression profiling showed that TaHsfA2e-5D was expressed constitutively in various wheat tissues, most highly in roots at the reproductive stage. The expression of TaHsfA2e-5D was highly up-regulated in wheat seedlings by heat, cold, drought, high salinity, and multiple phytohormones. The TaHsfA2e-5D protein was localized in the nucleus and showed a transcriptional activation activity. Ectopic expression of the TaHsfA2e-5D in yeast exhibited improved thermotolerance. Overexpression of the TaHsfA2e-5D in Arabidopsis results in enhanced tolerance to heat and drought stresses. Furthermore, RT-qPCR analyses revealed that TaHsfA2e-5D functions through increasing the expression of Hsp genes and other stress-related genes, including APX2 and GolS1. Collectively, these results suggest that TaHsfA2e-5D functions as a positive regulator of plants’ responses to heat and drought stresses, which may be of great significance for understanding and improving environmental stress tolerance in crops.
Collapse
Affiliation(s)
- Huihui Bi
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jingnan Miao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jinqiu He
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Qifan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Jiajun Qian
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Huanhuan Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| | - Yan Xu
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
| | - Dan Ma
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
| | - Yue Zhao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
- Correspondence: (Y.Z.); (X.T.)
| | - Xuejun Tian
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; (Y.X.); (D.M.)
- Correspondence: (Y.Z.); (X.T.)
| | - Wenxuan Liu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; (H.B.); (J.M.); (J.H.); (Q.C.); (J.Q.); (H.L.); (W.L.)
| |
Collapse
|
58
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
59
|
Tiwari M, Kumar R, Min D, Jagadish SVK. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. PLANT, CELL & ENVIRONMENT 2022; 45:771-788. [PMID: 35043409 DOI: 10.1111/pce.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/22/2023]
Abstract
Heat stress events are resulting in a significant negative impact on global food production. The dynamics of cellular, molecular and physiological homoeostasis in aboveground parts under heat stress are extensively deciphered. However, root responses to higher soil/air temperature or stress signalling from shoot to root are limited. Therefore, this review presents a holistic view of root physio-morphological and molecular responses to adapt under hotter environments. Heat stress reprogrammes root cellular machinery, including crosstalk between genes, phytohormones, reactive oxygen species (ROS) and antioxidants. Spatio-temporal regulation and long-distance transport of phytohormones, such as auxin, cytokinin and abscisic acid (ABA) determine the root growth and development under heat stress. ABA cardinally integrates a signalling pathway involving heat shock factors, heat shock proteins and ROS to govern heat stress responses. Additionally, epigenetic modifications by transposable elements, DNA methylation and acetylation also regulate root growth under heat stress. Exogenous application of chemical compounds or biological agents such as ascorbic acid, metal ion chelators, fungi and bacteria can alleviate heat stress-induced reduction in root biomass. Future research should focus on the systemic effect of heat stress from shoot to root with more detailed investigations to decipher the molecular cues underlying the roots architecture and function.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
60
|
Anwar M, Saleem MA, Dan M, Malik W, Ul-Allah S, Ahmad MQ, Qayyum A, Amjid MW, Zia ZU, Afzal H, Asif M, Ur Rahman MA, Hu Z. Morphological, physiological and molecular assessment of cotton for drought tolerance under field conditions. Saudi J Biol Sci 2022; 29:444-452. [PMID: 35002440 PMCID: PMC8717151 DOI: 10.1016/j.sjbs.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022] Open
Abstract
Climate change could be an existential threat to many crops. Drought and heat stress are becoming harder for cultivated crops. Cotton in Pakistan is grown under natural high temperature and low moisture, could be used as a source of heat and drought tolerance. Therefore, the study was conducted to morphological, physiological and molecular characterization of cotton genotypes under field conditions. A total of 25 cotton genotypes were selected from the gene pool of Pakistan based on tolerance to heat and drought stress. In field trail, the stress related traits like boll retention percentage, plant height, number of nodes and inter-nodal distance were recorded. In physiological assessment, traits such as photosynthesis rate, stomatal conductance, transpiration rate, leaf temperature, relative water content and excised leaf water loss were observed. At molecular level, a set of 19 important transcription factors, controlling drought/heat stress tolerance (HSPCB, GHSP26, HSFA2, HSP101, HSP3, DREB1A, DREB2A, TPS, GhNAC2, GbMYB5, GhWRKY41, GhMKK3, GhMPK17, GhMKK1, GhMPK2, APX1, HSC70, ANNAT8, and GhPP2A1) were analyzed from all genotypes. Data analyses depicted that boll retention percentage, photosynthesis, stomatal conductance, relative water content under the stress conditions were associated with the presence of important drought & heat TF/genes which depicts high genetic potential of Pakistani cotton varieties against abiotic stress. The variety MNH-886 appeared in medium plant height, high boll retention percentage, high relative water content, photosynthesis rate, stomatal conductance, transpiration rate and with maximum number transcription factors under study. The variety may be used as source material for heat and drought tolerant cotton breeding. The results of this study may be useful for the cotton breeders to develop genotype adoptable to environmental stresses under climate change scenario.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Asif Saleem
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Ma Dan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Waqas Malik
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-campus, Layyah, Pakistan
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Waqas Amjid
- State Key Lab. of Crop Genetics & Germplasm, Nanjing Agriculture University, China
| | | | - Hammad Afzal
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Asif
- Department of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Aneeq Ur Rahman
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
61
|
Rao S, Das JR, Balyan S, Verma R, Mathur S. Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato. PLANTA 2022; 255:31. [PMID: 34982240 DOI: 10.1007/s00425-021-03813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Cultivar-biased regulation of HSFB4a and HSFA7 mediates heat stress tolerance/sensitivity in tomato. Reduced HSFB4a repressor levels and enhanced HSFA7 activator levels govern thermo-tolerance in tolerant cultivars. Heat shock factors (HSFs) are at the core of heat stress (HS) response in plants. However, the contribution of HSFs governing the inherent thermo-tolerance mechanism in tomato from sub-tropical hot climates is poorly understood. With the above aim, comparative expression profiles of the HSF family in a HS-tolerant (CLN1621L) and -sensitive cultivars (CA4 and Pusa Ruby) of tomato under HS revealed cultivar-biased regulation of an activator (HSFA7) and a repressor (HSFB4a) class HSF. HSFA7 exhibited strong upregulation while HSFB4a showed downregulation in tolerant tomato cultivar upon HS. Functional characterization of HSFA7 and HSFB4a in a tolerant-sensitive cultivar pair by virus-induced gene silencing (VIGS)-based silencing and transient overexpression established them as a positive and a negative regulator of HS tolerance, respectively. Promoter:GUS reporter assays and promoter sequence analyses suggest heat-mediated transcriptional control of both the HSF genes in the contrasting cultivars. Moreover, degradome data highlighted HSFB4a is a probable target of microRNA Sly-miR4200. Transient in-planta Sly-MIR4200-effector:HSFB4a-reporter assays showed miRNA-dependent target down-regulation. Chelation of miRNA by short-tandem-target-mimic of Sly-miR4200 increased target abundance, highlighting a link between Sly-miR4200 and HSFB4a. This miRNA has induced several folds upon HS in the tolerant cultivar where HSFB4a levels are reduced, thus exhibiting the inverse miR:target expression. Thus, we speculate that the alleviation of HSFB4a and increased HSFA7 levels govern thermo-tolerance in the tolerant cultivar by regulating downstream heat stress-responsive genes.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Jaishri Rubina Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Radhika Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
62
|
Li XT, Feng XY, Zeng Z, Liu Y, Shao ZQ. Comparative Analysis of HSF Genes From Secale cereale and its Triticeae Relatives Reveal Ancient and Recent Gene Expansions. Front Genet 2021; 12:801218. [PMID: 34887907 PMCID: PMC8650501 DOI: 10.3389/fgene.2021.801218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved sophisticated systems to cope with the environmental stresses, with the heat shock factor (HSF) family proteins composing an integral part of the transcriptional regulation system. Understanding the evolutionary history and functional diversity of HSFs will facilitate improving tolerance of crops to adverse environmental conditions. In this study, genome-wide analysis of Secale cereale identified 31 HSF genes. The total number of HSF genes in S. cereale is larger than that in barley and the three subgenomes of wheat, suggesting it is a valuable resource for mining functional HSFs. Chromosome analysis revealed an uneven distribution of HSF genes among the 7 S. cereale chromosomes, with no HSF gene was detected on chromosome 4. Further interspecies synteny analysis revealed that chromosome reorganization during species-speciation may lead to the escape of HSF genes from the S. cereale chromosome 4. Phylogenetic analysis revealed that S. cereale experienced more HSF gene duplications than barley and the three wheat subgenomes. Expression analysis demonstrated that S. cereale HSF genes showed diverse expression patterns across plant developmental stages and upon drought and freezing treatment, suggesting functional diversity of the gene family. Notably, we detected distinct expression patterns for a recently duplicated HSF gene pair, indicating functional divergence may have occurred between the two genes. The study presents the genome organization, evolutionary features and expression patterns of the S. cereale HSF genes. These results provide new insights into the evolution of HSF genes in Triticeae and may serve as a resource for Triticeae molecular breeding.
Collapse
Affiliation(s)
- Xiao-Tong Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xing-Yu Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zeng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
63
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
64
|
Luo S, Kim C. Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases. Int J Mol Sci 2021; 22:ijms222212106. [PMID: 34829988 PMCID: PMC8622299 DOI: 10.3390/ijms222212106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Low and high temperatures are life-threatening stress factors, diminishing plant productivity. One of the earliest responses of plants to stress is a rapid burst of reactive oxygen species (ROS) in chloroplasts. Widespread efforts over the past decade shed new light on the chloroplast as an environmental sensor, translating the environmental fluctuation into varying physiological responses by utilizing distinct retrograde (chloroplast-to-nucleus) signals. Recent studies have unveiled that chloroplasts mediate a similar unfolded/misfolded/damaged protein response (cpUPR) as observed in the endoplasmic reticulum and mitochondria. Although observing cpUPR is not surprising since the chloroplast is a prime organelle producing harmful ROS, the intertwined relationship among ROS, protein damage, and chloroplast protein quality controls (cpPQCs) with retrograde signaling has recently been reported. This finding also gives rise to critical attention on chloroplast proteins involved in cpPQCs, ROS detoxifiers, transcription/translation, import of precursor proteins, and assembly/maturation, the deficiency of which compromises chloroplast protein homeostasis (proteostasis). Any perturbation in the protein may require readjustment of proteostasis by transmitting retrograde signal(s) to the nucleus, whose genome encodes most of the chloroplast proteins involved in proteostasis. This review focuses on recent findings on cpUPR and chloroplast-targeted FILAMENTOUS TEMPERATURE-SENSITIVE H proteases involved in cpPQC and retrograde signaling and their impacts on plant responses to temperature stress.
Collapse
Affiliation(s)
- Shengji Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
- Correspondence:
| |
Collapse
|
65
|
Li N, Jiang M, Li P, Li X. Identification, expression, and functional analysis of Hsf and Hsp20 gene families in Brachypodium distachyon under heat stress. PeerJ 2021; 9:e12267. [PMID: 34703676 PMCID: PMC8489411 DOI: 10.7717/peerj.12267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background The heat shock factor (Hsf) and small heat shock protein (sHsp, also called Hsp20) complex has been identified as a primary component in the protection of plant cells from ubiquitous stresses, particularly heat stress. Our study aimed to characterize and analyze the Hsf and Hsp genes in Brachypodium distachyon, an annual temperate grass and model plant in cereal and grass studies. Results We identified 24 Hsf and 18 Hsp20 genes in B. distachyon and explored their evolution in gene organization, sequence features, chromosomal localization, and gene duplication. Our phylogenetic analysis showed that BdHsfs could be divided into three categories and BdHsp20s into ten subfamilies. Further analysis showed that the 3’UTR length of BdHsp20 genes had a negative relationship with their expression under heat stress. Expression analyses indicated that BdHsp20s and BdHsfs were strongly and rapidly induced by high-temperature treatment. Additionally, we constructed a complex regulatory network based on their expression patterns under heat stress. Morphological analysis suggested that the overexpression of five BdHsp20 genes enhanced the seed germination rate and decreased cell death under high temperatures. Conclusion Ultimately, our study provided important evolutionary and functional characterizations for future research on the regulatory mechanisms of BdHsp20s and BdHsfs in herbaceous plants under environmental stress.
Collapse
Affiliation(s)
- Na Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-Chongming (IEC), School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiwen Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
66
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
67
|
Yamaguchi N. Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression. Genes Genet Syst 2021; 96:229-235. [PMID: 34526427 DOI: 10.1266/ggs.21-00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
68
|
Jeran N, Rotasperti L, Frabetti G, Calabritto A, Pesaresi P, Tadini L. The PUB4 E3 Ubiquitin Ligase Is Responsible for the Variegated Phenotype Observed upon Alteration of Chloroplast Protein Homeostasis in Arabidopsis Cotyledons. Genes (Basel) 2021; 12:genes12091387. [PMID: 34573369 PMCID: PMC8464772 DOI: 10.3390/genes12091387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
During a plant's life cycle, plastids undergo several modifications, from undifferentiated pro-plastids to either photosynthetically-active chloroplasts, ezioplasts, chromoplasts or storage organelles, such as amyloplasts, elaioplasts and proteinoplasts. Plastid proteome rearrangements and protein homeostasis, together with intracellular communication pathways, are key factors for correct plastid differentiation and functioning. When plastid development is affected, aberrant organelles are degraded and recycled in a process that involves plastid protein ubiquitination. In this study, we have analysed the Arabidopsis gun1-102 ftsh5-3 double mutant, lacking both the plastid-located protein GUN1 (Genomes Uncoupled 1), involved in plastid-to-nucleus communication, and the chloroplast-located FTSH5 (Filamentous temperature-sensitive H5), a metalloprotease with a role in photosystem repair and chloroplast biogenesis. gun1-102 ftsh5-3 seedlings show variegated cotyledons and true leaves that we attempted to suppress by introgressing second-site mutations in genes involved in: (i) plastid translation, (ii) plastid folding/import and (iii) cytosolic protein ubiquitination. Different phenotypic effects, ranging from seedling-lethality to partial or complete suppression of the variegated phenotype, were observed in the corresponding triple mutants. Our findings indicate that Plant U-Box 4 (PUB4) E3 ubiquitin ligase plays a major role in the target degradation of damaged chloroplasts and is the main contributor to the variegated phenotype observed in gun1-102 ftsh5-3 seedlings.
Collapse
|
69
|
Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun BW, Khan AL, Lee IJ. Melatonin Ameliorates Thermotolerance in Soybean Seedling through Balancing Redox Homeostasis and Modulating Antioxidant Defense, Phytohormones and Polyamines Biosynthesis. Molecules 2021; 26:5116. [PMID: 34500550 PMCID: PMC8434054 DOI: 10.3390/molecules26175116] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/31/2022] Open
Abstract
Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate-glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (M.I.); (M.A.K.); (M.K.); (B.-W.Y.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (M.I.); (M.A.K.); (M.K.); (B.-W.Y.)
| | - Raheem Shahzad
- Department of Horticulture, University of Haripur, Haripur 22620, Pakistan;
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Murtaza Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (M.I.); (M.A.K.); (M.K.); (B.-W.Y.)
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (M.I.); (M.A.K.); (M.K.); (B.-W.Y.)
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, TX 77479, USA
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (M.I.); (M.A.K.); (M.K.); (B.-W.Y.)
| |
Collapse
|
70
|
Chiusano ML, Incerti G, Colantuono C, Termolino P, Palomba E, Monticolo F, Benvenuto G, Foscari A, Esposito A, Marti L, de Lorenzo G, Vega-Muñoz I, Heil M, Carteni F, Bonanomi G, Mazzoleni S. Arabidopsis thaliana Response to Extracellular DNA: Self Versus Nonself Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081744. [PMID: 34451789 PMCID: PMC8400022 DOI: 10.3390/plants10081744] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.
Collapse
Affiliation(s)
- Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
- Correspondence: (M.L.C.); (S.M.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100 Udine, Italy;
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine, via campi Flegrei, 34 Pozzuoli, 80078 Napoli, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giovanna Benvenuto
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica “Anton Dohrn”, 80121 Napoli, Italy;
| | - Alessandro Foscari
- Dipartimento di Scienze della Vita, University of Trieste, 34127 Trieste, Italy;
| | - Alfonso Esposito
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy;
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Giulia de Lorenzo
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.d.L.)
| | - Isaac Vega-Muñoz
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Martin Heil
- Departemento de Ingeniería Genética, CINVESTAV-Irapuato, Guanajuato 36821, Mexico; (I.V.-M.); (M.H.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (F.M.); (F.C.); (G.B.)
- Correspondence: (M.L.C.); (S.M.)
| |
Collapse
|
71
|
Fraga OT, de Melo BP, Quadros IPS, Reis PAB, Fontes EPB. Senescence-Associated Glycine max ( Gm) NAC Genes: Integration of Natural and Stress-Induced Leaf Senescence. Int J Mol Sci 2021; 22:8287. [PMID: 34361053 PMCID: PMC8348617 DOI: 10.3390/ijms22158287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022] Open
Abstract
Leaf senescence is a genetically regulated developmental process that can be triggered by a variety of internal and external signals, including hormones and environmental stimuli. Among the senescence-associated genes controlling leaf senescence, the transcriptional factors (TFs) comprise a functional class that is highly active at the onset and during the progression of leaf senescence. The plant-specific NAC (NAM, ATAF, and CUC) TFs are essential for controlling leaf senescence. Several members of Arabidopsis AtNAC-SAGs are well characterized as players in elucidated regulatory networks. However, only a few soybean members of this class display well-known functions; knowledge about their regulatory circuits is still rudimentary. Here, we describe the expression profile of soybean GmNAC-SAGs upregulated by natural senescence and their functional correlation with putative AtNAC-SAGs orthologs. The mechanisms and the regulatory gene networks underlying GmNAC081- and GmNAC030-positive regulation in leaf senescence are discussed. Furthermore, new insights into the role of GmNAC065 as a negative senescence regulator are presented, demonstrating extraordinary functional conservation with the Arabidopsis counterpart. Finally, we describe a regulatory circuit which integrates a stress-induced cell death program with developmental leaf senescence via the NRP-NAC-VPE signaling module.
Collapse
Affiliation(s)
- Otto Teixeira Fraga
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil; (O.T.F.); (B.P.d.M.); (I.P.S.Q.); (P.A.B.R.)
- National Institute of Science and Technology in Plant-Pest Interactions, INCTIPP–BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Bruno Paes de Melo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil; (O.T.F.); (B.P.d.M.); (I.P.S.Q.); (P.A.B.R.)
- Embrapa Genetic Resources and Biotechnology, Brasília 70770.917, DF, Brazil
| | - Iana Pedro Silva Quadros
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil; (O.T.F.); (B.P.d.M.); (I.P.S.Q.); (P.A.B.R.)
- National Institute of Science and Technology in Plant-Pest Interactions, INCTIPP–BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Pedro Augusto Braga Reis
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil; (O.T.F.); (B.P.d.M.); (I.P.S.Q.); (P.A.B.R.)
- National Institute of Science and Technology in Plant-Pest Interactions, INCTIPP–BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil; (O.T.F.); (B.P.d.M.); (I.P.S.Q.); (P.A.B.R.)
- National Institute of Science and Technology in Plant-Pest Interactions, INCTIPP–BIOAGRO, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
72
|
Gupta R, Leibman-Markus M, Marash I, Kovetz N, Rav-David D, Elad Y, Bar M. Root zone warming represses foliar diseases in tomato by inducing systemic immunity. PLANT, CELL & ENVIRONMENT 2021; 44:2277-2289. [PMID: 33506959 DOI: 10.1111/pce.14006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Neta Kovetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
73
|
Yamaguchi N, Matsubara S, Yoshimizu K, Seki M, Hamada K, Kamitani M, Kurita Y, Nomura Y, Nagashima K, Inagaki S, Suzuki T, Gan ES, To T, Kakutani T, Nagano AJ, Satake A, Ito T. H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. Nat Commun 2021; 12:3480. [PMID: 34108473 PMCID: PMC8190089 DOI: 10.1038/s41467-021-23766-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acclimation to high temperature increases plants' tolerance of subsequent lethal high temperatures. Although epigenetic regulation of plant gene expression is well studied, how plants maintain a memory of environmental changes over time remains unclear. Here, we show that JUMONJI (JMJ) proteins, demethylases involved in histone H3 lysine 27 trimethylation (H3K27me3), are necessary for Arabidopsis thaliana heat acclimation. Acclimation induces sustained H3K27me3 demethylation at HEAT SHOCK PROTEIN22 (HSP22) and HSP17.6C loci by JMJs, poising the HSP genes for subsequent activation. Upon sensing heat after a 3-day interval, JMJs directly reactivate these HSP genes. Finally, jmj mutants fail to maintain heat memory under fluctuating field temperature conditions. Our findings of an epigenetic memory mechanism involving histone demethylases may have implications for environmental adaptation of field plants.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan.
| | - Satoshi Matsubara
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan
| | - Kaori Yoshimizu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan
| | - Motohide Seki
- Faculty of Design, Kyusyu University, Minami-ku, Fukuoka, Japan
| | - Kouta Hamada
- Department of Biology, Faculty of Science, Kyusyu University, Nishi-ku, Fukuoka, Japan
| | - Mari Kamitani
- Faculty of Agriculture, Ryukoku University, Otsu-shi, Shiga, Japan
| | - Yuko Kurita
- Faculty of Agriculture, Ryukoku University, Otsu-shi, Shiga, Japan
| | - Yasuyuki Nomura
- Faculty of Agriculture, Ryukoku University, Otsu-shi, Shiga, Japan
| | - Kota Nagashima
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan
| | - Soichi Inagaki
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai-shi, Aichi, Japan
| | - Eng-Seng Gan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Taiko To
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
- National Institute of Genetics, Mishima-shi, Shizuoka, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu-shi, Shiga, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyusyu University, Nishi-ku, Fukuoka, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan.
| |
Collapse
|
74
|
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 2021; 12:3426. [PMID: 34103516 PMCID: PMC8187452 DOI: 10.1038/s41467-021-23786-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Adaptive plasticity in stress responses is a key element of plant survival strategies. For instance, moderate heat stress (HS) primes a plant to acquire thermotolerance, which allows subsequent survival of more severe HS conditions. Acquired thermotolerance is actively maintained over several days (HS memory) and involves the sustained induction of memory-related genes. Here we show that FORGETTER3/ HEAT SHOCK TRANSCRIPTION FACTOR A3 (FGT3/HSFA3) is specifically required for physiological HS memory and maintaining high memory-gene expression during the days following a HS exposure. HSFA3 mediates HS memory by direct transcriptional activation of memory-related genes after return to normal growth temperatures. HSFA3 binds HSFA2, and in vivo both proteins form heteromeric complexes with additional HSFs. Our results indicate that only complexes containing both HSFA2 and HSFA3 efficiently promote transcriptional memory by positively influencing histone H3 lysine 4 (H3K4) hyper-methylation. In summary, our work defines the major HSF complex controlling transcriptional memory and elucidates the in vivo dynamics of HSF complexes during somatic stress memory.
Collapse
Affiliation(s)
- Thomas Friedrich
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Vicky Oberkofler
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Simone Altmann
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany ,grid.8241.f0000 0004 0397 2876Present Address: School of Life Sciences, University of Dundee, Dundee, UK
| | - Krzysztof Brzezinka
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michal Gorka
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Christian Kappel
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ewelina Sokolowska
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Graf
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Isabel Bäurle
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
75
|
Yamaguchi N, Ito T. JMJ Histone Demethylases Balance H3K27me3 and H3K4me3 Levels at the HSP21 Locus during Heat Acclimation in Arabidopsis. Biomolecules 2021; 11:biom11060852. [PMID: 34200465 PMCID: PMC8227549 DOI: 10.3390/biom11060852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by Jumonji C domain-containing protein (JMJ) histone demethylases, thus allowing the plant to ‘remember’ the heat experience. Other heat memory genes, such as HSP21, are downregulated in acclimatized jmj quadruple mutants compared to the wild type, but how those genes are regulated remains uncharacterized. Here, we show that histone H3 lysine 4 trimethylation (H3K4me3) at HSP21 was maintained at high levels for at least three days in response to heat. This heat-dependent H3K4me3 accumulation was compromised in the acclimatized jmj quadruple mutant as compared to the acclimatized wild type. JMJ30 directly bound to the HSP21 locus in response to heat and coordinated H3K27me3 and H3K4me3 levels under standard and fluctuating conditions. Our results suggest that JMJs mediate the balance between H3K27me3 and H3K4me3 at the HSP21 locus through proper maintenance of H3K27me3 removal during heat acclimation.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma-shi, Nara 630-0192, Japan;
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Correspondence: ; Tel.: +81-743-72-5501
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma-shi, Nara 630-0192, Japan;
| |
Collapse
|
76
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
77
|
Jacob P, Brisou G, Dalmais M, Thévenin J, van der Wal F, Latrasse D, Suresh Devani R, Benhamed M, Dubreucq B, Boualem A, Lepiniec L, Immink RGH, Hirt H, Bendahmane A. The Seed Development Factors TT2 and MYB5 Regulate Heat Stress Response in Arabidopsis. Genes (Basel) 2021; 12:genes12050746. [PMID: 34063415 PMCID: PMC8156827 DOI: 10.3390/genes12050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
HEAT SHOCK FACTOR A2 (HSFA2) is a regulator of multiple environmental stress responses required for stress acclimation. We analyzed HSFA2 co-regulated genes and identified 43 genes strongly co-regulated with HSFA2 during multiple stresses. Motif enrichment analysis revealed an over-representation of the site II element (SIIE) in the promoters of these genes. In a yeast 1-hybrid screen with the SIIE, we identified the closely related R2R3-MYB transcription factors TT2 and MYB5. We found overexpression of MYB5 or TT2 rendered plants heat stress tolerant. In contrast, tt2, myb5, and tt2/myb5 loss of function mutants showed heat stress hypersensitivity. Transient expression assays confirmed that MYB5 and TT2 can regulate the HSFA2 promoter together with the other members of the MBW complex, TT8 and TRANSPARENT TESTA GLABRA 1 (TTG1) and that the SIIE was involved in this regulation. Transcriptomic analysis revealed that TT2/MYB5 target promoters were enriched in SIIE. Overall, we report a new function of TT2 and MYB5 in stress resistance and a role in SIIE-mediated HSFA2 regulation.
Collapse
Affiliation(s)
- Pierre Jacob
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Gwilherm Brisou
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Johanne Thévenin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Froukje van der Wal
- Bioscience and Laboratory of Molecular Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands; (F.v.d.W.); (R.G.H.I.)
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Ravi Suresh Devani
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Bertrand Dubreucq
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
| | - Loic Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (J.T.); (B.D.); (L.L.)
| | - Richard G. H. Immink
- Bioscience and Laboratory of Molecular Biology, Wageningen University and Research, 6708PB Wageningen, The Netherlands; (F.v.d.W.); (R.G.H.I.)
| | - Heribert Hirt
- Darwin21, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
- Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, Univ. Evry, INRAE, CNRS, 91405 Orsay, France; (P.J.); (G.B.); (M.D.); (D.L.); (R.S.D.); (M.B.); (A.B.)
- Correspondence:
| |
Collapse
|
78
|
De Clercq I, Van de Velde J, Luo X, Liu L, Storme V, Van Bel M, Pottie R, Vaneechoutte D, Van Breusegem F, Vandepoele K. Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. NATURE PLANTS 2021; 7:500-513. [PMID: 33846597 DOI: 10.1038/s41477-021-00894-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Gene regulation is a dynamic process in which transcription factors (TFs) play an important role in controlling spatiotemporal gene expression. To enhance our global understanding of regulatory interactions in Arabidopsis thaliana, different regulatory input networks capturing complementary information about DNA motifs, open chromatin, TF-binding and expression-based regulatory interactions were combined using a supervised learning approach, resulting in an integrated gene regulatory network (iGRN) covering 1,491 TFs and 31,393 target genes (1.7 million interactions). This iGRN outperforms the different input networks to predict known regulatory interactions and has a similar performance to recover functional interactions compared to state-of-the-art experimental methods. The iGRN correctly inferred known functions for 681 TFs and predicted new gene functions for hundreds of unknown TFs. For regulators predicted to be involved in reactive oxygen species (ROS) stress regulation, we confirmed in total 75% of TFs with a function in ROS and/or physiological stress responses. This includes 13 ROS regulators, previously not connected to any ROS or stress function, that were experimentally validated in our ROS-specific phenotypic assays of loss- or gain-of-function lines. In conclusion, the presented iGRN offers a high-quality starting point to enhance our understanding of gene regulation in plants by integrating different experimental data types.
Collapse
Affiliation(s)
- Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Xiaopeng Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Li Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
79
|
Tan B, Yan L, Li H, Lian X, Cheng J, Wang W, Zheng X, Wang X, Li J, Ye X, Zhang L, Li Z, Feng J. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021; 9:e10961. [PMID: 33763299 PMCID: PMC7958895 DOI: 10.7717/peerj.10961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.
Collapse
Affiliation(s)
- Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Liu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Huannan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| |
Collapse
|
80
|
Andrási N, Pettkó-Szandtner A, Szabados L. Diversity of plant heat shock factors: regulation, interactions, and functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1558-1575. [PMID: 33277993 DOI: 10.1093/jxb/eraa576] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
Plants heat shock factors (HSFs) are encoded by large gene families with variable structure, expression, and function. HSFs are components of complex signaling systems that control responses not only to high temperatures but also to a number of abiotic stresses such as cold, drought, hypoxic conditions, soil salinity, toxic minerals, strong irradiation, and to pathogen threats. Here we provide an overview of the diverse world of plant HSFs through compilation and analysis of their functional versatility, diverse regulation, and interactions. Bioinformatic data on gene expression profiles of Arabidopsis HSF genes were re-analyzed to reveal their characteristic transcript patterns. While HSFs are regulated primarily at the transcript level, alternative splicing and post-translational modifications such as phosphorylation and sumoylation provides further variability. Plant HSFs are involved in an intricate web of protein-protein interactions which adds considerable complexity to their biological function. A list of such interactions was compiled from public databases and published data, and discussed to pinpoint their relevance in transcription control. Although most fundamental studies of plant HSFs have been conducted in the model plant, Arabidopsis, information on HSFs is accumulating in other plants such as tomato, rice, wheat, and sunflower. Understanding the function, interactions, and regulation of HSFs will facilitate the design of novel strategies to use engineered proteins to improve tolerance and adaptation of crops to adverse environmental conditions.
Collapse
Affiliation(s)
- Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| |
Collapse
|
81
|
Impact of heat stress responsive factors on growth and physiology of cotton (Gossypium hirsutum L.). Mol Biol Rep 2021; 48:1069-1079. [PMID: 33609263 DOI: 10.1007/s11033-021-06217-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Pakistan ranked highest with reference to average temperatures in cotton growing areas of the world. The heat waves are becoming more intense and unpredictable due to climate change. Identification of heat tolerant genotypes requires comprehensive screening using molecular, physiological and morphological analysis. Heat shock proteins play an important role in tolerance against heat stress. In the current study, eight heat stress responsive factors, proteins and genes (HSFA2, GHSP26, GHPP2A, HSP101, HSC70-1, HSP3, APX1 and ANNAT8) were evaluated morphologically and physiologically for their role in heat stress tolerance. For this purpose, cotton crop was grown at two temperature conditions i.e. normal weather and heat stress at 45 °C. For molecular analysis, genotypes were screened for the presence or absence of heat shock protein genes. Physiological analysis of genotypes was conducted to assess net photosynthesis, stomatal conductance, transpiration rate, leaf-air temperature and cell membrane stability under control as well as high temperature. The traits photosynthesis, cell membrane stability, leaf-air temperature and number of heat stress responsive factors in each genotypes showed a strong correlation with boll retention percentage under heat stress. The genotypes with maximum heat shock protein genes such as Cyto-177, MNH-886, VH-305 and Cyto-515 showed increased photosynthesis, stomatal conductance, negative leaf-air temperature and high boll retention percentage under heat stress condition. These varieties may be used as heat tolerant breeding material.
Collapse
|
82
|
Li X, Zhao C, Zhang T, Wang G, Amombo E, Xie Y, Fu J. Exogenous Aspergillus aculeatus Enhances Drought and Heat Tolerance of Perennial Ryegrass. Front Microbiol 2021; 12:593722. [PMID: 33679629 PMCID: PMC7933552 DOI: 10.3389/fmicb.2021.593722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is a cool-season grass whose growth and development are limited by drought and high temperature. Aspergillus aculeatus has been reported to promote plant growth and counteract the adverse effects of abiotic stresses. The objective of this study was to assess A. aculeatus-induced response mechanisms to drought and heat resistance in perennial ryegrass. We evaluated the physiological and biochemical markers of drought and heat stress based on the hormone homeostasis, photosynthesis, antioxidant enzymes activity, lipid peroxidation, and genes expression level. We found out that under drought and heat stress, A. aculeatus-inoculated leaves exhibited higher abscisic acid (ABA) and lower salicylic acid (SA) contents than non-inoculated regimes. In addition, under drought and heat stress, the fungus enhanced the photosynthetic performance, decreased the antioxidase activities, and mitigated membrane lipid peroxidation compared to non-inoculated regime. Furthermore, under drought stress, A. aculeatus induced a dramatic upregulation of sHSP17.8 and DREB1A and a downregulation of POD47, Cu/ZnSOD, and FeSOD genes. In addition, under heat stress, A. aculeatus-inoculated plants exhibited a higher expression level of HSP26.7a, sHSP17.8, and DREB1A while a lower expression level of POD47 and FeSOD than non-inoculated ones. Our results provide an evidence of the protective role of A. aculeatus in perennial ryegrass response to drought and heat stresses.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Chuncheng Zhao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Ting Zhang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
83
|
Begara-Morales JC, Mata-Pérez C, Padilla MN, Chaki M, Valderrama R, Aranda-Caño L, Barroso JB. Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:917-927. [PMID: 33161434 DOI: 10.1093/jxb/eraa517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Nitro-fatty acids are generated from the interaction of unsaturated fatty acids and nitric oxide (NO)-derived molecules. The endogenous occurrence and modulation throughout plant development of nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) suggest a key role for these molecules in initial development stages. In addition, NO2-Ln content increases significantly in stress situations and induces the expression of genes mainly related to abiotic stress, such as genes encoding members of the heat shock response family and antioxidant enzymes. The promoter regions of NO2-Ln-induced genes are also involved mainly in stress responses. These findings confirm that NO2-Ln is involved in plant defense processes against abiotic stress conditions via induction of the chaperone network and antioxidant systems. NO2-Ln signaling capacity lies mainly in its electrophilic nature and allows it to mediate a reversible post-translational modification called nitroalkylation, which is capable of modulating protein function. NO2-Ln is a NO donor that may be involved in NO signaling events and is able to generate S-nitrosoglutathione, the major reservoir of NO in cells and a key player in NO-mediated abiotic stress responses. This review describes the current state of the art regarding the essential role of nitro-fatty acids as signaling mediators in development and abiotic stress processes.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Lorena Aranda-Caño
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| |
Collapse
|
84
|
Korotko U, Chwiałkowska K, Sańko-Sawczenko I, Kwasniewski M. DNA Demethylation in Response to Heat Stress in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22041555. [PMID: 33557095 PMCID: PMC7913789 DOI: 10.3390/ijms22041555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Environmental stress is one of the most important factors affecting plant growth and development. Recent studies have shown that epigenetic mechanisms, such as DNA methylation, play a key role in adapting plants to stress conditions. Here, we analyzed the dynamics of changes in the level of DNA methylation in Arabidopsis thaliana (L.) Heynh. (Brassicaceae) under the influence of heat stress. For this purpose, whole-genome sequencing of sodium bisulfite-treated DNA was performed. The analysis was performed at seven time points, taking into account the control conditions, heat stress, and recovery to control conditions after the stress treatment was discontinued. In our study we observed decrease in the level of DNA methylation under the influence of heat stress, especially after returning to control conditions. Analysis of the gene ontology enrichment and regulatory pathways showed that genes characterized by differential DNA methylation are mainly associated with stress response, including heat stress. These are the genes encoding heat shock proteins and genes associated with translation regulation. A decrease in the level of DNA methylation in such specific sites suggests that under the influence of heat stress we observe active demethylation phenomenon rather than passive demethylation, which is not locus specific.
Collapse
Affiliation(s)
- Urszula Korotko
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
- Department of Genetics, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
| | - Izabela Sańko-Sawczenko
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warszawa, Poland;
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.K.); (K.C.)
- Correspondence:
| |
Collapse
|
85
|
Karkute SG, Ansari WA, Singh AK, Singh PM, Rai N, Bahadur A, Singh J. Characterization of high-temperature stress-tolerant tomato ( Solanum lycopersicum L.) genotypes by biochemical analysis and expression profiling of heat-responsive genes. 3 Biotech 2021; 11:45. [PMID: 33489667 DOI: 10.1007/s13205-020-02587-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/03/2020] [Indexed: 12/01/2022] Open
Abstract
High-temperature stress severely impacts both yield and quality of tomato fruits, and therefore, it is required to develop stress-tolerant cultivars. In the present study, two tomato genotypes, H88-78-1 and CLN-1621, identified through preliminary phenotypic screening were characterized by analysis of molecular, physiological, and biochemical traits in comparison with a susceptible genotype Punjab Chhuhara. Phenotypic stress tolerance of both the genotypes was validated at biochemical level as they showed higher amount of relative water content, photosynthetic pigments, free cellular proline, and antioxidant molecules while less amount of H2O2 and electrolyte leakage. Expression analysis of 67 genes including heat shock factors, heat shock proteins, and other stress-responsive genes showed significant up-regulation of many of the genes such as 17.4 kDa class III heat shock protein, HSF A-4a, HSF30, HSF B-2a, HSF24, HSF B-3 like, 18.1 kDa class I HSP like, and HSP17.4 in H88-78-1 and CLN-1621 after exposure to high-temperature stress. These candidate genes can be transferred to cultivated varieties by developing gene-based markers and marker-assisted breeding. This confirms the rapid response of these genotypes to high-temperature stress. All these traits are characteristics of a stress-tolerance and establish them as candidate high-temperature stress-tolerant genotypes that can be effectively utilized in stress tolerance improvement programs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02587-6.
Collapse
Affiliation(s)
- Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Waquar Akhter Ansari
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Achuit Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Nagendra Rai
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Anant Bahadur
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| |
Collapse
|
86
|
Heat Stress Responses and Thermotolerance in Maize. Int J Mol Sci 2021; 22:ijms22020948. [PMID: 33477941 PMCID: PMC7833377 DOI: 10.3390/ijms22020948] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.
Collapse
|
87
|
Wang X, Liu Y, Han Z, Chen Y, Huai D, Kang Y, Wang Z, Yan L, Jiang H, Lei Y, Liao B. Integrated Transcriptomics and Metabolomics Analysis Reveal Key Metabolism Pathways Contributing to Cold Tolerance in Peanut. FRONTIERS IN PLANT SCIENCE 2021; 12:752474. [PMID: 34899780 PMCID: PMC8652294 DOI: 10.3389/fpls.2021.752474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 05/11/2023]
Abstract
Low temperature (non-freezing) is one of the major limiting factors in peanut (Arachis hypogaea L.) growth, yield, and geographic distribution. Due to the complexity of cold-resistance trait in peanut, the molecular mechanism of cold tolerance and related gene networks were largely unknown. In this study, metabolomic analysis of two peanut cultivars subjected to chilling stress obtained a set of cold-responsive metabolites, including several carbohydrates and polyamines. These substances showed a higher accumulation pattern in cold-tolerant variety SLH than cold-susceptible variety ZH12 under cold stress, indicating their importance in protecting peanut from chilling injuries. In addition, 3,620 cold tolerance genes (CTGs) were identified by transcriptome sequencing, and the CTGs were most significantly enriched in the "phenylpropanoid biosynthesis" pathway. Two vital modules and several novel hub genes were obtained by weighted gene co-expression network analysis (WGCNA). Several key genes involved in soluble sugar, polyamine, and G-lignin biosynthetic pathways were substantially higher and/or responded more quickly in SLH (cold tolerant) than ZH12 (cold susceptible) under low temperature, suggesting they might be crucial contributors during the adaptation of peanut to low temperature. These findings will not only provide valuable resources for study of cold resistance in peanut but also lay a foundation for genetic modification of cold regulators to enhance stress tolerance in crops.
Collapse
|
88
|
Li C, Cao S, Wang K, Lei C, Ji N, Xu F, Jiang Y, Qiu L, Zheng Y. Heat Shock Protein HSP24 Is Involved in the BABA-Induced Resistance to Fungal Pathogen in Postharvest Grapes Underlying an NPR1-Dependent Manner. FRONTIERS IN PLANT SCIENCE 2021; 12:646147. [PMID: 33763101 PMCID: PMC7984168 DOI: 10.3389/fpls.2021.646147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 05/02/2023]
Abstract
Although heat shock proteins (HSPs), a family of ubiquitous molecular chaperones, are well characterized in heat stress-related responses, their function in plant defense remains largely unclear. Here, we report the role of VvHSP24, a class B HSP from Vitis vinifera, in β-aminobutyric acid (BABA)-induced priming defense against the necrotrophic fungus Botrytis cinerea in grapes. Grapes treated with 10 mmol L-1 BABA exhibited transiently increased transcript levels of VvNPR1 and several SA-inducible genes, including PR1, PR2, and PR5. Additionally, phytoalexins accumulated upon inoculation with the gray mold fungus B. cinerea, which coincided with the action of a priming mode implicated in pathogen-driven resistance. Intriguingly, electrophoretic mobility shift (EMSA), yeast two-hybrid (Y2H) and His pull-down assays demonstrated that the nuclear chaperone VvHSP24 cannot modulate the transcript of PR genes but does directly interact with VvNPR1 in vivo or in vitro. Furthermore, we found that VvHSP24 overexpression enhanced the transcript levels of NPR1 and SA-responsive genes (PR1, PR2, and PR5) and increased the resistance of transgenic Arabidopsis thaliana to B. cinerea compared with wildtype Col-0. An opposite trend between CRISPR mutants of AtHSFB1 (the orthologous gene of VvHSP24 in Arabidopsis) and wildtype plants was observed. Hence, our results suggest that VvHSP24 has a potential role in NPR1-dependent plant resistance to fungal pathogen. BABA-induced priming defense in grapes may require posttranslational modification of the chaperone VvHSP24 to activate VvNPR1 transcript, leading to PR gene expressions and resistance phenotypes.
Collapse
Affiliation(s)
- Chunhong Li
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Kaituo Wang
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kaituo Wang,
| | - Changyi Lei
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yongbo Jiang
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Linglan Qiu
- College of Life and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
89
|
Shen C, Yuan J. Genome-wide characterization and expression analysis of the heat shock transcription factor family in pumpkin (Cucurbita moschata). BMC PLANT BIOLOGY 2020; 20:471. [PMID: 33054710 PMCID: PMC7557022 DOI: 10.1186/s12870-020-02683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Crop quality and yield are affected by abiotic and biotic stresses, and heat shock transcription factors (Hsfs) are considered to play important roles in regulating plant tolerance under various stresses. To investigate the response of Cucurbita moschata to abiotic stress, we analyzed the genome of C. moschata. RESULTS In this research, a total of 36 C. moschata Hsf (CmHsf) members were identified and classified into three subfamilies (I, II, and III) according to their amino acid sequence identity. The Hsfs of the same subfamily usually exhibit a similar gene structure (intron-exon distribution) and conserved domains (DNA-binding and other functional domains). Chromosome localization analysis showed that the 36 CmHsfs were unevenly distributed on 18 of the 21 chromosomes (except for Cm_Chr00, Cm_Chr08 and Cm_Chr20), among which 18 genes formed 9 duplicated gene pairs that have undergone segmental duplication events. The Ka/Ks ratio showed that the duplicated CmHsfs have mainly experienced strong purifying selection. High-level synteny was observed between C. moschata and other Cucurbitaceae species. CONCLUSIONS The expression profile of CmHsfs in the roots, stems, cotyledons and true leaves revealed that the CmHsfs exhibit tissue specificity. The analysis of cis-acting elements and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that some key CmHsfs were activated by cold stress, heat stress, hormones and salicylic acid. This study lays the foundation for revealing the role of CmHsfs in resistance to various stresses, which is of great significance for the selection of stress-tolerant C. moschata.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| |
Collapse
|
90
|
Thirumalaikumar VP, Gorka M, Schulz K, Masclaux-Daubresse C, Sampathkumar A, Skirycz A, Vierstra RD, Balazadeh S. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1. Autophagy 2020; 17:2184-2199. [PMID: 32967551 PMCID: PMC8496721 DOI: 10.1080/15548627.2020.1820778] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS in Arabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of an nbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression of HSP genes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation of NBR1 resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.Abbreviations: AIM: Atg8-interacting motif; ATG: autophagy-related; BiFC: bimolecular fluorescence complementation; ConA: concanamycinA; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; FKBP: FK506-binding protein; FBPASE: fructose 1,6-bisphosphatase; GFP: green fluorescent protein; HS: heat stress; HSF: heat shock factor; HSFA2: heat shock factor A2; HSP: heat shock protein; HSP90: heat shock protein 90; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; 3-MA: 3-methyladenine; NBR1: next-to-BRCA1; PQC: protein quality control; RFP: red fluorescent protein; ROF1: rotamase FKBP1; TF: transcription factor; TUB: tubulin; UBA: ubiquitin-associated; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Venkatesh P Thirumalaikumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.,Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michal Gorka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Celine Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
91
|
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2069-2083. [PMID: 32573848 DOI: 10.1111/tpj.14883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Heat shock protein 70 (Hsp70) chaperones are highly conserved and essential proteins with diverse cellular functions, including plant abiotic stress tolerance. Hsp70 proteins have been linked with basal heat tolerance in plants. Hsp101 likewise is an important chaperone protein that plays a critical role in heat tolerance in plants. We observed that Arabidopsis hsc70-1 mutant seedlings show elevated basal heat tolerance compared with wild-type. Over-expression of Hsc70-1 resulted in increased heat sensitivity. Hsp101 transcript and protein levels were increased during non-heat stress (HS) and post-HS conditions in hsc70-1 mutant seedlings. In contrast, Hsp101 was repressed in Hsc70-1 over-expressing plants after post-HS conditions. Hsc70-1 showed physical interaction with HsfA1d and HsfA1e protein in the cytosol under non-HS conditions. In transient reporter gene analysis, HsfA1d, HsfA1e and HsfA2 showed transcriptional response on the Hsp101 promoter. HsfA1d and HsfA2 transcripts were at higher levels in hsc70-1 mutant compared with wild-type. We provide genetic evidence that Hsc70-1 is a negative regulator affecting HsfA1d/A1e/A2 activators, which in turn regulate Hsp101 expression and basal thermotolerance.
Collapse
Affiliation(s)
- Lalit D Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| |
Collapse
|
92
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Ferreira ME. The Proteomics of Resistance to Halo Blight in Common Bean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1161-1175. [PMID: 32633604 DOI: 10.1094/mpmi-05-20-0112-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Halo blight disease of beans is caused by a gram-negative bacterium, Pseudomonas syringae pv. phaseolicola. The disease is prevalent in South America and Africa and causes crop loss for indigent people who rely on beans as a primary source of daily nutrition. In susceptible beans, P. syringae pv. phaseolicola causes water-soaking at the site of infection and produces phaseolotoxin, an inhibitor of bean arginine biosynthesis. In resistant beans, P. syringae pv. phaseolicola triggers a hypersensitive response that limits the spread of infection. Here, we used high-throughput mass spectrometry to interrogate the responses to two different P. syringae pv. phaseolicola isolates on a single line of common bean, Phaseolus vulgaris PI G19833, with a reference genome sequence. We obtained quantitative information for 4,135 bean proteins. A subset of 160 proteins with similar accumulation changes during both susceptible and resistant reactions included salicylic acid responders EDS1 and NDR1, ethylene and jasmonic acid biosynthesis enzymes, and proteins enabling vesicle secretion. These proteins revealed the activation of a basal defense involving hormonal responses and the mobilization of extracellular proteins. A subset of 29 proteins specific to hypersensitive immunity included SOBIR1, a G-type lectin receptor-like kinase, and enzymes needed for glucoside and phytoalexin production. Virus-induced gene silencing revealed that the G-type lectin receptor-like kinase suppresses bacterial infection. Together, the results define the proteomics of disease resistance to P. syringae pv. phaseolicola in beans and support a model whereby the induction of hypersensitive immunity reinstates defenses targeted by P. syringae pv. phaseolicola.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Marcio E Ferreira
- Embrapa Genetic Resources and Biotechnology, Embrapa, Brasilia, DF, Brazil
- Embrapa Labex U.S.A., USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
93
|
Guo XL, Yuan SN, Zhang HN, Zhang YY, Zhang YJ, Wang GY, Li YQ, Li GL. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. BMC PLANT BIOLOGY 2020; 20:364. [PMID: 32746866 PMCID: PMC7397617 DOI: 10.1186/s12870-020-02555-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/19/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are present in majority of plants and play central roles in thermotolerance, transgenerational thermomemory, and many other stress responses. Our previous paper identified at least 82 Hsf members in a genome-wide study on wheat (Triticum aestivum L.). In this study, we analyzed the Hsf expression profiles in the advanced development stages of wheat, isolated the markedly heat-responsive gene TaHsfA2-10 (GenBank accession number MK922287), and characterized this gene and its role in thermotolerance regulation in seedlings of Arabidopsis thaliana (L. Heynh.). RESULTS In the advanced development stages, wheat Hsf family transcription profiles exhibit different expression patterns and varying heat-responses in leaves and roots, and Hsfs are constitutively expressed to different degrees under the normal growth conditions. Overall, the majority of group A and B Hsfs are expressed in leaves while group C Hsfs are expressed at higher levels in roots. The expression of a few Hsf genes could not be detected. Heat shock (HS) caused upregulation about a quarter of genes in leaves and roots, while a number of genes were downregulated in response to HS. The highly heat-responsive gene TaHsfA2-10 was isolated through homeologous cloning. qRT-PCR revealed that TaHsfA2-10 is expressed in a wide range of tissues and organs of different development stages of wheat under the normal growth conditions. Compared to non-stress treatment, TaHsfA2-10 was highly upregulated in response to HS, H2O2, and salicylic acid (SA), and was downregulated by abscisic acid (ABA) treatment in two-leaf-old seedlings. Transient transfection of tobacco epidermal cells revealed subcellular localization of TaHsfA2-10 in the nucleus under the normal growth conditions. Phenotypic observation indicated that TaHsfA2-10 could improve both basal thermotolerance and acquired thermotolerance of transgenic Arabidopsis thaliana seedlings and rescue the thermotolerance defect of the T-DNA insertion mutant athsfa2 during HS. Compared to wild type (WT) seedlings, the TaHsfA2-10-overexpressing lines displayed both higher chlorophyll contents and higher survival rates. Yeast one-hybrid assay results revealed that TaHsfA2-10 had transactivation activity. The expression levels of thermotolerance-related AtHsps in the TaHsfA2-10 transgeinc Arabidopsis thaliana were higher than those in WT after HS. CONCLUSIONS Wheat Hsf family members exhibit diversification and specificity of transcription expression patterns in advanced development stages under the normal conditions and after HS. As a markedly responsive transcriptional factor to HS, SA and H2O2, TaHsfA2-10 involves in thermotolerance regulation of plants through binding to the HS responsive element in promoter domain of relative Hsps and upregulating the expression of Hsp genes.
Collapse
Affiliation(s)
- Xiu-lin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Sai-nan Yuan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Hua-ning Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Yuan-yuan Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Yu-jie Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Gui-yan Wang
- Faculty of Agronomy, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, 071001 PR China
| | - Ya-qing Li
- Shijiazhuang Academy of Agriculture and Forestry Science, No. 479, Shengli North Street, Shijiazhuang, 050000 PR China
| | - Guo-liang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| |
Collapse
|
94
|
Adamiec M, Misztal L, Kasprowicz-Maluśki A, Luciński R. EGY3: homologue of S2P protease located in chloroplasts. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:735-743. [PMID: 31886945 DOI: 10.1111/plb.13087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The EGY3 protein is a homologue of site-2 proteases, which are intramembrane zinc metalloproteases. EGY3 itself lacks proteolytic activity due to the absence of a zinc-binding motif. Plentiful evidence indicates that such intramembrane 'pseudoproteases' play significant roles in many diverse processes occurring within the cell. However, the physiological functions of EGY3, as well as its subcellular localization, remain unknown. The subcellular localization of EGY3 protein was investigated using Arabidopsis thaliana protoplasts transformed with EGY3-GFP fusion protein, and immunoblot experiments using the total leaf protein extract, as well as highly purified chloroplasts and fractions of stroma, envelope and thylakoid membrane proteins. The physiological role of EGY3 was studied using two A. thaliana mutant lines devoid of EGY3 protein. Chlorophyll a fluorescence measurement was performed and the egy3 mutant sensitivity to photoinhibition was investigated. Additionally, the abundance of thylakoid membrane complexes was established using blue native gel electrophoresis. We present experimental evidence for thylakoid membrane localization of the EGY3 protein. We show that egy3 mutants display increased value of the non-photochemical quenching parameter and significantly slower recovery rate after photoinhibitory treatment. This was associated with a decrease in the level of proteases involved in photosystem II recovery, Deg1 and FtsH2/8.
Collapse
Affiliation(s)
- M Adamiec
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - L Misztal
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - A Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - R Luciński
- Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
95
|
Zolti A, Green SJ, Sela N, Hadar Y, Minz D. The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. MICROBIOME 2020; 8:71. [PMID: 32438915 PMCID: PMC7243336 DOI: 10.1186/s40168-020-00850-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/28/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microbial communities are highly responsive to environmental cues, and both their structure and activity can be altered in response to changing conditions. We hypothesized that host-associated microbial communities, particularly those colonizing host surfaces, can serve as in situ sensors to reveal environmental conditions experienced by both microorganisms and the host. For a proof-of-concept, we studied a model plant-soil system and employed a non-deterministic gene-centric approach. A holistic analysis was performed using plants of two species and irrigation with water of low quality to induce host stress. Our analyses examined the genetic potential (DNA) and gene expression patterns (RNA) of plant-associated microbial communities, as well as transcriptional profiling of host plants. RESULTS Transcriptional analysis of plants irrigated with treated wastewater revealed significant enrichment of general stress-associated root transcripts relative to plants irrigated with fresh water. Metagenomic analysis of root-associated microbial communities in treated wastewater-irrigated plants, however, revealed enrichment of more specific stress-associated genes relating to high levels of salt, high pH and lower levels of oxygen. Meta-analysis of these differentially abundant genes obtained from other metagenome studies, provided evidence of the link between environmental factors such as pH and oxygen and these genes. Analysis of microbial transcriptional response demonstrated that enriched gene content was actively expressed, which implies contemporary response to elevated levels of pH and salt. CONCLUSIONS We demonstrate here that microbial profiling can elucidate stress signals that cannot be observed even through interrogation of host transcriptome, leading to an alternate mechanism for evaluating in situ conditions experienced by host organisms. This study is a proof-of-concept for the use of microbial communities as microsensors, with great potential for interrogation of a wide range of host systems. Video Abstract.
Collapse
Affiliation(s)
- Avihai Zolti
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Stefan J. Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA
| | - Noa Sela
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| |
Collapse
|
96
|
Chen JH, Chen ST, He NY, Wang QL, Zhao Y, Gao W, Guo FQ. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. NATURE PLANTS 2020; 6:570-580. [PMID: 32313138 DOI: 10.1038/s41477-020-0629-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
In photosynthetic organisms, the photosystem II (PSII) complex is the primary target of thermal damage. Plants have evolved a repair process to prevent the accumulation of damaged PSII. The repair of PSII largely involves de novo synthesis of proteins, particularly the D1 subunit protein encoded by the chloroplast gene psbA. Here we report that the allotropic expression of the psbA complementary DNA driven by a heat-responsive promoter in the nuclear genome sufficiently protects PSII from severe loss of D1 protein and dramatically enhances survival rates of the transgenic plants of Arabidopsis, tobacco and rice under heat stress. Unexpectedly, we found that the nuclear origin supplementation of the D1 protein significantly stimulates transgenic plant growth by enhancing net CO2 assimilation rates with increases in biomass and grain yield. These findings represent a breakthrough in bioengineering plants to achieve efficient photosynthesis and increase crop productivity under normal and heat-stress conditions.
Collapse
Affiliation(s)
- Juan-Hua Chen
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si-Ting Chen
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Long Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Gao
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
97
|
Liu J, Ding G, Gai Z, Zhang W, Han Y, Li W. Changes in the gene expression profile of Arabidopsis thaliana under chromium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110302. [PMID: 32087445 DOI: 10.1016/j.ecoenv.2020.110302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Based on previous studies and preliminary test results, 200 μM was used as the test concentration of chromium (Cr), and changes in the gene expression profile of Arabidopsis thaliana in response to 24-h treatments of Cr(III) and Cr(VI) were analyzed using the Arabidopsis ATH1 Genome Array. The results were as follows. There were 238 upregulated genes and 858 downregulated genes in response to treatments with Cr(III) and Cr(VI). For Cr(III) and Cr(VI) treatments, there were 185 and 587 specifically upregulated genes as well as 220 and 956 specifically downregulated genes, respectively. Among the common differentially expressed genes (DEGs), the expression levels of genes involved in redox, secondary metabolism, and energy metabolism processes were significantly downregulated, while those of genes related to the stress response, photosynthesis, and sulfur metabolism were significantly upregulated. These findings indicated that Cr seriously affected the normal activities of A. thaliana cells. Some genes associated with stress and regulation were upregulated to adapt to the stress caused by Cr. Among the unique DEGs, the expression levels of genes involved in indole-3-acetic acid (IAA) regulatory pathway were significantly increased in response to Cr(III) treatment; the expression levels of genes involved in the abscisic acid (ABA) regulation pathway and carotenoid synthesis were significantly increased following Cr(VI) treatment. These results revealed some differences in response to Cr(III) and Cr(VI) in A. thaliana.
Collapse
Affiliation(s)
- Jianxia Liu
- Affiliated Hospital of Hebei Engineering University, Hebei, Handan, China
| | - Guotao Ding
- Handan Municipal Center for Disease Control and Prevention, Hebei, Handan, China
| | - Zikuan Gai
- Affiliated Hospital of Hebei Engineering University, Hebei, Handan, China
| | - Wei Zhang
- College of Life Sciences Agricultural University of Hebei, Baoding, China
| | - Yonghong Han
- Handan Municipal Center for Disease Control and Prevention, Hebei, Handan, China
| | - Weihao Li
- Handan Municipal Center for Disease Control and Prevention, Hebei, Handan, China.
| |
Collapse
|
98
|
Pre-harvest climate and post-harvest acclimation to cold prevent from superficial scald development in Granny Smith apples. Sci Rep 2020; 10:6180. [PMID: 32277099 PMCID: PMC7148358 DOI: 10.1038/s41598-020-63018-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
Superficial scald is one of the most serious postharvest physiological disorders that can affect apples after a prolonged cold storage period. This study investigated the impact of pre- and post-harvest climatic variations on superficial scald in a susceptible apple cultivar. Fruit batches with contrasting phenotypes for superficial scald incidence were identified among several years of "Granny Smith" fruit production. The "low scald" year pre-harvest climate was characterised by a warm period followed by a sudden decrease in temperature, playing the part of an in vivo acclimation to cold storage. This was associated with many abiotic stress responsive genes which were induced in fruit peel. In particular 48 Heat Shock Proteins (HSPs) and 5 Heat Shock transcription Factors (HSFs) were strongly induced at harvest when scald incidence was low. For "high scald" year, a post-harvest acclimation of 1 week was efficient in reducing scald incidence. Expression profiles of stress related genes were affected by the acclimation treatment and indicate fruit physiological adaptations to cold storage. The identified stress-responsive genes, and in particular HSPs, could be useful indicators of the fruit physiological status to predict the risk of scald occurrence as early as harvest.
Collapse
|
99
|
Zhang H, Li G, Hu D, Zhang Y, Zhang Y, Shao H, Zhao L, Yang R, Guo X. Functional characterization of maize heat shock transcription factor gene ZmHsf01 in thermotolerance. PeerJ 2020; 8:e8926. [PMID: 32309048 PMCID: PMC7153558 DOI: 10.7717/peerj.8926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Heat waves can critically influence maize crop yields. Plant heat shock transcription factors (HSFs) play a key regulating role in the heat shock (HS) signal transduction pathway. METHOD In this study, a homologous cloning method was used to clone HSF gene ZmHsf01 (accession number: MK888854) from young maize leaves. The transcript levels of ZmHsf01 were detected using qRT-PCR in different tissues and treated by HS, abscisic acid (ABA), hydrogen peroxide (H2O2), respectively, and the functions of gene ZmHsf01 were studied in transgenic yeast and Arabidopsis. RESULT ZmHsf01 had a coding sequence (CDS) of 1176 bp and encoded a protein consisting of 391 amino acids. The homologous analysis results showed that ZmHsf01 and SbHsfA2d had the highest protein sequence identities. Subcellular localization experiments confirmed that ZmHsf01 was localized in the nucleus. ZmHsf01 was expressed in many maize tissues. It was up-regulated by HS, and up-regulated in roots and down-regulated in leaves under ABA and H2O2treatments. ZmHsf01-overexpressing yeast cells showed increased thermotolerance. In Arabidopsis seedlings, ZmHsf01 compensated for the thermotolerance defects of mutant athsfa2, and ZmHsf01-overexpressing lines showed enhanced basal and acquired thermotolerance. When compared to wild type (WT) seedlings, ZmHsf01-overexpressing lines showed higher chlorophyll content and survival rates after HS. Heat shock protein (HSP) gene expression levels were more up-regulated in ZmHsf01-overexpressing Arabidopsis seedlings than WT seedlings. These results suggest that ZmHsf01 plays a vital role in response to HS in plant.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yujie Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, P.R. China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, Jiangsu, China
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Lina Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ruiping Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
100
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|